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The foundations of the inverse mean field method (Imefim) and its relation to traditional 
approaches are discussed. Imefim predicts the energy dependence of the real central (nuclear) 
part of the optical model potential to have the functional form (1 + eEp)~3. Treating for the time 
being the constant e as an adjustable parameter, this prediction is shown to compare nicely with 
well-established formal and heuristic results. 

1. Introduction 

The aim of this note is to draw attention to the 
energy dependence of the optical model as pre-
dicted by a rather unconventional approach to 
nuclear physics, which has been termed the inverse 
mean Field method or in short Imef im [1 — 7]. 
Similarly as e.g. t ime-dependent Har t ree -Fock 
(TDHF) , Imefim starts off with the mean field 
picture reducing the full many-body Schrödinger 
equation to the single-particle Schrödinger p rob l em 
with the mean Field U (this explains the " m e f i " in 
Imefim). 

Traditionally it is at tempted to solve Schrödinger-
type problems via "direct" methods; i.e. (due to the 
historical experience gained in a tomic physics, 
where the (Coulomb) potential is known to a high 
precision) one begins with an assumed or given 
knowledge of the macroscopic potential , U, or of 
the interparticle interaction, Fn n , to evaluate wave-
functions, energy eigenvalues and all fu r ther quant i -
ties of interest. However, in nuclear physics our 
knowledge of U and Fnn is not (yet?) a suff icient ly 
good one. Hence, it has been suggested to employ 
"inverse" methods (for inverse methods in general 
cf. e.g. [8]) for attacking the p rob lem (this explains 
the " I" in Imefim). The required input is then given 
by the complete energy spectrum of the Schrödinger 
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operator, i.e. the N bound-state energies, En, plus 
the (infinite set of) reflection coefficients, R (Ep) 
with £p > 0, containing the informat ion on the con-
tinuous part of the spectrum. (The symbol Ep is 
used to denote the kinetic energy of the incident 
nucleon in nucleon-nucleus scattering which we 
consider in this paper . ) In principle, all the input 
data could be obta ined by direct experimental 
measurements to allow then for the evaluat ion of 
the auxiliary potential , U, and the wavefunct ions. 
Then one could proceed (in the same way as in the 
case of the direct me thod) to extract fu r ther quant i -
ties of interest like e.g. the nuclear densities. 

Below we do not want to e laborate on the static 
shell model potential , U, but ra ther on the real 
central (nuclear) part , V, of the optical model inter-
action, Vom, employed in the descript ion of elastic 
nucleon scattering data . 

Vom= Va+ V+i• W+ Vso. (1) 

VC], W and Vs0 correspond to the C o u l o m b poten-
tial, the imaginary contr ibut ions (volume and sur-
face) and the spin-orbit interaction, respectively. 
We will only be concerned with V. 

Experience suggests to treat the depth of the 
potential V as a funct ion of the projecti le energy, 
£p. However, nei ther formal a rguments nor pheno-
menological studies were so far able to provide us 
with reliable and un ique overall predict ions for the 
appropr ia te energy dependence V(EP). In a recent 
heuristic discussion [9] the form 

V(Ep) = -(V0-ocEp + ßE2
p) (2) 

Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet

Heruntergeladen am | 20.11.17 10:07



with the adjustable parameters y. and ß has been 
shown to yield a closer correspondence to experi-
ment. than other phenomenological dependences of 
an exponential type like e.g. 

F (£ p ) = - 5 2 . 6 exp ( - 0.0066 £ p ) (3) 

[10]. Moreover, it has been indicated that the 
F (£ p ) of (2) is not just appropria te for positive, but 
also for negative energies (bound-states) implying 
that the real central part of the shell-model poten-
tial, U, coincides for £ p = 0 M e V with F ( £ p ) , i.e. 
F ( £ p = 0 ) = U (cf. [9] and references). 

The main message we would like to convey in this 
note is that Imefim yields in contrast to other 
approaches a definite prediction for the appropr ia te 
energy dependence. If this energy dependence can 
be shown to be in line with empirical results and the 
notions of an effective mass and of an energy 
dependent mass operator , then there would be 
further arguments for intensified studies into Ime-
fim's mathematical structure and for its appl icat ion 
to nuclear physics. 

The paper is structured in such a way that we re-
collect in Section 2. the basic formulae of Imef im, 
its interrelation with traditional approaches and the 
functional form of its projectile energy dependence 
(originally derived in the context of fluid dynamical 
problems!). In Sect. 3 it is discussed how the energy 
dependence of Imefim compares with phenomeno-
logical results and to what extent it is consistent 
with the ones of traditional approaches. The last 
part is devoted to a short summary. 

2. The Inverse Mean Field Method (Imefim) 

2.1. Basic formulae of Imefim 

The equation of motion that should be solved in a 
nonrelativistic quantum mechanical many-body 
problem like the one posed by the a tomic nucleus, 
is the t ime-dependent Schrödinger equat ion 

H(r. t)V(r. /) = i/i9,«F(r, t). 

(We use 5,. dxx. etc. to denote partial d i f ferent ia-
tion with respect to the variables t and A, resp.) The 
physically motivated mean field picture reduces this 
many-body equation to a set of A single-particle 
equations with the mean field U and the A state-
vectors i//„(r. /). Let us simplify the problem still 
further by considering only spherically symmetr ic 
(three-dimensional) problems, i.e. we exclude 

deformed nuclei from our considerations. The sub-
stitutions 

A —• r and 

U(x,t) U (r, t) + trl(l + l ) / 2 m r2 (4) 

together with the appropr ia te boundary conditions 
(y/n(x = 0) = 0) reduce the equations to be solved 
to 

- Mdxx \p„ (A, t)+U(A, t) y/n = i ti 6, y/n (A, t); 

w = l , 2 A (5) 

with 
M=: h2/2m 

(m — reduced mass of the system). (6) 

Instead of attacking the problem as usual via direct 
methods, we apply inverse methods/ look for an 
evolution equation in U(A, t). This lead us even-
tually to the conclusion (in view of the material 
which appeared to-date in print, the expression 
"working hypothesis" might be more appropr ia te) 
that the A Eqs. (5) are equivalent to the system of 
coupled equations: 

- Mdxx T//„ (A, t) + U (A, t) yn = E„ ; 

77= 1 , 2 , . . . , A ; (7) 

6, U(a, t) = t'o 9.v U + [6 Udx U - Mdxxx U] 

+ D(x,t)dxxU+f(E0,e'Ep)U. (8) 

(As a matter of fact. (8) just yields an / = 0 equiv-
alent potential: for each / + 0 a fur ther more 
complicated equation of the same structure as (8) 
arises. Another point is that the operator 6, in (8) 
should actually be replaced by a slightly different 
one [2. 4], However, for the subsequent discussion 
these two points are not substantial so that we 
suppress them.) Equations (7), (8) are both Gali lean 
invariant so that one may use with no loss of 
generality f o = 0 for the speed of the system as a 
whole. The function D(A, t) in (8) is only included 
for the sake of completeness, i.e. we are going to use 
D = 0 throughout this paper , so that we avoid a 
detailed discussion of the physics contained in D. It 
is simply stated that D describes dissipative effects 
that are important for the description of inelastic 
processes. We did not yet provide a microscopic 
derivation of the function f(E0,e' Ev). It should at 
present only be borne in mind that £ 0 has to be 
associated with the binding energy of the system/ 
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nucleus consideration. Below we absorb for the t ime 
being E0 and the constant e' into a single coefficient 
e, which is treated as an adjustable parameter , cf. 
Equation (13). In work that is still in progress this 
arbitrariness in e, e' and £ 0 is t o be removed by a 
microscopic derivation of these quanti t ies (yet, the 
t ime scale required for this enterprise may be fairly 
large). 

2.2. The conservative version of Imefim 
(i.e. D = 0 = f ) 

The general solution of (8) has to be obtained 
numerically, but its conservative version. 

6, U(x, t) = 6UdxU- MdxxxU, (8') 

has under certain circumstances analytical solutions. 
The point is that (8') requires a knowledge of the 
complete spectrum of the related Schrödinger equa-
tions, (7). Then application of inverse scattering 
methods (via the Gel fand-Levi tan-Marchenko 
equation) allows for a numerical solution of (8') 
[2, 8]. It turned out to be a real surprise that one 
obtains for reflectionless potentials, i.e. for R(k) = 
R(Ep) = 0 for all Ep > 0, an analytical solution to 
(8'). For N such reflectionless potentials that home 
N energy eigenvalues the solution of (8') reads 

n 

Un(x, t) = X UNi(x, t) = X - 4 M K , 6 i ( x , t) 
i= I / 

= X - 4 A1Ki X, t) = - 2 Mdxx In (det F) 
i 

with F ^ ö j j + V f J j / i V E i + Y E j ) , (9) 

f i (-V, t) = 2 f E t exp (2 Ki (x - x0i - 4 E, Lit))-

Li = cons t ; 

K]=:-2 m E,/U2 = - E,/M; £ , < 0 . (10) 

From (9) it is seen that the potential, UN, is a (non-
linear) sum of the densities Qj. The boundary con-
ditions (cf. below (4)) enforce the use of .y0, = 0 for 
all /. The constants L( are fixed by other demands 
(or eliminated if we use / = 0) so that they are no 
more at our disposal. Hence, the A-energy eigen-
value/A-reflectionless potential /A-soli ton solution, 
UN, of (8') is uniquely determined by the N bound-
state energy eigenvalues [2, 8, 11 — 14]. It turned out 
that for our purposes U=UN, i.e. R(k) = 0, is 
indeed a very good approximat ion [2, 14] so that we 
consider below only this rather simple case. 

For N = \ Eq. (9) yields the following expressions 
for the potential U\ and for the wavefunct ion 
which it homes: 

V\ (x, t) = — Uq\ • sech2(Ä^| („Y - ,Y0I 

= — 4MK] I//?(.Y, t ) . 

4 £ , L , 0 ) 

y/\ (x, t) = 72 • sech ( t f , (x - .v0i - 4 £ , L, / ) ) ; 

U^ = h2K]/m. (9') 

Further below we will come back to the expression 
for £/, (.v, t) at / = 0. 

Let us now take the solution of (8'), i.e. the UN of 
(9), and insert it into the Schrödinger equat ion (7). 
What we obtain is a nonlinear version of the 
Schrödinger equation: 

-Mdxx y„(x, t) + -4A/X Kitf(x,t) y/„= Eny/n\ 

7 7 = 1 , 2 , . . . , N. (11) 

Defining a one-column vector V(x, t) with the N 
elements ]' 4MKj/V0 y/n the N equations (11) may 
rewritten in the compact form 

Mdxx V(x, t) - F0 ^ V = E V; 

E {E\, E 2 , E N ) (110 
[7], Equation (11') is just the mul t icomponent ver-
sion of the famous non-linear Schrödinger equat ion 
extensively discussed and applied in various 
branches of physics ranging f rom hydrodynamics 
over plasma physics to nonlinear optics [15]. 

2.3. Imefim and conventional approaches 

A detailed discussion of the interrelation of Ime-
fim with traditional approaches would exceed the 
f rame of this contr ibut ion so that we limit ourselves 
to a few words related to the structures of the equa-
tions used in some approaches. To start with, ( I T ) 
has the same functional form as semi-phenomeno-
logical nonlinear Schrödinger equations that arise 
when fluid dynamical considerat ions/models are 
applied to nuclear physics, cf. e.g. [16] and the refer-
ences given therein. This point gives some addi-
tional weight to the notion that Imef im might 
indeed provide a useful tool for discussing nuclear 
physics. 

However, in the context of (1-d) studies into the 
( t ime-dependent) Hartree Fock method it has been 
shown that (11) arise if one assumes an interparticle 
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force of the Delta-type [17, 18]. Hence, we are again 
on common grounds with well established and 
successful approaches. But it should be borne in 
mind that within T D H F these equations arise due 
to a drastic simplification of the interparticle forces; 
Imefim yields them on more general grounds. 
Therefore the mean field theory implied by Imefim 
is more general than the one implied by the cor-
responding (TD)HF equations [5]. Fur thermore , 
(11) have recently been derived and applied to a 
discusssion of the interrelations between T D H F and 
the time-dependent mean field S-matrix approach 
[19]. 

The arising notion that Imefim is indeed in-
timately interrelated with conventional approaches 
is to be discussed elsewhere in more detail. 

2.4. Imefim and nuclear structure problems 
(i.e. D = 0 = f ) 

If it is desired to discuss static nuclear structure 
problems, then we have obviously to use D = 0 = / 
Any other value for D or / would imply that the 
energy eigenvalues of the related Schrödinger equa-
tions change with time. Limiting ourselves to the 
ground-state properties this would obviously be a 
highly undesirable feature. Hence, we have to use 
(8') instead of the complete version (8). 

As indicated in Part 2.2, the A bound-state energy 
eigenvalues En are the only external input we need 
for a unique specification of UN and the related 
wavefunctions. densities, etc. However, if we do not 
restrict ourselves to the simple single-particle 
picture, then we have to multiply the resp. densities 
by the occupation numbers/spectroscopic factors 
taken from analysis of experimental data. But in any 
case we have a well defined prescription for the 
input to be used. Preliminary calculations indicate 
e.g. that such calculations within Imefim reproduce/ 
predict the odd-even staggering in the nuclear rms 
radii (e.g. of the Ca isotopes). - To our knowledge 
there is so far no other consistent/satisfactory ex-
planation and interpretation of such data. 

Even without explicit calculations, it is f rom the 
preceeding subsection obvious that Imefim should 
lead to similar results as e.g. (TD)HF calculations. 
From this sub-section we would like to take the 
notion that Imefim is seemingly a useful tool for 
nuclear structure calculations, a point to be resumed 
in forthcoming contributions. 

2.5. The energy dependence of Imefim 
(i.e. D = 0 in (8)) 

In the analysis of elastic scattering experiments 
the optical model enjoys considerable success. It 
reduces the problem to potential scattering, i.e. one 
has to solve a Schrödinger eigenvalue problem with 
a positive energy (the kinetic energy of the incident 
projectile) and the potential Uom, cf. (1). As in-
dicated in the introduction, the contribution V to 
Vom has for the kinetic energy Ep = 0 of the pro-
jectile to be identified with the shell-model poten-
tial U. Within Imefim that implies that V(EP = 0) 
has to correspond to U = U^. The dependence of 
V(EP) = UNg (Ep) is produced by (8) with D = 0 
and with f(E0, e'Ep) =t= 0. The significance of 
f(E0, Ep) is made more transparent if we rewrite it 
in the form f(E0, Ep) =f (E0, Ep) ö(t). The Delta-
function stresses the point that the function f just 
helps to set the initial conditions; i.e. in exact 
analogy to experiment where the accelerator, etc. 
are adjusted so as to produce a constant beam with 
a fixed intensity and kinetic energy. After these 
manipulations the incident beam is accurately 
defined and its specifications do (in the ideal case 
at least) not change with time. In a very similar 
fashion the function f(E0, Ep) describes the changes 
to be performed when going over from one projec-
tile energy to another one [2], 

The influence of f(Ep) on the initial amplitude of 
a single soliton or an N-soliton solution (at £ p = 0) 
is to reduce its ampli tude with increasing Ep. Since 
the overall results corresponds (neglecting surface 
effects) to a simple scaling of the soliton, it is all the 
same whether we study this effect on a N-soliton 
solution or on a single soliton. Hence, we simplify 
life by considering an "average" soliton Ü with the 
amplitude LJ0 

0(x, Ep) = Ü] (x, Ep) = - U0(EP) • sech 2 (K • x); 

Ü0=h2K2/m. (12) 

üq is to be normalized to the average depth of the 
(shell-model) potential t /N of (9) or to empirical 
potentials. D and its volume integral are (in one and 
in three dimensions) uniquely specified by the 
average amplitude üq and the reduced mass m. 

The effect of the function f(E0,e'Ep) on the 
soliton's amplitude has originally been studied in 
the context of fluid dynamics where the quantities 
involved have naturally different physical inter-
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pretations. Applying the results of these studies [20] 
to our problem, the £ p -dependence of the ampl i -
tude Ü0 reads 

Ü0(Ep)=Ü0(Ep = 0)(\+eEpy3 

with e =\e'/{ 1 + £<,)• (13) 

As ment ioned above, we absorbed the two (so far 
unspecif ied) constants e' and E0 into the single con-
stant e, which we treat for the t ime being as a fit 
parameter . (Before a t tempt ing the ra ther labor ious 
derivation of these constants f rom first principles.) 
In the next section we would like to discuss to what 
extent the energy dependence of (13) is a realistic 
one as far as nuclear physics problems are con-
cerned. 

But before proceeding to such a compar ison, let 
us have a second look at (12) and (13). Cons ider ing 
the def ini t ion of Üq, it is obviously at first sight not 
clear whether the energy dependence should be 
at t r ibuted to the average wavenumber K or to the 
mass m. But in view of the point that K is related to 
the energy eigenvalues of the nuclei which are 
elastically scattered, it has to be required that the 
energy eigenvalues and hence K have to be the same 
for large t imes before and af ter the collision event. 
Hence, the mass m is left as the only quant i ty that 
contains an explicit energy dependence: 

m* =: m (Ep) = m (Ep = 0) (1 + eEp)3. (14) 

In such a manner Imef im predicts a def ini te energy 
dependence for the potential D (or t / N ) or for the 
emerging "effect ive" mass m*. If this energy depen-
dence does not yield reasonable results, then we 
have strong indications that there is someth ing 
wrong with Imefim or at least with its energy 
dependence. A positive outcome would certainly 
encourage fur ther studies and indicate that it is 
sensible to proceed towards a microscopic der iva-
tion of this energy dependence / the constants in-
volved. 

3. The Energy Dependence of the Nuclear Potential 

In this section we would like to compare some 
phenomenological energy dependences of the real 
central (nuclear) part of the optical model inter-
action, i.e. of V(Ep), with the energy dependence 
predicted by Imefim, cf. (13). Let us first have a 

scattering is plotted versus the projectile energy E = Ep. 
For a discussion of curves (1) to (6) cf. the text. Thin 
broken, bold full and bold broken curves in the lower part 
are based on (13) with e = 0.0019, 0.0027 and 0.0035, 
respectively, cf. also the text. 

look at various phenomenologica l energy depen-
dences as ex t rac ted /proposed by dif ferent groups: 

In the upper half of Fig. 1, the curve labelled (5) 
stems f rom the contr ibut ion of Rosen et al. [21] and 
it is supposed to be valid for projectile energies 
f rom 5 MeV to 24 MeV. An extrapolat ion procedure 
employed by Butler et al. [22] extends it towards 
energies beyond 24 MeV, cf. curve (6). The energy 
dependence due to Kidwai and Rook [23], cf. curve 
(4), should be appropr ia te for kinetic energies of 
the incident nucleons up to 50 MeV while curve (3), 
cf. can Oers and Lerner et al. [24], covers the energy 
range f rom 10 to 180 MeV. T h e V(EP) suggested by 
Engelbrecht and Fiedeldey, curve (2), — which later 
on has been subjected to slight corrections (by Eder 
et al.), cf. curve (1) — is said to be sui table for 
energies up to abou t 180 MeV [10]. 

The informat ion contained in these curves can 
at best be considered to be a qual i ta t ive one. The 
reasons for this s ta tement are fairly obvious: 
According to (1), V is just one out of several terms 
contributing to the total optical model potential . It 
is not just V(Ep), but the interference be tween the 
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different potential terms which generates the final 
data to be compared to exper iment . And in general 
different groups use di f ferent pa rame t r i za t ions / 
geometries for the various terms. Hence, a truly 
detailed comparison would have to keep track of all 
these features. In general that is not done and one is 
content to discuss only the energy dependence of the 
depth of the potential F ( £ p ) . Below we follow this 
(mis-)usage. But trying to be at least a bit more 
careful and a t tempt ing to include at least some of 
the finer details in our considerat ions, we arr ived in 
our study of these potentials eventually at the 
(nevertheless rather personal) decision to take 
curves (1), (2) as the relevant data to be compared 
to the predictions of Imefim. (A choice which has to 
do some injustice to the other potentials, which are 
by no means inadequate for the purposes they have 
been tailored for.) In addi t ion to these data we refer 
also to some fur ther work of a s imilar type, which 
contains phenomenological da ta and results based 
on dispersion relations [25]. Inclusion of the energy 
dependence(s) of Bauer et al. [9] which are based on 
a rather detailed numerical s tudy will be shown to 
support the trends observed in the numer ics in-
volving (13). 

In the lower part of Fig. 1 curves (1) and (2) are 
repeated. As indicated in Sect. 2, we normal ize the 
Ü0 ( £ p = 0) of (13) to the empirical data (of [10], 
cf. also (3); i.e. t 7 0 ( £ p = 0 ) = : F ( £ p = 0) = 52.6 MeV). 

V 'i 

[MeV] 

10 102 Ep[MeV] 
Fig. 2. The depth V is plotted as a function of £ p . Dots 
and crosses correspond to phenomenological results/fits; 
dotted curve - based on dispersion relations [25]; broken 
and full curves are due to the soliton approach with differ-
ent normalizations and with e = 0.0027. 

Table 1. The (magnitudes of the) parameters x and ß of 
Bauer et al. [9], cf. Eq. (2), are displayed for ^Ca and "all" 
(i.e. ^Ca, 58Ni. wZr and 208Pb) and put in relation to the 
ones due to Imefim. cf. (15) and (16). 

3. ß <5= 10 e3U0 

•^Ca with 0.41 0.0009 
U0 = 56.3 MeV ±.06 ±.0003 
"all" with 0.37 0.0007 
U0 = 52.4 MeV ±.02 ±.0001 

e = 0.0019 0.30 0.0011 0.000009 
Imefim 0.0027 0.42 0.0023 0.000010 

0.0035 0.55 0.0039 0.000023 

The constant e appear ing in (13) is for the t ime 
being varied to accomplish a good agreement be-
tween the results of Imef im and the empir ica l 
curve(s). For the value e = 0.0027 (bold full curve) 
the correspondence between them is indeed a very 
close one. In view of the deviat ions between the 
different phenomenological curves displayed in the 
upper half of the figure it is even excellent. T h e 
broken curves illustrate the extent to which the 
soliton results depend on the exact value of e. 

Dots and crosses in Fig. 2 represent empir ica l 
data copied f rom [25]. The dotted curve based on 
dispersion theory stems f rom the same source. 
Broken and full curves correspond to the predict ions 
of Imefim; i.e. (13) with e = 0.0027 and with 
Üo(Ep = 0) = 61.5 MeV and 52.5 MeV, respectively. 
A glance at Fig. 2 (and a look into [25]) conf i rm tha t 
Imefim's prediction yields an agreement with the 
heuristic data which is no worse than the one 
accomplished via dispersion theory (or o ther con-
ventional approaches) . 

Coming back to the quadra t ic energy dependence 
of Bauer et al. [9], cf. (2), and having a second look 
at the functional form of F ( £ p ) as predicted by 
Imefim. (13), it is seen that there are little if any 
problems in reproduc ing /approx imat ing (2) by aid 
of (13) - at least if e is treated as a f i t -parameter . 
This statement is almost self-evident if we write 
down the expansion for (13) (which is reasonable 
for e E p < t 1): 

- £ 7 o ( £ p = 0 ) ( l + eEp)~3 

= - [ÜQ(0) - 3 Ü0(0)eEp + 6 C/0(0) e2E2
p 

- 10 O0(0)e3E3 + - • • • ] . (15) 

If we terminate the expansion af ter the third term 
and compare it to (2), then the y. and ß of (2) a re 
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seen to correspond to 

x = 3Ü0(Ep = 0)e and ß = 6 Ü0(EP = 0)e2 . (16) 

The higher order terms which are of importance at 
larger projectile energies appear necessarily in (15), 
but they have no counterpart in (2) where this effect 
has to be absorbed into the empirically determined 
constants a and ß. In Table 1 we compare the 
heuristic results of [9] with the coefficients a and ß 
due to Imefim, cf. (16). Bearing in mind the 
(in)sensitivity of the curves in Fig. 1 to variations in 
e, the agreement of the respective a's in Table 1 is 
simply excellent; the one in /?'s is less good. How-
ever, the fourth term in the more adequate expan-
sion (15) would reduce the value of the ß produced 
by Imefim so that it would come still closer to the 
value of its empirical counterpart . Hence, we infer 
that the energy dependence of Imefim is fully in 
line with the one of [9], which has been thoroughly 
tested against a fairly large body of data. 

Summarizing, the results based on the functional 
form of the energy dependence predicted by Ime-
fim, cf. (13), have been shown to be consistent with 
the ones of phenomenological and formal approaches 
[9], [10, 25]. From Sect. 2.4. it is obvious that the 
notion of such an energy dependence is not just con-
sistent with the traditional discussion centered 
around the optical model, but also with the notions 
of an energy dependent mass operator or of an 
(energy dependent) effective mass as put forward in 
the context of the theory of Fermi liquids and the 
(time-dependent) Hartree-Fock method, respectively. 
But the full predictive power of Imefim will only 
come into play after a microscopic derivation of the 
constant e which we treated up to now as a fit-
parameter. Work along these lines is still at its 
initial stage. 

4. Summary 

We recalled the prominent features of the inverse 
mean field method (Imefim), drew attention to 
previous applications of it and to its interrelation 
with the (t ime-dependent) Hartree-Fock method 
and phenomenological nonlinear Schrödinger equa-

tions. We then focussed our attention on the energy 
dependence of the depth of the real central 
(nuclear) part of the optical model potential, i.e. of 
the V(Ep) of (1). Imefim predicts a specific energy 
dependence which has a functional form different 
from traditional ones, cf. (13). 

Before attempting the rather laborious derivation 
of the constants appearing in (13) f rom first prin-
ciples, it has been tried to obtain some semi-
phenomenological results to find out whether the 
functional term of Imefim's energy dependence 
contradicts well established results or not. To that 
end two "short-cuts" have been taken: 

(1) The ampli tude of Imefim's potentialA)ne-
soliton slice, üq(ep = 0), has been normalized to 
phenomenological potentials. 

(2) The constant e appearing in (13) has for the 
time being been treated as an adjustable parameter . 

However, in the course of t ime both phenomeno-
logical steps are to be removed by the fur ther 
consistent development of Imefim. — The resulting 
agreement of Imefim's energy dependence with 
literature results based on formal grounds and 
sustained by the numerics, is a very nice one. In 
spite of the aforementioned phenomenological 
normalizations, we thus have the result that the 
energy dependence firmly predicted by Imefim is 
consistent with experience and conventional ap-
proaches. As discussed in Section 2.4. the latter 
holds in particular if one has in mind the notions of 
an energy dependent effective mass or of an energy 
dependent mass operator. The above findings 
certainly indicate that some of the features of Ime-
fim lead to useful results/conclusions, yet, it re-
quires a lot more work to remove the bits of 
phenomenology from Imefim and to understand 
how far this approach is to carry us. 
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