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On the maximum damping performance
of piezoelectric switching techniques

Marcus Neubauer, Xu Han and Jörg Wallaschek

Abstract
Synchronized switch damping on inductor offers a high damping performance in a broad frequency range. It consists of
an inductor and resistor in a serial configuration, which are connected and disconnected from the piezoceramics in an
alternating manner by a switch. When the switch is triggered by the vibration itself, it adapts to different excitation fre-
quencies especially in the low frequency range. This article presents a detailed study of the damping performance of the
synchronized switch damping on inductor technique. Calculations are performed in a normalized way. The optimal tun-
ing of synchronized switch damping on inductor network parameters is derived, and the corresponding maximum damp-
ing performance is obtained. The results are further compared to standard linear inductance–resistance networks. For a
validation of the theoretical results, measurements on a clamped beam test rig are performed. Therefore, the synchro-
nized switch damping on inductor circuit is realized as a synthetic impedance in a DSpace environment. The measure-
ment results are in good agreement with the theoretical calculations.
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Introduction

Piezoceramics are widely used as actuators and sen-
sors in technical systems. They offer very precise posi-
tioning and high dynamics, which makes them
suitable for vibration damping especially in the high
frequency range. An alternative to a fully active
vibration control is piezoelectric shunt damping
(Moheimani, 2003). It consists of an electrical net-
work that is connected to the piezoceramics. The
ceramics is embedded into the mechanical structure
and couples the mechanical and the electrical systems
by the piezoelectric effect. This energy conversion can
be optimized by the placement of the piezoceramics
within the mechanical structure. Detailed knowledge
of the vibration modes of the structure is required for
this.

The electrical network is designed with the aim to
dissipate as much energy as possible, which generates a
damping effect on the mechanical structure. The classi-
cal approach is to use a passive inductor–resistor net-
work, which forms an electrical resonant circuit with
the inherited capacitance of the piezoceramics
(Hagood and Von Flotow, 1991; Tang and Wang,
2001). Tuning the electrical resonance frequency to
the excitation frequency generates a resonance ampli-
fication which maximizes the voltage amplitudes and
the dissipation within the resistance. These networks

must be tuned to one specific frequency and are only
effective in a narrow frequency range around the
tuned frequency. However, there exist techniques
for damping multiple modes simultaneously basically
by adding additional inductor–resistor branches
(Behrens and Moheimani, 2002; Fleming et al., 2003;
Hollkamp, 1994; Wu, 1998).

In order to enhance the damping performance,
active–passive hybrid piezoelectric networks (APPNs)
are investigated (Tang and Wang, 2001). Such networks
utilize the damping performance of passive networks
and combine it with active elements like a negative
capacitance (Neubauer et al., 2006) or negative resistors
to enhance it.

Recently, various semiactive switching techniques
have been studied in detail. A semiactive system is char-
acterized by a passive system whose parameters can be
online tuned during operation. A typical example for
semiactive shunt damping techniques is switching
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networks. In these techniques, the electrical network is
connected and disconnected by a switching device.
Typically, the switching is triggered by the mechanical
vibration itself, which makes these techniques adaptive
to the excitation frequency. They are ideal for damping
of mechanical systems with tonal vibrations (however,
they are also capable to damp multiple frequencies, see
Corr and Clark (2003), Clark and Schoenly (2005),
Niederberger et al. (2004), and Neubauer et al. (2011)).
Because of the adaption to the excitation frequency,
they can be used in systems with time-varying vibration
frequencies. Neubauer et al. (2006) presents the sup-
pression of brake squealing of an automotive disk
brake with a switching technique.

To the authors’ best knowledge, the optimal tuning
of synchronized switch damping on inductor (SSDI)
networks for free vibrations have only been discussed in
Ducarne et al. (2010), where for the first time the opti-
mal tuning of the shunt parameters L and R have been
proposed, together with the corresponding maximum
damping. Their calculations are based on the transfer
matrix of the system, which links the system state with
the state one period time later.

This article presents a similar analysis, albeit with a
different way of calculation. It is structured in the fol-
lowing way: first, the general description of a mechani-
cal system with piezoelectric shunt damping is derived.
Based on this, the energy dissipation for a displacement
driven system is given. Further on, the damping of the
free vibrations is studied. Optimal network parameters
are obtained, which maximize the damping perfor-
mance. Finally, the test rig and measurements are
described. For the first time, the optimal tuning could
be validated in measurements.

Modeling of a mechanical oscillator with
piezoceramics

In Neubauer and Wallaschek (2010), the dynamics of
mechanical systems with piezoceramics are derived
based on a finite element description of the system fol-
lowed by a modal reduction. The results are based on
linearized equations of the mechanical system and
piezoelectric effect. Further on, the system is reduced
to one single mechanical mode only, cf. Figure 1 in
order to get the most general results, yielding
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Herein, x represents the modal vibration amplitude, q

and v are the electrical charge and voltage at the elec-
trodes, v0 is the eigenfrequency of the system with
short-circuit electrodes, Cp the capacitance of the piezo-
ceramics, and k the electromechanical coupling factor.
The electromechanical coupling is determined by the

piezoelectric properties as well as the mechanical cou-
pling, which can be modified by the placement of the
piezoceramics.

It is worthwhile to note that mechanical damping
is neglected in this whole study. This is a typical
assumption when piezoelectric shunt damping is dis-
cussed (Ducarne et al. (2010) is an exception here).
But from the results found by these authors, the opti-
mal tuning of the networks is not influenced strongly
by the mechanical damping. Additionally, the light-
weight structures, which are one application of the
shunt damping technique, are usually very lightly
damped.

When the switch is open, the piezoceramics is oper-
ated with isolated electrodes, which means no charge
can flow. When the switch is closed, an inductance–
resistance (LR) network is connected to the electrodes
of the piezoceramics, and the charge q and voltage v

are related by the following differential equation

L€q + R _q + v = 0 ð2Þ

Inserting this expression into equation (1) yields
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In the following, two important cases will be dis-
cussed: In the first case, the system is excited by a har-
monic displacement of the vibration mode under
consideration and the corresponding damping perfor-
mance is judged by the dissipated energy per vibration
period. In the second case, the free vibrations are ana-
lyzed and the performance is judged by the reduction
in amplitudes of the mechanical system.
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Figure 1. One DOF oscillator with piezoceramics and the
SSDI circuit.
DOF: degree of freedom; SSDI: synchronized switch damping on

inductor.
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Displacement driven system

Let us now consider a harmonic displacement excita-
tion of the mechanical system

x(t) = x̂ejOt ð4Þ

with amplitude x̂ and frequency O. We will analyze both
the resonant LR and the switching SSDI networks for
this excitation.

Resonant LR shunting

From the second line in equation (3), it follows

L€q + R _q +
1

Cp

q = � k

Cp

x ð5Þ

Using the constitutive piezoelectric equations, the
electrical charge can be substituted by the mechanical
deformation and the electrical voltage

q = kx + Cpup ð6Þ

Collecting excitation terms on the right side of the
equation, we obtain

LCp€q + RCp _up + up = � k L€x + R _xð Þ ð7Þ

Subsequently, the stationary voltage amplitude for a
harmonic excitation is obtained as follows

ûp =
k

Cp

�LCpO
2 + jRCpO

�LCpO
2 + jRCpO+ 1

x̂ ð8Þ

In order to get generalized results, normalized para-
meters will be introduced
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h is the ratio between excitation frequency O and the
electrical resonance frequency v0, el and z is the normal-
ized electrical damping ratio. With these parameters,
the stationary voltage becomes

ûp =
k

Cp

�h2 + 2zhj

1� h2 + 2zhj
x̂ ð10Þ

The amplitude is proportional to the piezoelectric
coupling k and the vibration amplitude x̂. Figure 2
shows a plot of the amplitude and the phase of the vol-
tage versus frequency ratio h for different damping
ratios z.

Additionally, the voltage amplitude is normalized to
the amplitude with open electrodes. Obviously, the
response strongly depends on the frequency. The maxi-
mum value is in good approximation located at reso-
nance, h = 1, and reads
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The voltage amplitude is proportional to the inverse
of the damping ratio z. The phase between excitation
and voltage crosses 908 at h = 1; therefore, also the
energy dissipation is maximized. However, the narrow
frequency range with high-voltage amplitudes requires
precise tuning of the inductance. This circuit is there-
fore not suited for systems with time-varying frequen-
cies or broadband excitation.

SSDI technique

The SSDI technique can be regarded as a combination
of the resonant LR shunting and a switch, which con-
nects and disconnects the LR shunt to the electrodes of
the piezoceramics. The tuning of the SSDI shunt is
totally different to the previous case. In contrast to the
resonant LR shunt, the SSDI is tuned to a rather high
frequency, up to 1000 times higher than the excitation
frequency (Lefeuvre et al., 2006). The switch is oper-
ated in such a way that it is closed at the moment of
maximum deformation 6x̂ of the piezoceramics and is
kept closed for precisely one half of the electrical period
time, which is very short compared to the period of
excitation. During this time, the charge at the electro-
des is inverted. The remaining half of the mechanical
period time, the switch is open and the charge is con-
stant, until the switch is triggered by the next deforma-
tion maximum, and the whole process is repeated.

Mathematically, the SSDI technique is a piecewise
linear system. For the (short) periods in which the
switch is closed, the dynamics are the same as for the
resonant LR shunt given in equation (7). The case of
open switch can be obtained by setting R! ‘, which
yields
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Figure 2. Stationary voltage amplitude and phase versus
normalized frequency ratio h for different electrical damping
ratios z.
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up(t) = � k

Cp

x(t) + C ð12Þ

During these times, the voltage changes propor-
tionally with the deformation. Because of the voltage
inversions, a constant offset C is superimposed. This
additional offset is generated by the voltage inversion
in the SSDI technique and is responsible for the
energy dissipation. Typical timeplots are given in
Figure 3.

Each time a change in the switching state occurs, the
final voltage value is taken as an initial condition for
the subsequent time frame. The stationary voltage sig-
nal is then obtained by maintaining the stationarity
condition up(t) = up(t + Texcitation). This condition implies
that the voltage is periodic with the period time of
excitation Texcitation so that it repeats after every period
time T .

The SSDI technique adapts to different excitation
frequencies, because the switching times are triggered
by the vibration signal itself. As a result of this, the sta-
tionary voltage amplitude and the dissipated energy are
nearly constant over a broad frequency range. Figure 4
presents the stationary voltage amplitudes ûp, 0 for the
SSDI and the resonant LR shunt for two different
damping values versus the frequency ratio h. For a fre-
quency ratio of h = 1, the excitation frequency equals
the electrical resonance frequency, and the switch is
always closed. Therefore, the SSDI behaves like the
resonant LR shunt in this case, and the stationary vol-
tage amplitudes are the same. The voltage amplitudes
and damping performance are slightly increased for

lower excitation frequency (i.e. lower h). Also, in the
range of h . 1, the energy dissipation of SSDI equals
the one of resonant LR shunts. Here, the system does
not adapt to the frequency anymore and the energy dis-
sipation is drastically reduced. Practically, the SSDI cir-
cuit should be operated in a range h� 1, which means
the electrical resonance frequency is much higher than
the frequency of excitation.

With some reasonable approximations, cf. Neubauer
and Wallaschek (2008), the stationary voltage ampli-
tude ûp, 0 can then be obtained as
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The energy dissipation is strongly related to the hys-
teresis curves, as the enclosed area is proportional to the
dissipation. These hysteresis curves of the SSDI tech-
niques are given in Figure 5. The voltage signal up(t) is
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Figure 3. Timeplot of voltage signal with SSDI technique.
SSDI: synchronized switch damping on inductor.
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given versus the deformation x(t). For all frequency
ratios, the periodic response results in closed loops.

In Figure 5, two border cases can be distinguished:
For h = 0, the voltage inversion occurs instantaneously.
The switch is opened for the whole half excitation
period and only opened for one time instant. The corre-
sponding hysteresis curve is a parallelogram where the
gradient depends on the piezoelectric coupling k. The
other extremum is represented by h = 1. In this case, the
electrical resonant frequency equals the excitation fre-
quency, and therefore, the switch would always be
closed. The SSDI degenerates to the linear LR shunt.
The corresponding hysteresis curve is elliptic.

The dissipated energy is proportional to the enclosed
area. It can already be concluded that the energy of
SSDI is higher because of the following two facts.

(1) The stationary voltage amplitude ûp, 0 is higher
than that for resonant LR.

(2) The voltage is kept for a longer time at a high
level, especially for fast voltage inversions.

Mathematically, the area A of the hysteresis curves
can be divided into the parallelogram area and two
halves of an ellipse to the left and to the right, during
which the voltage is inverted

Ediss = 2kx� ûp, 0 + up, after
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+ p
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2
x̂� x�ð Þ ð14Þ

x� corresponds to the vibration amplitude at the time
the switch is closed. This value depends on the fre-
quency ratio h

x� = x̂ cos
h

2
p

� �
ð15Þ

The faster the inversion, the higher the amplitude x�.
For an instantaneous inversion (h = 0), it appears
exactly at the maximum amplitude, x� = x̂. The voltage
up, after directly after inversion reads

up, after = ûp, 0 � Dup, Dup = 2
k

Cp

cos
ph

2n
x̂ ð16Þ

The stationary case, which is discussed here, requires
that the change in voltage Dup during the periods with
closed switch equals the change in voltage during open
switch.

Finally, the dissipated energy is obtained as a func-
tion of the frequency ratio h and damping ratio z, cf.
Figure 6. For the stationary voltage amplitude, the
approximate solution according to equation (13)
together with equation (13) is taken. This result is in
very good agreement with the precise solution for low-
frequency ratios h (which is the typical range for SSDI
technique anyways), but differs from the correct results
for higher values of h. Therefore, the results for SSDI

and LR do not agree for h = 1 although they theoreti-
cally should do so.

Generally, it can be concluded that the dissipated
energy for the SSDI technique is higher than the reso-
nant LR shunt, and it decreases with the increasing fre-
quency ratio h. The maximum energy dissipation for
the SSDI technique appears at h = 0 and for the linear
LR shunt approximately at h = 1
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k2

Cp

1 + e�pz
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2z
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Both results have the same dependency with the vibra-
tion amplitude x̂ and piezoelectric coupling k. For small
electrical damping ratios z, which is the preferred case, the
ratio between the dissipated energies can be calculated as

rE =
ESSDI , max

ELR, max

=
16

p2
’1:62 ð19Þ

The SSDI technique therefore—assuming an instan-
taneous voltage inversion with h = 0—offers an energy
dissipation that is about 62% higher than an LR shunt
driven in resonance. Moreover, the SSDI technique has
a high energy dissipation over a broad frequency range,
while the resonant LR shunt reaches these levels only
around the resonance frequency.

Free vibrations

Second, the case of free vibrations will be discussed.
Basis for the following calculations is equation (3). For
the further analysis, the inductance L is normalized by
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an additional frequency ratio hel, while the resistance is
again described by the damping ratio z. Additionally,
eigentimes t and tel are defined

v2
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This time, the normalized frequency ratio does not
describe the ratio of excitation frequency and electrical
resonant frequency, but the ratio between mechanical
and electrical resonant frequencies. The generalized
electromechanical coupling coefficient K is strongly
related to the material coupling k, but includes addi-
tional parameters of the mechanical system. This para-
meter describes how much the mechanical vibration
mode can be influenced by the piezoceramics.

After some mathematical conversions, the equations
can be rewritten as
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The derivative in time t is described by �ð Þ while the
derivative in eigentime t by ðÞ

0
.In this normalized form,

the dynamics of the system is described by only three para-
meters, which are the frequency ratio hel, the electrical
damping z, and the generalized coupling coefficient K.

Like in the previous section, this system is piecewise
linear, and the resistance value changes with the opera-
tion of the switch.

Dynamics of the system with SSDI
technique

The system with piezoelectric SSDI network is a piece-
wise linear system during the times the switch is open or
closed. However, as the time of the closed switch is only
a small fraction of the overall time, this is often approxi-
mated by an instantaneous charge inversion. The opti-
mization of such a system can be done using the
transform matrix, which links the system state with the
state one period time later, cf. Ducarne et al. (2010). In
the following, a different way of optimizing the network
parameters is described, which is related to the transfer
matrix description. The time signals of the electrical
charge and the mechanical vibration amplitude are cal-
culated for one half period. The reduction of mechanical
and electrical amplitudes during this half period are
then related by a stationarity condition, and finally the
corresponding mechanical damping ratio D is obtained
as a function of the electrical damping ratio z.

The half period under investigation starts with
open electrodes and arbitrary initial conditions xp, 0 =
x(t = 0), _x0 = 0, q0 = q(t = 0), which are the vibration
amplitude, the velocity, and electrical charge at the
beginning. As the charge q is constant for open switch,
equation (21) can be rewritten as

x00 tð Þ + x tð Þ= � K2

k
q0 ð22Þ

The general solution for this step function reads

x tð Þ= xp, 0 cos t � K2

k
q0 1� cos tð Þ ð23Þ

and the final value after one half period t = p, termed
x�, is obtained as

x� = x t = pð Þ= � xp, 0 � 2
K2

k
q0 ð24Þ

The electrical charge q on the other hand stays con-
stant at q0 during the time with open switch and only
changes during the inversion when the switch is closed.

The period with closed switch can again be described
by equation (21). Here, the initial conditions are the
final values of the previous time frame,
xp, 0, i + 1 = x� = � xp, 0, i � 2 K2

k
q0 and q = q0 (indices i and

i + 1 refer to the ith and i + 1th periods, respectively.
These indices are omitted on the following for a better
readability). Described in its electrical eigentime tel, the
differential equation according to equation (21) for
closed switch reads

q00 telð Þ+ 2zq0 telð Þ + q telð Þ= � kx� ð25Þ

As the electrical inversion time is very fast and
occurs during the deformation maxima, the deforma-
tion x� can be assumed to be constant during this time.
Then, the charge q changes according to the step
response

q telð Þ= e�ztel cos ntel +
z

n
sin ntel

� �
q0

�kx� 1� e�ztel cos ntel +
z

n
sin ntel

	 
� �
, n =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
ð26Þ

The switch is supposed to be opened at the time the
charge is inverted, which occurs at tel = p=n with a final
charge q� of

q� = q tel = p=nð Þ= � e�pz kx� + q0ð Þ � kx� ð27Þ

with n =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
’1 for small electrical damping.

Inserting the mechanical amplitude x� from equation
(24) yields

q� = � e�pzq0 + k 1 + e�pz
� �

xp, 0 + 2
K2

k
q0

	 

ð28Þ
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The following half periods could be obtained by the
same calculations by taking the final values x�, q� as the
new initial conditions xp, 0, q0. Figure 7 shows an exemp-
lary plot of the time signals for x and up. Instead of the
charge q, the electrical voltage up is given, which would
be easier to measure. Even though the charge is con-
stant during each half vibration period, the electrical
voltage slightly changes due to the mechanical vibration
amplitudes. A slight reduction in mechanical amplitude
due to the energy dissipation can be observed in the
timeplots.

Determination of the mechanical damping

In order to describe the evolution of the vibrations, it is
useful to introduce two new parameters, which are the
reduction in mechanical amplitude kx and in electrical
charge kq during each half period

kx =
xp, 0

x�

��� ���=
1

1 + 2 K2

k

q0

xp, 0

ð29Þ

kq =
q0

q�

����
����=

q0

e�pzq0 � 1 + e�pzð Þk xp, 0 + 2 K2

k
q0

� � ð30Þ

Due to the inversion in sign, the absolute value is
taken. These reduction parameters do not depend on
the amplitude values itself; therefore, without loss in
generality, we can define xp, 0 = 1 as the initial mechani-
cal vibration amplitude.

In general, the reduction in mechanical amplitude kx

and in electrical amplitude kq can be different. This
would mean that the mechanical and electrical ampli-
tudes do not follow the same trend. The result of this
would be a ‘‘pulsing’’ phenomenon, already observed in
Ducarne et al. (2010). They show that the correspond-
ing damping performance is lower in this case.

For higher electrical damping z, the mechanical and
electrical signals reduce in an identical trend. This fact
can be used to formulate a mathematical criterion for
optimal network parameters, which are the lowest z

values for which the pulsing effect does not occur.
Therefore, the quasi-stationary condition now requires
that kx equals kq. This yields a quadratic equation for
the unknown charge q0

K2

k
q2

0 �
e�pz � 1� 2K2 1 + e�pz

� �
2

q0 + k
1 + e�pz

2
= 0

ð31Þ

which has the solutions

K2

k
q0 = �

1 + 2K2 1 + e�pz
� �

� e�pz6
ffiffiffi
d
p

4
,

d = 1 + 2K2 1 + e�pz
� �

� e�pz
� 
2 � 8 1 + e�pz

� �
K2 ð32Þ

The result of this equation is the electrical charge q0

for a mechanical vibration amplitude of xp, 0 = 1. This
value depends on the generalized coupling coefficient K

and the electrical damping ratio z. From the two solu-
tions 6

ffiffiffi
d
p

, only the solution with +
ffiffiffi
d
p

makes sense.
With the term K2

k
q0 from equation (32), the reduction

in vibration amplitude kx can readily be found when
inserting the result into equation (29). From this reduc-
tion in amplitude during the free vibrations, the result-
ing mechanical damping ratio D is as follows

D =
2 ln

xp, 0

x�

�� ��
2p

=
ln kxð Þ

p
ð33Þ

and inserting the previous results, it is finally calculated as

D =
ln 2

1�2K2ð Þ 1 + e�pzð Þ+
ffiffi
d
p

� �
p

ð34Þ

This general result shows the mechanical damping
ratio as a function of the generalized coupling coeffi-
cient K as well as the electrical damping ratio z (also
the discriminant d is a function of K and z only). This
function is drawn in Figure 8. Depending on the discri-
minant d, the solution is either a real value or complex.
In any case, the damping of the system is described by
the real value of the result, which is projected in Figure
8. For typical system parameters, where the electrical
damping is higher than a certain value zopt, the result is
real. These cases belong to the monotonic decreasing
vibration amplitudes. For one certain electrical damp-
ing ratio z = zopt, the discriminant is zero, d = 0 and one
real solution exists. For smaller electrical damping
ratios z\zopt, the discriminant is negative, and two
complex conjugate solutions exist. The corresponding
time signals of mechanical vibration and electrical
charge show a distinct low-frequency oscillation of the
energy between mechanical and electrical during the
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free vibrations. The damping D corresponds to the real
part Re(D) of the complex solution, while the imagin-
ary part Im(D) describes the frequency of the energy
oscillation.

In the range 0\z\zopt, the damping increases nearly
linearly with z. For z = 0 also the damping is zero, as

the overall system is conservative then (notice that
mechanical damping is neglected in the calculations).
Above zopt the damping Re(D) sharply reduces first,
which means the system is very sensitive for small
changes in z.

The projection of the imaginary part Im(D) depicts a
circle when the axes are scaled accordingly. The imagin-
ary part, which is the frequency of the energy pulsation
between mechanical and electrical subsystems, sharply
increases from zero at zopt and interestingly reaches
Dmax for z = 0.

The different time signals of the free vibrations
are depicted in Figure 9. Beside the mechanical ampli-
tude x and the electrical charge q, the mechanical and
electrical energies of the system are shown. They are
calculated as

Emech =
1

2
cx2 ð35Þ

Eelec =
1

2
Cpu2

p ð36Þ

For high electrical damping z . zopt, the mechanical
and electrical amplitudes and energies all reduce mono-
tonically, and after a short initial phase, the amplitude
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ratio is constant. The same is true for the optimal elec-
trical damping zopt. In this case, the portion of electrical
energy is higher, and the damping performance is maxi-
mized. In these cases, the force Fp generated by the
piezoceramics acts always against the deformation velo-
city _x. This can be seen in Figures 7 and 9.

But if the electrical damping is lower than the opti-
mal value, z\zopt, a pulsing between mechanical and
electrical energy occurs. In the beginning, the mechani-
cal damping is mainly transformed to electrical energy.
This leads to a fast reduction of the mechanical vibra-
tion amplitudes. But only a small part of the energy is
dissipated, the main part is only converted into electri-
cal energy. As a result, the electrical energy in the sys-
tem increases, and at a certain time, the overall energy
is purely electrical. The mechanical system has come to
a rest, but the piezoceramics stores electrical energy at
that moment. In the following, this energy is trans-
ferred back to mechanical energy, so that the system is
excited to mechanical vibrations. The sign of the elec-
tric charge compared to the deformation velocity _x has
changed, so that the energy flows from electrical to
mechanical subsystem.

Simultaneous to this repeating pulsation, the overall
amplitudes are reduced due to the energy dissipation.
However, the reduction is less than for the optimal
case zopt.

Determination of the optimal electrical damping zopt

and maximum damping Dmax

With the results derived above, it is now possible to
determine the optimal electrical damping ratio zopt,
which results in the maximum mechanical damping D.
Based on the results of Figure 8, the maximum damp-
ing can be expected at that specific value z, at which
the result D changes from purely real to complex.
Therefore, the optimal z can be obtained by setting the
discriminant d equal to zero. Solving the equation for d

results in

zopt =
ln 1�4K2 + 4K4

1�4K
ffiffiffiffiffiffiffiffiffi
1�K2
p

+ 4K2�4K4

� �
p

ð37Þ

The term can be inserted into equation (34) for
obtaining the corresponding maximum damping Dmax

Dmax =
ln 1�2K2

1�2K
ffiffiffiffiffiffiffiffiffi
1�K2
p

� �
p

ð38Þ

Both results are only functions of the generalized
coupling coefficient K of the system. In Figure 10, they
are drawn versus the coupling coefficient K. The opti-
mal electrical damping ratio is normalized to K. For
both results, approximations can be given

zopt’
4

p
K, Dmax’

2

p
K ð39Þ

which are exact when K approaches zero, K ! 0.
These values can be used to compare the damping

performance of the SSDI technique with the resonant
LR shunting. According to Preumont (2006), the opti-
mal electrical damping ratio and the corresponding
damping are

zopt, LR’K, Dmax, LR’
K

2
� ð40Þ

These results show a remarkable analogy to the new
found expressions for the SSDI technique: in both
cases, the optimal electrical damping zopt and the result-
ing maximum damping Dmax depend linearly on K.
Also, in both cases, Dmax is half of the optimal electrical
damping ratio zopt. The performance of the SSDI is,
however, higher

Dmax, SSDI

Dmax, LR

=
4

p
= 1:27 ð41Þ

Practically, it might be difficult to realize the opti-
mum electrical damping value zopt. Due to the losses in
the switching circuit, the typical damping values are in
the range of z = 0:1 (Richard et al., 2000). The general-
ized coupling coefficient and therefore the optimum z,
on the other hand, are in many cases smaller.
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Additionally, it must be noted that these results are the-
oretical values which are valid for an instantaneous vol-
tage inversion.

Measurements

In order to validate the theoretical results, a test rig has
been set up. It consists of a clamped beam with attached
piezoceramics for vibration damping. One piezo of type
MFC M8528-P2 is connected with the shunted circuit
used for damping, and the second piezo of type MFC
M2814-P2 is used as a sensor. As the optimal tuning of
the network parameter depends on the generalized cou-
pling coefficient K, the eigenfrequencies of the beam are
measured for the cases of isolated electrodes and short-
circuit electrodes of the piezo used for damping. The
properties and measured frequencies of the test rig are
summarized in Table 1.

It is the intention that the measurements agree with
the assumptions of the mathematical model. Therefore,
a synthetic impedance is used for the measurements.
The design is similar to the one proposed in Fleming et
al. (2000) and Fleming and Moheimani (2006). The
metal-oxide semiconductor field-effect transistors
(MOSFETs) that are used in the analog SSDI boards
(cf. Niederberger and Morari, 2006), operate like a
resistor, controlled by the gate voltage relative to both
the source and drain voltages. This results in a behavior
of the switch that is depending on the voltage ampli-
tude up, which is not desired.

The synthetic impedance consists of two parts, the
current amplifier and the admittance transfer function
Y (s) which is implemented on a DSpace ds1103 DSP
system. According to the SSDI theory, the switch
should be triggered precisely at the moments of maxi-
mum strain in the first vibration mode. This is realized
by an observer, modeled in the DSP system, which esti-
mates the first modal vibration amplitude of the beam.
For further details of the test rig, the reader is referred
to Neubauer et al. (2011) and Schwarzendahl et al.
(2010).

The synthetic impedance realization allows a precise
tuning of the network parameters L and R. Especially,
very low electrical damping R with respect to z can be
realized. Figure 11 shows a schematic of the synthetic
impedance.

For the measurements, the inductance value was set
to L = 3:6817 H , which corresponds to an electrical reso-
nance frequency of 200 Hz. This is high enough to
ensure a nearly instantaneous charge inversion when
the switch is closed. Especially, the influence of the
resistance value R with respect to the electrical damping
ratio z has been discussed in this article. According to
equation (39), the optimal value zopt is calculated as
4K=p = 1:273K. Therefore, 13 difference resistance val-
ues are chosen, so that the damping z covers the range
0:5K\z\1:5K. Figure 12 presents some exemplary time
signals of the mechanical vibration amplitude h and
the voltage up.

The first graphs are performed with an electrical
damping ratio smaller than the optimal one, z\zopt. As
predicted, a pulsing phenomenon can be observed, due
to the oscillation of the energy between the mechanical
and electrical system. According to our knowledge,
these are the first measurements where such a behavior
is observed in the SSDI technique. The smaller the
damping ratio z, the stronger the pulsing. For the cal-
culated zopt and for higher values, the vibration ampli-
tudes reduce monotonically.

Table 1. Beam and piezoceramics dimensions and material parameters.

Parameter Beam Piezo 1 Piezo 2

Width 30 � 10�3 m 20 � 10�3 m 9 � 10�3 m
Length 400 � 10�3 m 65 � 10�3 m 30 � 10�3 m
Thickness 1 � 10�3 m
Young’s modulus 190 � 109 N=m2

Density 7850 kg/m3

f1, iso 5.8289 Hz
f1, short 5.8158 Hz
K 0.067
Location from clamped end 10 � 10�3 m 130 � 10�3 m
Piezoelectric constant d31 �180 � 10�12 pC=N �180 � 10�12 pC=N
Capacitance 87 nF 47 nF

Piezo Shunt Circuit

Cp upup L

R

1/ 10

10

Y ( s )

R s

Figure 11. Synthetic impedance circuit.
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For each measurement, an envelope of the mechani-
cal vibration amplitudes can be fit, from which the

corresponding mechanical damping D is calculated. It
can already be seen that the reduction in vibration
amplitudes is smaller when the pulsing occurs.

The mechanical damping performance during the
measurements is shown in Figure 13 versus the electri-
cal damping ratio z.

Each free vibration measurement is represented by
one datapoint. For comparison, the calculated damp-
ing is included, which is basically the real part of the
complex solution given in Figure 8. Generally, the mea-
surements agree very well with the simulation results.
There exists an optimal electrical damping ratio zopt;
for smaller z, the damping performance is reduced due
to the pulsing behavior. Generally, the damping in the
measurements is slightly higher than the theoretical
prediction. One reason for this might be the material
damping of the beam, which is neglected in the
calculations.

Conclusion

This article presents the optimal tuning of SSDI circuits
for vibration damping of mechanical structures. Based

 

 

ζ = 0 .5K ≈ 0.44ζopt

ζ = 0 .75K ≈ 0.65ζopt

ζ = 1 .15K ≈ ζopt

ζ = 1 .45K ≈ 1.26ζopt

Displ. η
Voltage up

D
is

pl
.
η

,
vo

lta
ge

u
p

D
is

pl
.
η

,
vo

lta
ge

u
p

Time tTime t

Figure 12. Exemplary time signals of h and up for four different electrical damping ratios z.

0 0.5 1 1.5
0

0.25

0.5

0.75

Normalized electrical damping ratio ζ/ K

N
or

m
al

iz
ed

m
ec

ha
ni

ca
l

da
m

pi
ng

D
/

K

Figure 13. Mechanical damping D versus the electrical damping
ratio z: comparison of simulation and measurement.

Neubauer et al. 727



on the analytical calculation of the free vibrations, the
damping performance is obtained. All calculations are
carried out in the most general way, so that the results
can be transferred to any mechanical structure. As a
result, the optimum electrical damping zopt and the cor-
responding maximum damping are determined. These
values only depend on the generalized piezoelectric cou-
pling coefficient of the system. Approximations of the
exact result clearly show the influence of the generalized
coupling coefficient upon the damping performance.

Comparing the damping performance with the reso-
nant LR shunts, the SSDI technique is by a factor 1:27

superior. In both cases, the performance increases line-
arly with the coupling coefficient K. Practically, these
results can be used to calculate the optimum resistance
by measuring or calculating the coupling K.

Measurements are presented to validate the obtained
results. A clamped beam with attached piezoceramics is
damped by shunting the synthetic impedance at the
electrodes. The results are in good agreement with the
theoretical results. For the first time, the optimal tun-
ing of the network parameter and the pulsing effect has
been obtained in measurements.

Funding

This research received no specific grant from any funding
agency in the public, commercial, or not-for-profit sectors.

References

Behrens S and Moheimani SOR (2002) Current flowing

multiple-mode piezoelectric shunt dampener. In: Smart

structures and materials 2002: damping and isolation (ed

GS Agnes), San Diego, CA, 18–21 March, Proceedings of
SPIE Volume 4697, pp.217–226, Washington, USA.

Clark WW and Schoenly J (2005) Evaluation of performance

indices for tuning the switch timing of pulse-switched

piezoelectric shunts for vibration control. In: Smart struc-

tures and materials 2005: damping and isolation (ed K-W
Wang), San Diego, CA, 7–10 March, Proceedings of SPIE

Volume 5760, pp.402–412, Washington, USA.
Corr LR and Clark WW (2003) A novel semi-active multi-

modal vibration control law for a piezoceramic actuator.

Journal of Vibration and Acoustics 125(2): 214–222.
Ducarne J, Thomas O and Deu J-F (2010) Structural vibra-

tion reduction by switch shunting of piezoelectric elements:
modeling and optimization. Journal of Intelligent Material

Systems and Structures 21(8): 797–816.
Fleming AJ and Moheimani SOR (2006) Sensorless vibration

suppression and scan compensation for piezoelectric tube

nanopositioners. IEEE Transactions on Control Systems

Technology 14(1): 33–44.
Fleming AJ, Behrens S and Moheimani SOR (2000) Synthetic

impedance for implementation of piezoelectric shunt

damping circuits. IEE Electronics Letters 36(18): 1525–

1526.
Fleming AJ, Behrens S and Moheimani SOR (2003) Reducing

the inductance requirements of piezoelectric shunt damp-

ing systems. Smart Materials and Structures 12: 57–64.

Hagood NW and Von Flotow A (1991) Damping of struc-
tural vibrations with piezoelectric materials and passive

electrical networks. Journal of Sound and Vibration 146:
243–268.

Hollkamp JJ (1994) Multimodal passive vibration suppression

with piezoelectric materials and resonant shunts. Journal
of Intelligent Material Systems and Structures 5: 49–57.

Lefeuvre E, Badel A, Petit L, et al. (2006) Semi-passive piezo-

electric structural damping by synchronized switching on
voltage sources. Journal of Intelligent Material Systems and

Structures 17(8–9): 653–660.
Moheimani SOR (2003) A survey of recent innovations in

vibration damping and control using shunted piezoelectric
transducer. IEEE Transactions on Control Systems Tech-

nology 11(4): 482–494.
Neubauer M and Wallaschek J (2008) Analytical and experi-

mental investigation of the frequency ratio and switching
law for piezoelectric switching techniques. Smart Materials

and Structures 17(3): 035003 (9pp.).
Neubauer M and Wallaschek J (2010) Vibration damping

with shunted piezoceramics: fundamentals and technical

applications. In: 6th international conference mechatronics

systems and materials (MSM), Opole, Poland, 5–8 July.
Neubauer M, Han X and Schwarzendahl SM (2011)

Enhanced switching law for synchronized switch damping
on inductor with bimodal excitation. Journal of Sound and

Vibration 330(12): 2707–2720.
Neubauer M, Niederberger D and Morari M (2006) A novel

approach for brake squeal control using shunted piezo-
ceramics. In: Proceedings of 24th SAE brake colloquium

and exhibition, Grapevine, TX, 8–11 October.
Neubauer M, Oleskiewicz R, Popp K, et al. (2006) Optimiza-

tion of damping and absorbing performance of shunted
piezo elements utilizing negative capacitance. Journal of

Sound and Vibration 298: 84–107.
Niederberger D and Morari M (2006) An autonomous shunt

circuit for vibration damping. Smart Materials and Struc-

tures 15: 359–364.
Niederberger D, Fleming A, Moheimani SOR, et al. (2004)

Adaptive multi-mode resonant piezoelectric shunt damp-

ing. Smart Materials and Structures 13: 1025–1035.
Preumont A (2006) Mechatronics: Dynamics of Electromecha-

nical and Piezoelectric Systems. Springer, The Netherlands.
Richard C, Guyomar D, Audigier D, et al. (2000) Enhanced

semi-passive damping using continuous switching of a

piezoelectric device on an inductor. In: Smart structures

and materials 2000: damping and isolation (ed TT Hyde),

Newport Beach, CA, 6 March, Proceedings of SPIE Vol-
ume 3989, pp.288–299, Washington, USA.

Schwarzendahl SM, Han X, Neubauer M, et al. (2010) Opti-

mized switching algorithm for synchronized switch damping
for multimodal excitation. In: Active and passive smart struc-

tures and integrated systems 2010, San Diego, CA, 8 March,

Proceedings of SPIE Volume 7643, Washington, USA.
Tang J and Wang KW (2001) Active-passive hybrid piezo-

electric networks for vibration control: comparisons and

improvement. Smart Materials and Structures 10: 794–806.
Wu S-Y (1998) Method for multiple-mode shunt damping of

structural vibration using a single PZT transducer. In: Smart
structures and materials 1998: passive damping and isolation

(ed LP Davis), San Diego, CA, 2 March, Proceedings of
SPIE Volume 3327, pp.159–168, Washington, USA.

728 Journal of Intelligent Material Systems and Structures 24(6)


