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1 Introduction

Instantons and (hyper-)Kähler geometry are both interesting subjects for physicists as well

as mathematicians, and important results in mathematical physics have been derived by

studying the structure of moduli spaces of certain gauge connections.

The geometry of hyper-Kähler manifolds is in itself very restrictive and there is to

this day no explicit compact hyper-Kähler metric known. Nonetheless, the classification of

compact hyper-Kähler spaces is understood [1] and yields four classes: two series of K3n and

generalised Kummer varieties, as well as two exceptional examples by O’Grady. In contrast,

many examples of (non-compact) hyper-Kähler spaces arise as moduli spaces of gauge

theory problems: moduli spaces of instantons, monopoles, or Hitchin equations, to name

a few. As it turns out [2], hyper-Kähler geometry is intimately related to supersymmetry.

Various moduli spaces of supersymmetric vacua are hyper-Kähler: including manifestations

of the so-called hyper-Kähler quotient and of hyper-Kähler cones [3, 4].
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Instantons on 4-manifolds, meaning (anti-)self-dual connections, led to an improved un-

derstanding via the concept of Donaldson invariants [5]. On the other hand, 4-dimensional

Euclidean instantons are vital for non-perturbative effects in quantum field theory and

string theory. The generalisation of the notion of instantons to higher dimensions has

been first proposed by [6]. In particular, instantons can be defined on any manifold with

a G-structure. Suppose G = U(m), such that the (compact) 2m-dimensional manifold

is endowed with a Kähler structure. In this case, the instanton equations are known as

Hermitian Yang-Mills equations and have a deep geometric interpretation in form of the

Donaldson-Uhlenbeck-Yau theorem [7, 8]. In contrast, for holonomy G = Sp(m), the 4m-

dimensional manifold is hyper-Kähler and the notion of instantons on such spaces has been

proposed by [9, 10]. The generalised Ward correspondence [11], which relates quaternionic

instantons on a hyper-Kähler space M4m with some holomorphic vector bundle on the

twistor space of M4m, again provides a relation between gauge theory and holomorphic

bundles.

Considering compactifications of 10-dimensional heterotic string theory which preserve

N=1 supersymmetry in 4 dimensions, one has to satisfy the so-called BPS equations, which

contain an instanton equation on the internal G-structure manifold. Unfortunately, for

compact Calabi-Yau or compact hyper-Kähler spaces, explicit metrics are not known, but

one can resort to cone constructions as a testing ground. The underlying base for a hyper-

Kähler cone is a 3-Sasakian space, while a Calabi-Yau cone starts from a Sasaki-Einstein

base. Instantons on certain conical extensions of G-manifolds have been considered, for

instance, in [12–22]. In all the references, the instanton equations have been reduced to

a set of matrix equations by a certain equivariant ansatz. The resulting matrix equations

for Calabi-Yau cones over arbitrary Sasaki-Einstein manifolds have been discussed in [21]

for one choice of boundary conditions. The aim of the present paper is twofold: firstly, to

extend the discussion on the Calabi-Yau cones by considering different boundary conditions,

which appear to be more physically relevant. Secondly, to generalise and extend this

analysis to the matrix equations resulting from the quaternionic instanton equation on

hyper-Kähler cones over arbitrary 3-Sasakian manifolds.

Interestingly, the instanton matrix equations resulting from the equivariant reduction

can be viewed as generalised Nahm’s equations, called Nahm-type equations in [21]. Re-

calling the prominent role of Nahm’s equations and nilpotent orbits for BPS boundary

conditions for 4-dimensional N=4 super Yang-Mills theories [23, 24], the constructions of

4-dimensional N=1 theories by compactifying 6-dimensional theories [25, 26] or assigning

1/4 BPS boundary conditions [27, 28] on 4-dimensional N=4 super-Yang-Mills led to the

appearance of generalised Nahm’s equations. These are in fact dimensional reductions

of 6-dimensional Hermitian Yang-Mills equations and the moduli space of the generalised

Nahm’s equations will be related to orbits of commuting nilpotent pairs.

The outline of the article is as follows: in section 2 we briefly recall the geometry of

Sasaki-Einstein and 3-Sasakian spaces as well as their metric cones. Section 3 is devoted

to a description of the moduli space of quaternionic instantons, starting with the space

of connections, then showing a reformulation of the Sp(m)-instanton moduli space as in-

tersection of various SU(2m)-moduli spaces. At the end of this section, we specialise to
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an equivariant ansatz which reduces the instanton equation to a set of matrix equations.

In section 4 we treat the instanton matrix equations on the Calabi-Yau cone and show

that, depending on the boundary conditions, the moduli space relates to different “diag-

onal” complex coadjoint orbits. In particular, the choice of singular boundary conditions

for the generalised Nahm’s equations will naturally lead to orbits of tuples of commuting

nilpotent elements. In section 5, we subsequently extend this study to the instantons on

hyper-Kähler cones. Finally, section 6 concludes. Appendix A provides some technical

details.

2 Geometry

In this section we review the definitions and relevant properties of Sasaki-Einstein and

3-Sasakian manifolds as well as the geometric structure of their metric cones. For details

we refer to [17, 29–32] and the references therein.

Sasaki-Einstein manifolds. Sasaki manifolds are the odd-dimensional analogues of

Kähler manifolds in the sense that a Riemannian manifold (M2n+1, g) is Sasakian if and

only if its metric cone is a Kähler manifold. That is, the metric cone is a complex manifold

with closed Kähler form Ω(X,Y ) := g(X, JY ), or, equivalently, a manifold whose holonomy

group is contained in the unitary group U(n+ 1).

An equivalent definition (see [29]) is that of a manifold which admits a Killing vector

field ξ of unit length such that the type-(1,1) vector field Φ(X) := ∇LC
X ξ satisfies

(∇LC
X Φ)(Y ) = g(ξ, Y )X − g(X,Y )ξ (2.1)

for all vector fields X and Y on M . The vector field ξ is referred to as characteristic or

Reeb vector field, and Sasakian manifolds are a subclass of metric contact structures.

Denoting by η the 1-form dual to ξ, one can consider the Reeb foliation along the

characteristic vector field, given by the subbundle D := ker(η). This yields transverse

Kähler spaces of real dimensions 2n, and the corresponding Kähler form ω follows from

the relation dη = 2ω.

A Sasaki-Einstein manifold (M2n+1, g, ξ) is a Sasakian manifold whose metric is ad-

ditionally Einstein, which implies that the metric cone is Calabi-Yau, i.e. a Ricci-flat

Kähler manifold. The latter is equivalent to a manifold with special holonomy contained

in SU(n+1) ⊂ U(n+1) ⊂ SO(2n+2).

3-Sasakian manifolds. A 3-Sasakian manifold is a Riemannian manifold (M4m+3, g) of

real dimension 4m + 3 which admits a triplet of Sasaki structures such that their charac-

teristic vector fields ξα are orthogonal, g(ξα, ξβ) = δαβ , and satisfy the SU(2) commutation

relations,

[ξα, ξβ ] = 2ǫ γ
αβ ξγ . (2.2)

Note that the existence of this triple of characteristic vector fields implies a whole CP 1

family of those structures. Moreover, it can be shown that every 3-Sasakian manifold

M4m+3 is automatically Einstein and that its structure group is Sp(m) (see e.g. [29] and
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the references therein). An alternative definition for 3-Sasakian manifolds is that of being a

manifold M4m+3 such that the metric cone is hyper-Kähler, i.e. its Riemannian holonomy

is contained in Sp(m+1). Consequently, a prototype of 3-Sasakian manifolds are the homo-

geneous spaces Sp(m+1)/Sp(m) ∼= S4m+3, the squashed spheres. The squashed spheres are

SU(2)-bundles, while all other homogeneous 3-Sasakian manifolds are SO(3)-bundles over

quaternionic spaces (see e.g. [29]). Another well-known example is the seven-dimensional

Aloff-Wallach space X1,1
∼= SU(3)/U(1)1,1.

Hyper-Kähler cones. By definition, a manifold is 3-Sasakian if its metric cone is hyper-

Kähler, i.e. it admits a triplet of covariantly constant complex structures J1, J2, and J3
satisfying the quaternionic relations

JαJβ = −δαβ id + ǫ γ
αβ Jγ , for α, β, γ ∈ {1, 2, 3} . (2.3)

These complex structures on the cone are, of course, induced by the three Sasaki structures

on the underlying 3-Sasakian manifold and give rise to a triplet of Kähler forms

Ωα(X,Y ) := g(X, Jα(Y )) , for α ∈ {1, 2, 3} , (2.4)

whose components satisfy relations analogous to (2.3).

Notation. For our discussion we apply the notations used in [17]. A 3-Sasakian manifold

is then described by an orthonormal frame of 1-forms e1, . . . , e4m+3, where eα ≡ ηα for

α = 1, 2, 3 are the duals of the characteristic vector fields ξα, and 2-forms

ω1 =
m∑

i=1

(
e4i ∧ e4i+1 + e4i+2 ∧ e4i+3

)
,

ω2 =
m∑

i=1

(
e4i ∧ e4i+2 − e4i+1 ∧ e4i+3

)
,

ω3 =
m∑

i=1

(
e4i ∧ e4i+3 + e4i+1 ∧ e4i+2

)
,

(2.5)

which are part of the exterior derivatives of ηα as follows:

dηα = ǫ βγ
α ηβ ∧ ηγ + 2ωα

(
=⇒ dωα = 2ǫ βγ

α ηβ ∧ ωγ

)
. (2.6)

The metric of the cone gc (or the conformally equivalent cylinder gcyl) reads

gc = r2
4m+3∑

µ=1

eµ ⊗ eµ + dr ⊗ dr = r2
4m+3∑

µ=0

eµ ⊗ eµ ≡ r2gcyl , (2.7)

with the definition e0 := dτ := dr
r
. The induced Kähler forms on the cone read

Ωα = r2
(
ωα +

1

2
ǫαβγe

βγ + dτ ∧ eα
)
. (2.8)
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We note that their closure follows from (2.6). Explicitly, we have

Ω1 = r2
m∑

i=0

(
e4i ∧ e4i+1 + e4i+2 ∧ e4i+3

)
,

Ω2 = r2
m∑

i=0

(
e4i ∧ e4i+2 − e4i+1 ∧ e4i+3

)
,

Ω3 = r2
m∑

i=0

(
e4i ∧ e4i+3 + e4i+1 ∧ e4i+2

)
,

(2.9)

where the summation now starts with i = 0, in contrast to the expressions for ωα in (2.5).

On the tangent space they induce the complex structures1 acting on basis vector fields

E0, . . . , E4m+3 as

JαE4i = −E4i+α and JαE4i+β = −ǫαβγE4i+γ (α 6= β) (2.10)

and similarly the action on the basis 1-forms reads

Jαe
4i = e4i+α and Jαe

4i+β = ǫαβγe
4i+γ (α 6= β). (2.11)

for i = 0, . . .m.

3 Comments on moduli space of instantons

Having established the notation, we proceed by a discussion of generic features for SU(n)

and Sp(m)-instantons. First, we consider the space of connections on hyper-Kähler spaces.

Next, we provide the equivalent formulation of the Sp(m)-instanton equations as intersec-

tion of three HYM instanton equations. Lastly, we introduce the ansatz for the connection

on the cone (or conformally equivalent cylinder) over the Sasaki-Einstein or 3-Sasakian

base, which reduces the instanton equations to Nahm-type equations.

3.1 Space of connections over hyper-Kähler spaces

In this section we describe the space of connections over a hyper-Kähler manifold M4m and

show that it is equipped with a (formal) hyper-Kähler structure, which is induced from

M4m. This account is inspired from the analogous implication for the space of connections

over Kähler manifolds, for which we refer to [21, 33, 34].

Preliminaries. Suppose M4m is a (closed) hyper-Kähler manifold of dimH(M
4m) = m

and G is a compact matrix group with g = Lie(G). We denote by P (M4m, G) a G-principal

bundle over M4m, Int(P ) := P ×G G the group bundle, Ad(P ) := P ×G g the Lie algebra

bundle, and E := P ×G F an associated vector bundle (with vector space F that carries a

representation of G).

1They can also be obtained by writing quadruples Xi := X4i + iX4i+1 + jX4i+2 + kX4i+3 and letting

J1 = I, J2 = J and J3 = K act on them by multiplication with i , j and k.
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Then A is a connection 1-form with curvature FA = dA+A∧A, and A(P ) (and A(E))

denotes the space of connections on P (and E). The gauge group Ĝ can be identified with

the global section on Int(P ), i.e.

Ĝ = Γ(M4m, Int(P )) ,

A 7→ Ag := Ad(g−1)A+ g−1dg , for g ∈ Ĝ .
(3.1)

The associated Lie algebra ĝ of Ĝ is identified with the global section on Ad(P ), i.e.

ĝ = Γ(M4m,Ad(P )) ,

A 7→ δA = dAχ := dχ+ [A, χ] , for χ ∈ ĝ .
(3.2)

Moreover, A(P ) is an affine space over Ω1(M4m,Ad(P )); thus, the tangent space TAA

for any A ∈ A(P ) can be canonically identified with Ω1(M4m,Ad(P )). By assumption,

G →֒ U(N), for some N ∈ N; thus, the trace provides an Ad-invariant inner product.

Metric. A Riemannian structure on A(P ) is established via

g|A(X,Y ) :=

∫

M4m

tr (X ∧ ⋆Y ) , for X,Y ∈ TAA , (3.3)

which is symmetric and base-point independent. Moreover, the definition employs the

metric structure on the base manifold via the Hodge star ⋆.

Symplectic forms. Similarly, one can define three symplectic structures on A(P ) via

(ωα)|A(X,Y ) :=

∫

M4m

tr (X ∧ Y ) ∧
(Ωα)

2m−1

(2m− 1)!
, for X,Y ∈ TAA , α = 1, 2, 3 , (3.4)

which is skew-symmetric and base-point independent. Again, the entire CP 1 -worth of

symplectic structures of the base manifold transfers to a CP 1 of symplectic structures on

A(P ). To show that ωα is non-degenerate one can explicitly verify that

⋆Jα(Y ) = Y ∧
(Ωα)

2m−1

(2m− 1)!
, ∀α = 1, 2, 3 . (3.5)

Here Jα acts only on the 1-form part of Y . Consequently,

(ωα)|A(X,Y ) =

∫

M4m

tr (X ∧ ⋆Jα(Y )) = g|A(X, Jα(Y )) , for X,Y ∈ TAA , α = 1, 2, 3 ,

(3.6)

and ωα is non-degenerate because g is.

Complex structure. Having a Riemannian and three symplectic structures on A(P ) it

is tempting to introduce the compatible complex structures Jα via

ωα(·, ·) = g(·,Jα(·)) . (3.7)

– 6 –
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It follows from the above that2

Jα(Y ) = Jα(Y ) , for Y ∈ TAA , α = 1, 2, 3 . (3.8)

Thus, the three complex structures on A(P ) are base-point independent, are induced from

the complex structures on M4m, and, consequently, satisfy the quaternionic algebra.

In summary, A(P ) (and also A(E)) is equipped with a (formal) hyper-Kähler struc-

ture, inherited from M4m, and a compatible Ĝ-action. We will see in a moment that the

moduli space of the hyper-Kähler instanton equations can be understood as a hyper-Kähler

quotient thereof.

3.2 Equivalence of Sp(m)-instantons and intersections of HYM instantons

Let M4m be a hyper-Kähler manifold with complex structures Jα for α = 1, 2, 3 satisfy-

ing (2.3) and corresponding Kähler forms Ωα, defined via (2.4). One can parametrise a

CP 1 of complex structures via sα ∈ R, δαβsαsβ = 1 such that any complex structure (and

corresponding Kähler form) can be written as

J := sαJα , Ω := sαΩα . (3.9)

Consider a connection A on a complex vector bundle E over M4m. Since M4m is

hyper-Kähler the generic holonomy SO(4m) is reduced to Sp(m), and one has the splitting

so(4m) = sp(m)⊕ sp(1)⊕ k. (3.10)

Following the definition of instantons on G-structure manifolds,3 Sp(m) instantons are

defined as connections such that the curvature 2-form FA takes values in the Lie algebra

sp(m) only, i.e. the instanton equations are equivalent to the vanishing of the sp(1)⊕k-part

of the curvature 2-form.

According to [9, 10], the Sp(m)-instanton equations can be recast as

F0,2
J = 0 for all J , (3.11)

i.e. they can be obtained from the holomorphicity conditions for any complex structure J .

Recall that for a fixed J = Jα the holomorphicity condition only induces the reduction of

the holonomy algebra as

so(4m) = uα(2m)⊕Pα , (3.12)

while HYM instantons additionally constrain the uα(1) part of the splitting uα(2m) =

uα(1)⊕ suα(2m) by imposing the stability-like condition

Ωµν
α Fµν = 0 , α = 1, 2, 3 . (3.13)

2Compared to [21], we consider J = −Jcan, where Jcan is the canonical complex structure defined via

ω(·, ·) = g(Jcan(·), ·) on A(P ).
3Equivalently, one can define Sp(m)-instantons in terms of a generalised self-duality condition; for details,

see [17].
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However, satisfying the holomorphicity condition (3.11) for any J already implies the

stability-like conditions, as it is shown e.g. in section 4.5 of [35]. It can be also seen in the

explicit instanton equations we use for the discussion in section 5.1.

Hence, it is justified to consider the moduli space of Sp(m)-instantons as the inter-

section

MSp(m) = MSU1(2m) ∩MSU2(2m) ∩MSU3(2m) =
⋂

J

MSUJ (2m) . (3.14)

3.3 Quaternionic instantons

As shown in the previous section, we can understand the Sp(m)-instanton conditions on

E → M4m as

F (0,2)
α = 0 and ΩαyFα = 0 ∀α = 1, 2, 3 . (3.15)

As explained, for instance, in [21], the condition F
(0,2)
α = 0 introduces a holomorphic

structure on the vector bundle E. Since we have three holomorphic structures arising, the

bundle becomes tri-holomorphic. Denote the space of tri-holomorphic connections as

A
holo(E) =

{
A ∈ A(E)|F (0,2)

α = 0 , ∀α = 1, 2, 3
}

. (3.16)

We expect that A
holo(E) is equipped with a hyper-Kähler structure by restriction from

A(E) and has a compatible action of Ĝ.

On A
holo(E), the three remaining equations ΩαyFα = 0 are understood as triplet of

moment maps µα for the gauge group. The proof of the statement is a generalisation

of [33] and has been shown in [21] for the Kähler case. Since the arguments are identical,

we refrain from repeating them here.

It is, however, important to realise that the case of non-compact hyper-Kähler cones

requires one to consider the framed gauge group Ĝ0 for the moment maps to be well-defined.

Thus, we presume that the moduli space of hyper-Kähler instantons can be expressed

as (trivial) hyper-Kähler quotient

MSp(m) =
{
A ∈ A

holo(E)
∣∣ µα = 0 , ∀α = 1, 2, 3

}
/Ĝ = A

holo(E)/Ĝ . (3.17)

The arguments presented earlier imply that it is a trivial quotient in the sense that the

moment map conditions are already satisfied on all of Aholo(E). However, the consequence

remains true; MSp(m) is itself a hyper-Kähler space.

3.4 Ansatz for equivariant instantons

Before we investigate the instantons on metric cones we briefly describe the set-up, which

is based on the approach of [18] and has been thoroughly discussed in [20, 21].

Consider H = SU(n) or Sp(m) as closed subgroup of G = SU(n+1) or Sp(m+1),

respectively. Let Mk (k = 2n+1 for Sasaki-Einstein and k = 4m+3 for 3-Sasakian) be a

manifold with G-structure together with a canonical connection ΓP on the tangent bundle,

see [17]. The metric cone, by choice of our examples, is a manifold with reduced holomony

– 8 –
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G ⊂ SO(k + 1). By conformal invariance of the instanton equations, we can equally well

consider Cyl(Mk), which is equipped with a non-integrable G-structure. Let P be the

principal G-bundle of the frame bundle of Cyl(Mk) which comprises this G-structure and

associate a complex vector bundle E → Cyl(Mk) of rank p. The fibres Ex
∼= C

p are

equipped with a Hermitian form.

Thus, the connection 1-from associated to any A is a g-valued 1-form on Cyl(Mk). We

consider an ansatz of the form

A = Γ̂P +X , (3.18a)

with Γ̂P denoting the lifted h-valued connection on E obtained from ΓP . On a patch

U ⊂ Cyl(Mk) with a basis of 1-forms (e0, {eµ}kµ=1) we can describe X via

X|U = X0 ⊗ e0 +Xµ ⊗ eµ , (3.18b)

with Xµ|x ∈ End(Cp) for x ∈ U . It is customary to eliminate X0 by a suitable gauge

transformation — called temporal gauge — but there is no need to do this.

So far, this is just a particular way of rewriting a generic connection. However, we

further restrict to connections for which the endomorphisms-valued functions Xµ, firstly,

depend only on the cone / cylinder coordinate, and, secondly, satisfy an equivariance

condition. Since H is a closed subgroup of G one has the H-invariant decomposition

span〈IM 〉 ≡ g = h⊕m ≡ span〈Ij〉 ⊕ span〈Iµ〉. (3.19)

Denote by ÎM the generators in the representation on the fibres of Ex
∼= C

p. The generators

satisfy the following commutation relations:
[
Îj , Îk

]
= f l

jk Îl ,
[
Îj , Îµ

]
= f ν

jµ Îν ,
[
Îµ, Îν

]
= f j

µν Îj + f σ
µν Îσ . (3.20)

Then the equivariance conditions read [18]
[
Îj , Xµ

]
= f ν

jµ Xν ,
[
Îj , X0

]
= 0 . (3.21)

These conditions can be satisfied, for instance, by choosing the matrix-valued functions

Xµ proportional to the generators spanning m, i.e. Xµ = λµ(r)Îµ, so that the instanton

equations reduce to equations on the scalar functions λµ(r) only. This approach has been

pursued in the constructions of instantons in various settings, see for instance [18–20, 22].

Solving the equivariance condition more generally leads to quiver gauge theories [35–40]

that depend on the chosen manifold. For the moment, we suppose that one has implemented

the equivariance conditions and is left with the relevant instanton equations. We comment

on the equivariance condition in section 5.3. As a remark, not imposing (3.21) amounts to

dimensional reduction instead of an equivariant reduction, which is legitimate by itself.

In summary, we search for connections satisfying (3.21) and the instanton equations

simultaneously. For this ansatz, the gauge group (3.1) reduces to4

Ĝ = {g : R → U(p)} , (3.22)

4Including the equivariance at this stage would imply the decomposition of the gauge group {g : R →
∏

k
U(Vk)} following the decomposition of the endomorphisms space End(Cp)|H = ⊕kVk on the typical

fibre Ex
∼= C

p.
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which acts on the matrix-valued functions as follows:

Xµ 7→ Xg
µ := Ad(g)Xµ , X0 7→ Xg

0 := Ad(g)X0 −
1

2

(
d

dt
g

)
g−1 . (3.23)

As mentioned earlier, due to the non-compactness of the metric cone we need to restrict

ourself to the framed gauge transformations.

4 Instantons on Calabi-Yau cones

In this section we firstly recap the choice of boundary conditions used in [21] and secondly

introduce a different class of boundary conditions. This allows to parallel the HYM matrix

instanton equations on the Calabi-Yau cone with the two choices of boundary conditions

for Nahm’s equations treated by Kronheimer in [41, 42].

4.1 Set-up

Before exploring the details, we need to recall the set-up of Nahm’s equations and the

generalised Nahm’s equations for Calabi-Yau instantons.

Nahm’s equations. As customary, one splits Nahm’s equations in a complex equa-

tion [43]
dβ

dt
+ 2β + 2 [α, β] = 0 (4.1a)

and a real equation

d

dt
(α+ α∗) + 2(α+ α∗) + 2 ([α, α∗] + [β, β∗]) = 0 , (4.1b)

for α = 1
2(A0 + iA1) and β = 1

2(A2 + iA3). The Aj are the components of a connection on

a G-bundle P → S3×R. The “model” solution, in temporal gauge A0 = 0, is given by [41]

Aj = e−2tτj + σj (4.2)

where τj are elements of a Cartan subalgebra of g and σj are elements of g that commute

with the τj and which satisfy the su(2) relations. In more detail, the σj are critical points

of a gradient flow; hence, they establish a Lie algebra homomorphism ρ : su(2) → g.

Kronheimer considers the two extreme cases: only τj in [41] and only σj in [42]. In both

cases, the objective has been to establish the hyper-Kähler structure of certain coadjoint

orbits of complex Lie groups via the known hyper-Kähler structure of the moduli space

of Nahm’s equation. The crucial point in the suitable identification lies in the choice of

boundary conditions.

From the physics point of view,5 the boundary conditions of [42]

lim
t→∞

A(t) = 0 , lim
t→−∞

A(t) ∈ C(ρ) (4.3)

are most interesting as they realise the correspondence between the instanton moduli space

and nilpotent orbits of the complex Lie groupGC. Whereas the regular boundary conditions

of [41], led to an identification of the moduli space with the maximal semi-simple orbit.

5We refer to ([23], section 3) for an accessible review.
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Matrix instanton equations on Calabi-Yau cone. In temporal gauge, the instanton

matrix equations considered in [21], and also in [18], read6

[X2j−1, X2k−1] = [X2j , X2k] , [X2j−1, X2k] = − [X2j , X2k−1] , (4.4a)

d

dt
X2j−1 +

n+1

n
X2j−1 = [X2j , X2n+1] ,

d

dt
X2j +

n+1

n
X2j = − [X2j−1, X2n+1] , (4.4b)

for j, k = 1, . . . , n and

d

dt
X2n+1 + 2nX2n+1 =

n∑

k=1

[X2k−1, X2k] . (4.4c)

The novel insight, compared to [18, 21], is that the appearing matrix differential equations

can be written as gradient flow d
dtX = −∇Ψ(X) for

Ψ(Xµ) :=
n+ 1

2n

2n∑

a=1

tr(XaXa) + n tr(X2n+1X2n+1)− tr

(
X2n+1

n∑

k=1

[X2k−1, X2k]

)
, (4.5)

while the algebraic conditions (4.4a) have to be imposed as additional constraints. Never-

theless, the additional constraints are preserved by the flow; hence, they only need to hold

at one t0 ∈ R in order to hold at any other instance.

This gradient flow formulation is a reflection of the known phenomenon [15, 17, 44] that

the generalised instanton equations, in temporal gauge, on a cylinder over a manifold M

are equivalent to the generalised Chern-Simons gradient flow on M subject to additional

constraints. For special cases, like 3-manifolds or 7-manifolds with nearly parallel G2

structure, the additional constraints are implied by the gradient flow.

The generic model solution for (4.4) is of the form, see also [45],

Xa = e−
n+1
n

tTa + Sa , a = 1, . . . , 2n , X2n+1 = e−2ntT2n+1 + S2n+1 , (4.6)

where the Tµ, for {µ} = {a, 2n + 1}, lie in a Cartan subalgebra, [Tµ, Sν ] = 0 for all µ, ν,

and the Sµ are critical points of Ψ subject to the algebraic conditions (4.4a).

This can be put in context to the treatment of Nahm’s equations: firstly, the regular

boundary conditions for the HYM instantons on Calabi-Yau cones of [21] will lead to a

diagonal orbit in which the moduli space can be embedded. Secondly, boundary conditions

similar to [42] for the HYM instanton equations have not yet been considered. For the

Calabi-Yau instantons it is not straightforward to adapt Kronheimer’s analysis, because the

critical points of Ψ, even imposing the additional constraints (4.4a), do not necessarily give

rise to a Lie algebra homomorphism. Nevertheless, one could study boundary conditions

for which the Sµ define a Lie algebra homomorphism of su(n+1) in u(p). This will be the

subject of a later section.

For most of the analysis of the next two sections one only requires the form of the

complex equations (4.4a)–(4.4b). We can rewrite the complex equations in the complexified

6We keep the notation of [21] and label the contact direction of the Sasaki-Einstein structure with

η = e2n+1.
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basis and find

d

dt
Yj +

n+ 1

n
Yj + 2 [Yn+1, Yj ] = 0 ,

[Yj , Yk] = 0 ,
(4.7)

for j, k = 1, . . . , n. Moreover, the linear terms in the instanton matrix equations can be

eliminated by a suitable rescaling. For the rescaled matrices we use the notation

Xa = e−
n+1
n

tXa , X2n+1 = e−2ntX2n+1 , X2n+2 = e−2ntX2n+2 , (4.8)

and analogously for Yj 7→ Yj . This rescaling is accompanied by a new variable

s := − 1
2ne

−2nt ∈ R
−.

4.2 Relation to coadjoint orbits

The boundary conditions considered in [21] are

∃ g0 ∈ U(p) such that ∀µ = 1, . . . , 2n+ 1 : lim
s→−∞

Xµ(s) = Ad(g0)Tµ , (4.9)

where the Tµ lie in a Cartan subalgebra of su(p). For simplification, we can require the

Tµ to be a regular tuple, i.e. the intersection of the centralisers of the Tµ consists only of

the Cartan subalgebra of su(p). Then all of the Sµ have to vanish such that the Tµ alone

provide the only model for the behaviour of the Xµ near s → −∞.

Let us denote by Mn(E) the moduli space of solutions to the complex and real equa-

tions satisfying the boundary conditions (4.9) (with suitable regularity) as well as the

equivariance condition. From the considerations presented in [21], we can establish the

following map

Mn(E) → Odiag(Y1, . . . ,Yn)

(Y,Z) 7→ (Y1(0), . . . ,Yn(0))
(4.10)

where Odiag(Y1, . . . ,Yn) is defined as follows: the n commuting objects Yk can be under-

stood as element of gl(p,C) ⊗ C
n, because the gauge group GL(p,C) does not act sepa-

rately on each Yk, but it acts the same on every Yk. In other words, consider (GL(p,C))×n

with the diagonal embedding GL(p,C) →֒ GL(p,C)×n, which gives rise to the relevant

action (3.22). Then we see

Odiag(Y1, . . . ,Yn) :=
{
(Ad(g)Y1(0), . . .Ad(g)Yn(0))

∣∣ g ∈ GL(p,C)
}

⊂
n∏

j=1

{
Ad(gj)Yj(0)

∣∣ gj ∈ GL(p,C)
}
= OT1 × · · · × OTn

(4.11)

where OTk denotes the adjoint orbit of Tk in gl(p,C). Analogous to [41], the map (4.10)

is injective due to the uniqueness of the corresponding solution of the real and complex

equations. In contrast, the surjectivity is less clear. By the construction of the local

solution ([21], eq. (3.40)), one finds that any element of Odiag(Y1, . . . ,Yn) gives rise to a
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solution of the complex and real equation, but it is unclear if this solution satisfies the

required asymptotic.

Moreover, one knows that the orbit of an element Tk of the Cartan subalgebra is of the

form GL(p,C)/Stab(Tk), where Stab(Tk) is the maximal torus of GL(p,C) because each

Tk is assumed to be a regular element. The product of the regular semi-simple coadjoint

orbits is a complex symplectic manifold. Each orbit is equipped with the Kirillov-Kostant-

Souriau symplectic form and the product thereof gives the symplectic structure on the total

space. As a manifold the orbit Odiag(Y1, . . . ,Yn) is just GL(p,C)/Stab (Y1(0), . . . ,Yn(0)),

wherein

Stab (Y1(0), . . . ,Yn(0)) =
n⋂

j=1

Stab (Yj(0)) =
n⋂

j=1

Stab(Tj) (4.12)

and the intersection of the stabilisers of the Tj is the complexified maximal torus, by the

regularity assumption. Hence, the complex dimension7 is

dimC (Odiag(Y1, . . . ,Yn)) = dimR(U(p))− rk(U(p)) = p(p− 1) , (4.13)

which always is a multiple of 2. The diagonal orbit is also Kähler, as it is a complex sub-

manifold of a (hyper-)Kähler product. Analogous to [41], the map (4.10) is holomorphic

such that it describes an embedding of the framed moduli space Mn(E) into the diagonal

orbit, which is a finite-dimensional Kähler manifold.

4.3 Singular boundary conditions

In addition, we can consider the other extreme case, in which the boundary conditions are

determined by the critical points of the gradient flow.

As mentioned earlier, the equations determining a critical point are not sufficient to

define a Lie algebra homomorphism, but they are compatible with a Lie algebra homo-

morphism. Moreover, note that the basis elements of m in the decomposition (3.19) are

sufficient to generate su(n+1) as algebra, see also appendix A.

Inspired by the boundary conditions chosen in [42], suppose we have two Lie algebra

homomorphisms ρ− and ρ+. Then we consider boundary conditions of the type8

lim
t→−∞

X(t) ∈ C(ρ−) , lim
t→+∞

X(t) = ρ+ . (4.14)

Here, C(ρ−) consists of all homomorphisms conjugated to ρ− under the adjoint action

of U(p).

The treatment of the instanton matrix equations is as in the case of Nahm’s equa-

tions: firstly, consider the complex equations with the boundary conditions and identify

the equivalence classes of complex trajectories. Secondly, show that each solution of the

complex equations can be gauge transformed into a solution of the real equation and that

this gauge transformation is unique.

7In fact, as each Tj is a regular pair, each regular semi-simple OTk
has the same dimension as the

diagonal orbit.
8The precise formulation is given in (A.7).
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We delegate the details of the “complex trajectories”, i.e. solutions to the complex

equations satisfying the appropriate boundary conditions, to appendix A, while the treat-

ment of the real equation can be taken over from [21]. We find that the equivalence classes

of the complex trajectories associated to homomorphisms ρ± are parametrised by a nilpo-

tent orbit and, abusing the name, a “transverse slice” as

Ndiag(ρ−) ∩ Sdiag(ρ+) (4.15)

with

Ndiag(ρ−) :=
{
(ξ1, . . . , ξn) ∈ gl(p,C)⊗ C

n|Adg(ξ1, . . . , ξn) = (F−
1 , . . . , F−

n ), g ∈ GL(p,C)
}

⊂ N (F−
1 )× . . .×N (F−

n ) (4.16)

where N (F−
j ) is the GL(p,C) nilpotent orbit of F−

j := ρ−(Fj), with Fj defined in (A.6).

Also, we have defined

Sdiag(ρ+) := (F+
1 , . . . , F+

n ) + z(E+
1 )× . . .× z(E+

n ) ⊂ (gl(p,C))×n . (4.17)

Compared to the corresponding expressions in [42] the orbit of the (unique) nilpotent

element Y in the case of SU(2) had to be replaced by a diagonal9 orbit of an n-tuple of

commuting nilpotent elements Fj . One can assign a notion of nilpotency to this diagonal

orbit either naively in the sense that for (ξ1, . . . , ξn) ∈ Ndiag(ρ−)

(ξ1, . . . , ξn)
k ≡ (ξk1 , . . . , ξ

k
n) = (0, . . . , 0) (4.18)

for sufficiently large k since each ξj is nilpotent, or on more general grounds in the context

of nilpotent pairs, which we comment on below in section 4.4. Similarly, the expression for

the “transverse slice” S is adapted by considering n-tuples of nilpotent elements and the

centralisers of the elements of E+
j := ρ+(Ej) that generalise the matrix X in Kronheimer’s

discussion.

Following ([21], appendix A.4), the treatment of the real equation reduces to two

statements: (i) for every complex trajectory there exists a gauge transformation such that

the real equation holds, and (ii) equivalent complex trajectories, both satisfying the real

equation, are related by a gauge transformation. Denote by M̃n(E) the space of solutions

to the instanton matrix equations satisfying (4.14), then we obtain the map

M̃n(E) → Ndiag(ρ−) ∩ Sdiag(ρ+)

(Yj , Yn+1) 7→ (Y1(0), . . . , Yn(0)) ,
(4.19)

which is clearly injective due to existence and uniqueness of the gauge transformation that

renders a complex trajectory into a solution of the real equation. Again, surjectivity is

not clear.

If the representation ρ+ is the trivial representation, then Sdiag(ρ+) is all of (gl(p,C))
×n

such that the moduli space coincides with the diagonal orbit Ndiag(ρ−). Note that this

9It has to be diagonal due to the gauge transformations (3.23) that act with the same group element on

all Yj .
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implies that the connection A reduces to the (lifted) canonical connection ΓP as t → +∞.

Consequently, the analogous boundary conditions to (4.3), i.e.

lim
t→−∞

X(t) ∈ C(ρ−) , lim
t→∞

X(t) = 0 , (4.20)

lead to an embedding of M̃n(E) into (the closure of) a diagonal orbit of an n-tuple of

commuting nilpotent elements of the complex group.

Moreover, consider the tangent bundle and suppose ρ+ corresponds to the standard

representation of su(n+1) on E|p
∼= C

n+1. Then the corresponding boundary condition

reduces the connection A to the Levi-Civita connection ∇LC as t → +∞. Thus, on the

tangent bundle an instanton solution interpolates between the Levi-Civita connection and

the canonical connection, which is consistent with the findings of [17].

Finally, for ρ+ trivial, one observes that the equivariance conditions (3.21) are certainly

compatible with both Lie algebra homomorphisms ρ±, provided the Îi are the images under

ρ− of the su(n) generators.

4.4 Nilpotent pairs and generalised Nahm’s equations

The set-up we have encountered for the singular boundary conditions has close cousins on

both sides: mathematics and physics.

Nilpotent pairs. Ginzburg introduced the “doubles” of nilpotent orbits for semi-simple

Lie algebras g in [46] and has initiated the study of their remarkable properties, which have

been further investigated [47–49].

Roughly, a nilpotent pair e = (e1, e2) ∈ g × g satisfies (i) [e1, e2] = 0 and (ii) for an

(t1, t2) ∈ C
∗×C

∗, there exists g = g(t1, t2) ∈ G such that (t1e1, t2e2) = (Adg(e1),Adg(e2)).

By this definition, such a pair consists of two commutating nilpotent elements e1 and e2,

but the converse does not necessarily hold.

As noted before, (4.16) is indeed an n-tuple of commuting nilpotent elements F−
j ,

see also appendix A. Hence, we can view it as an example of a natural generalisation to

something like “nilpotent tuples”. However, a deeper study of these is beyond the scope

of this work.

Generalised Nahm’s equations. There exist several generalisations of Nahm’s equa-

tions in the literature. The one that matches our case is the generalisation considered

in [25–28], which contains two copies of Nahm’s equations (4.1) coupled by the same α.

In [25, 26] the construction of 4-dimensional N = 1 theories from 6-dimensional theo-

ries with N = (2, 0) or (1, 0) compactified on a Riemann surface with punctures has been

studied. Inspired from the dominant role of Hitchin equations in 6-dimensional N =(2, 0)

compactifications to 4-dimensional N = 2 theories, the author of [25] proposed generalised

Hitchin equations for N = 1 compactifications, from which generalised Nahm’s equations

have been deduced by reduction. Unsurprisingly, all these generalised equations appear as

reductions from the 6-dimensional HYM equations. Moreover, both equations are impor-

tant for the space of supersymmetric vacua as the moduli space of the generalised Hitchin
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equations describes the Coulomb branch, while the generalised Nahm’s equations account

for the Higgs branch.

Similarly, in [27, 28] 1/4 BPS boundary conditions for 4-dimensional N = 4 super

Yang-Mills theory have been studied, which again result in 4-dimensional N = 1 theories.

Recalling the seminal work by Gaiotto and Witten [23, 24], the study of BPS boundary

conditions for N = 4 shed light on the importance of nilpotent orbits via Nahm’s equations.

In the case of 1/4 BPS boundary conditions, generalised Nahm’s equations appeared in the

very same fashion, and resulting moduli spaces have to be seen in the context of nilpotent

pairs. A first account of the moduli space of generalised Nahm’s equations has been given

in [28] from the GIT quotient perspective.

These instances of generalised Nahm’s (and even generalised Hitchin) equations agree

with our set-up, because all of them are dimensional reductions of HYM instanton equations

on higher dimensional spaces. Our resulting Nahm-type instanton matrix equations arise

from an equivariant reduction, which includes the dimensional reduction. Hence, studying

the new boundary conditions (4.14) extends the partial description of [28] and formalises

generalised Nahm’s equations to higher dimensions. Recall that one of the physical origins

of our instanton equations are the BPS equations for heterotic flux compactifications.

Therefore, we emphasize the special role of HYM in 6 dimensions as generalised Nahm’s

equations appear as (i) BPS equations in heterotic compactifications to N = 1 in 4d,

(ii) BPS equations for compactifications of 6-dimensional N = (2, 0) theories on Riemann

surfaces, and (iii) as 1/4 BPS boundary conditions for 4-dimensional N = 4 super Yang-

Mills theory.

In view of [26], in which solutions to generalised Nahm’s equations were studied either

by reduction to regular Nahm’s equations or by products of independent SU(2) subalgebras,

we have considered the scenario in which the tuple of commuting nilpotent elements stems

from the orthogonal complement m in the decomposition (3.19). This provides another

viable option for finding commuting nilpotent elements.

5 Instantons on hyper-Kähler cones

In this section we investigate the hyper-Kähler instanton equations for the equivariant

ansatz described in section 3.4.

5.1 Explicit form of hyper-Kähler instanton equations

We now derive the explicit instanton equations on the hyper-Kähler cone by evaluating the

triplet of Hermitian Yang-Mills equations. Denoting, for a fixed J = Jα, the holomorphic

forms as θα =: ea1 − i ea2 and θβ =: eb1 − i eb2 , the holomorphicity condition Fαβ = 0 reads

in terms of real indices

Fa1b1 = Fa2b2 and Fa1b2 = −Fa2b1 . (5.1)
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Using the Kähler forms (2.9) on the metric cone, we obtain from the first one the conditions

F4i,4j+2 = F4i+1,4j+3, F4i,4j+3 = −F4i+1,4j+2,

F4i,4j = F4i+1,4j+1, F4i,4j+1 = −F4i+1,4j ,

F4i+2,4j+2 = F4i+3,4j+3, F4i+2,4j+3 = −F4i+3,4j+2, (5.2a)

while the second one yields

F4i,4j+3 = F4i+2,4j+1, F4i,4j+1 = −F4i+2,4j+3,

F4i,4j = F4i+2,4j+2, F4i,4j+2 = −F4i+2,4j ,

F4i+3,4j+3 = F4i+1,4j+1, F4i+3,4j+1 = −F4i+1,4j+3, (5.2b)

and the third Kähler form Ω3 leads to

F4i,4j+1 = F4i+3,4j+2, F4i,4j+2 = −F4i+3,4j+1,

F4i,4j = F4i+3,4j+3, F4i,4j+3 = −F4i+3,4j ,

F4i+1,4j+1 = F4i+2,4j+2, F4i+1,4j+2 = −F4i+2,4j+1. (5.2c)

Note that the holomorphicity conditions with respect to any two of them already imply

the third set of conditions. This is not surprising because the characteristic vector fields of

two orthogonal Sasaki-structures induce a (unique) third one and therefore a 3-Sasakian

structure, see ([32], Chapter 4 Lemma 6). Moreover, adding the relevant equations for

i = j one indeed recovers the three stability conditions.

Matrix equations. The canonical connection Γ̂P of [17] is by construction an instanton

and the equivariance condition (3.21) ensures that there are no mixed curvature terms, so

that the matrices Xµ have to satisfy the instanton equations separately. For convenience,

we set X0 = 0 in this paragraph. Following ([17], eq. (4.28)), a suitable choice of structure

constants is given by

fα
βγ = −2ǫαβγ , fα

ab = −2ωα
ab, fa

αb = ωα
ab . (5.3)

Then one obtains from i = j = 0 in the instanton conditions (5.2) the flow equations

for the triplet of matrices accompanying the contact forms eα,

Ẋα = −2Xα −
1

2
ǫαβγ [Xβ , Xγ ] (5.4)

with ǫ123 = 1. Setting i = 0 or j = 0 yields the flow equations for the other matrices,

Ẋ4j = −X4j + [X1, X4j+1] = −X4j + [X2, X4j+2] = −X4j + [X3, X4j+3] ,

Ẋ4j+1 = −X4j+1 − [X1, X4j ] = −X4j+1 − [X2, X4j+3] = −X4j+1 + [X3, X4j+2] ,

Ẋ4j+2 = −X4j+2 + [X1, X4j+3] = −X4j+2 − [X2, X4j ] = −X4j+2 − [X3, X4j+1] ,

Ẋ4j+3 = −X4j+3 − [X1, X4j+2] = −X4j+3 + [X2, X4j+1] = −X4j+3 − [X3, X4j ] . (5.5)
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These flow equation coincide, of course, with the general result given in (3.27) of [18] as

we are applying their approach with the same structure constants. Finally, for i, j > 0 the

instanton equations (5.2) lead to the algebraic relations

4δijX1 = − [X4i, X4j+1]− [X4i+2, X4j+3] = − [X4i, X4j+1]− [X4j+2, X4i+3] ,

4δijX2 = − [X4i, X4j+2] + [X4i+1, X4j+3] = − [X4i, X4j+2] + [X4j+1, X4i+3] ,

4δijX3 = − [X4i, X4j+3]− [X4i+1, X4j+2] = − [X4i, X4j+3]− [X4j+1, X4i+2] , (5.6)

and

[X4i, X4j+1] = [X4j , X4i+1] , [X4i+2, X4j+3] = [X4j+2, X4i+3] ,

[X4i, X4j+2] = [X4j , X4i+2] , [X4i+1, X4j+3] = [X4j+1, X4i+3] ,

[X4i, X4j+3] = [X4j , X4i+3] , [X4i+1, X4j+2] = [X4j+1, X4i+2] , (5.7)

as well as

[X4i, X4j ] = [X4i+1, X4j+1] = [X4i+2, X4j+2] = [X4i+3, X4j+3] . (5.8)

While for m = 0 the system reduces to the well-known equations on the SU(2)-triplet of

contact forms (5.4), for any positivem the system gets significantly more complicated due to

the occurrence of the non-trivial algebraic relations (5.6). In particular, the three matrices

Xα can be expressed as commutators of the other matrices, so that the flow equations

for Xa are actually cubic in the endomorphisms. Moreover, by virtue of these algebraic

conditions, the flow equations for Xα, α = 1, 2, 3, follow from the flow equations (5.5) of

the other matrices.

We will comment on this algebraic behaviour, different from that of instanton equations

for a single Sasaki-Einstein structure as in [21], in more detail in the following section.

5.2 Single HYM moduli space

The discussion of section 3.2 has shown that Sp(m)-instantons on hyper-Kähler cones over

3-Sasakian manifolds can be described as the intersection of the holomorphicity conditions

with respect to the CP 1 family of Sasaki-Einstein structures. As shown in the previous

section, it is even sufficient to consider only the intersection of the HYM equations with

respect to two orthogonal Sasaki-Einstein structures.

Therefore, we give a description of such a HYM space here, commenting also on the

differences compared to [21] due to the different algebraic conditions. Without loss of

generality, let us specialise to Ω = Ω3 in the following.

Conceptually, we need to adjust the setting compared to section 4: the starting point

ΓP is the canonical connection for the Sp(m)-structure on the base, which is an SU(2m+1)-

instanton due to Sp(m) ⊂ SU(2m) ⊂ SU(2m+1). Nevertheless, the more “natural” starting

point would have been the canonical instanton in the sense of [17] associated to the Sasaki-

Einstein SU(2m+1)-structure, as it has been used for the Calabi-Yau cones in [21].
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Holomorphicity condition. The holomorphicity conditions of the HYM equations for

Ω3 yield the differential equations

Ẋ1 = − [X2, X3]− 2X1 Ẋ2 = − [X3, X1]− 2X2,

Ẋ4i+1 = [X3, X4i+2]−X4i+1 Ẋ4i+2 = − [X3, X4i+1]−X4i+2,

Ẋ4i = [X3, X4i+3]−X4i Ẋ4i+3 = − [X3, X4i]−X4j+3, (5.9)

together with the algebraic relations (for i, j > 0)

[X1, X4i+1] = [X2, X4i+2] [X1, X4i+2] = − [X2, X4i+1] ,

[X1, X4i] = [X2, X4i+3] , [X1, X4i+3] = − [X2, X4i] . (5.10)

and

4δijX1 = [X4i+3, X4j+2]− [X4i, X4j+1] 4δijX2 = − [X4i+3, X4j+1]− [X4i, X4j+2] ,

0 = [X4i, X4j ]− [X4i+3, X4j+3] 0 = [X4i, X4j+3]− [X4j , X4i+3] ,

0 = [X4i+1, X4j+1]− [X4i+2, X4j+2] 0 = [X4i+1, X4j+2]− [X4j+1, X4i+2] . (5.11)

Again, the algebraic conditions combined with the differential equations of Xa for

a = 4, . . . , 4m+ 3 imply the differential equations for the endomorphisms X1 and X2.

Stability-like condition. Evaluating Ω3yF = 0 for the given form Ω3 and the structure

constants (5.3) leads to

−Ẋ3 = [X1, X2] + 2X3 +
m∑

i=1

(
[X4i+1, X4i+2] + 2X3 + [X4i, X4i+3] + 2X3

)

= [X1, X2] + 2(2m+ 1)X3 +
m∑

i=1

(
[X4i+1, X4i+2] + [X4i, X4i+3]

)
.

(5.12)

As in the previous discussions of the Nahm-type equations, the flow equations (5.9) will be

referred to as complex equations, while the stability-like condition is the real equation.

Gradient flow. The differential equations (5.9) and (5.12) among the instanton matrix

equations can be cast as gradient flow equations d
dtX = −∇Φ(X) similarly to Nahm’s

equations [42]. To see this, let Φ : u(p)×(4m+3) → R be the function defined as

Φ(Xα, Xa) := tr(X1X1) + tr(X2X2) + (2m+ 1)tr(X3X3) +
1

2

4m+3∑

a=4

tr(XaXa)

+ tr (X3 [X1, X2]) + tr

(
X3

m∑

j=1

([X4j+1, X4j+2] + [X4j , X4j+3])

)
.

(5.13)

The algebraic equations (5.10), (5.11) are not part of this system, but they are invariant

under the gradient flow. Thus, if they are satisfied at any point t0 then they hold throughout

the evolution.
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Rewriting of the matrix equations. One can eliminate the linear terms in the instan-

ton matrix equations (5.9) and (5.12) by a suitable rescaling as follows:

Xγ = e−2(2m+1)τXγ (γ = 0, 3), Xβ = e−2τXβ (β = 1, 2), and Xa = e−τXa (5.14)

for a = 4, . . . 4m+ 3, which is accompanied by a rescaled cone coordinate

s := −
1

2(2m+ 1)
e−2(2m+1)τ . (5.15)

In addition, we combine the matrices into the complex fields (defined w.r.t. J3),

Pi :=
1

2
(X4i+1 + iX4i+2), Qi :=

1

2
(X4i + iX4i+3),

Y :=
1

2
(X1 + iX2), Z :=

1

2
(X0 + iX3).

(5.16)

The complex equations then read as follows: the purely algebraic relations (5.10) and (5.11)

[Pi,Pj ] = 0 = [Qi,Qj ] , [Pi,Y] = 0 = [Qi,Y] , [Pi,Qj ] = 2δijY (5.17a)

for i, j = 1, . . .m, which are the commutation relations of a (complexified) Heisenberg

algebra. Moreover, the differential equations simplify to

d

ds
Pi = 2 [Pi,Z] ,

d

ds
Qi = 2 [Qi,Z] ,

d

ds
Y = 2 [Y,Z] . (5.17b)

The real equation becomes

d

ds
(Z + Z†) + 2

[
Z,Z†

]
+ λ1(s)

[
Y,Y†

]
+ λ2(s)

m∑

i=1

([
Qi,Q

†
i

]
+
[
Pi,P

†
i

])
= 0 (5.18a)

with the functions

λ1(s) :=

(
−

1

2(2m+ 1)s

) 2(2m+1)−2
2m+1

and λ2(s) :=

(
−

1

2(2m+ 1)s

) 2(2m+1)−1
2m+1

. (5.18b)

Note that the definition of s coincides with that in [21] (recalling n = 2m + 1 in that

notation), but that the functions λ differ because in the hyper-Kähler case only the rescaling

of X3 depends on m while the other factors of τ in (5.14) are the same for all dimensions m.

Similarly to the remarks in section 4.4, one may think of the above equations as m

copies of the same system, which all have the same matrix Y. This, of course, just reflects

the geometry of the hyper-Kähler manifold as consisting of quaternionic “blocks” on which

the defining structures act.
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Preliminaries. Just to be explicit, we recall the gauge transformations for complex

matrix equations. The real and the complex group of gauge transformations (with respect

to J3) are respectively

ĜHYM = {g : R− → SU(p)} , ĜC
HYM = {g : R− → SL(p,C)} . (5.19)

The transformation rules of the complex linear combinations (5.16) are

Pj 7→ Pg
j := Ad(g)Pj , Qj 7→ Qg

j := Ad(g)Qj for j = 1, . . . ,m , (5.20)

Y 7→ Yg := Ad(g)Y , Z 7→ Zg := Ad(g)Z −
1

2

(
d

ds
g

)
g−1 . (5.21)

We emphasize that the complex equations are invariant under the complex gauge transfor-

mations, while the real equation is only invariant under the real gauge transformations.

Formulation of boundary conditions. As discussed in section 4, the generic model

solution is of the form

Xa = e−τTa + Sa, a = 4, . . . 4m+ 3, (5.22a)

Xβ = e−2τTβ + Sβ , β = 1, 2 , (5.22b)

X3 = e−2(2m+1)τT3 + S3, and X0 = 0 , (5.22c)

where the T are a solution to

[Pi,Pj ] = 0 = [Qi,Qj ] , (5.23a)

[Pi,Y] = 0 = [Qi,Y] , [Pi,Qj ] = 2δijY , (5.23b)

[Pi,Z] = 0 = [Qi,Z] = [Y,Z] , (5.23c)

wherein the complex linear combinations (5.16) are formed out of the T .

The obvious observation is Z commutes with every other matrix. Next, Pi and Qj

commute with each other and among themselves; thus, resembling the complexified algebra

of R2m. However, Y introduces a central extension, which renders the algebra spanned by

Pi,Qj ,Y into a complexified Heisenberg algebra HC
m. The solution space to (5.23) is not

empty, because the choice Y ≡ 0 allows all other generators to be chosen from a Cartan

subalgebra of gl(p,C).

Next, the matrices S commute with all T and are critical points of Φ, see (5.13),

subject to the additional constraints (5.10), (5.11). In detail, S need to satisfy the following

commutation relations:

[S2,S3] = −2S1 , [S3,S1] = −2S2 , (5.24a)

[S3,S4i+2] = S4i+1 , [S3,S4i+1] = −S4i+2 , (5.24b)

[S3,S4i+3] = S4i , [S3,S4i] = −S4j+3 , (5.24c)

[S1,S4i+1] = [S2,S4i+2] , [S1,S4i+2] = − [S2,S4i+1] , (5.24d)

[S1,S4i] = [S2,S4i+3] , [S1,S4i+3] = − [S2,S4i] , (5.24e)
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and

4δijS1 = [S4i+3,S4j+2]− [S4i,S4j+1] , 4δijS2 = − [S4i+3,S4j+1]− [S4i,S4j+2] , (5.24f)

0 = [S4i,S4j ]− [S4i+3,S4j+3] , 0 = [S4i,S4j+3]− [S4j ,S4i+3] , (5.24g)

0 = [S4i+1,S4j+1]− [S4i+2,S4j+2] , 0 = [S4i+1,S4j+2]− [S4j+1,S4i+2] , (5.24h)

as well as

0 = [S1,S2] + 2(2m+ 1)S3 +
m∑

i=1

([S4i+1,S4i+2] + [S4i,S4i+3]). (5.24i)

However, in contrast to the case of Nahm’s equations [42] the critical points of Φ do not

necessarily give rise to a Lie algebra homomorphism, unless one considers the trivial case

m = 0, which reduces to the set-up of the original Nahm’s equations, of course.

Comparing to [21, 45], one could impose that the T are a regular10 tuple, but one would

necessarily have to set Y = 0. For boundary conditions with non-vanishing Y, regularity

cannot be required. Consequently, one cannot dismiss the possibility of having non-trivial

S in the boundary conditions. Therefore, the generic solution to the matrix equations is

determined by two tuples T and S of matrices in the boundary conditions.

The situation is in analogy to Nahm’s equations considered in [41, 42, 50, 51]. While

Kronheimer studied the “extreme” cases T = 0 or S = 0, Biquard and Kovalev considered

generic boundary conditions. In all cases, the idea has been to assign suitable boundary

conditions to the Nahm equations, for which the moduli space is known to be hyper-Kähler

due to Hitchin, and conclude that general coadjoint orbits of complexified Lie groups are

hyper-Kähler. Here, we aim for less: learn as much as possible about the HYM matrix

instanton equations by generalising this analysis, because the matrix equations exhibit a

Nahm-type structure.

In the light of section 4, we expect that the solutions to the complex equations are

classified by a “diagonal” generalisation of a general coadjoint orbit. This is similar to Odiag

of (4.11) and Ndiag of (4.16). The analysis is expected to follow the arguments of [50]. In

other words, one first considers the complex equations for suitable boundary conditions.

Most arguments from section 4 and [21] still hold, only the local solution has to be adapted.

Thus, we expect that the conjugacy classes of the “complex trajectories” can be identified

with a suitable orbit. Secondly, the analysis of the real equations remains the same. For our

intents and purposes, it therefore suffices to note that the moduli space of the HYM matrix

equations has a Kähler structure and is mapped into some finite-dimensional orbit space.

However, despite the formal similarities in the description of a single HYM moduli

space contained in the description of the Sp(m) instantons, one should keep in mind that

the intersection (3.14) is very restrictive: since the triplet Xα has to transform the same

and due to the way they couple to each other in the matrix equations, there is no (obvious)

gauge transformation for all Kähler structures simultaneously in the casem ≥ 1. Therefore,

one may need completely new tools, taking into account the SU(2)-symmetry of the fibre

and the quaternionic structures of the other matrices explicitly, to describe the generic

properties of the moduli space.

10The intersection of the centralisers of the Tµ consists only of a Cartan subalgebra.
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5.3 Space of equivariant connections

Due to the choice of structure constants (5.3) and their intimate relationship to the hyper-

Kähler structure forms (2.9), it is not surprising that one can express the equivariance

conditions as holomorphic equations in the matrix valued-functions for a given complex

structure Jα. The relation to the complex structure on the metric cone over M4m+3 is

established via (3.8).

The exact description of the equivariant connections depends on the concrete

3-Sasakian manifold taken into account, but we review the example of the squashed seven-

sphere, as studied in [35]. Its equivariance condition requires
[
Îj , Xµ

]
= fν

jµXν , where

j = 8, 9, 10 labels the generators of the Sp(1) subgroup. The relevant non-vanishing struc-

ture constants are11

−f4
85 = f4

96 = f4
10,7 = 1, f5

84 = f5
97 = −f5

10,6 = 1 (5.25)

f6
87 = −f6

94 = f6
10,5 = 1, −f7

86 = −f7
95 = −f7

10,4 = 1.

and the equivariance conditions therefore read
[
Î8, X4

]
= X5,

[
Î8, X5

]
= −X4,

[
Î8, X6

]
= −X7,

[
Î8, X7

]
= X6,

[
Î9, X4

]
= −X6,

[
Î9, X5

]
= −X7,

[
Î9, X6

]
= X4,

[
Î9, X7

]
= X5,

[
Î10, X4

]
= −X7,

[
Î10, X5

]
= X6,

[
Î10, X6

]
= −X5,

[
Î10, X7

]
= X4, (5.26)

and
[
Îj , Xα

]
= 0 ∀j = 8, 9, 10, α = 1, 2, 3. (5.27)

The complex structures act according to Jα in (2.10) on the tangent vectors δXµ. Impos-

ing the equivariance condition is compatible with the hyper-Kähler structure given by Jα
because the equations are invariant. Consider for instance

[
Î8, X4

]
= X5 ⇒

[
Î8, δX4

]
= δX5. (5.28)

Applying J1 gives us
[
Î8, J1(δX4)

]
=

[
Î8,−δX5

]
= −(−δX4) = J1(δX5) = J1

[
Î8, (δX4)

]
. (5.29)

Similarly, we have
[
Î8, J2(δX4)

]
=

[
Î8,−δX6

]
= −(−δX7) = J2(δX5) = J2

[
Î8, (δX4)

]

[
Î8, J3(δX4)

]
=

[
Î8,−δX7

]
= −δX6 = J3(δX5) = J3

[
Î8, (δX4)

]
. (5.30)

Thus, the space of equivariant connections A
equiv is a tri-holomorphic subspace of Aholo.

The remaining question is whether or not the metric or equivalently the symplectic struc-

ture is non-degenerate on the vanishing locus of (3.21). It seems difficult to obtain an exact

statement for the generic case.

11By mapping the indices (e1, e2, e3, e4, e5, e6, e7) 7→ (e4, e5, e6, e7,−e2,−e3, e1) we relate our notation

with that of [35].
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6 Summary and conclusions

In the course of this article we considered higher-dimensional instantons on Calabi-Yau

cones and hyper-Kähler cones over arbitrary Sasaki-Einstein and 3-Sasakian manifolds Mk,

respectively. It is known that the instanton moduli space over a (hyper-)Kähler manifold

is (hyper-)Kähler, resulting from an infinite-dimensional (hyper-)Kähler quotient. It seems

naturally that the subset of invariant connections inherits this property, but the overall

situation remains unknown.

In the ansatz (3.18) presented, we restricted the connections to those obtained by

extension of the (lifted) canonical connection ΓP on TMk by t-dependent endomorphisms-

valued 1-forms Xµ(t) ⊗ eµ which satisfy an equivariance condition (3.21). For this ansatz

we specified the geometric structures on the space of connections.

In section 4 we have significantly extended the study of the Nahm-type instanton

matrix equations on Calabi-Yau cones. On the one hand, we extended the discussion of

the regular boundary conditions started earlier in [21] by providing details of the relevant

diagonal coadjoint orbit (4.11). On the other hand, we have conducted the full treat-

ment of boundary conditions given by Lie algebra homomorphisms. As in the study of

4-dimensional instantons, these boundary conditions seem to be the most physical, as they

relate to known instantons, for instance, on the tangent bundle. Similar to Kronheimer’s

case, the moduli space is related to a “diagonal” nilpotent orbit (4.16) or, equivalently, an

orbit of an n-tuple of commutating nilpotent elements.

These generalised Nahm’s equations appear in the construction of 4-dimensional N =1

theories from heterotic string theory, 6-dimensional gauge theories, or 4-dimensional the-

ories with higher amount of supersymmetry. We complemented the study of their moduli

space, started in [27, 28], and generalised the system to the reduction obtained from 2n-

dimensional HYM-equations, n ≥ 3. In addition, the ansatz taken represents a complemen-

tary ansatz compared to [26]. The treatment of generalised Nahm’s equations for n ≥ 3

suggests a close relationship of their moduli space with orbits of n-tuples of commuting

nilpotent elements, which we proposed as natural extension of nilpotent pairs introduced

in [46]. However, since the classification of commuting nilpotent pairs is, up to our knowl-

edge, still an open problem, we refrain from any speculation about nilpotent n-tuples.

Using the equivalence between Sp(m)-instantons and a CP 1-family of HYM instan-

tons, we described explicitly the system of HYM instanton matrix equations of a single

SU(2m)-structure in section 5. Due to the different starting point ΓP on the 3-Sasakian

base, the equations behaved differently compared to the Sasaki-Einstein canonical connec-

tion of the Calabi-Yau cone of section 4. Nonetheless, the overall picture remains: the

Nahm-like equations are expected to have a Kähler structure on the moduli space and the

precise treatment of boundary conditions only changes the orbit into which the space is

embedded to.

However, the structure of the entire intersection of the single HYM moduli spaces is

not yet fully understood. The complications can be traced back to the different bundle

structure of 3-Sasakian manifolds as SU(2) (or SO(3))-bundle, while in the usual Sasaki-

Einstein case one had a U(1)-bundle over the underlying space. The latter allowed for
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su(n+ 1) su(n) m

CSA Hαi
, i = 1, . . . , n Hαi

, i = 1, . . . , n− 1 Hαn

simple roots Eei−ei+1 , i = 1, . . . , n Eei−ei+1 , i=1, . . . , n−1 Een−en+1

positive roots Eei−ej , 1≤ i < j≤n+1 Eei−ej+1 , 1 ≤ i<j≤n Eei−en+1 , i=1, . . . , n

Table 1. The roots are given in terms of the ONB ei on R
n+1. See for instance [52].

a direct generalization of the Nahm-type equations on Calabi-Yau cones [21], while the

complete discussion of the hyper-Kähler case may require new approaches and is left for

future work. By virtue of the absolutely regular formulation of hyper-Kähler instantons,

one expect a generic description for all m, once the case of m = 1 is understood, similarly

to the generic results obtained in [21].
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A Details on non-regular boundary conditions

We provide the details for adaptation of Kronheimer’s treatment of the Nahm’s equations

in [42]; in particular, focusing on ([42], Lemma 10 & Lemma 11).

Preliminaries. For a semi-simple Lie algebra of rank k with simple roots αi, i = 1, . . . , r,

we recall the Chevalley basis

[
Hαi

, Hαj

]
= 0 , (A.1a)

[
Hαi

, Eαj

]
= AjiEαj

, (A.1b)

[E−αi
, Eαi

] = Hαi
, (A.1c)

(adE±αi
)1−AjiE±αj

= 0 . (A.1d)

Here, Aji denotes the Cartan matrix elements. The last line, the Serre relations, imply that[
Eαi

, Eαj

]
is non-vanishing only if αi + αj is a root. Then the split su(n+ 1) = su(n)⊕m

can be expressed in terms of a Cartan subalgebra (CSA) and roots as shown in table 1.

Recall that Eei−ei+1 are the “creation operators” for the su(2) subalgebra spanned by

{Hαi
, E±(ei−ei+1)}. The important question for later is whether the “creation operators”

Eei−en+1 , i = 1, . . . , n on m commute with each other. From the Serre relations we observe

[
Eei−en+1 , Eej−en+1

]
= 0 (A.2)

because (ei − en+1) + (ej − en+1) = ei + ej − 2en+1 is not a root.
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Inspired from the explicit calculations for SU(3)/SU(2) in [38] and SU(4)/SU(3) in [35],

we can replace Hαn ∈ m by a new element H̃ such that

adH̃(Eei−en+1) = (n+ 1)Eei−en+1 ∀i = 1, . . . , n . (A.3)

Additionally, one can rescale H̃ as

H̃ 7→ H =
1

n
H̃ (A.4)

such that

adH(Eei−en+1) =
n+ 1

n
Eei−en+1 ∀i = 1, . . . , n . (A.5)

This is the same rescaling as employed in the definition of the torsion components of the

canonical connection ΓP of [17]. See also [38] for an explicit example in n = 2. From now

on denote

Ej := Eej−en+1 , Fj := E−(ej−en+1) , (A.6)

and note that the Ej are nilpotent.

We now discuss the adaptation of Kronheimer’s “complex trajectories” and Lemma 10

and Lemma 11 from [42] to generic Calabi-Yau cones:

Adaptation of “complex trajectory”. Let ρ± : su(n+1) → gl(p,C) be two Lie al-

gebra homomorphisms and denote the images of the su(n+1) generators H and Ej from

above as H± and E±
j . Then a complex trajectory is an (n + 1)-tuple of smooth functions

(Yn+1, Yj) : R → gl(p,C) such that

(i) the complex equations (4.7) are satisfied,

(ii) for t → +∞

2Yn+1(t) → H+ , Yj(t) → E+
j , ∀j = 1, . . . , n , (A.7a)

(iii) and for t → −∞

2Yn+1(t) → Adg(H
−) , Yj(t) → Adg(E

−
j ) , ∀j = 1, . . . , n , (A.7b)

for some g ∈ U(p) in the compact group.

Two complex trajectories (Yn+1, Yj), (Y
′
n+1, Y

′
j ) are equivalent if there exists a map

g : R → GL(p, C) with g → 1 as t → ∞, such that (Y ′
n+1, Y

′
j ) = g(Yn+1, Yj). Similarly

to ([42], Lemma 9), if two complex trajectories are equal outside a compact subset of R,

then they are equivalent in the above sense.
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Adaptation of Lemma 10. Let (Yn+1, Yj) be a solution of the complex equations (4.7)

satisfying the boundary conditions (A.7b). Then there exists a gauge transformation

g− : R → GL(p,C) with limt→−∞ g− = const. such that (Y ′
n+1, Y

′
j ) = g−(Yn+1, Yj) is a

constant solution

2Y ′
n+1 = H− , Y ′

j = F−
j . (A.8)

To see this, consider the limit t → −∞ and without loss of generality g ≡ 1. By the

gauge transformations and boundary conditions one can find a (framed) gauge transfor-

mation such that

H− = Adg0(2Yn+1)−
dg0
dt

g−1
0 . (A.9)

The complex equations for Y ′′
j = Y g0

j then reduce to

d

dt
Y ′′
j +

n+ 1

n
Y ′′
j +

[
H−, Y ′′

j

]
= 0 ,

[
Y ′′
j , Y

′′
k

]
= 0 ,

(A.10)

for which the general solution is of the form

Y ′′
j (t) = e−

n+1
n

tAd
e(−H−t)(ωj) , (A.11)

where the ωj need to commute among each other. Note that the homomorphism ρ− induces

a decomposition

gl(p,C) =
⊕

~µ∈su(n),i∈u(1)

V~µ,i , (A.12)

where ~µ labels representations of SU(n), while i is the eigenvalue of adH− corresponding

to the label for the U(1) centraliser of SU(n) inside SU(n+1).

Due to the boundary conditions we write ωj = F−
j + δj and therefore obtain

Y ′′
j (t) = F−

j + e−
n+1
n

tAd
e(−H−t)(δj) . (A.13)

Additionally, we need to satisfy the commutator constraint in (4.7) for which we find

[
F−
j , δk

]
+

[
δj , F

−
k

]
= 0 , [δj , δk] = 0 , (A.14)

using that
[
F−
j , F−

k

]
= 0 by the earlier arguments. Moreover, the adH−-eigenvalues i of δj

are restricted by demanding that the δj contribution does not interfere with the boundary

condition, i.e.

lim
t→−∞

e−
n+1
n

tAd
e(−H−t)(δj) = 0 ⇔ i(δj) < −

n+ 1

n
. (A.15)

The inequality here means that δj is an element of a subspace of the decomposition (A.12),

where the adH−-eigenvalue is bounded by the above expression. For the case of the original

– 27 –



J
H
E
P
1
0
(
2
0
1
7
)
1
0
3

Nahm equations, i.e. n = 1, this yields the bound i(δ) < −2 from [42]. There is still a

remaining gauge freedom by

g = g1 · . . . · gn , gj = e−H−teγjeH
−t , (A.16)

which acts on all Y ′
j the same and where the contributions gj are suitably chosen such that

they yield the desired action on each element on the tuple. More precisely, the appearing

γj are restricted by demanding

(i) g preserves 2Y ′′
n+1 = H−,

(ii) limt→−∞ g = 1,

(iii) gj preserves Y ′′
k = F−

k + e−
n+1
n

tAd
e(−H−t)(δj) for all k 6= j.

The first condition (i) is satisfied by noticing

g = e−H−t

(∏

j

eγj
)
eH

−t . (A.17)

The third condition (iii) requires

γj ∈
⋂

k 6=j

z(F−
k ) , [γj , δk] = 0 = [γj , γk] , j 6= k , (A.18)

while the second condition (ii) gives a restriction on the eigenvalues of γj

lim
t→−∞

gj = 1 ⇔ i(γj) < 0. (A.19)

Applying the overall gauge transformations, we arrive at

Y ′′′
k = F−

k + e−
n+1
n

tAd
e(−H−t)

(
Adeγj

(
F−
j + δj

)
− F−

j

)
. (A.20)

Similarly to [42], the only step left to prove is that for each δj there exists a γj such that

Adeγj
(
F−
j + δj

)
− F−

j = 0 . (A.21)

We have to prove a similar statement for the adaptation of Lemma 11 and provide the

details there.

Adaptation of Lemma 11. Let (Yn+1, Yj) be a solution of the complex equations (4.7)

satisfying the boundary conditions (A.7a). Then there exists a unique gauge transformation

g+ : R → GL(p,C) with limt→∞ g+ = 1 such that (Y ′
n+1, Y

′
j ) = g+(Yn+1, Yj) satisfies

2Y ′
n+1 = H+ = const , Y ′

j (t = 0) ∈ S(F+
j ) . (A.22)

In other words,

(Y ′
1 , . . . , Y

′
n)(t = 0) ∈ Sdiag , (A.23)
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as defined in (4.17). The first part of the generalisation of ([42], Lemma 11) proceeds as

above, the only changes are that the general solutions look Y ′′
k = F+

k +e−
n+1
n

tAd
e(−H+t)(ǫj)

and the ǫj satisfy

[ǫj , ǫk] = 0 ,
[
F+
j , ǫk

]
+
[
ǫj , F

+
k

]
= 0 , i(ǫj) > −

n+ 1

n
. (A.24)

Note that the i eigenvalues are with respect to adH+ and recall that we are now considering

the opposite limit compared to Lemma 10 (and therefore have the opposite inequality).

In the next step, one applies the similar gauge transformations

g = g1 · . . . · gn , gj = e−H+teγjeH
+t , (A.25)

this time subject to the conditions

γj ∈
⋂

k 6=j

z(F+
k ) , [γj , ǫk] = 0 = [γj , γk] , j 6= k , i(γj) > 0 . (A.26)

Then one needs to prove that for each ǫj there exists a unique γj such that

Adeγj
(
F+
j + ǫj

)
− F+

j ∈ z(E+
j ) . (A.27)

Again, the arguments by Kronheimer apply, but let us be more explicit. The homomor-

phism ρ+ induces the decomposition gl(p,C)|sl(n+1,C) = ⊕κVκ into sl(n+1,C) irreps Vκ.

These decompose further under AdH+ into 1-dimensional irreps Vκ = ⊕iVκ,i. Since Vκ is

an sl(n+1,C) irrep, the highest weight vector also has the maximal i eigenvalue λκ > 0 of

all weight vectors of Vκ.

The linearisation of (A.27) is ǫj −
[
F+
j , γj

]
∈ z(E+

j ). Since F+
j is a annihila-

tion operator, it decreases all i eigenvalues by a certain increment ∆j ; in other words

adF+
j
: ⊕i>0Vi → ⊕i>−∆j

Vi, where Vi are eigenspaces with certain i eigenvalue. This map

is injective, because the kernel of adF+
j

is not contained in the domain since all i > 0.

Moreover, the image lies in the complement of z(E+
j ), because all i eigenvalues have been

lowered by ∆j , therefore none of the weight vectors has the maximal eigenvalue and cannot

be annihilated by E+
j . Consequently, for any ǫj one can find a unique γj to match the part

of ǫj in the orthogonal complement of z(E+
j ); hence, the claim holds.

Both Lemmata together. Consequently, a complex trajectory is equivalent to a tuple

(Yn+1, Yj) satisfying the conditions

Yn+1(t) =
1

2
H− , Yj(t) = F−

j , t ∈ (−∞, 0] , (A.28)

Yn+1(t) =
1

2
H+ , Yj(t) = F+

j + e−
n+1
n

tAd
e−H+t(ǫj) , t ∈ [1,∞) . (A.29)

The choice of ǫj is such that (F+
1 + ǫ1, . . . , F

+
n + ǫn) ∈ Sdiag(ρ+). Since the solution is

locally constant, it follows that there exists an g ∈ GL(p,C) such that

Adg(F
−
1 , . . . , F−

n ) = (F+
1 + ǫ1, . . . , F

+
n + ǫn) ∈ Ndiag(ρ−) . (A.30)

Hence, the complex trajectories are classified by the intersection Ndiag(ρ−) ∩ Sdiag(ρ+).
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