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Analytic solutions for a Stefan problem with
Gibbs-Thomson correction

By Joachim Escher at Hannover, Jan Priiss at Halle, and Gieri Simonett at Nashville

Abstract. We provide existence of a unique smooth solution for a class of one- and
two-phase Stefan problems with Gibbs-Thomson correction in arbitrary space dimensions.
In addition, it is shown that the moving interface depends analytically on the temporal and
spatial variables. Of crucial importance for the analysis is the property of maximal L,-
regularity for the linearized problem, which is fully developed in this paper as well.

1. Introduction and main results

The Stefan problem is a model for phase transitions in liquid-solid systems and
accounts for heat diffusion and exchange of latent heat in a homogeneous medium. The
strong formulation of this model corresponds to a free boundary problem involving a
parabolic diffusion equation for each phase and a transmission condition prescribed at the
interface separating the phases.

In order to describe the physical situation in some more detail, let us consider a
domain Q that is occupied by a liquid and a solid phase, say water and ice, that are sepa-
rated by an interface I'. Due to melting or freezing, the corresponding regions occupied by
water and ice will change and, consequently, the interface I will also change its position
and shape. This leads to a free boundary problem.

The basic physical laws governing this process are conservation of mass and conser-
vation of energy. The unknowns are the temperature ™ and u~ for the liquid and solid
phase, respectively, and the position of the interface I' separating the two different phases.
The conservation laws can then be expressed by a diffusion equation for u* and u~ in
the respective regions Q" and Q™ occupied by the liquid and solid phase and by the so-
called Stefan condition which accounts for the exchange of latent heat due to melting or
solidifying. In the classical Stefan problem one assumes that the temperatures u* and u~
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coincide at the interface I' (where the two phases are in contact), that is, one requires
(1.1) ut=u" =0 onT

where 0 is the melting temperature. Molecular considerations attempting to explain the
effect of supercooling and of dendritic growth of crystals suggest that the condition (1.1) on
the free boundary I' be replaced by the Gibbs-Thomson correction

(1.2) u"=u =0k onl

where o is a positive constant, called the surface tension, and where x denotes the mean
curvature of I'. We will occasionally refer to the Stefan problem with condition (1.2) as the
Stefan problem with surface tension.

It should be emphasized that the Stefan problem with Gibbs-Thomson correction
(1.2) differs from the classical Stefan problem in a much more fundamental way than just in
the modification of an interface condition. This becomes evident, for instance, by the fact
that the classical Stefan problem allows for a comparison principle, a property that is no
longer shared by the Stefan problem with surface tension. As a consequence, many of the
techniques that were developed and successfully applied to the classical Stefan problem
cannot be used for the modified problem. A striking difference is also provided by the fact
that in the classical Stefan model, the temperature completely determines the phases, that
is, the liquid region can be characterized by the condition u > 0, whereas u < 0 character-
izes the solid region, with u = 0 being the melting temperature. The inclusion of surface
tension will no longer allow to determine the phases merely by the sign of u.

The main reason for introducing the Gibbs-Thomson correction (1.2) stems from the
need to account for so-called supercooling, in which a fluid supports temperatures below its
freezing point, or superheating, the analogous phenomena for solids; or dendrite formation,
in which simple shapes evolve into complicated tree-like structures. The effect of super-
cooling can be in the order of hundreds of degrees for certain materials and is required for
nucleation, namely the forming of a new phase in a set previously occupied by the parental
phase, see [12], Chapter 1, and [52]. We also refer to [11], [12], [23], [27], [28], [30], [35], [52]
for more information.

The Stefan problem has been studied in the mathematical literature for over a cen-
tury, see [47], [39] and [53], pp. 117-120, for a historic account, and has attracted the
attention of many prominent mathematicians.

The classical Stefan problem is known to admit unique global weak solutions, see for
instance [20], [21], [31] and [34], pp. 496-503. It is important to point out that the existence
of weak solutions is closely tied to the maximum principle, see for instance the proofs
in [20].

Important results concerning the regularity of weak solutions for the multidimen-
sional classical one-phase Stefan problem were established in [7], [8], [10], [22], [32], [33],
[37], and regularity results for the classical two-phase Stefan problem are contained in [4],
[5], [9], [14], [15], [41], [48], [55], to mention only a few references. We mention that classical
solutions for the Stefan problem with condition (1.1) are established in [29], [38].
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Although the Stefan problem with the Gibbs-Thomson correction (1.2) has been
around for many decades, only few analytical results concerning existence and the regular-
ity of solutions are known, see [23], [36], [40], [45], [46]. The authors in [23] consider the
case with small surface tension 0 < ¢ « 1 and linearize the problem about ¢ = 0. Assuming
the existence of smooth solutions for the case o = 0, that is, for the classical Stefan prob-
lem, the authors prove existence and uniqueness of a weak solution for the linearized prob-
lem and then investigate the effect of small surface tension on the shape of I'(#). Existence
of global weak solutions is established in [36], using a discretized problem and a capacity-
type estimate for approximating solutions. The weak solutions obtained in [36] have a
sharp interface, but are highly non-unique. In [40], the way in which a spherical ball of ice
in a supercooled fluid might melt down is investigated. A proof for existence (without
uniqueness) of classical solutions was given in [45], [46].

If the diffusion equation d,u® — Au® = 0 in Q% is replaced by the elliptic equation
Au* = 0, then the resulting problem is the quasi-stationary Stefan problem with surface
tension, which has also been termed the Mullins-Sekerka model (or the Hele-Shaw model
with surface tension). Existence, uniqueness, and regularity of classical solutions for the
quasi-stationary approximation has recently been investigated in [6], [13], [16], [18], [19].

We should point out that uniqueness of solutions for the Stefan problem with Gibbs-
Thomson correction has not been established so far. This provides a serious drawback for a
complete understanding of the problem. The lack of uniqueness would for instance imply
that the process of melting and freezing is not completely predictable, as the same initial
configuration can lead to different outcomes.

In this paper we close this gap. Moreover, we are able to show that solutions regu-
larize, and that the free boundary is even analytic in time and space. In order to obtain our
results we devise a new approach based on maximal regularity. The thrust of this approach
is manifold. It gives the best possible estimates for the linearized problem. This in turn
allows us to use the contraction principle to obtain unique solutions for the nonlinear
problem. Moreover, our approach allows us to resort to the implicit function theorem to
establish further properties of solutions, such as regularity.

After these general remarks we shall now introduce the precise mathematical model
for the Stefan problem with Gibbs-Thomson correction. We will, in fact, look at the special
geometry where the free boundary is represented as the graph of a function. The general
situation will be treated—among other topics—in a forthcoming paper.

Let us then consider a family T = {T'(¢); ¢ = 0} of hypersurfaces in R""!, where each
individual hypersurface is assumed to be a graph over R”, that is, I'(¢) = graph (p(l)) for
some p(f) € C*(R", R). Moreover, let Q*(¢) and Q (¢) denote the domain above and below
I'(¢), respectively, that is,

QF (1) == {(x,y) e R" x R; y Z p(t, x)}.

We set Q(7) := Q" (1) U Q™ (7) and consider the following problem: Given Iy = graph(p,)
and up : Q(0) — R, determine a family I' = {I'(¢); £ = 0} and a function

u: J ({1} xQ() - R

t=20
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such that
ou—Au=0 1inQ(t), >0,
u=x(t) on I'(7),1=0,
(1.3) V = [0,u] on I'(z), 1> 0,
u(0,-) =up in Q(0),
I'(0) =To,

where x(#) stands for the sum of the principal curvatures of I'(z), normalized to be posi-
tive at x € I'(¢) if T'(¢) is convex at x with respect to Q (¢). The normal velocity of T is
denoted by V" and is normalized to be positive at > 0 if I is expanding locally Q™ (7).
Given any function v : Q(¢) — R, we write v™ and v~ for the restriction of v to Q" (¢) and
Q7 (1), respectively. Using this notation, let [0,u] denote the jump of the normal derivatives
of u across I'(7), that is,

[Oyu] := Out — du,

where v stands for the outer normal on I'(7) with respect to Q™ (7). Of course, uy is a given
initial value for u and I'y describes the initial position of I".

To formulate our main results, let B;F(R”), s20, pe(l,00), denote the Besov
spaces, cf. [51]. Then we have

Theorem 1.1.  Fix p > n+ 3 and let py € By 3/7(R") and ug € B} >/ (Q(0)) be given.
Assume further that the compatibility conditions

uér = KTy, [avuO] € 35;6/17(1"0)

hold. Then, given T > 0, there exists ¢ > 0 such that problem (1.3) possesses a classical solu-
tion (I',u) on [0, T'|, provided that

HuOHBﬁ;Z/f’(Q(())) <é, ||p0||31‘,‘;3/l’(w) <é, H[avuO]HB;;G/P(rO) <é.
In addition, we have that

M= U ({t} x (1)) is a real analytic manifold
te(0,7T)

5+

and that u* € C”(S_);{, R), where S_)% = {(1,(x,2) € (0, T) x R (x, ») e Q7 (1) }.

Remarks 1.2. (a) Observe that we construct (small) smooth solutions on arbitrarily
large time intervals, see also Remark (c) below. Additionally, note that I' is a family of real
analytic hypersurfaces, depending analytically on ¢ € (0, 7).

(b) Our main results in Section 7 yield further information on the solution of Theo-
rem 1.1. In particular, we know that the solution keeps its initial spatial regularity on the
left-sided closed time interval [0, 7). Furthermore, the above solution is unique in an
appropriate class specified in Section 7 below.
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(c) An inspection of the proof of Theorem 1.1 shows that the smallness assumption
of the initial data (p,,uo) can be weakened if one agrees to have solutions on (possibly)
small time intervals. More precisely, one can show that there is an ¢ > 0 with the follow-
ing property: Given p, € 33;3/”(R”) with [|Vpy|l pycrny < & and ug € B[%p‘z/”(Q(O)) with
ui = xr, and [0,uo] € B[%Ij 6/P(Ty), there is a T > 0 such that problem (1.3) possesses a clas-
sical solution (I',u) on [0, T]. This solution is again real analytic in space and time, and
unique in a suitable class of functions.

(d) It is worthwhile to emphasize that the above remark in particular implies that we
can handle initial geometries with arbitrarily large mean curvatures.

(e) Finally, we would like to point out that the formulation given in equation (1.3)
serves as a model problem for a general geometry, as the free boundary I'(7) can locally
always be represented as the graph of a function. It can be shown that the condition
IVpoll, < € can be realized by approximating I'y by an appropriate reference manifold X.
The smallness condition for Vp, will then translate into a geometric condition, expressing
that the tangent space of the reference manifold X be sufficiently close to the tangent space
of I'y. This will be done in a forthcoming paper.

The proof of Theorem 1.1 is based on a thorough understanding of the linear
problem

6,W—Axw—0}2,w:f, t>0,xeR" y>0,

w+ Ao = g, t>0,xeR",
(1.4) 0,0 — pOyw = h, t>0,xeR",

w(0,x,y) =wo(x,»), y>0,xeR"

a(0,x) = ap(x), xeR",

where the initial values (wy, g9) as well as the inhomogeneities (f, g, /) are given. Through-
out this paper we write y for the (spatial) trace operator for functions defined on a domain
with a smooth boundary.

We shall show that (1.4) is a parabolic problem which enjoys maximal regularity in
an L,-setting, where 1 < p < oo is arbitrary except for the values 3/2 and 3.

We study (1.4) in an L,-setting, so we are using L,(R”™") as the state space for w,

where R’ := R" x (0,00). It turns out that the Besov space B2 %/?(R") is a suitable
choice for the state space of ¢ in order to ensure maximal L,-regularity for (1.4). Letting
X = L,(R) x BI%[,‘Z/P(R”), we define the operator 4 on X by

_ A2
(1.5) A(”’)—( Aww ay‘”) for (w,0) € 7(A),
g —y0yw

with
2(A4) ={(w,0) € H;([RT’I) X B;‘;l/”([R"), yw+Ac=0,70,we ij_z/p([l%”)}.

Our first result shows that 4 generates an analytic Cy-semigroup on X.
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Theorem 1.3. Let 1 < p < oo and let A be defined by (1.5).

Then A is closed, linear and densely defined in X. Its kernel N (A) is trivial and its
range R(A) is dense in X. For each 0 € [0, n) there is a constant M (0) = 1 such that

(9>

\«

1
1_4’ A# 0, |arg /| = 0.

2

(A4 A4)~ H_

Consequently, — A generates an analytic Cy-semigroup {e*Ag}bO such that
—AL —Aly| < 5 <
le™ [ + [[CAe™ | = My(O)[1 + [P >, Jargl] =0 <7/2,
with some constant M, (0) independent of (.
Of considerable interest are the real interpolation spaces
(X;2(4)),,=Da(nq), 1=¢=w,2e(0,1),

of the domain Z(A4) of A, endowed with the graph norm, and X. For « =1 —1/p and

g = p this space characterizes all the initial values zy = (wy, o) such that z(¢) = e~z

belongs to the maximal regularity space of type L,, that is,
ze H)(J; X) 0 Ly(J; 2(4)),

where J = [0, 7] denotes a compact interval. We refer to Remark 2.1 (b) for a complete
characterization of the spaces Dy(1 — 1/p, p).

Taking into account the definition of 4, the maximal regularity space of type L
according to the theory of parabolic evolution equations is given by

(1.6) werl (J; Ly(RTTH) mLp(J;H;(R1+‘)),
oeH)(J; B§;2/P(R”)) N L,(J; B;‘;I/P(R")).

However, it turns out that this regularity class is not suitable for studying the nonlinear
problem. In addition, it does not take care of the inhomogeneous interface condition we
have to deal with. We shall see that the appropriate maximal regularity class is given by

L7)  weH (L) 0 L (s Hy(®E),

o€ B>\ (J; L,(R") n BV (T HY(R™)) 0 L (3 By, P (R™)).

Our main result concerning problem (1.4) reads as follows.

Theorem 1.4. Assume that 1 < p < oo with p +3/2,3 and let J = [0, T|. Then there
exists a unique solution (w, o) to problem (1.4) with

we H) (J; L,(RT™)) n L, (J; Hy (R})),
e 3352*1/21’ (J; L,(R™)) N B;,;l/zl’ (J; HY(R")) A Ly (J; B;‘,;‘/P(R”)),



Escher, Priiss, and Simonett, Analytic solutions for a Stefan problem 7

if and only if the data (f,g,h,wo,ao) satisfy the following conditions:

(@) feLy(J; Ly(RY™)) and wo € B3 2/P (R,

(b) g€ B, /7 (J; Ly(R") n L,(J; BL P (R")),

(c) he B> 12 (I L,(R") n L,(J; B), P (R")),

(d) a0 € BS,S/P(R") for p < 3/2, and oy € By, 3/P(R") for p > 3/2,

(e) ywo + Aay = ¢(0) in case p > 3/2,

(£) yoywo + h(0) € ij‘wp(R”) in case p > 3.

If this is the case then we additionally have

1(7. p2-2 1/2( 7. p3—-1 1/2—-1/2, .3
o€ H! (J; B} 2/"(R") o H)?(J; B3 VP (RY)) B2V (1, HY (R™)).

The maximal regularity property of (1.4) which is natural from the semigroup point
of view is presented in our next result.

Theorem 1.5. Assume that 1 < p < oo with p £ 3/2,3 and let J = [0, T|. Then there
exists a unique solution (w,a) to problem (1.4) with

we H) (J; L,(RE)) n Ly (J; HAREY)),  poywe L,(J; B, 2P (RY)),

1( 7. p2-2/p (o1 1-1/2p (7. 172 (0" . p4-1 n
oe H)(J; B> 2P (R") nB) V2 (T HY (R")) A L, (J; By P (R™)),

if and only if the data (f,g,h,wo,ao) satisfy the following conditions:

(a) f € L,(J; Ly(RY™)) and wy € B2 2P (R,

(6) g € BV (1 Ly(R") 0 L, (7: B VP (R),

(c) heL,(J; B2 *P(R")),

(d) ao € B§;6/P([R”)f0r p <3/2,and oy € B;‘;”N[R")for p>3/2,

(e) ywo + Aay = ¢(0) in case p > 3/2,

(f) yoywo € Bﬁljé/l’(R”) in case p > 3.
If this is the case then we additionally have

1/2( 7. p3-1 1/2=1/2p (7. 173
oe H)?(J; B \P(R")) n B>V (J; HY (R")).

The plan for this paper is as follows. Section 2 contains the construction of the semi-
group, that is, the proof of Theorem 1.3. In Section 3 we study L,-maximal regularity for
problem (1.4) in the case that wy = gy = 0 and g = 0, whereas the case wy = gp = 0 and
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f =h=0 is considered in Section 4. The proofs of Theorems 1.4 and 1.5 are given in
Section 5. Section 6 is devoted to a short discussion of the corresponding two-phase prob-
lem and Theorem 6.1 is the analogue of Theorem 1.4 for the two-phase case. Based on
Theorem 6.1 we prove in Section 7 existence and uniqueness of L,-solutions for the non-
linear equation (1.3). Section 8 is devoted to establishing the spatial and temporal analy-
ticity of the free interface. Here again, maximal regularity is of crucial importance. Finally,
Section 9 contains some technical results that are needed in the main body of the paper.

2. The semigroup in the L,-setting

In this section we prove Theorem 1.3. In order to show that A generates a Cy-
semigroup which is even analytic on each sector X, = {z € C: z # 0, |argz| < ¢}, ¢ < 7/2,
we have to compute and estimate the resolvent of A. For this purpose we first solve the
resolvent problem

w—Aw— 6}2,141 =wy, xeR" y>0,
(2.1) yw+Ag =0, xeR",
A — y0,w = 0y, x e R".

Taking the Fourier transform in x leads to an ODE-problem for u(y,&¢) = w(¢&, y) and
p(&) = &(&), namely
(A+ 1P — dfu=uo, y>0,
(2.2) u(0) = |&p,
Ap — 0yu(0) = py

This is easily solved to the result

% g=|y=s| w|¢]* — 1% e*”’(y“) - ’f’ Po(€)
- d ds+ e ==,
Po(S) -
_ wsy, d
p(&) A+w|/;‘| /1+ |§|ZI o(s) ds.

Here and in the following we use the abbreviation

=\/A+E7

Let us analyze the structure of (1 + 4)~" in some detail.

L {R“(i) Rlz(/l)]
Ru(l) Rn(2)]

(A+A4)
with the following entries R;;(4):
Ri1(4) = Pi(A+ Dypi1) " Eo+ P.S(Z)R(J.+ Dyy1) ' Eo.

Here E, denotes the operator of extension by 0; Eg € #(L,(R"*"); L,(R""")) is an isomet-
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ric and linear operator. P, € #(L,(R"™); L,(R""")) denotes the restriction, hence P2 = P,
and || P|| = 1. By R we mean the reflection w.r.t. y, that is,

(Rf)(xa y) :f(x, —Y),

which is linear and isometric in L,(R"™"), and R? = I, the identity. D,, denotes —A on
L,(R™) with domain H [,Z(R’”). It is well-known that —D,, generates a Cy-semigroup which
is analytic and bounded in each sector Z,. In particular, the resolvent estimate

_ Cy
(23) (4 + D) IHﬂ(L,,(R'")) = [k A €Zy,

holds for each # < 7. Finally, S(2) is a singular integral operator with symbol

w|é]? = 4 |y

wlé?+ 4 A+ ol

Since by Lemma 9.1 the Mikhlin condition is satisfied for this symbol, uniformly in 4 € Zy,
0 <, S(2) is bounded in H;(R") for each s, 1 < p < o0, hence also in L,(R"*!) by canoni-
cal extension. The bound is uniform in /, it depends only on p, n, 0.

Next, Ryy(4) is an integral operator of convolution type with symbol (1 + w|§\2)71,
acting on R”. Again by Lemma 9.1, it is bounded in each space H, (R™), with resolvent
estimate

Cy
(24) ”R22(}~)H.%(H;(R”)) = Bk A€ Xy,
hence by real interpolation we also have
Cy
(2.5) 1R (Al 58y, )y = [Tk A€ Zy.
Moreover, again by Lemma 9.1
(2.6) ||D;§/2R22(i)||y3(1{;(w)) = Gy, AeZy,
as well as
Co
(2.7) [1Dn Rz ()| g azs () = AE€Xy.

Thus interpolation yields

(2.8) ||D3/2R22(i)H_%(B;q(w)) < Cp, ALely,
and
Cy
(29) ||D’1R22(i)||%(B;(](RH)) é m, j, S 26
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So far, we have shown that the diagonal entries map into the domain of A4 and satisfy the
resolvent estimate aimed at.

The proper choice of the phase space for ¢ will become apparent when we consider
the off-diagonal entries Rj»(4) and Ry (4). We have

Ri2(2) = E(A) DRy (7)
and

Ry1(4) = Roa(A)E*(2),
where E(4) denotes the Dirichlet extension operator with symbol e~“?, that is,
(E(A)p)" (7€) = @p(8), EeR" y>0,

and where E*(J) is given by
(E*(2)0)" (&) = [ e ™i(p, &) dy.
0

The mapping properties of E(1) and E*(1) are also well-known, but we do not hesitate to
derive them here, for the sake of completeness.

For this purpose we define E, v(4) by the symbol e . Then Lemma 9.3 yields
Ey(2) € #(H;(R")) and

1Ey (D)o ey < Cope= VI 550, |arg | < 0 < =,

for s € R, where Cy and ¢y are positive constants. This implies

8

IR (Dol g, g 2, (2)DaRox (Z)9ll7

w "
<G J‘ PRCOAY |A|17HD,[R22 (/1)(ﬂ”[1ip(Rn> dy
0

_ My
1/2” n 22()

By (R"), L, (R")

< P
= |l|p ||(/7|| 2 2/p<R )

since we have by (2.4)

Cy
IDaR (M)l ez e, ) = 77

and by (2.7)

[1DnRo2(A) | pr, (w1, () =

G
VP
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and hence by interpolation

Cy

1-1/2p

1D Ro2 (A 2 e =1
P A

(R"), L,(R"))

This shows that entry R;,(4) satisfies the resolvent estimate.

Next we consider £*(1). We have

VE ) Ny = || | B2 (3.)
0 LpaRe")
= JHEy(/l) L, @) L), @m dy
< Cy [ VI £(p, ) gy

(=}

1
= MHW I, w1y

by Holder’s inequality and the estimate for E,(4). Interpolating (2.4) and (2.7) we obtain

||R22(/L)|| rl B2 2/[7<Rn)) S C9

1 1
R A
4]

hence

1
HR21 (}\1)” RIH»I) ZTZ/P( n)) = M@C@ |A| W] 3 j. € 26,

i.e. Ryi(A) fulfills the resolvent estimate for large 4 as well.

For fixed 4, the family {Ey(/l)}yzo forms a Cy-semigroup on L,(R"). Its negative

generator B has the symbol w = /4 + |£|? and we conclude that Z(B) = HI}(IR”). There-
fore the real interpolation spaces Dp(x, q) are

DB(avq) ;B[Tq(Rn% ae(oal)vqe [I,OO]

From this we conclude that E*(1) € Z(L,(R"™"), BI"1/?(R")) as follows.

?pp
o ® . dt
B () s v gy = € g SPNBE)E (W) 1, )
p
=C f fBEter 2)f(y,)dy di
0 Ly(R")
oro ||l f (v e wn
< LD LR <
o f [y as il .,

by Hilbert’s inequality which is stated in Lemma 9.4.
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By equation (2.6) and (2.4) we have
Ryy(4) € A(B),'P(R"), By /P (R"))
hence

Rai(2) € B(L, (R, By P (R")).

Estimate (2.8) yields D, Ry, (1) € 2(B;,(R"), B3/ (R")), and therefore, given ¢ € B 2/7(R"),
we have D, Ry (A)p € Blfp’z/"(R”), and

BD, Ry (7)p € B */P(R") = B} VP(R") = Dy(1 —1/p, p).

Since D, B~? is bounded by Lemma 9.2, this implies

-
IDuR ()N, gy = |1 Dny(A) DuRoa (AL ey Ay
0

Lr(Ry*

dy

0 A
< 1DuB 2y 1o ary | | BEy(2) BDu R (2) 0|l
0

< P
ES C”(”HBPI;I/F(R").
Thus Rlz(/l)(p € H;(Rfrl)

By construction of the resolvent we have

y0,w = Ag — 0y,

hence yd,w € B2 2/?(R"). Also Ag € B2"/P(R"), and by the trace theorem we obtain that
yw € By71/P(R") as well, and the identity

yw~+ Ag =0
holds by construction and uniqueness of the Fourier transform.

It follows from the fact that X is reflexive and from the resolvent estimate near infinity
that (A) is dense in X. The kernel of A is trivial, because the Neumann problem

Axw+6y2,w:0, xeR" y>0,
yo,w =0, xeR"
admits only the zero solution in Lp([RR’fl), and the equation A, = 0 in R” has only the
zero solution in L,(R"). It is not difficult to see that 0 belongs to the continuous spectrum

of A. Therefore, the inverse of A4 is unbounded. []

Remarks 2.1. (a) It is not clear whether the estimate || Ry (4)|| < C/|/| is valid, that
is, whether the semigroup e 4’ is uniformly bounded. This would be the case if we had
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worked with homogeneous Besov spaces instead of inhomogeneous ones. We prefer the
latter due to the application of the linear theory to the nonlinear problem, cf. Remark
5.1.3.2 in [51].

(b) As a consequence of the methods employed in Section 5 we obtain a complete
characterization of the interpolation spaces D4(1 — 1/p, p), namely

D4(1=1/p, p) ={(wo,00) € X;w € B *P(RIT), 09 € By /P (R"),
ywo + Aag = 0, y0,wy € Bj;f’/l’([R{”)}.

This characterization is valid for p > 3. The second compatibility condition is void for
p € (3/2,3), and for p < 3/2 the first one disappears. We then have

Dys(1—1/p,p) ={(wo,00) € X;wp € Bﬁ;z/p([R{Tl),o'o € BEP_WP(IR")}.

The cases p = 3/2 and p = 3 are excluded here.

3. Maximal regularity of type L,

We now study problem (1.4) in the case that wy = gp = 0 and g = 0. We show that
this problem enjoys the property of maximal L,-regularity. This will be achieved by a
combination of the Dore-Venni theorem and results about the Dirichlet extension operator
which rely on real interpolation techniques.

Proposition 3.1. Ler 1 < p < oo and let (w,0) :=e 1% (f,g).

Then f € Ly(J; Ly(R™)) and he (B>~ (J; L,(R")) 0 L, (J; BL, '/P(R")) implies
that

weoH,) (J; L,(RT)) n L, (J; Hy (RY)),

o€ oB) 1 (T Ly(R") moB) 12 (J; HY(R™) A Ly (J; By /P (R™))

as well as

oeoH) (J; By 7P(R") moH,) > (J; By P (R™)) m B> /2 (1 HJ (R")).

Here we use the notation

1 1
{ue B, (J;Y) :u'(0) = u(0) = 0}, 1—|—;<s<2+;,
, 1 1
(3.1 0B,,(J;Y) = {ue B (J;Y) :u(0) = 0}, ;<S<1+;,
1
B (J:Y), s<—,
0 Y) :

where Y means an arbitrary Banach space. The spaces ¢ H ;(J ; Y) are defined analogously.
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Proof. Let J =[0,T] be a compact interval. Let us introduce some operators and
interpret the symbol representation of the resolvent of A4, defined in Section 3, in terms of
these operators. For a Banach space Y we first let

(Gu)(t) = dﬁ[u(z), ted, ue9(G),

with
D(G) = oH)(J; Y) = {ue H)(J; ¥) 1u(0) = 0} = L,(J; ¥) = X.

G is closed, linear, invertible with spectral angle ¢, = n/2. Moreover, G admits bounded
imaginary powers, G € BIP(X), if Y is a space of class # 7. The power angle of G is
O = n/2; see e.g. Priiss [42].

Next let Y = H$(R") for some s, and denote by D, the canonical extension of —A to
L, (J s H) (R™)). It is well-known that D, is sectorial with spectral angle ¢;, = 0. Moreover,
D,, admits bounded imaginary powers, that is, D, € BIP(X) with 6 = 0. Since G and D,
commute, by the Dore-Venni theorem in the form given in Priiss and Sohr [44], G + D,, is
closed, invertible with natural domain (G + D,) = 2(G) N 2(D,), i.e.

2(G+ D,) = oH, (J; H)(R")) n L, (J; Hy P (R")).

Moreover, G + D, is sectorial and belongs to BIP(X) with ¢g, p < 0Ogyp, < m/2. There-
fore, also F := (G + D,)"* € BIP(X) and 0y < /4, using Priiss and Sohr [44] once more.
Since F and D, commute, F is invertible, we obtain FD, € BIP(X) and 0pp, < n/4, with
natural domain

9(FD,) ={ue 2(D,) : Dyue 9(F)}.
Finally, applying the Dore-Venni theorem another time we obtain that

L:=G+FD,=G+ (G+D,)'"*D,
is closed with natural domain (L) = 2(G) n Z(FD,) and invertible, as well as sectorial,

L e BIP(X) with ¢; <0, < r/2. To determine the domain of L, we have, using complex
interpolation and Lemma 9.5,

I(F) = 2((G+D)'?) = [X,2(G) n 2(Dy))
= oH)*(J; Hi(R")) N L, (J; Hy ™ (R™)).
This then gives
(L) = 2(G) " Z(FD,)
= oH )} (J; H}(R")) A oH)?(J; HS(R) 0 Ly (J; HY P (R™)),

the space of maximal regularity for the symbol (4 + w|&|*) ™. By means of real interpola-
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tion we obtain from this also the maximal regularity class when the underlying space is
B, ,(R") instead of H,(R"). It is
H)(J; By, (R")) noH)/*(J; By (RY) A Ly (J: B3P (R™)).

»Ppp »Ppp " Ppp
Next we treat the first entry of the resolvent of A. Extending the operators P, Ey, R
and Dn+l in the canonical way to X; := L (J L (R"“)) we obtain for the first entry of
(G+4)"!
(G+ A)' = Po(G+ Dyt) 'Eo + PLR(G + Dyi1) (I — 2GL™)Ey.
Since Ey, GL™' € #(X1), 2(G + Dpy1) = 2(G) 0 Z(Dpy1), ie.
R((G+ Dui1) ") = 2(G + Dy1) = oH,y (J; Ly(R™)) 0 Ly (; Hy (RE)).
The reflection R and the projection P, preserve this regularity. We therefore obtain
2((G + A)fll) < OH;} (V; Lp(Riﬂ)) NLy(J; H;(RTI))a

that is, the w-part coming from f has the desired optimal regularity behavior.

To study the entry (G + A)zf1 ,let fe Xy = L,(J; L,(R™")) be given. Since F is sec-

torial w1th spectral angle ¢ < n/4, —F generates a bounded analytic Cy-semigroup e~
on Xo = L,(J; L,(R"")). We may then write

(G+ )y = L (Te”f(y) ay,

where we consider f € Lp(R+;Lp (J ;LP(R”))) ~ X;. To see the regularity involved, we
calculate

P
dt

0

| Fe FU) £ (y) dy
0

ft -(1-1/p) F’ferfy)dy

O t

‘]

< ||f )|| g T P, p
=M (J)" J==—"dy dtéMlng(y)H dy = M| f|%,,
that is,

e f(y)dyeDr(1 —1/p,p),

‘S
O%S

a trace space for F. With Xo = L,(J; L,(R")) one obtains by Lemma 9.6

Dr(1=1/p.p) = (X0, 2(F))_,,, , = (X0, 2(G"*) n 2(DY?),_, .,

= (X0, 2(G'?)) N (X0, 2(D,?))

1-1/p,p

= 03111;2_1/2]} (J3 Lp(Rn)) NL, (J7 B;p l/p(Rn))

1-1/p,p
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By choosing f(y) = 2Fe ¢ we immediately see that the map f ~ ¢ is surjective, hence

o0
this regularity of ¢ = [ e ®f(y) dy is optimal.
0

Applying the mapping properties of L~! with s = 1 — 1/p, we see that ;%((G + A)z_ll)
is contained in
1(7. pl-1 n 1/2( 7. p3-1 n . pa-1 n
oH) (75 B,, P (R")) noH,?(J; By /P(R")) n L, (J; By, /7 (R™)).

But there is more time regularity involved, coming from ¢ € 03%271/ » (J ; LP(R”)). In fact,
we may repeat the argument for L in ¢H, (J  H) (R")), to obtain for this space

D(L) = oH; ™ (J; HY(R™)) (o Hy P2 (J; HY 2 (R)) o Hy (T HYP(R)),

and then employ real interpolation. Choosing r = 1/2 — 1/2p and s = 0 we conclude that
#((G + A)3,') is contained in

0B (I Ly (R™)) (v oB), /2 (T HY(R)) moBy> /2 (1 HJ(R")).

Thus the optimal regularity class for ¢ coming from f € X| is the intersection of these six
spaces. This implies that one natural class of inhomogeneities to be considered is

heoB)> 1 (J; L,(R") N L, (J; B, P (R")).
To show the inclusion
A((G+A)y) = oH, (J: B2 (R"),
observe that
GL™': L,(J; L,(R")) — L,(J; L,(R")) is bounded,
and also that
GL™" 1 H)*(J; Ly(R")) — L,(J; H;(R")) is bounded,
hence by interpolation
GL™' :(B))>'(J; L,(R")) — L,(J; B, */?(R")) is bounded.
Therefore we also have L™'¢p € oH,) (J; B2 */7(R")).
To deal with the entry (G + A)1_2l of (G + A)™', we have the representation
(G+ A)y'h=e? D, L7 h.
Setting i = D, L~"'h, this means to ask when e "y € Z((G + A4);}), or, when

Ge "y, De My, FPe My e Xy = L, (J; L(R™)).
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Since F2 = G+ D, and G(G + D,)"", D,(G+ D,)”" are bounded, we have only to con-
sider the last inclusion. But this means

I\Iy 1100 et py | 2 - = [IF2e " y||” dy < oo,

0%8

which is equivalent to
Fye Dp(1 —1/p,p), andhenceto FD,L 'he Dp(1—1/p,p).

By the boundedness of FD,L~! this will be implied by 4 € Dr(1 — 1/p, p), where F is now
considered on L, (J; L,(R")) = X,. Thus

he OB;;Z—I/ZP (J; Ly(R") n L, (J; B), P (R™)

implies that the corresponding part of w belongs to the right regularity class. Finally, it is
clear that (G + A);zlh = L~} belongs to the proper class and the proof of Proposition 3.1
is now complete. []

Suppose that /2 € L, (J; B2 */7(R")). Then

(G+A)yy heoH) (J;BL 2P (R")) moH)(J; By 2P (R) A Ly (5 B, 2P (R™)).

We claim that = FD,L~'he Dr(1 —1/p, p). By the boundedness of FD,L~! we have

Y € L,(J; B2 2/P(R")). On the other hand,

FD,L™": L,(J; L,(R")) — L,(J; L,(R"))
is bounded and
FD,L™" : L,(J; H}(R")) — oH,"*(J; L,(R"))
is bounded as well. By interpolation we obtain that

FD,L™" : L,(J; BL P (R")) — oB)/>"V/2 (J; L,(R"))

» Ppp

is bounded, which proves the claim. Therefore i € L, (J; Bﬁp 2/p(R")) implies
(G+ )iy heoH, (J; Ly(RY) Ly (J; HY(RE),

the maximal regularity class for w. We have proved the following result.

Corollary 3.2. Suppose [ =g=wy=09=0 and he L,(J; Blfp‘z/”([R")). Let (w,0)
denote the solution of (1.4). Then

we OHP‘ (J; L,(R™H) an(J;Hf([R{j’fl)),
Jeole (J; B2 2P (R™)) mole/Z( J; B UP(R™) A L, (J; BE VP (RM).

> pp ’1717 »pp

Moreover, o € (B, "/* (J; HX(R")) B>/ (J; HY(R")).
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4. Inhomogeneous interface conditions
In this section we want to obtain the corresponding optimal regularity result for

dw—Aw—0w=0, 1>0,xeR" y>0,

w+ Ao =g, t>0,xeR",
(4.1) 0,0 — yo,w =0, t>0,xeR"

w(0,x,y) =0, y>0,xeR"

a(0,x) =0, xeR".

To determine the proper class of functions g which leads to the regularity of w and ¢ aimed
at, observe that (1.6) implies

yw e By V2 (T; L (R") 0 Ly (3 By, P (R™)),

see Proposition 5.1. Taking the Laplace-transform in ¢ and the Fourier transform in x leads
to the problem

Ju+ |EPu — 6§u =0,
(4.2) u(0) = [¢’p + g,
Jp — 8,u(0) = 0,

for u =&, p = &, § = g. The solution of the latter is easily computed to the result

A )
; 78) = | —E—e 0,8, -—2—3(.,¢) ).
(u(A,fa)’)aP( 75)) <i+w|f|2€ g( )5)7 /1—|—a)|é|zg( 76))

Hence the solution of (4.1) is given by the convolution K * g, where the kernel K is defined
via its symbol

. —  —\JA+ |
A+ 1P A+ A+ 1EP A+ g7

Y

where y > 0, £ € R" and Re/ > 0. Concerning the operator K, we prove the following
result.

Proposition 4.1. For 1 < p < oo, let K be defined by (4.3) and let (w,0) :== K % g.

Then g € 035;1/2,; (J; L,;(IR”)) NnL, (J; Bg;l/p([R{”)) implies that

we le (J; L,(R™™)) A L, (J; Hj(u;efl)),

o oB) >\ (T Ly(R") By 12 (J; HY(R™) A Ly (J; By VP (R™)),

as well as

oeoH, (J; By 7P(R") moH,) > (J; By P (R™)) m B> /2 (1 HJ (R")).
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Proof. Using the operators introduced in Section 3 leads to the representations
(4.4) w=eGL Yy, o=—-FLy.

As in Section 3 we can conclude that w € oH,) (J; L,(RY)) n L, (J; HX(R)) if and only
if FGL='g e Dr(1 — 1/p, p), which means

(4.5) FGL™'g e B> '/ (J; L,(R")) n L, (J; B, P (R")).

Since GL™! is bounded, the latter is implied by
geoB) 1 (J; Ly(R")) n L,(J; B> /P (R™)).

Observe that this is precisely the trace class for yw coming from optimal regularity of w.
Next we consider a. Since

FgeoB)) >\ (J;L,(R")) n L,(J; B, P (R")),

the mapping properties of L~! imply
o €oB)> 2 (J; Ly(R") moB), /2P (T HY(R™)) 0o By~ (15 HY(RY)),
as well as
oeoH,(J; By, ""(R") moH,)/*(J; B P (R")) A L, (J; By, P (R)).

On the other hand, as in Section 3 we obtain that

GL™': 03;142*1/21’ (J; Ly(R") — L, (J; Bﬁiz/pw))

is bounded, hence ¢ € oH, (J/; B3 */7(R")). This gives the optimal regularity for o in its

natural class, thereby proving Proposition 4.1. []

5. Traces. Proof of Theorem 1.4

In this section we shall prove Theorem 1.4. For this purpose we need some additional
results on the diffusion equation on a half space with Dirichlet conditions. Consider

G,u—Axu—ﬁiu:f, teJ,y>0,xeR",
(5.1) u(t,x,0) = g(t,x),
u(0,x, y) = uo(x, y).

For the following result we refer to Grisvard [26], and Ladyzhenskya, Solonnikov,
Ural’tseva [34], Chapter IV, §9.

Proposition 5.1. Let pe (1,0), p +3/2, J =10,T], and suppose that u is the solu-
tion of (5.1). Then u e H,(J; L,(RIH)) mLp(J;Hlf(le_“)) if and only if the data (f, g, uo)
have the following properties:
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(@) f e Ly (J: Ly(RE™)),
(b) g e B), /2 (J; Ly(R")) N L,y (J; B P (R™)),
(¢) uo € By, */P(RIM),
(d) yuo =g(0) if p > 3/2.
If this is the case then the traces yuy and g(0) belong to B;f/l’(R”)ﬁ)r p>3/2.

There is a companion result for the diffusion equation in a half space with Neumann
conditions, that is, for the equation

atu—Axu—af,u:f, tedJ,y>0,xeR"
(5.2) dyu(t,x,0) = h(t,x),
u(0,x, y) = uo(x, y).

The corresponding result for the Neumann problem reads as follows.

Proposition 5.2. Let pe (1,0), p 3, J = [0, T], and suppose that u is the solution
of (5.1). Then u e H,(J; L,(R™™)) A L, (J; Hlf(IRTI)) if and only if the data (f, h,uo) have
the following properties:

(a) f € Ly (J; Ly(RY™)),
(b) he B> (J; L,(R")) n L, (J; B), /P (R™)),
(c) up e Blfljz/p([REfl),
(d) 70,0 = h(0) if p > 3.
If this is the case then the traces y0,ug and h(0) belong to B;f/p(R") for p > 3.

Before we give the proof of Theorem 1.4, a number of remarks concerning embed-
dings and traces of anisotropic Besov and Sobolev spaces are in order.

Remarks 5.3. (a) We have

(53)  BYVA(IL,(R") A B, (J; HY(R")) — H) (J; B, *P(R")).

In fact, by the mixed derivative theorem, see Lemma 9.7, applied to 4 = (d/ dl)l/ ? and
B =D, in X = H3(R; L,(R")), we obtain the embedding

HyP2(R; Ly(R") 0 Hy (R; HY(R")) — H) (R H2(R")),

which is valid for all s e (1/2,1). By interpolating these embeddings by the real method
of order (1/2, p) between s; = s+ ¢ and s, = s — ¢ we obtain the desired embedding for
J =R, for 1 + 4 + B is an isomorphism between
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H3V2(R; Ly(RY)  Hy (R; HY(R")) — H3(R; Ly (R"))
as well as between
s+1/2 . n s . 2 n s . n
B2 (R; Ly(R") n By, (R; H(R")) — By, (R; L,(R"))

for each s € R. By extension from J to R, embedding and then restriction to J we get the
embedding also for J, and setting s = 1 — 1/2p yields (5.3).

(b) We have

(54)  B)'V(I HJ(R") A L, (J; By, ' P(R")) — H)/?(J; B) /P (R™)).

»Zpp

. . . . d .
The mixed derivative theorem applied to the linear operators 4 = 7 and B=D, in
X = L,(R; HX(R")) yields !

H) (R; H)(R") n L, (R; H}(R")) — H)/*(R; H)(R")),
and trivially
H)?(R; HY(R")) A Ly (R; HY(R")) — H)/?(R; HY(R")).

Interpolating these embeddings by the real interpolation method of order (1 — 1/p, p) and
employing the reiteration theorem we get (5.4) for J = R. The case of general J now fol-
lows by extension and restriction.

(c) We have

(5.5) B, (J;HX(R") n Ly(J; By, 'P(R")) — B>V (J; HY(R")).

This follows in a similar way as in (b). By interpolating the embeddings
1 .2 n . 4 n 1/2 . 3 n
H) (R; H)(R") L, (R; H}(R")) — H)/*(R; H)(R")),
and
H)?(R; HY(R")) n L, (R; H) (R")) — L, (R; H;(R")).
(d) Traces. Forr >0 and 1/p < s <2 we have

(5.6) B, (J; Ly(R")) N L,(J; Bis(R")) — C(J; By "/?(R")).

It is proved in [43] that the fundamental solution S(¢) of the equation (d/dt)*u + Au = f in
a Banach space Y has the following property:

AS( e L,(J;Y) iff veDy(1—1/ps,p).

Here A is an arbitrary sectorial operator in Y with spectral angle 0, and 1/p < s < 2. Now
for Y = L,(R") and 4 = D!*/> we have
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D4(1—1/ps, p) = By """ (R").

From maximal L,-regularity of the fractional evolution equation we may then conclude
that the temporal trace operator

tr: H3(J; Ly(R") 0 Ly (J; HP(R")) — B~'IP(R")
is bounded. Then we may use real interpolation to obtain the boundedness of

ir: By, (J; Ly(R") N L, (J; Bjy (R")) — By "/ (R").

»Ppp

Strong continuity of the translation group yields assertion (5.6).
(e) By choosing s =1 —1/2p and r = 2, we obtain the boundedness of

tr: B) V(15 Ly(R") A Ly(J; B ' P(R")) — B2 3P(R"),  p>3/2.

Taking s = 1/2 — 1/2p and r = 2 leads to the boundedness of

tr: B> (J; L(R")) n L,(J; B),'/"(R")) — B} */"(R"), p>3,

and setting s = 1/2 — 1/2p and r = 4 yields

tr: B> (J; L(R")) n L, (J; B, P (R")) — B> P(R"), p>3.

In particular we derive from (a) that

(5.7)  BYV(J L, (RY) A By (L HA(RY)) — C'(J; B 97 (RY), p>3.

Proof of Theorem 1.4: Necessity. By Propositions 5.1 and 5.2 we obtain from
we H)(J; L,(R™M)) A L, (J; sz([R?le)) the properties
feL,(J; L(RTY)),  woe By 2P(REH),
as well as

ywe B) V(T Ly(R) N Ly (J; B P (R™)),

» Zpp

yoyw e BV (I Ly(R")) A L, (J; B, '/7(R")).
By the regularity of o we have Ao € B) "'/ (J; L,(R")) n L, (J; B2, '/?(R")) and therefore
g belongs to this class. Moreover, 0,0 € B})*"'/%(J; L,(R")), and by the mixed derivative

theorem, i.e. Lemma 9.7, we have 0,0 € L, (J; Bllp‘l/p([R{")), hence

he B;I{Z*‘/zf’ (J; Ly(R™) 0 L, (J; B;I;‘/P(R”)).

The compatibility condition in Proposition 5.1 yields ywy + Aygp = ¢g(0) in case p > 3/2;
observe that then ¢(0), ywy € B2 3/?(R"). For p > 3 we obtain from

7 € By (5 Ly(R") 0 B, (1 HA(R)
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and (5.7) that (9,0)(0) € B2, 6/7(R") which by the compatibility condition in Proposition
5.2 yields yd,wo + h(0) € B2, 6/P(R"). Observe that 2—6/p >1—3/p iff p > 3. In case
p < 3/2, Ao does not have a trace anymore, but we have the embedding

B2\ (T Ly(R™) A B, (J; HY(R™)) — C(J; BS, *7(R")),

hence gy € Blfljé/l’([R{”).
Proof of Theorem 1.4: Sufficiency.

Step 1: Reductions. Suppose the data (f, g, h, wy, 09) satisfy the necessary conditions
of Theorem 1.4. We restrict ourselves to the case p > 3. Only simple modifications of the
arguments given below are needed for p < 3.

First we solve the homogeneous diffusion equation (5.1) with homogeneous Dirichlet
conditions on the half-space [RRT' with initial condition wy — wy, where

(14D, (14D,

wpi=e woo + ye Wo1

with wog = pwp and wy; = (1 + D,i/ 2)w00 + y0,wy. Since
Woo € B;f/”(IR") and wg € B;p*?’/f’(lR”)

we have wg — wy € OB;; 2/p (RTI), hence the corresponding solution u of (5.1) belongs to
the maximal regularity class for w. Observe that

hy = poyu € oB)* " (J; L,(R")) 0 L, (J; B, P (R")),

by Proposition 5.2. We may then apply Proposition 3.1 to the pair of functions f,
h — hy — e "Prhy, where hg := h(0). Observe that by &g € B[%p‘yp(R”) we have

e Prhg e BV (T Ly(R")) N L, (J; B), '/P(R")).

Therefore we may assume without loss of generality that /' = 0 and & = e~"P"h. Next we
apply Proposition 4.1 to g — e "Prgy, where gy = g(0). Observe that by go € BI%[,‘3/1’(R") we
have

e Prgo e B) )V (T Ly(R")) A L, (J: B VP (R™)).

Thus we may assume that g = e="Prgj.
Thus it remains to study the following problem:

atw—Axw—(?fw:O, tedJ,y>0,xeR"
w4+ Ao = e Prgy,

(5.8) 00 — p0,w = e "Pupy,

W(O) = e_y(lJrD;%/z)WOO +ye_y(l+Dnl/2)M;017

a(0) = ay.
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To prove the sufficiency part of Theorem 1.4 it is now enough to prove that the
solution ¢ of this problem belongs to B, /> (J; HX(R")) n L,(J; By /P (R™)), since by
Proposition 5.1 the equation for ¢ yields we H) (J; L,(R'™)) n L,(J; H2(R'™)) and
o€ BV (5 Ly(R")).

Step 2: Representation of o. We set g =e Prgy, hy =ePrhy and we let
00, W1, Woo, Wo1 be as in Step 1. Taking the Laplace transfom Ww.I.t. ¢ apd the Fourier
transform w.r.t. x leads to the following ODE-problem for u = w and p = &

CUZM _ 8)2)7/{ — e_(l+‘é‘)yu00 _|_ye_(1+‘é‘)y”01’ y > O’

(5.9) u(0) = |£1°p + Go/?,
j,p — Oyu(O) = pPo + h()/CUZ,

where ug; = wo;, j = 0, 1. A straightforward calculation yields the following representation
for p:

1 do ho T i iiiicls
5.10 = |pg — L+ 2L 4 [ e Sy + sugp] ds
(5.10) p 7t e [Po o o2 g [100 o1
B 1 Go o Uoo uo
= P T, T et 7|-
i+ EPw o o o+1+(E [o+1+]|¢]

Employing the compatibility condition
oo = 7o = |€°py + do

as well as

ugr = (1 4+ |&])uoo + y0,wo,

and setting

pi=01:= ho + 70y Wo,

a simple computation yields

! !1 )

5.11 =

R o R b el [
N 1 1 L+1g 1)
R CRa R PR IR i

ho

1 1 1
_|_ -
i+lélzwlw2 [+ 1+ (&[]
1 1
+ —-
I+l o (o414 [¢]]

2p1

= mypy + mag, + mgizo + myp;.
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We write the coefficients m; in the following form:

1
(512) =5+

0 o o(1+ )7 1
it o (@+1+1E)7 i+ [ fw)| o

[ & r o(l+[é)* 1
o+ 1+ At o

’n:{ o }2qm1+m>+u+MWHL. !
T lor 1+ [E] A+ olé ot T+¢|’

npy = — )

1 1
oo o+ 1+ 8

Step 3: Regularity. We shall now deal with each of the four terms in (5.11) sepa-
rately. By taking inverse transforms we obtain for the second one

wy = —[F(F+ 1+ DY) 2. F(1 4+ D)2 L7 F 2wy,

where wy = e "Prg,. Now, go € B2 3/P(R™) implies wa € L, (J; ij 1/P(R")). By the prop-
erties of F~! this yields

F 2wy € 0H, (J; B> '/ (R")) L, (5 By, /P (R™)),

hence by boundedness of F(F + 1+ DY2)™" and F(1 + D}/%)>L~" we have

wa € oH, (J; B '/P(R")) L, (J; By, /7 (R™))).

Therefore w, enjoys the right regularity properties, as the embedding

oH) (J; B2\ P(R")) A L, (J; By ' P(R")) — oB), /% (J; HY(R"))

»=pp > pp

shows.
Similarly, for the third term we obtain
wy = [F(F+ 1+ DY) 2F(1 + DY) + (1 + DY)’ |L7 F~ 2wy,

with w3 := e 2(1+ DY) 'hy.  From hoe B},;W(R”) we can conclude that
w3 € L, (J; BI%[,‘I/I’([R”)), and so

F 2wy € oH) (J; B, P (R™)) 0 L, (3 By, P (R™)).

The terms F(F 4+ 1+ D}/?)"" and [2F(1 + D}/?)* + (1 + D}/?)*|L~" are bounded, hence
ws € oH, (J; B> '/P(R")) n L, (5 By, 1P (R™)),

»pp »pp

that is, w3 has the desired regularity.
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We write the first term in the following way.
wi = wig+ [F2L™' = [F(F+ 1+ D})*)™F(1 + D}/*)2L"1F2D,wyo
with wyo := e Prqy. Since gy € B;‘f/P(R”) we conclude that

wio € H) (J; B2 'P(R™)) A Ly (J; By /P (R™))
and also that F~2D,w, eoH[} (J; B[fl,‘l/”(R”)) mLp(J;B“‘l/p(IR”)). Hence the bounded-

ness of F2L~', F(F + 1+ D}/)™" and of F(1 4+ DY2)2L"! yields the regularity assertion
for w;. Moreover, we have that w;(0) = ay.

We now consider the last term
wq = [F(F+1+ D)%~ 2Ly,
with wag := ¢ ™P»g,. Then o € Bgljé/p([R”) implies w4 € L, (J; Bﬁlj“/f’([R”)), hence

L wyg € oH) (75 B2 Y (R)) (o H)2 (J; Bo P (R™)) A Ly (J; By P (R™)).

Since 5—4/p>4—1/p in case p >3, we obtain from this and the boundedness
of F(F+1+DY?)" the regularity wye L,(J; B 1/7(R")). However, in this way it
is not possible to show wy € B)1/%(J; HX(R")) and a different argument is needed.
It is given in Step 4 below. But we may restrict our attention to the regularity
D,wy € BV (J5 L,(R")) since we already know that wy € HI(J7 B24/P(R")) which is
embedded into B, 120 (J; L,(R")). We now set o> := (14 D,) 'y and we observe that
0y € B4 6/1’([R€”) and that o; = D,02 + 05. The contribution to w4 coming from o, then
belongs to oH, (J; By, *7(R")) which is embedded in oH, (J; B3, '/7(R")). We may there-
fore assume that

o1 = D,o, witho, € ij_wp(Rn).

Step 4. We first invert the Laplace transform in the following way. Choose a con-
tour I' = e "[00, 0] U e™[0, 00] with 7 > 0 > r/2 fixed. Then we obtain

wa(t, &) —fe“nu (4, O)p (&) dr, t>0,EeR",

and this integral is absolutely convergent for each 7 > 0 and ¢ € R”. Then we may change
variables 4 = |¢|*z to the result

I 1z]é]* p1(¢) dz

s 27”r 24 (2 + 187 I+ 1+ 1P+ 1)

Using the functional calculus for D, in L,(R") and inverting the Fourier transform, we
get the following representation for wy, where we use the assumption ¢; = D,0, with
o) € BI‘,‘[;WP(R”):
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1 i _ -1 _ 2
wa(t,”) = 2—m,fe“’)3 (z+ E+ D)) 'D,(1+ D)V? + Dy(z + D)) Paa() dz.
T

Observe that the estimates

G+ G+ 7, @ =€

1
ARARVIEENE]
as well as
ID2(1+ D, + Dz + D)) |y = G/ I
and

D, (1 + DY? + D,(z+ D; )77,

»(R")

lIA

G

hold on I' for some constant C,, depending only on p. This shows that the integral
defining wy is absolutely convergent in L,(R") for each fixed 7> 0. Next observe
that BI‘,‘p S/P(R") = Dp2(1 = 3/2p,p) in L,(R"), and that we only have to show
12 Dyyig € Ly (J; L, (IR”)) by Hardy’s inequality. Now we have by the representation
formula and the above estimates

127y
% PDuWall L, (7. L, (mm)

< CJ”HZI/217D2 tzD, [(Z+ (Z—I—D )1/2)—1]_
r

zD>(14 D)2 + D,(z+ D;")'/?)~ Jldz|

JZHL (J: Ly(R")

dz
C 12D ol ep ey —

r RIFENE

d.
C J‘|Z’73/2]7 | Z|
r

‘ + \/—— |0-2”B4 6/p R"

- CHO-Z ||B;‘;6/P(Rn)a

lIA

lIA

which proves the result. []

Proof of Theorem 1.5. The assertions of Theorem 1.5 follow along the lines of the
above proof, using in addition Corollary 3.2. [

6. The two-phase problem

' In this section we consider the linear two-phase problem on R” x R, where
R = R\{0}, that is, we consider
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atw—Axw—(?iw:f, >0 xeR" yeR,
wt+Ac =g, t>0,xeR",

(6.1) 0,0 — [0,w] = h, t>0,xeR",
w(0,x,y) =wo(x,y), yeR,xeR"
a(0,x) = ao(x), xeR",

where the initial values (wg, ) and the inhomogeneities (f,g,%) are given. Moreover,
[0yw] :== (0ywl,_g+ — OyW|,_y-) denotes the jump of the normal derivatives of w across
y = 0. As before, taking the Laplace transform in ¢ and the Fourier transform in x leads to
the problem

(A+ 1€ )u = dju =,

(6.2) u(0) = [¢p + g,
p — [0, (0) =B,
whereu =w,p =2, f :f—i— Wo, § =g, and h = h+ 0. Itis easy to compute « and p to the
result
(6.3) p= _ Vz — 20§ + [e “Mf(s) ds} ,
A+ 20| R
and
e_w‘y_s‘ _ A e_w(‘yH"Sl) _
6.4 u= s)ds — s) ds
(6.4) [ T s~ [
2
b by €T enig

+ e Vg +
A+ 20| A+ 20|

This representation of the solution (w,a) of (6.1) involves the same ingredients as for the
solution of (1.4), with some minor modifications. This shows that the results for the one-
phase problem carry over to the two-phase problem in a straightforward manner. Here we
only state the result corresponding to Theorem 1.4.

Theorem 6.1. Assume that 1 < p < oo with p & 3/2,3 and let J = [0, T|. Then there
exists a unique solution (w,a) to problem (6.1) with

we H) (J; L(R" x R)) n L, (J; H} (R" x R)),
oe BV (JL(RY) By 2 HY(R")) 0 Ly (5 By, P (R")),
if and only if the data (f,g,h,wo,0o) satisfy the following conditions:
(@) f € Ly(J; Ly(R™™)) and wy € B2 2P (R" x R),

(b) g€ B, /7 (J; L,(R") 0 L,(J; B, P (R™)),
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(c) he B> (J; L(R") n L,(J; B, P (R")),
(d) a9 € B§;6/P(IR”) Sfor p < 3/2, and o) € B;‘;yp(l]%”)for p>3/2,
(e) ywo + Aay = ¢(0) in case p > 3/2,

() [0ywo] + h(0) € ng_é/”(R") in case p > 3.

7. Existence and uniqueness for the nonlinear problem
Based on the results of the preceding sections we now investigate the nonlinear

problem (1.3). We first transform system (1.3) to a problem on a fixed domain. For this we
fix @ > 0 and choose ¢ € C*(R) with p(R) < [0, 1] and

L D=a / !
o ={y [ E5 I9l<y

Moreover, we fix p > n + 3. By Sobolev’s embedding theorem we have
(7.1) By *P(R") — BUC*(R").

Given p € By 3/P(R"), define

0,(x, 7)== (x,y+9(»)p(x)), (x,y)eR"xR=R""".

We write R"™! := R" x (0,0), R :=R" x (—0,0), and R:= R\{0}. Furthermore,
we let

Q, :=0,(R" x R), Qpi = H/,([RE’}L“), I, :=0,(R" x {0}) = graph(p).
Identifying R” x {0} and R", we clearly have
0, € Diff*(R",T}).
We also need the following result.
Lemma 7.1. Given p € B;‘I;3/P(R”) satisfying ||pl| ., < a, we have
0, € Diff*(R" x R, Q,) n Diff* (R, Q).

Proof. This follows from the fact that [y +— y+ p(x)p(y)] is a smooth strictly
increasing diffeomorphism from R to R. []

The diffeomorphism 0, is a particular case of the so-called Hanzawa transformation

[29]. Of course, there is a great liberty in choosing transformations from [Ri’fl onto Q;—’. A
technically very easy situation is obtained by considering

(7.2) (6, 9) = (v, y+p(x),  (x,9) e R
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Observe that 0, leaves the points outside strip containing I, unchanged, whereas (7.2) acts
in general as a true transformation on the whole of R,

Given any function u defined on Q,, we use the notation u® := u|Qpi. A similar con-
vention is used for functions on R" x R.

It follows from Lemma 7.1, equation (7.1), and the mean value theorem that

(7.3) 0 € Isom(H)(Q,), Hy(R" x R)), k=0,1,2,
with
0,7 =0
where

Ou:=uob, uel,(Q,) and va::voﬁljl, ve L,(R" x R)

denote the pull-back and push-forward operators induced by 0,. Moreover, if
p € BUC”(R") then

(7.4) 05 € Isom(BUC™ (QF), BUC* (R}™)).

Observe that, given v: R" x R — R such that v= e BUC®(R™!), there exist unique
extensions & of v* and &~ of v~ to R” x [0, 00) and to R” x (— 50,0], respectively. How-
ever, in general, 8" t(x,0) * ak’_(x 0)forall xe R" ke N, j=1,... ,n+ 1. In particu-
lar, v does in general not belong to BUC"([RR”“) In addltlon [RR" X [RR clearly does not
satisfy the segment property, cf. Section 3.17 in [1], and the Sobolev embedding theorem
does not hold for R” x R. Of course, the Sobolev embedding theorem holds true for the
domains R,

Fix T > 0 and assume that p : [0, T] — By /7 (R") satisfies ||p(1)||;, < a. Set
X(t,x) == (x,p(t,x)), (t,x)€[0,T] x R".
Clearly, given ¢ € [0, T], the function X (z,-) is a parametrization of I,y with

(=Vp(t,x),1) .
1+ |Vp(t,x)|?

(6, X (1,x)) =

If X is differentiable at (9, xo) € (0, T) x R", we conclude that

alp(IO) X())
1+ [Valio, )

V(l(), X(to,X())) = (a,X(to, xo) | V(t(), X(to,xo))) =

Hence the Stefan condition V' = [0,u] becomes

op—\/1+ ]Vp|20;[8vu] =0 onR" ¢>0.
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Furthermore, it is well-known that

k(X (1,x)) = —div Volt, ) . (4,x)e[0,T] x R",

1+ |Vp(t, x)|?

since I);) is the graph of p(z) over R", cf. (A.14) in [25]. Consequently, system (1.3)
becomes

Ot — Au=0 in Q) >0,

0 u* + div Ve

P 2
(7.5) V 1+ 1Vp|
dp —\/1+|Vp|’0;[0,u] =0 on R", 1> 0,

p(0,-) = py on R”,
u(0,-) = uo in Q/i,

=0 onR" =0,

where p, : R” — R describes the initial position of I" and uq : €, — R stands for the initial
temperature distribution.

To give a precise notion of solutions to (7.5), we shall transform the differential
operators acting on u. Given p € By /7 (R"), let

A (p)v = —07 (A(0"v)),

[B(p)v] = —\ 1+ [VpI*0; (y(V (07 (v —v7))) ),

forve H Z(R" x R). Here A and V stand for the Laplace and the gradient operator on
R+ respectlvely, and y is the trace operator with respect to I',. Finally, let

. (p(y) a ol (x X n o a

and
%(U7P)U = m(v,p)@nﬂvi )

and consider

0w+ A (p)v+ R(v,p)v = in (0,7) x R" x R,

vE +div on [0,7) x R",
(7.6) 1+ IVp

0ip + [#(p)v] on (0,7) x R",

v(0,-) = vy in R" x R,

P(0,-) = po on R".
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We call a pair (v, p) an Ly-solution to (7.6) on J := [0, T if
ve H) (J; L,(R" x R)) n L, (J; H}(R" x R)),
pe BV (I Ly(RY) By 2 (T HY(R™)) A Ly (5 By, P (R™)),

and if (v, p) satisfies (7.6) in the L,-sense. Any L,-solution (v, p) to (7.6) satisfying
peC”((0,T),BUC*(R")), veC”((0,T)xR"xR), v*()eBUC*RY")
for t € (0, T), is called a smooth solution. A pair (u, p), where

u: J{} x Q) = R, p:JxR" =R,

tedJ

is called an L,-solution to (7.5) if (0,u, p) is an L,-solution to (7.6). Finally, a pair (u, )
is said to be a smooth solution on [0, 7] to (7.5) if pe C*((0,T) x R"), and if given

€(0,7) and z € Q,:_L(zy we have u*(t,-) € BUCw(Q/j—r(l)), u®(-,z) is smooth in a neighbor-
hood of # and (u, p) satisfies (7.5) pointwise.

Lemma 7.2. (a) Assume that (v, p) is a smooth Ly-solution to (7.6). Then there exists a
smooth Ly-solution to (7.5).

(b) If L,-solutions to (7.6) are unique then so are L,-solutions to (7.5).

Proof. (i) Let (v, p) be a smooth L,-solution to (7.6) and set

u(l, (x, y)) = (Qf(t)v(t))(x, y), teld,(x,y)eQy.

By definition, (u,p) is an L,-solution to (7.5). Let us verify that (u,p) is a smooth
solution to (7.5). For this fix # € (0,7) and zp € Q,,. From (7.4) we conclude that
u*(ty,-) e BUC™ (Q),))-

(i) Write zg = (xo, yo) with xo € R"” and observe that

(7.7) (0,1)(20)), = (x0); fori=1,....n.

Moreover, by the smoothness of p, the implicit function theorem ensures that there is an
& > 0 such that

Vo= [t (0,0(20)),,,] € C (I, R),

where I, := (1) — ¢, t) + ¢), and that

411 _o(W(0)aip(t)(x0)
dt [(0/)(t)( 0))n+1] T +(p’(l//(l))p(t)(x0)’

Hence 1+ u(t, z0) = v(1)(6,)(20))] is smooth on I, with

(7.8) el.
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o, z0) = 0w (1) (0, (20)) + (Vu(t) (01 (20)) | %(9;(1,)(20))>

_ (ot oy o@®)ap(x) SN (0 (s
- (9* )611)([))( 0) 1+(ﬂ’(lﬁ(t))p(t)(xo) n+1 (t)(‘gp(lt)( 0))

= (020,0(2) + m(v, p)2ns10(1)]) (20),

by (7.7), (7.8) and the definition of v and m(v, p). Now assertion (a) follows without any
difficulty. Assertion (b) is obvious. []

In the following, we fix p € B[‘,‘I;3/1’(R") with [|p||, < a. Let

9ik(p) = (00, | 0x0y), 1= j,k=n+1
denote the components of the metric tensor induced by 60,. Moreover, let

g(p) := \/detlgi(p)] and write [g7(p)] for the inverse of [gu(p)]. Then one has
g(p) = (1+¢'p) and

1 0 .. 0 —¢01p
lL+¢'p
0 1 . 0 —p02p
1+¢'p
79 g™ ())= :
0 0 e 1 PP
L+¢'p
—pdip  —pdp =gl 1+ |pVp|’
[ I+9p 1+¢'p L+¢'p  (1+9¢'p)?
Using this notation we have
1 n+1 ik n
(7.10) A (pv=— > 01(9(p)g”™ (p)Okv™),
g(p) jik=1

[B(p)v] = —(1+ |Vpl)p(dni (v —v7)) + Zl 9Py (0;(v" —v7)),
j=
forve sz([Ri” x R). To shorten our notation, let

Ei(J) := (H,) (J; L,(R" x R)) n L, (J; H}(R" x R)))

x (Bj/2 1/ZP(J L,(R")) mB;p—l/ZI’(J; H}(R") ALy (J; By r(R™)),
=L, (J; L R)) x (B;;I/ZP(J; L,(R") nL,(J; By, Yr(R™))

x (31/2 1/ZP(J L,(R") nL,(J; B,, Yr(RM)).
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Furthermore, let

Va(J) :=={(v,p) e B (J); HPHC(J,BUC(R")) <aj

and define

F(v,p) = ((0) — o/ (p) — %(v,p))v,

__ 1 u / 2 0ipOkp
G(p) :== \/:2 ‘kZ:l (( 1+ |Vp|” — 1)5j/< +W 0;0rp,
1+ |Vp|" 7

H(v,p) == [#(0)0] - [#(p)v]

for (v, p) € V,(J). Clearly, we have

Vp

1+ Vol

With these notations, problem (7.6) can be restated as

div =Ap—G(p).

0w —Av = F(v,p) in (0,7) x R" x R,
it + Ap = G(p) on [0,7) x R",

(711) atp - [ayv] = H(Uap) on (07 T) X Rna
v(0,-) = vy in R" x R,
p(0,-) = p, on R”.

Finally, we set

Eyo =B 2" (R" x R) x By */P(R"),

and
Eo(J) == {((f,g,h), (WO,GO)) € Fo(J) x E10;
ywi + Aag = g(0), [8,wo] + h(0) € By /P (R")},

where [Ey(J) is equipped with the natural norm

107,90, 00 gy = 1Sl + 1100, 00) 5, + 1105300] + BO)| - e

Let
L [EO(J) - [EI(J)v ((fvg7h)7 (w070-0)) = (W70-)

be the solution operator according to Theorem 6.1. More precisely, given

((f)g’h)ﬂ (W())GO)) € [EO(‘])
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let
(va) = g(((fagvh)v (W()?O-O))) € [El(']>

be the solution of (6.1).
Lemma 7.3. [Eo(J) is a Banach space and & € Isom(Eo(J), E(J)).

Proof. Let (¢) with ¢ := (fk, gk, he, wo k, 00,k) be a Cauchy sequence in Eo(J).
Then there is a ¢ = (f, g,h, wo,00) € Fo(J) x E) o such that (¢;) converges in Fo(J) x Ej o
toward ¢. The trace theorem and Remark 5.3 (e) immediately imply that ywj + Agy = g(0)
and that vy := [0,wo k] + hx(0) converges in B} /7(R") to [0,wo] + h(0). But by assump-
tion () is a Cauchy sequence in By ¢”(R"), so that [0,wo] + 4(0) € B */7(R"). This
proves the first assertion. The second follows from Theorem 6.1. []

To economize our notation, let us introduce the following convention: We write
X-Y— Zif X,Y,Z are function spaces such that the pointwise multiplication induces
a bounded bilinear mapping from X x Y to Z. Moreover, we write C® to indicate real
analytic mappings.

Lemma 7.4. We have (F,G,H) e C*(V,(J),Fo(J)) and its Fréchet derivative van-
ishes at 0, that is,

D(F,G,H)(0,0) =0 in B(E(J),Fo(J)).
Proof. (i) Given je {l1,...,n+ 1}, we have that
(7.12) y0; € B(H) (J; Ly(R" x R)) n L, (J; H (R" x R)),

B[llgzil/ZP(J;Lp(R”)) mL[)(J;B[l;I/p(Rn)))-

Indeed for j = n + 1 this follows from Proposition 5.2. In case j € {1,...,n}, observe that
70; = 0;y and use (5.5) and Proposition 5.1. Furthermore, writing ¥/>(J) for the second
component of V;(J), we have

o= [VpI’l e C*(V2(J). B,/ (J; Hy (R"))).
Using Remark 4.2 in [2] and Sobolev’s embedding we conclude that
B \P(JH)(RY) - X — X

holds true, where X := B)/>"'/(J;L,(R")) nL,(J; B);'/?(R")). Thus the regularity
assertion for H follows from (7.12).

(i) It follows from (5.6) that
B;;I/ZP(J;Hj(R”)) N L, (J; B[‘;‘/P([RR”)) . BUC(J;B;[;3/P).

Thus Sobolev’s embedding theorem implies that
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[p—\/1+|Vpl’| e C°(V2(J), BL, /* (J; BUC(R")) n BUC(J; BUC*(R"))).

Moreover, Theorem 2.8.3 in [51] and Remark 4.2 in [2] show that

B};l/zp(J;BUC(R”)) 'B[E[;I/zp(‘]; Lp(Rn)) o B;;l/zp(J; LP(IR"))
and

. 2 n 2—1 n 2—1 n

BUC(J; BUC*(R")) - L,(J; B, '/?(R")) — L,(J; B, /" (R")),

respectively. Combining these facts the regularity assertion for G follows.

(iii) To verify the regularity of F, observe that

— ; @ 2 . n+1
[p (1+(p,p)] e C(V;?(J), BUC(J; BUC(R"))),

[p— (1+¢'p) e C”(V(J),BUC(J; BUC'(R))),
[p = g™ (p)] e C(¥2(J), BUC(J; BUC!(R))).
Obviously, we have
BUC(J; BUC(R%™)) - L, (J; L,(R%™)) — L, (J; L,(RY™))
and (5.6) shows that
B> (J: L(R") A L,(J; B, P (R")) — BUC(J; BUC(R")).

Recalling the results already proved in (i), we conclude that F is analytic.

(iv) Based on (7.9) the second assertion follows by direct calculations. []

In the following, ||.Z|| denotes the norm of the solution operator # € #(Eo(J), E;(J))
and x(p,) denotes the sum of the principal curvatures of the hypersurface Iy = graph(p,)

Vpo

1+ Vpol®

for any p, in BUC?(R"); recall that x(p,) = —div

Theorem 7.5. There exists a constant & > 0 such that (7.11) has a unique solution
(v,p) € eBg, (g for every initial value (vy,p,) € B]%;z/P(R” x R) x Bﬁ;yp(R”) satisfying the

compatibility conditions
(7.13) yoi = x(po),  [#(po)vo) € B o7 (R")
and the smallness conditions

(7.14) (w0, o)l , = &/ (A1Z1Ds [#(po)volll groin oy = &/ (A Z])-
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Proof. For simplicity write
K(v,p) = (F(v,p), G(p), H(v,p)), (v.p)€ ValJ),
and observe that
(7.15) KeC?(V(J),Fo(J)), K(0,00=0 and DK(0,0)=0,
see Lemma 7.4. Pick ¢ > 0 such that
(7.16) IDK (v, Pl g, ),y S 1/ CIZND, (v, ) € eBE, ).
We now set
W(J) = {(v.p) e E1(J); (v(0), p(0)) = (v0. po), (v, P)lg, ) = &}
and
O W)= E(), (0.0) = L(K(v,p), (0, p)).
Note that (7.13) is equivalent to
(7.17) P05+ Apy = G(pg),  [0yv0] + H (v, py) € By, /P (R").
It follows from Lemma 7.4 and (7.17) that
(K(v,). (v0 p0) € Eo(d),  (v.p) € W(J).

Hence, @ is well-defined. Furthermore, (v,p) € W(J) is an L,-solution to (7.5), or equi-
valently to (7.6), on J = [0, T'] if, and only if (v, p) is a fixed point of ®.

Writing (9, p) = ®(v, p), it follows from the construction of the operator % that
(8(0),5(0)) = (vo, py). Moreover, we conclude from (7.14)—(7.17) that

0 leys) < 121 | (K(e,), 0,000
= 1L (1K@ 25y + @0, o), + 11 (o) 0] | s gy) < &
for any (v, p) € W(J). Hence ® (W (J)) = W(J). Finally, pick (v, p)(w,0) € W(J). Then

1®(v, p) = @(w,0)llg, ) = | L ((K (v, p) = K(w,0)),(0,0)) g, .,
= [| 2K (v, p) — K(w, 0)|, )

< (1/2)ll(v, p) = (w,0)llg, (-

The assertion now follows from the contraction principle. []
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8. Analyticity
Throughout this section let (v, p) be the unique L,-solution to (7.6) on J = [0, T'] with

the initial data (vo, ) € B2, %?(R" x R) x B}-3/P(R") satisfying the compatibility condi-
tion (7.13). Our goal is to show that

M= U {t} xTyy)
te(0,7)

is a real analytic manifold and that (v, p) is in fact a smooth solution to (7.6). Again we
will see that the property of maximal regularity of the linearized problem is of crucial

importance.

Given 1 € R" and g € (R"), the Schwartz space over R", let 7,9 be the translation of
g by u, i.e.

(1u9)(x) == g(x +p), xeR"

It is not difficult to verify that 7, € Z(%(R")) and by duality, 7, extends to a mapping, still
denoted by 7,, such that 7, € ,@(9 ’([RR”)). We first prove the following result, cf. [17].

Lemma 8.1. Assume that
X e{B),(R":;se R pe(1,00)} U{HR): ke Z, pe (1, %)}

Then {t,; € R"} is a strongly continuous group of contractions on X, satisfying

1
T — Tugd = | Tugts(upo) (L — 1o | Vg) ds in X
0

for any g € ¥ (R").

Proof. If X belongs to {H;‘(R”);k €Z,pe(l,00)} the assertion follows from the
transformation theorem for Lebesgue’s integral and the mean value theorem. If X belongs
to the Besov scale {B, (R");s e R, p e (1,00)} the assertion follows from the Hzf‘—result by
interpolation. []

We need some further preparation. For this pick 7* € (0, 7) and choose 0 > 0
such that ireJ for le (1 —0,1+06) and tel:=[0,T*]. Given ¢:I — ¥'(R") and
(A1) € R x R”, let

9o u(t) :==19(At) fortel.

Recall that D,, stands for the realization of the negative Laplacian A in the spaces B;p(IR”).
Then we have

Lemma 8.2. Given g € B[’,‘;“yp(R”), k=0,1, let g(¢) := exp(—tDy)go. Then there
is a neighborhood A of (1,0) in (1 — 0,1 +0) x R" such that
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(A1) = g1] € C¥(A, BRHITVPZ (1 L (R™)) o Ly (I; B 1P(R™)).
Proof. (i) By well-known L,-maximal regularity results for D, we know that

(8.1) geH) (I; By VP (R")) n L, (I; BLY'P(R™), k=0,1,

cf. the arguments outlined in the introduction. Hence Lemma 8.1 implies that

Gru € Ly (I; BV (RY)).

Moreover, the mean value theorem yields

e ) = 0,0 = iy G000 + (l92(0) b = 00 + 700 + 100

where

! d d
M) = ) Zg(ht+ Ish) — —g(it)| d
40) = &Gt + 250 - GaCin)] s,

for a.a. t € I and all |A| small enough. Due to Lemma 8.1 and (8.1) we now conclude that

giu € H) (1: By VP (RY)

satisfying

d d
(8.2) ngl,u(’) = ir,ﬂag(/lt) + (] gsu(1)) ae.onl,

cf. the proof of Lemma 4.1 in [17].

Let now

Xo(I) == L,(I; B}, '~ /P(R"))

X1 (1) == le (I; ng—l-l/l’(uqa")) mLp(I;B;f;l—l/P(R")).

Since A commutes with translations we deduce from (8.2) that g, , is the unique solution in
Xl (I) to

(8.3) %h—mh: (1| Vh),  h(0) = go.
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Let now Gy : X (1) x (R x R") — Xo(I) x B2, 3/7(R") be defined by

d

Go(h (o) = (5= 288 = (| V), (0) — g ).

It is not difficult to verify that Gy is real analytic, satisfying Gy (g, (1,0)) = 0 and, by max-
imal regularity,

01Go(g, (1,0)) = (% - A,tr) e Isom (X (1), Xo(1)) x tr(X;([)).

Here, 0, Gy denotes the derivative of Gy with respect to & and tr stands for the temporal
trace operator. Thus the implicit function theorem shows that there is a neighborhood A of
(1,0) in R x R” such that

(4 1) = g1,) € C2(A X0 (D)),

since /1 € X;(I) is a solution to (8.3) if, and only if Gy (%, (4,)) = 0. By interpolation we
have

Xa(1) = B V021 L (RY) o L (1: B n ),
cf. the proof of Remark 5.3 (a). This completes the proof. []

Due to the compatibility conditions the main ingredients of the proof of Lemma 8.2
unfortunately cannot be applied directly to solutions of (7.6). To overcome this difficulty,
we device a suitable decomposition of (v, p). For this let in the following

g(1) := exp(—tDn)G(py), h(t) := exp(—tDu)H (v0,po), 1€J.
By (7.17) we have

(8.4) i+ Apy = g(0) and  [d,v] + 4(0) € B>, OP(R").
Thus

(8.5) (w,0) == £(0,9,h,v0,p,) € E1(J)
is the unique solution to

dv—Av=0 in (0,T) x R" x R,

wE+Ap=¢g on[0,T)x R"
(8.6) Owp—1[0,0]=h on (0,T) x R",

v(0,-) = vg in R" x R,

p(0,-) = py on R".

Given u € R" and wy € L,(R" x R), let 7,wy be defined by

(1,w0) (X, p) == wo(x + 1, ),  (x,y) e R" x R.
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Since A < (1 — 0,1 +0) x R”, the functions
Wy u(t) == 1w(At) and o, ,(1) :=10(dt), tel,
are well-defined for all (4, u) € A.

Lemma 8.3. Given (4,u) € A, we have that (w; ,,0; ) € Ei(I) and (w; ,,0.,) is a
solution to

0w — AAv = (u| Vo) in (0,T%) x R" x R,

WwE+Ap =g, on [0, T*) x R",
(8.7) Oip — A[0y0) = Ay + (1| Vp) on (0,T%) x R",

v(0,-) = vy in R" x R,

p(0,-) = po on R".

Proof. (i) Fix (4, ) € A. Using (8.5), Lemma 8.1, and Fubini’s theorem it follows as
in the proof of Lemma 8.2 that

Wi € Ly(I, HY (R" x R)) 0 H, (I, L,(R" x R)),
satisfying

(8.8) %W,W(t) = /l‘cw%w(/lt) + (1| Vwy, (1))

in L,(R" x R) a.e. on 1.

(ii) To verify thatg; , € B;p‘ Ve (1, H pz(R”)) we use the intrinsic norm

lg(2) — g(s)[1%5 e 1p
{Ilg| Hy(® )dsdt}

p
Ly(I,H} (R")) t IIII It — S‘p+l/2

on Blllj'/zp (1, H;(R”)). Again, by Lemma 8.1 and (8.5), it follows that

||UA,/4||L,(1;HP2(R")) < C|lo| L, HA(R") < O

Moreover, we have
||°7-,ﬂ(l) - Glyu(S)HI;[pz = C(HTW(U(M) - ‘7(}“5))”2”2 + H(T!u - TS#)J()“S)HPH;)

C(latir) = a(2s) 12 + (e = w)a(28)72),

lIA

and, recalling (8.5),

(100 = o
11 |t — s|PH1/?

dsdt < 0.



42 Escher, Priiss, and Simonett, Analytic solutions for a Stefan problem

Finally, using Lemma 8.1, we see that

1 P
H(Tt/l - T.Sﬂ) /IS HHZ - f (s+r(1—s)) t_S)(:u|VJ(/“S)) 5
H
< It 51" (1 V(i) |1
By (8.5) we know that
(1|Va(2s)) € L,(1, B}, P(R")) < L, (I, H}(R")).
Thus
[(Tou — Téll) (’1‘9)”[;12([& ) || (/1 | VU(AS)) H2(R")
J‘j P+1/2 s detéjj 12 dsdt < 0.
T — ] 7 [t — s

This shows that g; , belongs to the space B1 1/2p (I H 2(R”)). Similarly, one verifies that
B3/2 2 (1, L,(R")), satisfying

d d
(8.9) %0’1,#(1) = /lr,ﬂ%a(/lt) + (| Vo, u(1)).
(iv) Finally, observe that 7, (Awy) = A(zy,wo) and 7,,[0,wo] = [0y(T,,wo)] for any

o € R" and wy € H, 2([Ri” x R). Combining these facts with (8.8), (8.9), we conclude that
(Wi, 1, 04,,) 1 In fact a solution to 8.7). O

Lemma 8.4. There exists a neighborhood A < (1 — 6,1 +0) x R" of (1,0) such that

[(/1,#) — (WZ,,ua 0'/17/1)] S Cw(/\, [El (I))

Proof. (i) Let Ag = (1 — 6,1+ ) x R” be an open neighborhood of (1,0) and define
Y. [E](I) X Ao — [Eo(]) by

0w — AAv — (u| Vo)
yE+ AP =g

\P((pr)v(}“nu)) = %@p— [ayv] —h;,,,,—%(,qu)
v(0) — vy
p(0) —

Let us first verify that ¥ is well-defined. Given ((v,p), (4, 1)) € E;(I), write for simplicity
Yo :=¥((v,p), (4, 1)). We have to show that W € Eo(1). It is clear that Wy € Fo(I) x Ejo.
Furthermore, we have

P(¥5) ™ + A¥g = y0*(0) — yog + Ap(0) — Apy,
and

P5(0) = yoT(0) + Ap(0) — g(0).
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Recalling (8.4) we find that
7(¥0)™ + A¥F = W5 (0).

Moreover, we have
4 3 1 H
0]+ ¥30) = 30(0) D] - (0) = (4 199(0))

Hence it follows from Remarks 5.3 (b), (e) and (8.4) that
[0,%3] + W3 (0) € B 7 (R").
Summarizing, we conclude that W € E((7).

(i) Lemma 8.2 implies that ¥ is analytic. Further, writing 0;'¥ for the derivative of
Y with respect to (v, p) € E; (1) we find

[GIT((U,p), (1, O))] (w,0) = (6,W — Aw,yw* + Aa, 0,0 — [0,w], w(O),p(O))
for (v,p), (w,0) € E(I). This means that 3;'¥((v, ), (1,0)) = Z~", showing that
81‘P((v,p), (1,0)) € Isom([El(I), EO(I)),

by Lemma 7.3. Since ¥((v,p), (4,4)) = 0 holds true if, and only if, (v, p) is a solution in
Ei(7) to (8.7), the implicit function theorem gives the assertion. []

In the following, let
(z,p) :== (v,p) — (w,0) and X(I):=V,;p — (w,0).
Recall that (v, p) € eBg, ;). Let Cp > 0 be the constant of the Sobolev embedding
B}V (I, HX(R")) — BUC(I; BUC(R"))

and assume that Coe < a/2. Using Lemma 8.1 it is not difficult to verify that there is an
open neighborhood A of (1,0) in (1 — 9,1 + ) x R” such that

(8.10) (o 9;,,) € X(I) and  X(I)+ (Wi, 04,) < Va(l)
for all (4,u) € A. Given (4, 1) € A and (u, ) € X(I) define

F).,,u(u’)() = ;“F(u + Wl./u% + 0-/17,&) + (/l | V“))

G)-,/l(u,)() = G(X + 0'/1,/1) —9u

Hl) = Ht w4020 = it (5192

It follows from Lemma 7.4, (8.10), and Lemma 8.4 that
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(811) [((u7%)> (;La ﬂ)) = (F/l,/t<ua)()v G/l,,u(ua)()a H/l,,ll(”v%))]
e C”(X(I) x A, Fo(I)).

As in Lemma 8.3 one shows that (z; 4, ¢, ,) is a solution to

Ot — 2Au = F; ,(u, %) in (0,7%) x R" x R,
wE+ Ay =Gy u(x) on [0,T*) x R",
1

(812) Iatk’ - [ay”] = H/L,u(uv){) on (07 T*) X Rna
u(0,-) =0 in R" x R,
X(O) ) =0 on R”.

To get the analytic dependence of (2, ,,, ¢; ,) With respect to (4, ) we have to intro-
duce the spaces

o (1) :

(oH, (I; Ly(R" x R)) N L, (I; H}(R" x R)))

x (0B (I Ly(R")) moB) 12 (I HY(R™) A L, (I; By P (R™))),

VE0(1) 1= Ly (I (R x R) x (4812 (1 L (R) L, (1: B 7 (&)))

x (OB;[{Z—I/ZP(I;LP(R”)) N L,(I; B;p—l/P(R")))

where we employed the notation of (3.1). We also set ¢ X (7) := X (1) noE;(I). Then (E; (1)
and (E(7) are closed subspaces of [E; and [Fy(7), respectively, and ¢ X () is open in E; (7).

Define now oW : 0 X (1) x A — oEo(Z) by

Ot = A =, 1,7)
t+Ay-G
OT((L{,X), (Aa,u)) = v + X i;#(%)

1
Iat)( - [6)7”] - Hl,u(“a%)

It follows from the first relation of (8.4) and (8.11) that
(8.13) ()TEC(U(()X(I) XA,()[EO(I))

with

Ot — Nit — DFy o(u, %) (@, )
a1 [O\P((”aX))(l)O»](ﬁ’Z) = ( )
0

vt + Ay — DGy o(1)X
X — [0yu] — DHy o(u, ) (4, )
for (u,y) € o X(I) and (@, %) € oE;(1).

Let 0% : oEo(I) — oE; (1) be the solution operator according to
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du—Au=f in(0,T*) x R" x R,
(8.14) ywut+Ay=g onl0,T*) xR,
O — [0u) =h on (0,T*) x R".

Theorem 6.1 implies that
(8.15) 0Z € Isom(oEo(1),0E (1)).
Furthermore it follows from (8.5) that
100, 0l ) = 0 as [[(vo, po)ll i, , — O

In particular, we may assume that (0,0) € X (/) and that, given & > 0, we have

(816) ||(DFL()(Z,(p),DGL()(Z,(D),DHL()(Z, (ﬂ))

BoEi(1),0E0(1)) < &-

Combining (8.15) and (8.16) we conclude that
01 (0¥ ((z,9), (1,0))] € Isom(oE; (1), 0Eo(1)).
Again it is easily verified that (u, y) € X (I) is a solution to the system (8.12) if, and only if
the equation O\P((u, 2)s (4, ,u)) = 0 holds true. Thus the implicit function theorem implies
that
(4, 1) — (Zi,,ua (”/1,/1)] eC” (Av E <1))

Combing this result with Lemma 8.4, we obtain

Theorem 8.5. There exists an open neighborhood A of (1,0) in (1 —0,1+0) x R"
such that

[(Aa ,U) = (U).“ua p/l,,u)] € Cw (A7 [El (1)) .
As an immediate consequence we get
Corollary 8.6. The function p belongs to C‘”((O, T) x R").

Proof.  Pick (9, x0) € (0, T) x R". From Remark 5.3 (a) and Theorem 8.5 we con-
clude that [(4,u) — p, ] € C*(A,C(I,BUC(R"))). Thus

[(A, 1) — p(Ato, x0 + tou)] € C(A,R)
and the proof in now complete. []

Proof of Theorem 1.1. Theorem 7.5 guarantees the existence of a unique L,-solution
(v,p) to (7.11).

Further, Corollary 8.6 implies that M = |J ({¢} x I'(¢)) is a real analytic mani-
te(0,7)
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fold. To verify that vte C“O((O, T ),BUCOC([R’EI)), consider the semilinear parabolic
equation

dw— A (pv+ R, pv=0 in (0,T) x R" x R,

yvi +dlv<%> =0 on (07 T) X Rn7
+1Vp

v(0,-) =v9 on(0,7T) x R",

for the function v. It follows from Corollary 8.6 and (7.10) that all coefficients of .«/(p)
and #(-,p) are smooth. Of course also div(Vp/(1 + \Vp|2)) is smooth. Hence we con-
clude from well-known regularity for semilinear parabolic equations that v* belongs to
C*((0,T),BUC*(R"")). Now Lemma 7.2 (a) completes the proof. []

Remarks 8.7. (a) The above proof shows that v* € C“((0,T) x R" x [R) if one uses
the transformation defined in (7.2). In order to be prepared to treat the case of hyper-
surfaces which are not graphs we preferred to work with the transformation 0,.

(b) The idea to use the implicit function theorem and maximal regularity results
to get analytic dependence of solutions to abstract evolution equations goes back to
Angenent [3].

9. Appendix

In this section we collect some important estimates that are used in the previous sec-
tions. We begin by considering the holomorphic function

A

)= jeS,zes,
942 = 0nIEL,

where 0+2np<mn, O0>mn/2. If A€y, zeX, then A+:zeXy as well, hence
largVA+z| £ 0/2. If argA <0 then argv/A+:z= —5/2, and in case argdA =0 then
arg VA +z < 5/2. This yields

3.
arg(zvVA+z) =argVi+z+argz = —51 if argd =0,

hence there are constants ¢y, ¢; > 0 such that

i+ 2Vt 2| 2 elldl + VAT 2] 2],

and
I+ 27+ 2| 2 eal|A) + APz + |21

on Xy x X,, where ¢, ¢, depend only on 0, 7.
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This shows that g(4, z) is uniformly bounded on % x X,. Next we write

10 = () 1§ el o

where I, I’ denote the boundary curves of Xy, X,, respectively, and where /€ Xy and
z € Z,. Taking derivatives in (4,z) we get

11 g(u,v)dvdu
— —D¥Dlg(2 =
a1 PiD:9(%2) (2mi 2f_[rf NI

which implies on slightly smaller sectors X/, %, the Cauchy estimate
12'2*DED!g(1,2)) £ My, k,leNy, ieZy,zeX,.
Now we are ready to prove multiplier estimates for the symbol

A
A [EP A1

m(4, &) =
In fact, with /(&) = |£|* we obtain
m(4,¢) = g(4,h(Z)).
Note that 0;4(&) = 2¢&;, 0;0kh(E) = 205k, 0;0x0:h(E) = 0; hence
| D*h(&)| < 2/¢)* = 2h(¢) forall e R”, o N{.
This implies with some constants cg g,

|of

Dﬁngmu,é):l_zlﬁzﬁ [DEDLg(2, (&) DER(E) -+ DERE) - cp,...p,

where the sum is taken over all multi-indices f3; such that 8, + - -- + f8; = . Therefore

7
€112 1DfDEm(2.€)| < ¢ > Zﬁ

/
24D Dlg (2, &) | 1111 1D A(C)|

J5n(&)' DEDLg (2, ()| 1€ TT 2|é| ) < My

These estimates show that the Mikhlin-condition for m (4, &) is satisfied, separately in 4 and
¢. However, note that they do not hold jointly in A and £&.

Lemma 9.1. Let a € N, k € Ny, and define
A

m(2,¢&) = ; =, EeR" Jargdl < O0<m, E+0,4%0.
A+ A+ (¢
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Then there is a constant M (o, k,0) > 0 such that
2/51EM | DEDEm(1, &) < M(o,k,0), EeR", E+0, [arg | < 0.

By the same type of arguments we also obtain the Mikhlin-condition for the symbols

€] [z Vi [ €]
= oh(¢) and = oh(é)=1—-———.
A A
Vit VATe Vit TATE A+’
Lemma 9.2. Let a € N, k € Ny, and define

p(iaé):L> éERn,’argl‘<9<TC,é=’=O,i=’=O.

A+ g’
Then there is a constant M (o, k,0) > 0 such that
ki z1lol) vk o n
(AP IEMDEDEp(4, &) = M (o k,0),  EeR", |arg i <0, + 0+ 4.

The next lemma refers to the multiplier e~*“” which appears in the treatment of the

Dirichlet extension operator. We recall that w := /4 + |é|2.
Lemma 9.3. Let a € Ny, k € Ny, and set
g A ¢y)=e?, EeR" AeXy y=0.
Then there are constants M (a, k,0) > 0 and c(o, k,0) > 0 such that
[4141¢1"|DED2g(2, &, ¥)| £ M(a,k, )¢ ROV,
Sforall e R" Jargl| < 0, +0,A%0,y>0.

Proof. Set h(z,y) = e=¥. Then D!h(z, y) = (—=y)'e ™ for all e Ny, ze C, y > 0.
This implies

21D, 2)] < 29l e R < e

for all zeX,, I € Ny, where ¢ < /2. Now, we have ¢(4,¢, ) = e ™ o w(4,&), hence the
assertion follows by induction. []

We shall also need the following lemma, which is known as Hilbert’s inequality.
Lemma 94. Let 1 <p < o0, and define Hy in L,(R.) by

ds

, t>0.
[+

(Hop)(1) = ;fq)(s)

Then Hy € #(Ly(R,)).
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Proof. Let H denote the Hilbert transform on L,(R). Then Hy = P RHE,, where
P, denotes the restriction to R, R the reflection at 0, and E, the extension by zero. Since
P, R E, are bounded linear operators, we obtain the boundedness of H, from that of the
Hilbert transform in L,(R). [

For the sake of completeness we include the following result concerning complex
interpolation, see also [24], Theorem 3.1. We refer to Priiss [42] for the terminology.

Lemma 9.5. Let X be a Banach space of class # 7 and assume that A, B € BIP(X)
are commuting in the resolvent sense and that their power angles satisfy the parabolicity
condition 04 + 0p < m. Assume further that A is boundedly invertible. Then

(a) A*(A+ B)* and B*(A+ B) " are bounded linear operators in X, for each
ae(0,1);

(b) 2((4+B)") = [X,2(4+ B)], = [X,2(4)],n[X,2(B)], = Z(4”) nZ(B"),
forall o€ (0,1).

Here [X, Y], denote the complex interpolation spaces between X and Y.

Proof. By the theorem of Dore and Venni and the results of Priiss and Sohr [44],
A+ B is invertible, sectorial and admits bounded imaginary powers with power angle
04+ < max{04,0p}. We therefore have [X,%(T)|,=2(T*), for T = A,B,A+ B, see
[50], Theorem 1.15.3, or [54]. Thus
72((A+B)") = [X,2((4+ B))|, — [X,2(4)],n [X,2(B)], = 2(A*) " Z(B").
This proves (a) as well as one inclusion of (b).
Conversely, for x € 2(A*) N Z(B*) we have
(A+B)’x=(A+B)(A+B)* 'x=A"%(4+ B)* ' 4%x+ B""*(4 + B)* ' B*x,
and so by (a)
1(4 + B) x|l x = Clll4"x]|y + [ B*x]|x],
which proves the second inclusion of (b). []

The following lemma is due to Grisvard [26], even in a more general context.

Lemma 9.6. Suppose A, B are sectorial linear operators in a Banach space X, com-
muting in the resolvent sense. Then

(X,2(4) n2(B)) (X,@(A))W n(X,2(B), ., «€(0,1),pell, ]

%P - ) %P

Here (X,Y), , denote the real interpolation spaces between X and Y.

The next result goes back to Sobolevskii [49].
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Lemma 9.7 (The mixed derivative theorem). Suppose A and B are commuting sec-
torial operators in a Banach space X which are coercively positive, i.e. A+ tB with nat-
ural domain 9(A + tB) = Z(A) N Z(B) is closed for each t >0 and there is a constant
M > 0 such that

l4x| y + t||Bx|| y < M||Ax + tBx||y, forall xe 2(4)n%(B),t>0.
Then there is a constant C > 0 such that
|4*B" x|y < C||Ax + Bx||y, forall xe Z(A) nZ(B), ac|0,1].
In particular, if A+ B is invertible then A*B'~*(A + B)™" is bounded in X, for each o € [0, 1].

Observe that Lemma 9.7 applies in particular to the situation of the Dore-Venni
theorem in the version given in Priiss and Sohr [44].
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