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Well-posedness, blow-up phenomena,
and global solutions for the h-equation

By Joachim Escher at Hannover and Zhaoyang Yin at Guangzhou

Abstract. In the paper we first establish the local well-posedness for a family of
nonlinear dispersive equations, the so called h-equation. Then we describe the precise
blow-up scenario. Moreover, we prove that for the b-equation we do have the coexistence
of global in time solutions and blow-up phenomena: Depending on the initial data solu-
tions may exist for ever, while other data force the solution to produce a singularity in finite
time. Finally, we prove the uniqueness and existence of global weak solution to the equa-
tion provided the initial data satisfy certain sign conditions.

1. Introduction
In the paper we study the following nonlinear dispersive equation:

U — Uy + Cotty + (b + Dty + Tty = 02 (bitiy + uttyy), t>0, x € R,
(1.1)
u(0, x) = up(x), x e R,

where ¢y, b, ', o are arbitrary real constants. Using the notation y := u — o’u,,, we can
rewrite Eq. (1.1) as follows:
(12) Vi + couy + uyy + buyy + Ty, =0, >0, xe R,
‘ u(0,x) = up(x), xeR.

The b-equation (1.2) can be derived as the family of asymptotically equivalent shallow
water wave equations that emerges at quadratic order accuracy for any b = —1 by an ap-
propriate Kodama transformation, cf. [21], [22]. For the case b = —1, the corresponding
Kodama transformation is singular and the asymptotic ordering is violated, cf. [21], [22].
The solutions of the h-equation (1.2) with ¢y = I" = 0 were studied numerically for various
values of b in [27], [28], where b was taken as a bifurcation parameter. The symmetry con-
ditions necessary for integrability of the h-equation (1.2) was investigated in [41]. The KdV
equation, the Camassa-Holm equation and the Degasperis-Procesi equation are the only
three integrable equations in the b-equation (1.2), which was shown in [18], [19] by using
Painlevé analysis. The b-equation with ¢y = I' = 0 admits peakon solutions for any b € R,
cf. [18], [27], [28].
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If « = 0 and b = 2, then Eq. (1.2) becomes the well-known KdV equation which de-
scribes the unidirectional propagation of waves at the free surface of shallow water under
the influence of gravity, cf. [20]. In this model u(?, x) represents the wave’s height above a
flat bottom, x is proportional to distance in the direction of propagation and ¢ is propor-
tional to the elapsed time. The KdV equation is completely integrable and its solitary waves
are solitons [40]. The Cauchy problem of the KdV equation has been the subject of a num-
ber of studies, and a satisfactory local or global (in time) existence theory is now in hand
(for example, see [32], [44]). It is shown that the KdV equation is globally well-posed for
up € L*(R), cf. [44]. Tt is observed that the KdV equation does not accomodate wave break-
ing (by wave breaking we understand that the wave remains bounded while its slope be-
comes unbounded in finite time [46]).

For b =2 and I' = 0, Eq. (1.2) becomes the Camassa-Holm equation, modelling the
unidirectional propagation of shallow water waves over a flat bottom. Again u(z, x) stands
for the fluid velocity at time ¢ in the spatial x direction and ¢ is a nonnegative parameter
related to the critical shallow water speed ([4], [20], [29]). The Camassa-Holm equation is
also a model for the propagation of axially symmetric waves in hyperelastic rods ([14],
[16]). It has a bi-Hamiltonian structure ([25], [34]) and is completely integrable ([4], [8]).
Its solitary waves are smooth if ¢y > 0 and peaked in the limiting case ¢y = 0, cf. [5]. The
orbital stability of the peaked solitons is proved in [13], and that of the smooth solitons in
[15]. The explicit interaction of the peaked solitons is given in [2].

The Cauchy problem for the Camassa-Holm equation has been studied extensively.
It has been shown that this equation is locally well-posed ([9], [35], [43]) for initial data
ug € H*(R), s > 3/2. More interestingly, it has global strong solutions ([7], [9]) and also
finite time blow-up solutions ([7], [9], [10], [35]). On the other hand, it has global weak
solutions in H'(R) ([3], [11], [12], [47]). The advantage of the Camassa-Holm equation in
comparison with the KdV equation lies in the fact that the Camassa-Holm equation has
peaked solitons and models wave breaking ([5], [10]).

If b=3 and ¢ =T =0 in Eq. (1.2), then we find the Degasperis-Procesi equation
[19]. The formal integrability of the Degasperis-Procesi equation was obtained in [17] by
constructing a Lax pair. It has a bi-Hamiltonian structure with an infinite sequence of con-
served quantities and admits exact peakon solutions which are analogous to the Camassa-
Holm peakons [17].

The Degasperis-Procesi equation can be regarded as a model for nonlinear shallow
water dynamics and its asymptotic accuracy is the same as for the Camassa-Holm shallow
water equation ([21], [22]). An inverse scattering approach for computing n-peakon solu-
tions to the Degasperis-Procesi equation was presented in [38]. Its traveling wave solution
was investigated in [33], [45].

The Cauchy problem for the Degasperis-Procesi equation has been studied recently.
Local well-posedness of this equation is established in [50] for initial data uy € H*(R),
s > 3/2. Similar to the Camassa-Holm equation, the Degasperis-Procesi equation has
also global strong solutions ([23], [36], [51]) and also finite time blow-up solutions ([23],
[36], [50], [51]). On the other hand, it has global weak solutions in H'(R) ([23], [51]) and
global entropy weak solutions belonging to the class L!'(R) n BV(R) and to the class
L*(R) n L*(R), cf. [6].
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Although the Degasperis-Procesi equation is similar to the Camass-Holm equation in
several aspects, these two equations are truly different. One of the novel features of the
Degasperis-Procesi different from the Camassa-Holm equation is that it has not only
peakon solutions [17] and periodic peakon solutions [52], but also shock peakons [37] and
the periodic shock waves [24].

Despite the abundant literature on the above three special cases of Eq. (1.2), in the
case of « >0 and b, ¢y, I" € R, the Cauchy problem for Eq. (1.2) seems not have been
discussed so far. The aim of this paper is to establish the local well-posedness for the
b-equation, to derive a precise blowup scenario, to prove that the equation has strong solu-
tions which exist globally in time and blow up in finite time, and to show the uniqueness
and existence of global weak solution to the equation provided the initial data satisfy cer-
tain sign conditions.

The local well-posedness for Eq. (1.1) is obtained by applying Kato’s semigroup
approach [30]. The local well-posedness results for the Camassa-Holm equation ([9], [43])
and for the Degasperis-Procesi equation (see [50]) are special cases of our result.

Using delicate energy estimates, we present a precise blow-up scenario for Eq. (1.2),
which depends only on the value of b. It not only covers the corresponding results for the
Camassa-Holm equation in [7], [48] and the Degasperis-Procesi equation in [50], but also
presents another different possible blow-up mechanism, i.e., if » < 1/2, then the solution
to the b-equation (1.2) blows up in finite time if and only if the slope of the solution
becomes unbounded from above in finite time. This precise blow-up behaviors of the

b-equations is much more precise than the blow-up scenario limsup ||uy||, .. = +0c0, which
t—T
is quite a common PDEs blow-up scenario for nonlinear hyperbolic (see [1], [46]).

The derivation of global strong solutions from local results is a matter of a priori
estimates. By using a continuous family of diffeomorphisms of the line and three different
conservation laws associated to the h-equation (1.2), we obtain several different global ex-
istence results for the different values of 5. Two of these global existence results holding for
all » € R are very useful for us to pursue the existence and uniqueness of global weak solu-
tions to the b-equation.

By applying a novel a priori estimate for solutions, which was used first for the wave-
breaking of the Degasperis-Procesi equation in [36], we obtain a quite nice blow-up result
for strong solutions to the b-equation for b = 3, provided the initial data is odd and satisfies
some sign conditions. Based on the steepening lemma developed in [4], [7], we present
another common blow-up result for strong solutions to the h-equation for 1 < b < 3, pro-
vided the slope of the odd initial data is nonpositive. These two blow-up results together
with Theorem 4.3 below give a clear picture for global smooth solutions and blowing-up
smooth solutions of the h-equation for all b = 0.

Referring to an approximation procedure used first for the solutions to the Camassa-
Holm equation [12], a partial integration result in Bochner spaces and Helly’s theorem
together with the obtained global existence results and two useful a priori estimates for
strong solutions to Eq. (1.2), we obtain the uniqueness and existence of global weak
solution to the equation provided the initial data satisfy certain sign conditions. The
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obtained theorems provide a suitable mathematical framework to study further peakon
solutions, which appear in the b-equation (1.2) with ¢ =T =0 for any b € R, cf. [18],
[27], [28].

Our paper is organized as follows. In Section 2, we establish the local well-posedness
of the Cauchy problem associated with Eq. (1.2). In Section 3, we derive a precise blow-up
scenario for the h-equation (1.2). In section 4, we investigate the global existence of strong
solutions to Eq. (1.2). In Section 5, we study blow-up phenomena of strong solution to
Eq. (1.2). The last section is devoted to prove the uniqueness and existence of global weak
solution to Eq. (1.2), provided the initial data satisfy certain sign conditions.

2. Local well-posedness

In the section, we establish local well-posedness for Cauchy problem of Eq. (1.1) in
H'(R), r>3/2.

We first introduce some notations. Let * denote the convolution and let
[4, B] = AB — BA denote the commutator of the linear operators 4 and B. Let ||.||, denote
the norm of the Banach space Z. For convenience, let ||.||, and (.,.), denote the norm
and the inner product of H"(R), r = 0, respectively. Let X and Y be Hilbert spaces such
that Y is continuously and densely embedded in X and let Q: Y — X be a topological
isomorphism.

Let o > 0 be given. With y = u — o’u,,, Eq. (1.2) takes the form of a quasi-linear
evolution equation of hyperbolic type:

r r
y,+<u——2)yx+buxy+(co+—2>ux:0, t>0 xeR,
(2.1) o o

y(0,x) = up(x) — «20%uy(x), xeR.

Note that if p(x) ::Lef E , x€ R, then (1 —ocza)zc)flf:p*f for all f e L*(R) and

20
p * y = u. Using this relation, we can rewrite Eq. (2.1) as follows:

(2.2)

r b , (3-b)? , r
u,+<u—?>ux:—0xp*<§u +f”x+ co—i—; ul, t>0,xeR,
u(0, x) = up(x), xeR,

or in the equivalent form:
(2.3)

r a1 (b B0 T
ut+<u—p)ux:—6x(l—cx 27) <§u +Tux+ co+? ul, t>0, xeR,

u(0,x) = up(x), xeR.
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Theorem 2.1.  Given uy € H"(R), r > 3/2, there existsa T = T (a, b, co, T, ||uo||,) > 0,
and a unique solution u to Eq. (1.1) (or Eq. (2.3)) such that

u=u(-,up) € C([0,T); H'(R)) n C' ([0, T); H'(R)).
The solution depends continuously on the initial data, i.e. the mapping
uy — u(-,up) : H'(R) — C([0, T); H'(R)) n C'([0, T); H'(R))
is continuous. Moreover, T may be chosen independent of r in the following sense. If
u=u(-,up) € C([0,T); H'(R)) n C' ([0, T); H'(R)) 10 Eq. (1.1) (or Eq. (2.3)), and if
up € H" (R) for some v’ % r, ¥’ > 3/2, then for the same T,

ue C([0,T); H" (R)) n C' ([0, T); H" "' (R)).

Furthermore, if uy € H*(R) = (| H'(R), then ue C([0,T); H*(R)).

r=0

r
Proof. Given ue H'(R), r > %, define the operator A(u) := <u - E) Ox. By [48],

Lemma 2.6, we know that 4(u) is quasi-m-accretive, uniformly on bounded sets in H"~!(R).
Moreover, we have!)

A(u) e L(H'(R), H ' (R))
and for all u,z,w € H'(R),
[(4() = AE))wl|,_y < gl = =[] .-
Define the operator B(u) := [(1 — aﬁ)%, udy|(1 — 8/%)7]3. By Lemma 2.7 in [48], we find
B(u)e L(H'(R))
and for all u,z € H'(R), we H"(R),
[(Bu) = B)wl|,_, < mllu— 2|, [Iwl,_;-

(b (3 — b)o? r .
10 o (O—b)am » 1
2u + 3 u; + | co +oc2 u |. Following the
lines of the proof of [49], Lemma 2.8, we can prove that f is bounded on bounded sets

in H"(R), and satisfies

Define f(u) = —0,(1 — 023?)

X

(a) 1S D) =S, = wlly —zll,, Yy, ze H(R),
(b) 1S ) =S @ = pally = 2ll,o0s Yy, 2€ H'(R).

1 We write L(X, Y) for the space of all bounded linear operators mapping X into Y. In case X = Y we
use the notation L(X).
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Set ¥ = H'(R), X = H'(R), and O = A = (1 — 62)2. Obviously, O is an isomor-
phism of Y onto X. Following the proof of [48], Theorem 2.2, in view of Kato’s theory
for abstract quasilinear evolution equation of hyperbolic type, cf. [48], Theorem 2.1, one
can obtain the local well-posedness of Eq. (1.1) (or (2.3)) in H"(R), r > 3/2. Finally, as in
the proof of [48], Theorem 2.3, one can show that 7" may be chosen independent of r. This
completes the proof of Theorem 2.1. []

Remark 2.1. Theorem 2.1 covers the recent local well-posedness results for the
Camassa-Holm equation [9], [43] and the Degasperis-Procesi equation [50].

3. Precise blow-up scenario

In this section, we present the precise blow-up scenario for solutions to the b-equation
(2.1).

We first recall the following two lemmas.

Lemma 3.1 ([31]). If's >0, then H*(R) n L*(R) is an algebra. Moreover

1fglly = el M= wllglls + 11 Usllgl e )

where ¢ is a constant depending only on s.

Lemma 3.2 ([31]). Ifs >0, then

1A% gl 2y £ U0 oy 1A Gl gy + 1A 2y 191 e )
where ¢ is a constant depending only on s.

Then we prove the following useful result.

Theorem 3.1. Let o > 0 and ug € H'(R), r > 3/2 be given and assume that T is the
existence time of the corresponding solution with the initial data uy. If there exists M > 0
such that

et )l oy < M, 1€ 0,7),
then the H"(R)-norm of u(t,-) does not blow up on [0, T).
Proof. Let u be the solution to Eq. (1.1) with initial data uy € H"(R), r > 3/2, and

let T be the maximal existence time of the solution u, which is guaranteed by Theorem 2.1.
Throughout this proof, ¢ > 0 stands for a generic constant depending only on «, r, b and

T
CO+E .

Applying the operator A" to Eq. (2.3), multiplying by A"u, and integrating over R, we
obtain
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(3.1) || || —2(uuty, u), —&-i—g(ux,u),,+2(u,f1(u))r—|—2(u,f2(u))r,

where fi(u) = —d,(1 — 223%)™" @Lﬁ) = —b(1 — o?0%) " (uuy) and

Fou) = —0,(1 — 220%™ (%uz N (CO +%>u>

Let us estimate the first term of the right-hand side of Eq. (3.1).?

(3.2) (g, 0),| = | (A (ud,20), A"w) |
= (A", )0, A7u)y + (uA 01, Al

r 1 r r
< A", ulosullol|Aullg + 5 (A", ATu)|

1 2
= (Clll o + 3l o

2
= clluall oy llell-

Here, we applied Lemma 3.2 with s = r. Secondly, we find for the second term of the right-
hand side of Eq. (3.1) that

(3.3) (s tt), = (A1, A1)y = (0xA 1, Aut)y =

Furthermore, we estimate the third term of the right-hand side of Eq. (3.1) in the following
way:

(34)  [(fi(w).u),| = [b]|(A"(1 = «202) " (udu), ATu),|
< |b|max{l,a*2}|(A’fl(uaxu),A';lu)O}

< (A" u) O, A 1)y + (uA™ Ou, A M)

lIA

r— r— 1 r— r—
(Al IA a5 A A7)

! :
(el + 5l o) )

2
cllttll oo ey leell -

lIA

lIA

Here, we applied Lemma 3.2 with s = r — 1. Finally, let us estimate the fourth term of the
right-hand side of Eq. (3.1).

2 A similar estimate for (uu,,u), has been derived in [35].



58 Escher and Yin, b-equation

(3:5)  |(S)u),|

lIA

126 Nell,

3—b)a?
(B2, +

(ol oo gy llell 1+ Nal] 1)l

lIA

co +

I
uuu,_l) Ju,

o2

lIA

lIA

2
C([foaxll gy + Dllully

where we again apply Lemma 3.1 with s = r. Combining inequalities (3.2)—(3.5) with (3.1),
we obtain

d
Sl < (M + ).

An application of Gronwall’s inequality yields
2 2

(3.6) [u(t)]]; < exp(c(M + 1)1)[[u(0)];.
This completes the proof of the theorem. []

Next, we present the precise blow-up scenario for the b-equation.

Theorem 3.2.  Assume that o. > 0 and up € H'(R), r > 3/2. If b = 1/2, then every so-
lution will exist globally in time. If b > 1/2, then the solution blows up in finite time if and
only if the slope of the solution becomes unbounded from below in finite time. If b < 1/2, then
the solution blows up in finite time if and only if the slope of the solution becomes unbounded
from above in finite time.

Proof. Applying Theorem 2.1 and a simple density argument, it suffices to
consider the case r =3. Let T > 0 be the maximal time of existence of the solution
u to Eq. (2.2) with initial data uye€ H>(R). From Theorem 2.1 we know that
ue C([0,7); H3(R)) n C'([0, T); H*(R)).

Multiplying Eq. (2.2) by y = u — «u,., and integrating by parts, we get
d
(3.7)  — [yrdx==2b[ yPuydx —2 [uyycdx = (1 — 2b) [u,y*dx.
di iy R R R
Here, we used the relations: [ yu,dx = 0and [ yy,dx = 0. Note that
R R
(3.8)  min{1, v2e,a?}Ju(, )]l < | p(t )12 < max{1, V2o, }|u(z, )|,
From (3.7), we see that if b = 1/2, then we have
Jues(t, e < e, )l < (ming1, 722,023 7 (e, )

= (min{1,v2a,0%}) 71|30, )| > < 0.

This implies, in view of Theorem 3.1, that every solution exists globally in time.
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If b > 1/2 and the slope of the solution is bounded from below or if » < 1/2 and the
slope of the solution is bounded from above on [0, 7)) x R, then there exists M > 0 such
that

%fyzdngjyzdx.
R R

By means of Gronwall’s inequality, we have
19( M 2y = 1000, )l 2wy exp{Me}, Vi€ [0, T).
In view of (3.8) and Theorem 3.1, we see that the solution does not blow up in finite time.

On the other hand, by Theorem 2.1 and Sobolev’s imbedding theorem, we see that if
the slope of the solution becomes unbounded from below or from above in finite time, then
the solution will blow up in finite time. This completes the proof of the theorem. []

Remark 3.1. Theorem 3.2 not only covers the corresponding results for the
Camassa-Holm equation in [7], [48] and the Degasperis-Procesi equation in [50], but also
presents another different possible blow-up mechanism, i.e., if » < 1/2, then the solution
to the b-equation (1.2) blows up in finite time if and only if the slope of the solution be-
comes unbounded from above in finite time.

4. Global strong solutions

In this section, we will show that there exist global strong solutions to Eq. (1.2) for
any b € R, provided the initial data uy and the parameters o, ¢y, and I' satisfy suitable
conditions.

Let up € H"(R), r > 3/2. Then there exists a unique solution
ue C([0,7); H(R)) n C'([0,T); H(R))
to Eq. (1.1) with initial data u, defined for the existence time 7" > 0, cf. Theorem 2.1. Thus,

we can consider the differential equation

r
(41) Qt:u(t7Q)_ﬁ9 ZE[O,T),

q(0,x) = x, xeR.

Solutions to (4.1) may be viewed as Lagrange coordinates associated to the h-equation.

Lemma 4.1. Let upe H'(R), r>3/2, and let T >0 be the existence time of
the corresponding solution u to Eq. (1.1). Then the Eq. (4.1) has a unique solution
qe Cl([O, T) x R,R). Moreover, the map q(t,.) is an increasing diffeomorphism of R
with q.(t,x) > 0 for (t,x) € [0,T) x R.

Proof. Due to u(t,x) e C'([0,T); H(R)) and H"(R) = C(R), we see that both

. r . o .
functions u(7, x) — — and uy(7, x) are bounded, Lipschitz in the space variable x, and of
o
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class C! in time. Therefore, well-known classical results in the theory of ordinary differen-
tial equations yield that Eq. (4.1) has a unique solution g € C'([0,7) x R, R). Differentia-
tion of Eq. (4.1) with respect to ¢ yields

d
(4.2) { T4 = 4u = us(t,9)gx, 1€[0.T),

g:(0,x) =1, xeR.
The solution to Eq. (4.2) is given by

t

(4.3) gx(t,x) = exp <({ ux(s, q(s,x)) ds), (t,x)€[0,T) x R.

For arbitrarily fixed 7’ € (0, T'), Sobolev’s imbedding theorem implies that
sup lux(s,x)| < 0.

(s,x)€[0,T")xR

Thus, we infer from Eq. (4.3) that there exists a constant K > 0 such that ¢.(¢,x) = e X > 0
for (¢,x) € [0, 7') x R. This completes the proof of the lemma. []

Lemma 4.2.  Assume that uy € H'(R), r > 3/2. Let T > 0 be the existence time of the
corresponding solution u to Eq. (1.1). If b & 0, then we have

(4.4) <y(t, q(t, x)) +b7! (co + a_l;)) [qx(t, x)]b = (yo(x) +b7! (co + %)),
where (t,x) € [0, T) x Rand y = u — «*uy,. If co + % =0, then for all b € R we have
(4.3) »(t,q(t, %)) lax(t, %)) = yo(x).

Proof. As in the proof of Theorem 3.2 it suffices to prove the above lemma for r = 3.
Let 7 > 0 be the maximal existence time of the solution u with initial data uy € H3(R).

Differentiating the left-hand side of Eq. (4.4) with respect to time variable 7, in view of
the relations (4.1), (4.2) and (2.1), we obtain

%{ (J’(t, q(t,x)) + b7 <Co + %)) [qx(1, x)]b}

— (n(t.a) +ya)lad’ + (y(r, 0467+ a—i))b[qx}”-qu,

= (J/t(l, q) + (u - %) Y+ by (1, Qux(t,q) + (Co + %) ux(t, CD) 9]
0.

This proves (4.4). Similarly, we can prove (4.5) and complete the proof of the lemma. []
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Lemma 4.3. Let ug € H'(R), r > 3/2 be given. If yo = (up — #*uo_xx) € L'(R), then,
as long as the solution u(t,-) with initial data uy given by Theorem 2.1 exists, we have

Ju(t,x)dx = [ugdx = [ yodx = [ y(t,x)dx.
R R R R

Proof. Again it suffices to consider the case r = 3. Let T be the maximal time of ex-
istence of the solution u to Eq. (2.2) with initial data uy € H*(R).

Note that uy = p * yo and yo = (up — «’up »x) € L'(R). By Young’s inequality, we
get

luoll 1wy = 112 * YollLiwy = 1PNl llvoll iy = 11yoll piw)-

Integrating Eq. (2.2) by parts, we get

d. r b, 3-b , r -
EH-\{de_ U_\{(u a2>uxdx Uiaxp*<2u + 3 ux—|—<co+a2>u>dx—0.

It follows that

Judx = [ugdx.
R R
Due to y = u — a’u,,, we have

[ydx = [udx— oczfuxxdx: Judx
R R R

B—m B

updx = [ugdx — o [ug xdx = [ yodx.
R R R

This completes the proof of the lemma. []
We now present our first global existence results.

3 r :
Theorem 4.1. Let upe H'(R) r> 3 be given and assume co+—=0. If
o

Vo i= Uy — a20§u0 e L'(R) is nonnegative, then the corresponding solution to Eq. (2.2) is
defined globally in time. Moreover, I(u) = [udx is a conservation law, and that for all
(1,x) € Ry x R, we have: R

(1) »(¢,x) =0, u(t,x) = 0 and

1yoll rry = 1Yl gy = 1w, ) 1@y = lwoll 1 m)-
.. 1
(i) Neee(t )l my = - lluollpr gy and

=
lae(t, ) ey < Mt )y < max{e, o' ez 0leiofug .
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Proof. As we mentioned before that we only need to prove the above theorem
for r=3. Let T > 0 be the maximal existence time of the solution u with initial data
Uy € H3([R)

If yo(x) = 0, then the identity (4.5) ensures that y(z,x) = 0 for all z € [0, T'). Noticing
that u = p * y and the positivity of p, we infer that u(z,x) = 0 for all 7 € [0, T'). By Lemma
4.3, we obtain

X

(4.6) —outy (2, x) + fu(l X)dx = f (u— o?uyy,) dx = f ydx

—00

o]

< [ ydx= [yodx = [updx.
—00 R R
Therefore, from (4.6) we find that

(4.7) uy(t,x) = —

I x___HMOHLl V(I,X)E[O, T) X R.
R

SEI'—‘

On the other hand, by y(#,x) = 0 for all € [0, T'), we obtain

auy(t,x) — [udx=— [ (u—o*uy)dx = — fydx<0

—o0 —o0 —o0

By the above inequality and u(z,x) = 0 for all 7 € [0, T), we get

1 x 1 1 1
4. < - x < — == =-— l
(4.8) (t,x) < » {Cud < cx[}{ udx aﬂiuodx ocHuO”L (R)
Thus, (4.7) and (4.8) imply that
1
(4.9)  Jux(t, x)] = Mt )l oy = Mol gy, V(%) €0,T) x R.

By Theorem 3.2 and (4.9), we deduce that T = co. Recalling finally Lemma 4.3, we get as-
sertion (i).

Multiplying (1.1) by u and integrating by parts, we obtain

(4.10) J"( 2(t,x) + o*ui(t,x)) dx

1d
2.d

= o? f(uzuxxx + buuyuyy) dx
R

b 2 3 b
<
= <1 2)(1 D{uxdx_ ‘1 3

In view of (4.9)—(4.10), an application of Gronwall’s inequality leads to

[ (2, ) e () joczui dx.
R
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[2—b|1

(4.11) [(u?(t,x) + o0*ul(t,x))dx < e =

lluoll 1wy J"(u + 062”3 ¥) dx.

R R
Consequently,
|2—b|t
(4.12) (e, )y < max{e, o ye 5 Mol g
On the other hand,
(4.13) u?(t,x) = j 2uu, dx < f u? +u?) dx = |lu(t,)|7.

— 00

Combining (4.12) with (4.13), we obtain assertion (ii). This completes the proof of the
theorem. [

In a similar way to the proof of Theorem 4.1, we can get the following global exis-
tence result.

3 r ,
Theorem 4.2. Let uye H'(R), r>§ be given and assume that c¢y+— =0. If
o

Vo = Uy — oczé‘iuo e L'(R) is nonpositive, then the corresponding solution to Eq. (2.2) is
defined globally in time. Moreover, I(u) = [udx is a conservation law, and that for all
(1,x) € Ry x R, we have: R

(1) »(t,x) =0, u(t,x) <0 and
1yoll iy = Iyl rmy = lut )l rwy = [0l 21wy

.. 1
(i) et sy = - Mol gy and

—2|t
(M ey < e, ), < max{o, o ye = 1l g ).

Remark 4.1. Theorems 4.1-4.2 cover the global existence results of strong solutions
to the Camassa-Holm equation in [9] and the Degasperis-Procesi equation in [51].

We now present a further result on global existence for the b-equation.

r
Theorem 43. Let 0Zb=Z1 and co+ — = 0 be given and assume that
3 o
up € H'(R) n W2’%([RR), r>s. Then the corresponding solution to Eq. (2.2) is defined glob-

ally in time.

Proof. It suffices to prove the above theorem for r = 3. Let uy € H>(R), and let
T > 0 be the maximal existence time of the solution u with initial data uy. By (4.5) in
Lemma 4.2, we get the following conservative quantities [27]:

(4.14) (@20l 4 gy = 1900y ) HO<B=T,
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and

(4.15) (&) L ) = 1190, )| Loy 16 =0

Set p=1/bif 0 <b <1 and p=+oo if b = 0. Note that u — «*u,, = y(t,x). By the L?-
theory for linear elliptic equations (see e.g. [26]), we obtain u(z,-) € W>?(R). By Sobolev
imbedding theorem, we see that for p > 1, W??(R) = CL(R). Thus, (4.14) and (4.15) im-
ply that [[u(7, )|« ) is uniformly bounded for all 7 € [0, T'). By Theorem 3.1, we deduce
that the correspondmg solution to Eq. (2.2) is defined globally in time. This completes the
proof of the theorem. []

We finally offer a fourth global existence result.

Theorem 4.4. Let b = —1/2n, for some n=1,2,... and assume that co =T =0. If
upe H'(R) n W3 _'( ), r > 3/2, then the correspondmg solution to Eq. (2.2) is defined glob-
ally in time.

Proof. Again we consider only the case r = 3. Let ug € H*(R), and let T > 0 be the
maximal existence time of the solution u with initial data uy. Note that if ¢ = ' = 0 and
b =+ 0, then we have the following conservation law (see [18]):

7% X yi(l,x) I — 7% X yi(()?x) x
16 [t (g 1) de= [0 (i 1) e

Since b = —1/2n, for some n=1,2,..., it follows from (4.16) and Hoélder’s inequality
that

(4.17) ﬂJgjyz”*z(t, X) (yi(l, x)+ 4n?y* (1, x)) dx

= fyz”_z(O, X) (y)zc(O, x) + 4n*y*(0, x)) dx
R
< {100, ) 1750y 75 (0, %) 720y + 422 [[ (0, )| 750 s
By the L? theory for linear elliptic equations and Sobolev imbedding theorem, in view of
(4.17), we conclude that [|ux(Z, )|~ g, is uniformly bounded for all # € [0, T'). By Theorem
3.1, we deduce that the corresponding solution to Eq. (1.1) is defined globally in time. This
completes the proof of the theorem. []

5. Blow-up results

In this section we address the question of the formation of singularities for solutions
to Eq. (1.1). We will present two blow-up results for the b-equation.

Let us first consider the following situation.

Theorem 5.1. Let up € H'(R), r > 3/2 be given and assume that ¢ =1 =0 and
b =3. If uy £ 0 is odd such that
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{yo (x) = uo(x) — o?ug x(x) =
yo(x) = up(x) — (xzuo,xx(x) <0 forx=0,

then the corresponding solution to Eq. (2.2) blows up in finite time. Moreover, the maximal
existence time of the corresponding solution is strictly less than —1/u,(0,0).

Proof. Again, we only need to show that the above theorem holds for r = 3. Let
T > 0 be the maximal time of existence of the solution u to Eq. (2.2) with the initial data
up € H*(R).

Differentiating Eq. (2.2) with respect to x, in view of —oczai pxf=px*xf—f and
co =TI =0, we have

(5.1) Upe = uuxerﬁu +Tux a2p>1<<2u +#ux )

Note that if ¢ =T =0, then Eq. (2.2) possesses the symmetry (u, x) — (—u, —x). Since

uo(x) is odd, the uniqueness of solutions implies that u(z,x) is odd too. By y = u — a?u,

we know that y(z, x) is also odd. Furthermore, we have

(52 ua(t,0)=— ux(t,O)—azp*(zu + Sl ) (1,0).

Since the function ¢(¢, x) is an increasing diffeomorphism of R with ¢.(z,x) > 0 with re-
spect to ¢, we infer from the assumption of the theorem and (4.5) in Lemma 4.2 that for
te[0,T), we obtain

(5.3) {y(t, X) 20 if x < ¢(1,0) =0,

y(t,x) =0 if x=¢(1,0) =0,
and y(t,¢(1,0)) =0, 1€ [0, T). By u = p x y, we have

54 uhW =t [ dde+ e

[ e ¢ de.
Differentiating Eq. (5.4) with respect to x yields for (¢,x) € [0, T) x R,

1
e
200

(5.5) ouy(t,x) = —ie_f f egy(z, &) dé+

200

J et ae
From (5.4) and (5.5), we conclude that
1 ¥ ¢ © e
(56) uz(tv x) - a2u)26(l7 X) = ; I e;y(lv é) déj 67)’(@ é) dé

By the definition of p(x), we have
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(5.7) px (W —oau?)(t —fe“( tn—ocu(l;y))dn
1 9,
:ﬂjex( 2(1, n)—au (t,m)) dn
%T e (1 (t,m) — oPul(t,m)) dp
0

Further, we deduce from (5.3) and (5.6) that
0,
(5.8) [ ex(u(t,m) — oPuy (1,m)) dn
)(ferworde)an

0 0 .
= fe(fevuomn) ([ o)
(fenteoac)an

'7 4

Jévnede)an

[o¢]

1% 0 .
T e ) de [ el &) de

0

1\

= o(u*(1,0) — 2?ul(2,0)).
Similarly, one can prove that
(5.9) | e‘g( (t,n) — od’u ( n)) dn = a(u?(2,0) — o*ui(1,0)).
0
Combining (5.7)—(5.9), in view of the oddness of u(¢, x), we obtain
(5.10) px (u? — ou?)(1,0) = u?(1,0) — a?u?(2,0) = —au?(2,0).

By (5.2) and (5.10), we have

1-b6 , 1 b , (3-ba? ,
(5.11) un(t,0) = 3 u:(t,0) — 2p*(2 +f”x (2,0)

1=b , o b-

(2~ 42)(2,0) — 550 * ()(1,0)

—ui(l, 0).

The assumptions of the theorem and (5.4) imply now
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1 9, 1 %
u(0,0) = —272_{0&)/0(17) d’H_ZTcZJ e xyo(n)dn < 0.

It then follows from (5.11) that

u(,0) < u,(0,0) <0, Vrel0,T).
Thus, solving the differential inequality (5.11), we get

1 1

— t<0, Veel0,T).
0.0) w0 =0 Vel D)
Note that — ! > 0. Thus we have
uy(1,0)
o
uy(0,0)

This completes the proof of the theorem. []

Theorem 5.2. Let uy e H'(R), r > 3/2 be given and assume that ¢ =T =0 and

1 <b =<3 If u(0,x) £ 0 is odd and u.(0,0) <0, then the corresponding solution to Eg.

(2.2) blows up in finite time. Moreover, if u,(0,0) < 0, then the maximal existence time of
2

the corresponding solution is strictly less than (b= Du(0,0)

Proof. As before, we only consider the case r = 3. Let T > 0 be the maximal time of
existence of the solution u to Eq. (2.2) with the initial data uy € H>(R). Since uy(x) is odd, it
follows that u(z, x) is odd as well. By y = u — u,,, we know that y(¢, x) is odd. Following
the same arguments as in the proof of Theorem 5.1, we see that Eq. (5.2) is also valid in the
present situation. Since 1 < b < 3, it follows from (5.2) that

b—1

(512) utx(t, O) = - u%(l‘?O)

and
<0 2
(5.13) ux(t,0) = =5 5p* (7)(1,0).
By the uniqueness of u(¢, x) and the assumption u(0, x) % 0, we have

(5.14) —2%;; * (u?)(1,0) <0, Vtel0,T).

If u,(0,0) < 0, then the continuity of u.(z,0) together with (5.13) and (5.14) ensure that
there exists #; € [0, T') such that u,(#;,0) < 0. Thus, following the same arguments at the
end of Theorem 5.1, we get the desired conclusions. []
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Remark 5.1. Theorems 5.1-5.2 show that there exist smooth solutions to the b-
equation for any b > 1 that blow up in finite time, while Theorem 4.3 shows that in the
case 0 < b <1 every smooth solution to the b-equation exists globally in time. This gives
a clear picture for global smooth solutions and blowing-up smooth solutions of the b-
equation for all b = 0.

Remark 5.2. By Theorems 4.1-4.2 and Theorems 5.1-5.2, we see that the lifespan
of strong solutions of the b-equation for b > 1 is not affected by the smoothness of the
initial data, but by the shape of the initial data.

Remark 5.3. Up to now, we were not able to present a clear picture for global
smooth solutions and blowing-up smooth solutions of the b-equation for negative values
of b. This will be the topic of further research.

6. Global weak solutions

In this section, we first recall a result on partial integration in Bochner spaces, see e.g.
[39] and useful approximation lemmas presented in [12]. We then show that there exists a
unique global weak solution to Eq. (1.1) provided the initial data u, satisfies certain sign
conditions.

Let us introduce some notations. The duality bracket between H'(R) and H~'(R) is
always denoted by <-,->. We write M(R) for the space of Radon measures on R with
bounded total variation. The cone of positive measures is denoted by M+ (R). Let BV (R)
stand for the space of functions with bounded variation and write V(f') for the total varia-
tion of /'€ BV (R). Finally, let {p,},~, denote the mollifiers

-1
palx) = (Iﬂ(é) dé) np(nx), xeRnz1,
R
where p € C*(R) is defined by

1
e, for |x| < 1,
p(x) =
() {0, for |x| = 1.

Note that Eq. (1.2) has peakon solutions with corners at their peaks, cf. [18], [27],
[28]. Obviously, such solutions are not strong solutions to Eq. (2.2). In order to provide a
mathematical framework for the study of peakon solutions, we shall give the notion of
weak solutions to Eq. (2.2).

Let us return to Eq. (2.2). If we set

2T b 3-b r
F(u):z(%—pu>+p*<§u2—|— 5 ui—i—(co—f—p)u),

then Eq. (2.2) can be rewritten as the conservation law

u+Fu), =0, u0,x)=uy, t>0,xeR.
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In order to introduce the notion of weak solutions to the b-equation, let s € C;° ([0, 7) x R)
denote the set of all the restrictions to [0, ') x R of smooth functions on R? with compact

support contained in (—7',7) x R.

Definition 6.1. Let uy € H'(R). If u belongs to L

= ([0, T); H'(R)) and satisfies the
identity

ff(ulﬁHrF )dxdt+juo Y(0,x)dx =0
0R

for all Y € C ([0, T) x R), then u is called a weak solution to Eq. (2.2). If u is a weak
solution on [0, T') for every 7 > 0, then it is called global weak solution to Eq. (2.2) (or

Eq. (1.2)).
The following proposition is standard.
Proposition 6.1. (i) Every strong solution is a weak solution.

(ii) If u is a weak solution and ue C([0,T); H'(R)) n C'([0,T); H'(R)), r > 3/2,
then it is a strong solution.

Let us now prepare the construction of global weak solutions.

Lemma 6.1 ([39]). Let T > 0. If
f.9eL*((0,T); H(R)) and %% e L*((0,T); H'(R)),

then f, g are a.e. equal to a function continuous from [0, T| into L*(R) and

(1), 9(0)> = <f(s),9(s)> = J"<df(r) >d +j< (),f(r)>dr

Sforall s,te|0,T).

Lemma 6.2 ([12]). Let f : R — R be uniformly continuous and bounded. If € M (R),

then
1 2tll 1wy = Noull oy el paey = Ml pa ey
and
[P (F10) = (pa ) (py # 10] = 0, asn— oo in L'(R).
Lemma 6.3 ([12]). Let f : R — R be uniformly continuous and bounded. If g € L* (R),
then

[+ (19) = (pu* )Py % 9)] = 0, asn— oo in L*(R).
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Lemma 6.4 ([12]). Assume that u(t,-) is uniformly bounded in W(R) for all t € R,.
Then for a.e. t € Ry

d
E f|pn * Ll| dx = Jl(pn * ul) Sgn(pn * u) dx
R R

and

d
L1y sl dx = J(p, ) sen(p, * ) .
R R

For the proof of Lemma 6.4 we refer to the arguments in [12], pages 55-56.

Let us first present an existence result for global weak solutions.

Theorem 6.1. Let uy € H'(R) be given and assume further that cy + % =0 and

(up — oc2u07xx) e M*(R).
Then Eq. (2.2) has a weak solution
ue Wh*(Ry x R) n L% (R HY(R))
with initial data u(0) = uy and
(u(t,) = oPun(t,-)) € M*(R)

is uniformly bounded for all t € R,. Moreover, I(u) is a conservation law.

Proof. Let upe H'(R) and assume that yg:= uy — o®up rx € M*(R). Note that
up = p * yo. Thus, given f € L*(R), we have

(6.1) HuOHLl(R) =|lp= yOHLl(R) = sup [f(x f = &) dyo(E) dx

Iz <1 R

= sup [(pxf)(E)dp(&)

1N R

< sup |l Sl myllyollawy

/1o <1

IA

sup ||P||L1(R>||f||Lm(R)||J’0||M(R) = ”yOHM(R)

I/ Lon () <1

We first prove that there exists a solution u with initial data uy, which belongs to

Wi (Ry x R) n LE (Ry; H'(R)), satisfying Eq. (2.1) in the sense of distributions.

Let us define uj := p, *x uy € H*(R) for n = 1. Obviously, we have



Escher and Yin, b-equation 71
(6.2) ul —uy in H'(R) forn — oo
and

luglly = oy * uolly = lluolly,  Vr =1,

(6.3)

”u(’)lHLI(R) = [lp, *uOHLl(R) = H”OHLI(R)a Vn 2 1,

in view of Young’s inequality. Note that for alln > 1,

y(})l = u(;l - OCzu(gl,xx =Pn* (_yO) = 0.

Referring to the proof of (6.1), we have
(6.4) HJ’SHLI(R) = [|p, * yO”L‘(R) = HyOHM(R)ﬂ Vnz 1.

F .
By Theorem 2.1 and Theorem 4.1, in view of the assumption cy + =0, we obtain that
there exists a unique strong solutlon to Eq. (2.2),

u" = u"(.,uf) e C([0,00); H'(R)) n C'([0,0); H(R)), Vr=3.

Using Theorem 4.1 (i)—(ii), Young’s inequality and (6.3), we obtain

(100~ 35 )t

r
nt__
() -

(6.5) ‘

L2(R)

[ (Dl L2(w)

L*(R)

r n
—5| " (1l

lIA

n 2
" ()l +

=2 r =0
max{o, o e = o [} + |5 max (oo e o],

lIA

forall t =2 0 and n = 1. By Young’s inequality and Theorem 4.1 (i)—(ii), we get

e (3o + P o)

bl 13—ble2), ,
= Il max{ 5 B Ao

b| |3 — b|a
< sl man{ 2L B g, 2yl g

(6.6) ‘

LA(R)

forall 1 = 0 and n = 1. Based on (6.5) and (6.6) and Eq. (2.2), we find
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4 )

(6.7) ’ =

L2(R)

b| |3 — b|o? b2
< (Ilpxlle(R) max{%’%} + 1) max{a2, o 2}e = 1"l |y |2

1y |
+ max{o, o fe = M@ |yl

o2

forall # = 0 and n = 1. In view of (6.6) and (6.7), we get

(6.8)

Sy

"i([u"(l, )P 4 [ (8, %)) + [l (¢, %)) dxdt < M,

where M is a positive constant depending only on b, «, T, [|p«ll;2r), and [luoll;. It
then follows from (6.8) that the sequence {u"},.; is uniformly bounded in the space
H'((0,T) x R). Thus, we can extract a subsequence such that

(6.9) u™ —u weaklyin H'((0,T) x R) for nx — oo
and

(6.10) u™ —u ae.on(0,7) xR formn — oo,

for some ue H'((0,T) x R). By Theorem 4.1 (i)—(ii) and (6.3), we have that for fixed
t€ (0, T), the sequence u’%(z,-) € BV (R) satisfies

Vg (, )] = [kl gy
< o2 () gy + &1 (6 )y = 20721 voll ey
and

1

1 _
(6-11) [l (M my = e oy = - Mool oy < @l yollagcey

Applying Helly’s theorem, cf. [42], we conclude that there exists a subsequence, denoted
again {u’%(z,-)}, which converges at every point to some function v(z, -) of finite variation
with

V(o(t,-)) = 2072 yollyy ).

Since for almost all # € (0, T), ulk(t,-) — uy(t,-) in D'(R) in view of (6.10), it follows
that v(¢,-) = u,(z,-) for a.e. t € (0, T'). Therefore, we have

(6.12) uk(t,-) — ux(t,-) ae.on(0,7)xR form — oo,

and for a.e. 1€ (0,7),
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(6.13) Vua(t, )] = el larmy = 2072l v0llpr -
By Theorem 4.1 (i)—(ii), we have

— b2
ror + S

L(R)

|b| n n |3 —b|0(2 n n

= 5w Ol ol (Ol - gy + 75— e (Ol ol (D -y
|b| n |3 B b|0€2 n n

= (B0 + B O ) 0

b b=
= %max{a%a—z}e ol |7

|3 — blo
2

=
27 1H0ll LR

+ 22 ol gy max{, o e

ol

From the above inequality, we see that for fixed 7 € (0, T') the sequence

b2
{Gwor+ 5 wor

nx1

is uniformly bounded in L?(R). Therefore, it has a subsequence

A
Fumor+ P wewp)

which converges weakly in L?(R). By (6.10) and (6.12), we deduce that the weak L*(R)-
limit is

b2
e P+ S e

oS

Since p, € L?*(R), it follows that

h)?
o (3l F + O o)
— Oxp * (guz —i—%l@) as ng — 0.

Thus, in view of (6.10), (6.12) and the above inequality, we obtain that u satisfies Eq. (2.2)
with <c0 +§> =0in D'((0,T) x R).

Since u}*(t,-) is uniformly bounded in L*(R) and |ju"(t,-)|, has a uniform bound
forall 7 € [0, T) and all n = 1, we have that the family 7 — u"(z,-) € H'(R) is weakly equi-
continuous on [0, 7]. An application of the Arzela-Ascoli theorem yields that {"*} has a
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subsequence, denoted again {u"}, which converges weakly in H'(R), uniformly in
t € [0, T). The limit function is u. Since 7 is arbitrary, it follows that u is locally and weakly
continuous from Ry into H'(R) i.e. u € Cy10c(Ry; H'(R)).

Note that for a.e. t € Ry, u™(t,-) — u(t,-) weakly in H'(R). By Theorem 4.1 (i)—(ii),
we have

(6.14) leeCt, Moy = Nfults )y = Nimninf [lu™ (&, )l
< max{o, o e = Ml fug)
for a.e. t € R;. The above inequality implies that
ue L (Ry x R) N LS (Ry; HY(R)).

Combining (6.11) with (6.12), we get

(6.15) uy € L7 (Ry x R).

Next, we prove that /(u) is a conservation law, that

(u(t, ") — o*ucc(t, ")) € MH(R)

is uniformly bounded on R, and that u(z, x) e W * (R, x R).

Since u solves Eq. (2.2) in distributional sense, we have

(3—-b)o® ,

b
P * Uy + py % (Uty) + p, * Oxp * <2u2 +2”x> =0,

for a.e. r € R,. Integrating the above equation with respect to x on R, we obtain

_ 2
ifpn*de‘FIPn*(“ux)dX—f-fpn*axp*<éu2 _i_M
R R

2 _
al 5 > ux> dx =0.

Integration by parts yields

%jpn*udx:o, teR,,n=1.
R

Applying now Lemma 6.1, we get

Jpuxu(t,-)dx = | p,*uo(-) dx.
R R

Note that

Tim [, % u(t,) = (e, )| ygay = 1 [, 5 g — ol 1 gy = 0.
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It follows that for a.e. 1€ R.,

Ju(t,-)dx = lim [p,*u(t,")dx = lim [p,*uydx = [ugdx
R VlHOCR nHwR R

showing that I (u(f)) = [ udxis a conservation law.
R

Note that L'(R) = (L*(R))" = (Co(R))" = M(R). By (6.13) and the conservation
law I(u), we get that

a2, ) = oPutan(, ) pgy = Nult My + o2 e (8, M agy
= ”uOHLl([R) + 2HyOHM(R) = 3HyOHM(R)
for a.e. r € R. The above inequality shows that
(u(t,) — Pun(t,)) € M(R)
is uniformly bounded on R.. For fixed 7" > 0, in view of (6.10) and (6.12), we have
W (1,2) — o2 (1, )] — u(t, ) — (1, )] in D'(R) forn — o,

for a.e. t€[0,T). Since u™(t,x) — o*u”(t,x) =0 for all (£,x) e R, x R, we obtain that
(u(t,-) — 0?uy(t,)) € MH(R) for ae. 1€ Ry.

Note that u(t,x) = p * (u(t,x) — «®ux(t,x)). Thus we get
lu(t, x)| = |p>o< (u(t X)—o uw(z x))|
< 1Pl oy llu(ts ) = et M aa ey HyoHM

This shows that u(z,x) e WH* (R, x R) in view of (6.15), and completes the proof of the
theorem. []

We now present a uniqueness result for global weak solutions.
1 ; r
Theorem 6.2.  Let ug € H' (R) be given. Assume that ¢y +— = 0 and let
o

u,ve WH*(Ry x R) n LY (Ry; H' (R))
be two global weak solutions of (2.2) with initial data uy. Assume further that
(u(t,-) — d?ur(t,-)) € MT(R) and (v(t,-) — «*vx(t,)) € MT(R) are uniformly bounded
on Ry. Then u = v for a.e. (t,x) € Ry x R.

Proof. Set

N = sup{[lu(t,) = P uxx(t, )| pymy + 1001, ) = P00t ) ary }-

teRy
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By the assumption of the theorem, we have that N < co. Thus, for all (z,x) € Ry x R, we
obtain

(6.16) lu(t,x)| = |p * (u(t, Y — ou(t, ))|
<l s ) = el Mg < 5,
and
(6.17) lu(t,x)| = |px * (u(l, Y — ou(t, ))|
< pulle (e, ) — et Vg < 57
Similarly, we can obtain
(6.18) o) S 5 o) S 5y, (Gx) e Ry xR
In view of (6.1), we have
JuCt, Y sy = 1% ) = et Moy < 12l N = N,
(619) el sy = 1o [t ) — st My < DN =

lo(t, Moiwy =N, and  [jox(t,-)[| 11 g) =

N
= O( )
for all = 0. Let us now set

w(t,-) =u(t,") —v(t,-), (t,x)eRy xR,

and fix T > 0. Convoluting Eq. (2.2) for « and v with p, and using Lemma 6.4, we obtain
that

Gl e wlds = [(p, + w)sen(p, =) dx
— [l * (we)) sgnp, + ) dx — [lp, = (ow)] sen(p, ) dx

R R

- £2 [(p, * wy) sgn(p, * w) dx
u{( % py* W(u +v)]) sgn(p, * w) dx

— T uhq[( * Px * [ch(ux + U‘C)]) Sgn(pn * W) dx,
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fora.e. 1€ [0, 7] and all n = 1. Using (6.14), (6.16)—(6.19), Young’s inequality and Lemmas
6.2-6.3 and following the procedure described in [12], page 56—57, we deduce that

d
(6.20) = Jlp, = wldx = C[|p, *w|dx+ C[|p, * wy| dx 4+ R,(1),
R R R

for a.e. 1€ [0, 7] and all n = 1, where C is a generic constant depending on I, b, o, and N
and where R,(?) satisfies

h— o0

{ lim R,(7) =0,
(6.21)
[Ri(0)] = K(T), nz1,1€]0,T].

Here K(T) is a positive constant depending on I', «, b, T, N and the H'(R)-norms of u(0)
and v(0).

Similarly, convoluting Eq. (2.2) for u and v with p,, , and using Lemma 6.4, we obtain
that

d
7 [l = wyldx = [(p, * wy) sgn(p, , * w) dx
R R

= - uj\; [P (wx(ue + )] sgnlp,, , = w) dx — [h[ [Py * (Wora)] sgn(py,  * w) dx

r
= [l (we)] sgn(py i+ w) dox = 5 [(py # W) sgn(py, % w) dx
R R

a2
= Jrarpe (502 =03+ CE 02 <)) senip o)
R

for a.e. 1€ [0,7T] and all n = 1. Using (6.14), (6.16)—(6.19), Young’s inequality, Lemmas
6.2-6.3 and the identity a’p,, * f = f — p * f and following the arguments given in [12],
page 57-59, we deduce that

d
(6.22) — [|pp x wyldx = C[|p, * w|dx + C[|p, * wi|dx + R,(1),
dig R R

fora.e. 1€ [0,T] and all n = 1, where C is a generic constant and R, () satisfies (6.21).

Summing (6.20) and (6.22) and then using Gronwall’s inequality, we infer that

t

JUpu 5wl + 1py % wi) (£, x) dx < [ IR, (s) ds
R 0

+ 2 J (1o = w] + |y % wy])(0, x) dx,
R

for all €0, 7] and n = 1. Note that w = u — v e WI!(R). In view of (6.21), an applica-
tion of Lebesgue’s dominated convergence theorem yields
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[F{[OW' + [wi]) (2, x) dx < ¢! [h[(\w| + [wy])(0, x) dx,

for all 7€ [0,T]. Since w(0) =w,(0) =0, it follows from the above inequality that
u(t,x) = v(t,x) for all (z,x) € [0, T] x R. This completes the proof of the theorem. []

Applying Theorem 4.2 and following the proof of Theorems 6.1-6.2, we get the fol-
lowing theorem.

r
Theorem 6.3. Let ug € H'(R) be given. Assume that ¢y +— = 0 and
o
(oczuo’xx —up) € M (R).
. r : .
Then Eq. (2.2) with ¢ + — = 0 has a unique weak solution
o
ue Wh*(Ry x R) n L% (R HY(R))
with initial data u(0) = uy and
(oczuxx(l, D —u(t,-)) e M(R)
is uniformly bounded for all t € R,. Moreover, I(u) is a conservation law.
Remark 6.1. Theorems 6.1-6.3 correspond to the recent results for global weak
solutions of the Camassa-Holm equation in [12] and cover the recent results for global

weak solutions of the Degasperis-Procesi equation in [51].

Example 6.1 (Peak‘cx)‘n solutions). Consider Eq. (2.2) with ¢y ="' = 0. Given the
initial datum uy(x) = ce™ =, ¢ € R, a straightforward computation shows that

uy — azuoﬂxx =2coo(x) e M (R) ifc=0
and
2 up e — tlg = —2c0d(x) € M (R) if ¢ < 0.
One can also check that

|x—ct]

u(t,x) = ce =

satisfies Eq. (2.2) in distributional sense. Theorems 6.1-6.3 show that u(¢, x) is the unique
global weak solution with the initial date uy(x). This weak solution is a peaked solitary
wave.
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