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We consider a simulated population of isolated Galactic neutron stars. The rotational frequency of each

neutron star evolves through a combination of electromagnetic and gravitational-wave emission. The

magnetic field strength dictates the dipolar emission, and the ellipticity (a measure of a neutron star’s

deformation) dictates the gravitational-wave emission. Through both analytic and numerical means, we

assess the detectability of the Galactic neutron star population and bound the magnetic field strength and

ellipticity parameter space of Galactic neutron stars with or without a direct gravitational-wave detection.

While our simulated population is primitive, this work establishes a framework by which future efforts can

be conducted.
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I. BACKGROUND AND MOTIVATION

Isolated neutron stars with nonaxisymmetric deforma-
tions will continuously emit gravitational waves as they
rotate [1]. Neutron stars also have strong dipolar magnetic
fields that accelerate particles to relativistic energies [2].
Since these neutron stars can lose energy through the
emission of electromagnetic and gravitational radiation,
their rotational frequency slowly decreases over time.
The gravitational-wave strain amplitude of rotating neu-
tron stars has a strong dependence on the star’s rotational
frequency. Though no gravitational wave detection has yet
been reported, rapidly rotating isolated Galactic neutron
stars are one of the most promising sources of continuous
gravitational waves for ground based gravitational-wave
detectors.

Attempts to assess the detectability of gravitational
waves from the Galactic neutron star population began
with rough analytic estimates. An argument presented in
Ref. [3] by Thorne but credited to Blandford models the
Galactic neutron star population as a uniformly populated
two-dimensional disk of gravitars (neutron stars with grav-
itationally dominated frequency evolutions) all born at very
high frequencies. Using this simplistic model, he estimated
a rough upper bound on the possible gravitational-wave
strain amplitude from aGalactic neutron star, hmax � 10�25

[3]. Blandford also surprisingly observed that the maxi-
mum gravitational-wave amplitude is independent of the
size of the star’s deformation and rotational frequency. His
argument was revised in Ref. [4] and again in Ref. [5],
which both found hmax � 10�24.

This work was followed by more comprehensive
attempts to assess the detectability of the Galactic neutron
star population through population synthesis. If the neutron
star population can be accurately simulated, then the
detectability of Galactic neutron stars can be determined.

In Ref. [6] Palomba was the first to assess the detectability
of a simulated gravitar population by first and second
generation gravitational-wave detectors. He incorporated
realistic spatial, age, birth frequency, and kick velocity
distributions, as well as a possible ellipticity distribution
(though this is still largely unconstrained [6]). He esti-
mated the fraction of the neutron star population that would
likely have to be gravitars in order for first or second
generation detectors to make a direct gravitational-wave
detection. Continued efforts by Knispel and Allen
extended Blandford’s argument to a simulated gravitar
population similar to Palomba’s [5]. They found that the
maximum gravitational-wave strain amplitude does have a
strong dependence on the star’s frequency and size of
deformation when considering a more realistic neutron
star population. They set upper bounds, which depend on
the population’s ellipticity (a measure of a star’s deforma-
tion) and rotational frequency, and on the gravitational-
wave strain amplitude of the nearest source.
In this paper, we include electromagnetic emission as

well as gravitational-wave emission in the frequency evo-
lution of neutron stars and investigate its effect on the
population’s detectability. We use the simulated neutron
star population in Ref. [5] and assign every neutron star a
dipolar magnetic field as well as an ellipticity. We then
allow each star’s frequency to evolve through the emission
of both gravitational and electromagnetic radiation. The
paper is organized as follows. In Sec. II we review the spin
and strain evolution of neutron stars and revisit the upper
bounds from the gravitar case. In Sec. III we outline a
Monte Carlo simulation used to assess the detectability of
the Galactic neutron star population. The results are then
used to bound the magnetic field strength and ellipticity
parameter space of isolated neutron stars with or without a
direct gravitational-wave detection. In Sec. IV we present a
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rough analytic argument to which we compare our numeri-
cal results. In Sec. V we summarize our main results.

II. SPIN AND STRAIN EVOLUTION
OF NEUTRON STARS

We use the simulated neutron star population from
Ref. [5] to assess the detectability of gravitational waves
emitted by isolated Galactic neutron stars. It is important to
note that, while the simulated population does not explicitly
include recycled millisecond pulsars, it does not neces-
sarily exclude them either. Each star in our population is
assigned a birth frequency, initial position, kick velocity,
and age. Stars are then independently evolved through the
Galaxy’s gravitational potential (see Ref. [5] for a more
detailed description of the population). Therefore an old
star that has been recently recycled can just be thought of as
a young star born with a high frequency. We also consider a
large enough range in magnetic field strength to accommo-
date recycled pulsars. In this section, we review methods
to find the spin frequency and gravitational-wave strain
amplitude of each star in our simulated population in order
to assess its detectability.

If neutron stars only lose energy through gravitational
and electromagnetic emission, their rotational frequency
evolution is given by

_� ¼ � 512�4

5

GI

c5
�2�5 � 8�2

3

R6

c3I
B2sin2��3; (1)

in cgs units [5,7,8]. Here, G is the gravitational constant, c
is the speed of light, � is the star’s rotational frequency,
R is the star’s radius, I ¼ kMR2 is the moment of inertia
about its rotational axis with M being the star’s mass and
k � 2=5 [2], � ¼ ðI1 � I2Þ=I is the ellipticity with I1 and I2
being the moments of inertia about the star’s other two
principle axes, B is the dipolar magnetic field strength at
the magnetic equator, and � is the angle between its
magnetic pole and its axis of rotation.1 We choose the
canonical values of R ¼ 10 km and M ¼ 1:4M� for all
neutron stars [2]. Because we only concern ourselves with
order of magnitude estimates, we set sin2� ¼ 1.

Equation (1) can be solved analytically for �ðt; �0Þ in the
limits where � ¼ 0 or B ¼ 0. If B ¼ 0, a neutron star will
only emit gravitationally. Its frequency is

�ðt; �0Þ ¼ ð��4
0 � 4�gwtÞ�1=4; (2)

where t is the neutron star’s age, �0 ¼ �ðt ¼ 0Þ
is the neutron star’s birth frequency, and �gw ¼
�512�4GIc�5�2=5. Equation (2) is a good approximation

for the frequency of a gravitar. The characteristic timescale
(the approximate time for a neutron star with birth
frequency �0 � � to spin down to a frequency �) for
gravitationally dominated emission is

�gw ¼ � �

4 _�
� 290 Myrs

�
10�7

�

�
2
�
100 Hz

�

�
4
: (3)

If � ¼ 0, a neutron star will only emit electromagnetically.
Its frequency is

�ðt; �0Þ ¼ ð��2
0 � 2�diptÞ�1=2; (4)

where �dip ¼ �8�2R6c�3I�1B2sin2�=3. Equation (4) is a

good approximation for the frequency of a neutron star
whose evolution is dominated by electromagnetic emission
and whose characteristic timescale is

�dip¼� �

2 _�
�1;600 yrs

�
1012 G

B

�
2
�
100Hz

�

�
2
: (5)

While � is unknown, the dramatically different timescales
between Eqs. (3) and (5) illustrate the difficultly in detect-
ing isolated neutron stars: stars with reasonable magnetic
fields spin down to low frequencies too rapidly to detect.
Therefore, gravitational-wave detectors will likely only
detect neutron stars with small magnetic fields or young
neutron stars that have not yet spun down to low
frequencies.
Not all neutron stars will have their frequency evolution

dominated by either gravitational or electromagnetic emis-
sion. For these stars, _� cannot be integrated over time to
solve for an analytic solution for �ðt; �0j�; BÞ. However, [5]
shows that Eq. (1) can instead be inverted to solve for
tð�; �0j�; BÞ. Following Ref. [5], we rewrite Eq. (1) as

_� ¼ �gw�
5 þ �dip�

3 (6)

¼ �dipð��5 þ �3Þ; (7)

where � ¼ �gw=�dip. Equation (7) can be solved for

tð�; �0Þ ¼ 1

2j�dipj
�
�2
0 � �2

�2
0�

2
þ � ln

�
�2

�2
0

�
1þ �2

0�

1þ �2�

���
: (8)

If �0, t, �gw, and �dip are known, Eq. (8) can be solved

numerically to find � using root-finding techniques [10].
The strain amplitude of gravitational waves emitted by a

neutron star at a radial distance r away from a detector is
given by

h ¼ 16�2 GI

c4
��2

r
(9)

� 4� 10�25

�
�

10�7

��
�

100 Hz

�
2
�
1 kpc

r

�
; (10)

1The second term in Eq. (1), which is the frequency evolution
due to electromagnetic emission, is derived from the simple
model of a rotating dipole. In Ref. [9] Spitkovsky corrects this
term such that a neutron star will still emit electromagnetically
even if its magnetic pole and rotational axis are aligned.

WADE et al. PHYSICAL REVIEW D 86, 124011 (2012)

124011-2



assuming that the neutron star’s sky location intersects a
line normal to the plane of the detector arms and its axis of
rotation is parallel to that line (optimal mutual orientation).
Since we only concern ourselves with order of magnitude
estimates, we assume optimal mutual orientation for all
neutron stars [5], which overestimates the detectable
amplitude by about a factor of four on average.

For a population of neutron stars whose radial distance
from Earth r, age t, birth frequency �0, ellipticity �, and
magnetic field strengthB are known, Eqs. (2) and (4), or (8)
can be used to determine each star’s spin frequency �.
Equation (2) is used when �gw�

5 � �dip�
3, which we

conservatively choose to be when � > 40 s2; Eq. (4) is
used when �gw�

5 � �dip�
3, which we conservatively

choose to be when � < 4� 10�9 s2; Eq. (8) is used other-
wise.2 Eq. (9) can further be used to determine each star’s
gravitational-wave strain amplitude h as measured in our
detector. We compare each star’s frequency and strain
amplitude to a scaled gravitational-wave detector’s noise
curve in order to assess the detectability of the neutron star
population. We explain how we derive the scaling factor
in Sec. III.

While Eq. (9) for the gravitational-wave strain amplitude
h does not depend explicitly on the magnetic field, B does
help to determine � through Eq. (1). There are two related
effects. First, Fig. 1 shows that, all other things being
equal, neutron stars with large magnetic fields will spin
down to low frequencies (high periods) much faster than
neutron stars with small magnetic fields. Consequently,
large magnetic fields will result in smaller and smaller
gravitational-wave amplitudes over time. Second, since
gravitational-wave detectors are sensitive to finite fre-
quency ranges, neutron stars with large magnetic fields
will rapidly spin through a detector’s sensitive frequencies,
which makes them less likely to be detected. Therefore,
neutron stars with small magnetic fields are more likely to
be detected than neutron stars with large magnetic fields. In
this way, assuming we know the population’s ellipticity, we
can place lower bounds on the magnetic field of neutron
stars in the absence of a gravitational-wave detection.

We can gain intuition into the detectability of Galactic
neutron stars by setting B ¼ 0. This places an upper
bound on h for fixed � values. In Fig. 2, we plotted the
maximum gravitational-wave strain amplitude hmax versus
gravitational-wave frequency f ¼ 2� of the simulated
neutron star population presented in Ref. [5] with B ¼ 0
and � ¼ 10�9, 10�8, 10�7, and 10�6. A single point
ðf; hmaxÞ corresponds to the population’s maximum

gravitational-wave amplitude hmax measured in the fre-
quency band ½f; ef� where e is Euler’s number.3

Our numerical result in Fig. 2 is consistent with the
result in Ref. [5], which was derived using a semianalytical
integration technique. Considering a distribution in fre-
quency and a three-dimensional spatial distribution results
in a clear dependence of hmax on both frequency and
ellipticity [5]. The effect of the frequency distribution
manifests itself in the overall shape of the four curves in
Fig. 2. Since stars with large ellipticities spin down much
faster than stars with small ellipticities [Eq. (3)], a neutron

FIG. 1. This figure shows the period evolution of neutron stars.
The dots represent observed pulsars from the ATNF catalog [16].
The thin, negatively sloped solid contours are lines of constant
magnetic field strength (labels on the left), and the thin, posi-
tively sloped dotted contours are lines of constant characteristic
age (labels on the right) assuming only electromagnetic emis-
sion. The thick, solid lines with square ticks track the period
evolution of a neutron star that emits both electromagnetic and
gravitational radiation. These lines, which are labelled by the
logarithm of the star’s magnetic field in units of Gauss,
correspond to a neutron star with � ¼ 10�7 (all lines) and
B ¼ 108:5–1011 with steps of 1=2 dex. The square ticks represent
logarithmic steps in age. The first tick labels t ¼ 0, and the
subsequent ticks range from t ¼ 104–109 yrs. The thick, dashed
lines, which are labelled by the logarithm of the star’s magnetic
field in units of Gauss, are characteristic aLIGO sensitivity
curves for neutron stars with � ¼ 10�7 located 100 pc away
from Earth. Neutron stars below their associated aLIGO sensi-
tivity curve are undetectable. Neutron stars with large magnetic
fields spin down to low frequencies (high periods) much faster
than stars with small magnetic fields; consequently, they spend
less of their lives emitting gravitational waves with frequencies
that aLIGO is most likely to detect.

2To determine the two � cutoffs, we assume that one term will
dominate over the other if it is at least three orders of magnitude
greater than the other. Equation (2) can be used when � � 1=�2.
Therefore, we choose � > 103=�2 ¼ 40 s2 for � ¼ 5 Hz.
Equation (4) can be used when � � 1=�2. Therefore, we choose
� < 10�3=�2 ¼ 4� 10�9 s2 for � ¼ 500 Hz.

3To find hmax, we considered 200 logarithmically spaced
overlapping frequency bands and constructed histograms for
the strain amplitude from the neutron stars in each band. We
then solved for hmax using a linear fit in log10-space to the tail
(largest h values) of each histogram. We used this method to
minimize statistical fluctuations.
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star population with large ellipticities more densely pop-
ulates low-frequency bands than a neutron star population
with small ellipticities. Therefore, while each curve in
Fig. 2 has a similar shape, the large ellipticity curves are
shifted to the left relative to the small ellipticity curves.
The subtle kink in the � ¼ 10�9 and 10�8 curves between
the nearly flat, high-frequency region and the more posi-
tively sloped, low-frequency region corresponds to a kink
in the population’s frequency distribution, which is
described in Ref. [5].4 The � ¼ 10�7 and 10�6 curves
also exhibit the same behavior but at smaller frequencies
than those plotted. If we had considered a two-dimensional
spatial distribution, hmax would have been independent
of the ellipticity in the region to the right of the kink.
Here, the frequency distribution is in a nearly steady state.
Considering a three-dimensional spatial distribution breaks
this degeneracy between hmax and the population’s ellip-
ticity. Note that the gravitational-wave strain amplitude
will decrease when magnetic fields are considered.

III. NEUTRON STAR DETECTABILITY
AND CONSTRAINTS

To assess the detectability of the Galactic neutron star
population, we use the methods outlined in Sec. II to find

the spin frequency � and gravitational-wave strain ampli-
tude h of every neutron star in our simulated population.
The population used in our analysis is described in detail in
Ref. [5]. Although [5] presents three different initial radial
distributions, we choose to present our results using just the
‘‘gamma initial radial distribution’’. We would expect
minimal deviation in our results if we were to consider
the other two distributions presented in Ref. [5]. The code
that creates our simulated population provides the final
position, which is easily turned into a distance from
Earth r, and age t of each neutron star. Since a star’s
magnetic field strength B and ellipticity � dictate its fre-
quency evolution, we must also choose what values of each
to assign to the stars in our population. We fix � and B to a
single value so that every neutron star in our population has
the same �� B combination. While this approach will not
mimic a realistic neutron star population, it is an important
first step that provides valuable intuition for considering a
more realistic population in the future. Lastly, we assign
each star a birth frequency �0 ¼ 1=P0, where P0 is ran-
domly drawn from the lognormal birth period distribution
in [5]:

�P0ðP0Þ ¼ 1ffiffiffiffiffiffiffi
2�

p
�P0

exp

�
� 1

2�2
ðlnP0 � ln �P0Þ2

�
:

Here, P0 > 0:5 ms is the birth period, �P0 ¼ 5 ms is the
mean, and � ¼ 0:69 is the standard deviation. Given r, t,
�0, �, and B, we can use the methods outlined in Sec. II to
find �ðt; �0j�; BÞ and hðr; �j�Þ for every neutron star in our
simulated population.
Once � and h are found for every neutron star, we

can determine whether or not we expect a gravitational
wave detector to detect our population. For simplicity, we
only consider detection by a single Advanced Laser
Interferometer Gravitational-wave Observatory (aLIGO)
detector. We use the aLIGO noise curve for a single
detector from Ref. [11], which is the expected sensitivity
of aLIGO as a function of gravitational-wave frequency.
To estimate the strain, we assume that we have a year
of aLIGO data, and that the data is analyzed coherently
in short 72 hr stretches, with the short stretches com-
bined incoherently. This assumes the LIGO Scientific
Collaboration will be doing similar searches to the ones
currently done by Einstein@Home [12] in the aLIGO
era. An overall trials factor of 100 is applied, which is
considered a conservative estimate. We then compare each
neutron star to the estimated noise curve to determine the
number of neutron stars in our population that aLIGO will
be able to detect. We assume that a neutron star will be
detected if its strain is above the aLIGO noise curve. To
assess the detectability of the neutron star population, we
construct the fraction

n ¼ Ndet

Nsim

; (11)

FIG. 2. We plot the maximum gravitational-wave strain
amplitudes hmax as a function of gravitational-wave frequency
f ¼ 2� of a population of gravitars (neutron stars with B ¼ 0)
with � ¼ 10�9, 10�8, 10�7, and 10�6. A single point ðf; hmaxÞ
corresponds to the population’s maximum gravitational-wave
amplitude hmax measured in the frequency band ½f; ef�. We
used the gamma initial radial distribution from Ref. [5] to
simulate the neutron star population.

4Since we consider a continuous distribution in birth fre-
quency, and a single star cannot be older than the Galaxy,
neutron stars with high birth frequencies will not have existed
long enough to have spun down past a certain frequency. Neutron
stars will accumulate near this frequency causing a kink in the
population’s frequency distribution, as seen in Ref. [5].
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where Nsim is the number of stars in the simulated popu-
lation, and Ndet is the number of stars aLIGO can detect
from this population. To reduce statistical fluctuations, we
simulate many more neutron stars than are actually
expected to be in our Galaxy. Multiplying this fraction n
by the number of neutron stars in our Galaxy Ngal gives

the number of detectable neutron stars in our Galaxy. If
n 	 Ngal is greater than or equal to one, the population will

likely be detectable; if it is less than one, the population
will likely be undetectable. In Fig. 3, we plot contours of
log10n with respect to ðlog10B; log10�Þ, illustrating the
expected detectability of the neutron star population with
various � and B combinations.

We can further use our results (Fig. 3) to place bounds
on the �� B parameter space of the Galactic neutron
star population. In Fig. 3, the contour corresponding to
n 	 Ngal ¼ 1 is the boundary above which the �� B pa-

rameter space is disallowed, assuming (pessimistically) no
aLIGO detection of continuous gravitational waves asso-
ciated with a Galactic neutron star. In this way, Fig. 3 sets
lower bounds on B for fixed � values (or upper bounds on �
for fixed B values) if aLIGO does not make an isolated
neutron star detection. For instance if Ngal � 109 [6],

and we assume neutron stars have a typical ellipticity of
�� 10�7 [6], Fig. 3 shows that the minimum magnetic
field strength of Galactic neutron stars is B * 1011 G in the

absence of an aLIGO detection. Conversely if Ngal � 109,

and we assume neutron stars have a typical magnetic field
strength of B� 1011 G, Fig. 3 shows that the population’s
maximum ellipticity is � & 10�7 in the absence of an
aLIGO detection. This argument also applies if aLIGO
does make isolated neutron star detections. If Ngal � 109,

and we assume neutron stars have �� 10�7, then the
minimum magnetic field strength of Galactic neutron stars
is B * 1010 G if aLIGO detects ten neutron stars.
Conversely if Ngal � 109, and we assume neutron stars

have B� 1010 G, then the population’s maximum elliptic-
ity is � & 10�7 if aLIGO detects ten neutron stars.

IV. ANALYTIC RESULTS

In all previous sections, we used numerical methods to
assess the detectability of Galactic neutron stars and place
constraints on the properties of the Galactic neutron star
population. In this section, we present an analytical
approach to setting bounds on the �� B parameter space
of the Galactic neutron star population. Blandford’s ana-
lytic argument considers neutron stars that emit only grav-
itationally. Our analytic argument, while still simplistic,
applies to stars dominated by electromagnetic emission.
We first use the aLIGO sensitivity curve described in

Sec. III to constrain the volume around Earth in which
detectable neutron stars must be contained. If a neutron star
is detected, it will tend to be at or near the detector’s most
sensitive frequency, which we call �det. For simplicity,
we assume that a neutron star must have � � �det to be
detected. Therefore, a neutron star will be detected by a
ground-based gravitational-wave detector if hð�detÞ> hdet,
where hdet is the value of the strain amplitude for which the
detector is most sensitive (see Fig. 4). This detectability
condition, along with Eq. (9), translates into a constraint
on the distance from Earth of detectable neutron stars.
The maximum distance rmax at which a neutron star with
� ¼ �det could be detected is:

rmax ¼ 16�2 GI

c4
��2

det

hdet
: (12)

The detectability condition also translates into a constraint
on the volume that encloses detectable neutron stars. First,
we assume that neutron stars are born uniformly throughout
the Galactic stellar disk at a constant rate N , which is
the number of births per unit time. The volume of the
Milky Way, which we approximate to be a disk, is roughly

VMW ¼ �R2
MWð2HMWÞ; (13)

whereRMW is the radius of theGalactic disk, andHMW is half
its height (Fig. 4). The volume contained in rmax will be a
sphere for rmax <HMW. However, for rmax >HMW, the
volume contained within rmax will be a sphere with its top
and bottom caps truncated by the top and bottom surfaces of
the Milky Way disk, as illustrated in Fig. 4. This shape is

FIG. 3. Contours of log10n (described in Sec. III) with respect
to ðlog10B; log10�Þ, which illustrate the expected detectability of
the neutron star population with various � and B combinations.
Our analysis was performed on populations with logarithmic
spacings of 1=8 dex in � and B. The dashed lines are the analytic
approximations for log10n described in Sec. IV. We plot three
results: log10n ¼ �7, �8, �9 respectively from left to right.
The dotted lines show the boundaries that separate where the
analytic argument’s assumptions are valid from where they are
not (Sec. IV). They only hold for detectable neutron stars that are
young (tmax & 10 Myrs), found above the horizontal dotted line,
and dominated by electromagnetic emission (�dip & �gw), found

to the right of the positively sloped dotted line.
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called a spherical segment. Therefore, the maximum
volume Vmax in which neutron stars with � ¼ �det could be
detected is:

Vmax ¼
8<
:

4
3�r

3
max rmax <HMW

2
3�HMWð3r2max �H2

MWÞ rmax >HMW

: (14)

From the constraint on the volume that encloses detect-
able neutron stars of frequency � ¼ �det, we can find the
minimum allowed magnetic field strength in the absence of
an isolated neutron star detection. Remembering our con-
stant birth rate assumption, the average time tmax between
neutron star births into the volume Vmax is

tmax ¼ N �1
max ¼ VMW

Vmax

N �1; (15)

assuming a uniform spatial distribution. In order to ensure
a neutron star detection, at least one star within the volume
Vmax must have � > �det at all times. This will be the case if
�ðtmaxÞ> �det, because a neutron star spinning down below
�det will always be accompanied by a new star being born
into the volume Vmax. Likewise, we also assume that, on
average, when a detectable neutron star escapes Vmax due
to its motion in the Galaxy, another detectable neutron star
will enter Vmax. Assuming that a neutron star’s frequency
evolution is dominated by dipolar emission, we solve for
the minimum magnetic field strength Bmin below which a
neutron star detection is not guaranteed by substituting tmax

into Eq. (4) and solving for B:

Bminð�; hdet; �detÞ ¼
8<
:Bsphere

min rmax <HMW

B
sph:seg:
min rmax >HMW

; (16)

where

B
sphere
min ¼ 32�2�2

detI
2�3=2

�0R
3h3=2det

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�G3N
c9VMW

ð�2
0 � �2

detÞ
s

;

Bsph:seg:
min ¼ cHMW

2R3�0�det

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cINHMW

2�VMW

ð�2
0 � �2

detÞ
s

�
�
768�4G2I2�2�4

det

c8h2detH
2
MW

� 1

�
1=2

:

Neutron stars with B> Bmin in Vmax will spin down to
� < �det before another star is born into Vmax. Therefore, in
the absence of an aLIGO detection, B ¼ Bmin is the mini-
mum possible magnetic field strength of Galactic neutron
stars with fixed ellipticity values, since B< Bmin ensures a
detection.
Our argument is easily extended to the case of Ns

neutron star detections. To do this, we solve for when

�ðNstmaxÞ> �det. The result adds a factor of N
�1=2
s in front

of Eq. (16).
We have made several assumptions in setting up our

analytical argument. It is important to emphasize two of
our argument’s most crucial assumptions in order to clearly
outline the physical systems for which our argument holds.
The first crucial assumption is that the spatial distribution
of neutron stars in the Milky Way is a uniform cylinder.
Neutron stars will diffuse out of the Galactic disk due to
Galactic acceleration and their kick velocities. The time-
scale for this process is found by dividing the average
kick velocity in Ref. [5] by the gravitational acceleration
(found by dividing the gravitational potential in Ref. [5] by
the length scale). Therefore, our argument holds when
tmax & 10 Myrs. The second crucial assumption is that
the frequency evolution of neutron stars is dominated by
dipolar emission. Therefore, for �0 � �, our argument
holds when �dip & �gw.

In Fig. 3, we have plotted the relationship in Eq. (16)

(with the factor of N�1=2
s in front) as dashed lines on top

of our numerical results. We use �det � 100 Hz and
hdet � 6:0� 10�26, which approximately corresponds to
aLIGO’s most sensitive strain and associated frequency,
and RMW � 15 kpc, HMW � 75 pc, and �0 � 850 Hz,
where RMW, HMW, and �0 are estimated averages of the
spatial and period distributions inRef. [5] found by reducing
the maximum values by a factor of e�1. We also use
N � 0:02 years�1 [13]. Our numerical results should
roughly follow these dashed lines, which correspond to
n ¼ 10�7,10�8, 10�9, respectively from left to right. The
analytic results only hold for detectable neutron stars that
are young (tmax & 10 Myrs), which corresponds to the

FIG. 4. The top plot is a typical sensitivity curve of a ground-
based gravitational-wave detector. We assume that isolated
neutron stars with hð�detÞ> hdet will be detected. Below are
diagrams of the Milky Way disk. The black dot is Earth’s
location within the Milky Way disk. The two volumes Vmax

outlined by dotted lines are the maximum volumes within which
detectable neutron stars can be contained. Vmax will be the
volume of a sphere if rmax <HMW (top diagram), and Vmax

will be the volume of a spherical segment if rmax >HMW

(bottom diagram). See Sec. IV.
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region above the horizontal dotted line, and dominated by
electromagnetic emission (�dip & �gw), which corresponds

to the region to the right of the positively sloped dotted line.
There is good agreement between our numerical and ana-
lytic results, except in the transition region near the dotted
boundaries where the analytic assumptions start to lose their
validity. While the rough numerical values chosen for the
parameters in our analytic argument can change the overall
normalization of the analytic curves, the shape of the curves
closely match the shape of the numerical contours.

While we only consider detection by aLIGO in our
numerical analysis, our analytical approach easily extends
to any gravitational-wave detector. Notice that in Eq. (16)
Bmin is a function of �, hdet, and �det. Therefore, we fix
�det and plot contours of log10Bmin with respect to
ðlog10�; log10hdetÞ in Fig. 5 to illustrate how our argument
extends to other detectors.

It also seemsnatural to extendour argument to the gravitar
case, in which the frequency evolution of neutron stars is
dominated by gravitational emission, by solving Eq. (2)
for Bmin under the assumption that �gw & �dip. However,

detectable gravitars can be older than 10Myrs, thus violating
our assumption that tmax & 10 Myrs. Therefore, these
methods cannot be applied to the gravitar case.

V. CONCLUSION

We have used the methods described in Sec. II to find the
gravitational-wave amplitude and spin frequency of every
neutron star in the simulated population described in
Ref. [5]. This involved allowing for both electromagnetic
and gravitational emission in a neutron star’s frequency
evolution [Eq. (1)]. We then solved for each neutron star’s
frequency using either Eqs. (2) and (4), or (8) and each
neutron star’s gravitational-wave strain amplitude using
Eq. (9). We used the simulated population to assess the
detectability of and set bounds on the �� B parameter
space of the Galactic neutron star population. Our results
are summarized in Fig. 3. Assuming that the Galactic
neutron star population consists of Ngal � 109 stars, and

assuming aLIGO does not make a neutron star detection,
the contour log10n ¼ �9 in Fig. 3 separates the allowed
�� B parameter space (below the contour) from the
disallowed �� B parameter space (above the contour).
In other words, assuming we know the magnetic field
strength of the neutron star population, we can place upper
bounds on the population’s ellipticity; or, assuming we
know the ellipticity of the neutron star population, we
can place lower bounds on the population’s magnetic field
strength.
In this paper, we have only considered the simple (and

unrealistic) case in which all neutron stars have the same
magnetic field strength and ellipticity. However, we have
demonstrated that both a gravitational-wave detection or
the lack of a gravitational-wave detection can be used to
constrain some of the properties of the Galactic neutron
star population. To make confident quantitative statements
regarding the properties of the Galactic neutron star popu-
lation, we must construct a more realistic population.
Moving forward, we plan to incorporate magnetic field
and ellipticity distributions and evolutions into our analysis
to more closely mimic the Galactic neutron star popula-
tion [6,14,15].

ACKNOWLEDGMENTS

L.W. would like to thank Patrick Brady, Jolien
Creigthon, and Madeline Wade for helpful discussions
and Adam Mercer, Chris Pankow, and Greg Skelton for
diligent technical assistance. X. S. would like to thank
Curt Cutler for useful discussions. We would also like to
thank the anonymous referee who provided several
helpful comments and suggestions. This work was partially
funded by the NSF through CAREER Grants No. 0955929
and No. 0970074, and the Wisconsin Space Grant
Consortium.

FIG. 5. An extension of our analytic argument to any
gravitational-wave detector. Equation (16) is plotted as solid
contours of log10B with respect to ðlog10hdet; log10�Þ, where B
is in units of Gauss. The dashed and dotted lines show the
boundaries that separate where our analytic argument’s assump-
tions are valid from where they are not. Our argument does not
hold in the gray, shaded regions: our argument does hold for
neutron stars that are young (tmax & 10 Myrs), found below the
dotted line (tmax ¼ 10 Myrs), and dominated by electromagnetic
emission (�dip & �gw), found below the dashed line (�dip ¼ �gw).
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