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Abstract

In this paper we present a dual-horizon peridynamics (DH-PD) for ductile fracture. The dual-horizon non-ordinary state-based
PD is derived based on variational calculus and accounts for large deformation. The GTN model is employed to model the bulk
behavior while DH-PD can naturally capture the transition from continuum to discontinuum. The penalty method is employed to
suppress the zero-energy mode. Three numerical examples in three-dimensional are tested to demonstrate the capability of the
method.
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1. Introduction

Peridynamics (PD) has recently attracted wide attention from researchers in computational solid mechanics due
to its capability to model complicated fractures. In PD, the crack is implicitly represented by the solution and not
part of the problem. Hence, complex fracture patterns including crack branching and coalescence of multiple cracks
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are captured simply through the breakage of the bonds between material points. This avoids many techniques such
as smoothing the normals of the crack surfaces in the extended finite element method (XFEM) [1], meshless
methods [2] or other partition of unity methods (PUM) [3]. Also the PD is applicable for all dimensions with the
unified formulation, which is not always the case in other methods [4,5]. The traditional PD method was proposed
by Silling [6] in 2000 and has been exploited onwards for extensive applications of mechanical problems including
impact loading, fragmentation [7,8], composites delamination[9], beam and plate structures [10,11], to name a few.
An interesting alternative method is the cracking particles method [12,13,14,15] which also can handle arbitrary
crack propagation without any description of the crack surface.

PD can be categorized into two types, namely, bond based peridynamics (BB-PD) where the bonds behave like
independent springs, state-based peridynamics (SB-PD) where "state" means the bond deformation depends on
collective deformation of other bonds. The BB-PD can only model the material with a Poisson's ratio of 1/3 in 2D
or 1/4 in 3D. The state based peridynamics (SB-PD) [6,16] is an extension of BB-PD. It not only removes the
Poisson's ratio restriction but also allows for complex material models. In peridynamics, the material point interacts
with other material point in sorizon, where the distances between the material points are within a threshold value. In
order to remove the restriction of horizon size, the authors proposed the dual-horizon peridynamics [17,18], where
any material point in the computational domain can has its horizon size, which improves the computational
efficiency with minimal modification of the traditional horizon-constant PD.

Peridynamics can generally model ductile as well as brittle fracture though the majority of the publications focus
on brittle fracture. The BB-PD and OSB-PD is often used to model the brittle fractures in linear solids. Ductile
fracture is characterized by large deformations and nonlinear material behaviour including plastic deformations and
necking. For this purpose, the NOSB-DH-PD with the famous Gurson-Tvergaard-Needleman (GTN)s model [19] is
proposed in this paper.

The content of the paper is outlined as follows. In Section 2 we derive the dual-horizon PD formulation using the
variational method. In Section 3, the implementation is addressed before the GTN model is described in Section 4.
In Section 5, three numerical examples are presented to validate the proposed method.

2. Variational derivation of dual-horizon peridynamics

OL' s
(@) .

Fig.1 (a) The configuration for deformed body. (b) Schematic diagram for horizon and dual-horizon, all circles above are horizons.
H,, = 1%, %5, X, X} Ho= {30, %0, %5, %, )

Consider a solid in the initial and current configuration as shown in Fig. 1(a). Let X be material coordinates in
the initial configuration €, ; and y:=y(X,?) and y' :=y(x',f) are the spatial coordinates in the current
configuration €2, , respectively; & = x'—X is initial bond vector, the relative distance vector between X and X' ;
u:=u(x,?) and u' :=u(x',¢) are the displacement vectors for X and X' respectively; M:=u'—u is the
relative displacement vector for bond§ ; Y(&) := y(x',#) — y(X,?) = & + 1| is the current bond vector for bond & .



226 Huilong Ren et al. / Procedia Engineering 197 (2017) 224 — 232

Horizon H, is the domain where any material point x' forms bond Xx’ which will exerts direct force f_ on
X and reaction force —f_, on X' . The horizon can be viewed as direct force horizon. The horizon 'Hx is usually

presented by a spherical domain with radius of /_.

Dual-horizon is defined as a union of the points whose horizons include X , denoted by
_ !
H ={x'|xeH,} (1)
The point X' forms dual-bond XX in HX, . On the other hand, XX is the bond formed in ‘H_. . Dual-bond x'x

will exert reaction force —f . on point X. In this sense, the dual-horizon can be viewed as reaction force horizons.

One example to illustrate the horizon and dual-horizon is shown in Fig.1(b).
The deformation gradient F for X is defined as

F(Y)=[ w@Y@® O, (| wEsesdr,) @
The potential energy for point X is W (Y)
The variation of strain energy in H

SW(Y)=[ 00 Y@dV, = [, 6,1 (©)-(6u'~Swyd, ®

t
The external work in time interval [7,,2,] is W' = I ’ .[r f, -udldt
h 0

The Lagrangian for the system includes the kinetic energy, potential energy (strain energy, the body force energy
and external work), and is expressed as

L(u,u) = jgo (% pu-u—(Y)+b, -u)dv, +Ir<, f,-udl’, @)

p .
The integral of the Lagrangian L between two instants of time #, and 7, isS = J- ’ L(u,u)dt . Applying the
4

principle of least action, we have

oS = J':z J-Q (puéu— 5W(X)+b0 .5u)dedt+J':z J‘r fo .5ud1"0dt
L Crite ] o ov-somnodaa o

= :2 J’Q ((_p u+ ch oWE)dV,, — J‘H, O W (=E)dV,, + bo) . 5u)dedt

The derivation considers the boundary condition du(?,) = 0,0u(#,) = 0,0u(I';) = 0 . In the second and third

step, the dual-horizon is considered. For any Ou , the first order variation 05 =0 leads to

puy = IHX O W &)V, — ch 0 W'(=E)dV, +b, (©)
The first Piola-Kirchhoff stress P related to the deformation gradient is given by
P =0, W (F) (7)

Using Eq. (2) and Eq. (7), we have
O W (&) =, -0, F(E&) =P-wEK " -E=wE)PK'§ ®)

Therefore,
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O (&) = wEPK, 5.0, (&) = w(-5)PK, - (-5). ©)
where
K, =] w@rewr, (10)
This lead to the final equation of motion of the dual-horizon non-ordinary state-based peridynamics formulation:
. = 71 . —_ 71 .
Uy = ij w(@)P K. -EdV, + jw w(-&)P K, -EdV, +D, (11)

3. Implementation

When the deformation gradient in non-ordinary state-based PD is obtained by Eq.(2), the Cauchy stress tensor
can be obtained through the standard Piola transformations. Following Ref.[20], we decompose the deformation

gradient F into

F(x)=V(x)-R(x) (12)
Where V(X) is the stretch tensor, R(X) is a proper orthogonal rotation tensor. The velocity gradient is
L=FF" (13)

The Cauchy stress tensor is then obtained by the following steps:
1 1
Step 1. Calculate D and W based on D = E(L +L") and W = E(L -L") .

Step 2. Compute

z,=—¢,D, V.., o=w+[Itr(V)-V]'z, Q, =—¢,0,. (14)
Step 3. Update the rigid rotation tensor R, , ,
1 _ 1
R, =(I—5At9) ' +§AtQ)Rt. (15)
Step 4. Calculate the rate of stretch tensor and update the V,, ,, ,
V=LV-VQ, V. _ =V +AtVy. (16)
Step 5. Compute the strain rate in unrotated configuration,
d=R'DR. (17)
Step 6. Integrate the stress based on GTN damage model,
o =1(d,o). (18)
Step 7. Compute the Cauchy stress T and the first Piola-Kirchhoff stress P
T=RoR’, P=det(F)TF". (19)

Step 8. Using Eq.(11) to calculate the bonds force for each material point.
3.1. Control of zero-energy mode

A penalty approach that deviates from regularized deformation gradient is used to suppress the zero-energy
modes [21]. The predicted location for point X' is

y =x+ FE. (20)

The hourglass vector, which denotes the difference between the predicted position y'* and the actual position'y’

, is calculated by .
h=y" -y 1)

The hourglass vector projected onto bond
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Ve =h-& (22)
The hourglass force vector is defined as [21]
o L SN
“ 181§ +m|

where C, =0.5 is used in the paper, ¢ is the microelastic modulus based on bond-based peridynamics. In the
hg

(23)

present study, ¢ =18K /(#z5*) [22] for three dimensions.

4. GTN damage model

The GTN damage model [23,19] which considers the processes of void nucleation, growth and coalescence, is
given as

#(o,.pV,) = ( 20, cosh(—qu ) -+a,f™)"”, (24)

where §,,q,,qs, f »Y are model parameters influencing the form of the yield surface. Jos fos frs f,, are the
initial void volume fraction, critical void volume fraction, the failure void volume fraction. f' " is a function that

quantifies the loss of strength resulting from void growth. o, , p and f " are calculated by

/ 1
o, = %G O'U, p=0,1/3, 0 =0, 30‘kké',j, (25)

v, V,<f.

= f+; j:(V 1) f<V, <. 6)

fF Vf>fF

- %"'\/% —4q;
fF q—
3

If >0 the deviatoric and volumetric plastic strain rates é‘dev,é‘v are calculated using Newton-Raphson

where

@7

iteration method. £, the total accumulated plastic strain in the matrix, evolves according to.

matrix

-V - dev
-~ _pg +O'g€

gma rix (28)
! a-v,y
The evolution of the void volume fraction Vf is given by
Vf = (1 - Vf)gv + Angmatrix 2 (29)

1 e —¢
Ju eXp(——(M)z) , ~»>Sy»>€y are material properties controlling the rate of

B syN27 2 Sy

void nucleation with plastic strain. More details are found in [24].

where A4,
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5. Numerical examples
5.1. Kalthoff-Winkler experiment

The Kalthoff-Winkler experiment is a classical benchmark problems for dynamic fracture[25,26,27,28]. This
example aims to show the capability of DH-PD in modeling the dynamic brittle fractures. The dimension of the
plate is depicted in Fig. 2(a). The thickness of the specimen is 0.01m. The material parameters used are the elastic
modulus E=190GPa, p = 7800 kg/m®, v =0.25 and the energy release rate Go=6.9¢e4 J/m* The impact loading was
imposed by applying an initial velocity at vo=22 m/s to the first three layers of particles in the domain as shown in
Fig. 2(a); all other boundaries are free. The plate is discretized with two different particle sizes, namely A
x, =1.5625x 1073 m for the coarse subdomain and Ax, =0.5Ax, =7.8125x10™ m for the fine subdomain located in

the left down corner of the model, see Fig. 2(a). The total number of particles is 57,968.
The crack starts to propagate at 26.3 ££s . The highest crack speed in the simulation is 1530 m/s, about 54.4% of

the Rayleigh speed(2799.2 m/s). The crack patterns are nearly symmetrical, as shown in Figs 2(b). The crack

propagates initially at an angle of 65.7 " in the fine subdomain with respect to the original crack and 65.8 "in coarse
subdomain. The crack propagation angle agrees with that by Cracking particle method and Extended finite element
method [28,26].

L TR i
T YYvYYYY

[
0.075m || 0.05m | 0.075m
> 2 - {

E ||
wy
<
q . ‘

0. fm

dense zone

a0im
[

0.2m

(a) (b)

Fig. 2. (a) The setup of the specimen. (b) The crack pattern of Kalthoff-Winkler simulation by the present dual-horizon peridynamics at step 875.

5.2. Necking of a bar

Table. 1 The material parameters for GTN model

ID  E(Pa) U Y®Pa & m @ @ @ fn SN en fe fr fo

Mat, 1000 0.3 0.8 1001 5 125 1 125 0.05 0.1 0.05 0.15 0.25 0

Mat, 2.11ell 0.3  4.65e8 1 1 1.5 1 1.5 0.0008 0.1 03 0.015 0.1 12E-4

The horizon size is selected as 4, =3.015Ax, . The variable horizons can greatly reduce the number of material
points, thus improve the computational efficiency. The material is Mat; in Table 1. The bar is discretized with two
type of grid spacing. The dimension of the bar is 1x1/3x1/3 m3. A constant velocity of vx=0.05 m/s is applied at the
end of the bar while the other end is fixed. The necking happened naturally at the center of the bar. The load-
displacement curve is shown in Fig.3(d).
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Fig. 3. (a). Discretization.(b) Damage starts from the center of the bar. (c) Total failure. (d). The load-displacement curve.
5.3. Cup-cone fracture in a round tensile bar

The material for the tensile bar is Matz in Table 1. The maximum load is 2.682e4 N. The constant velocity of vx=0.1
m/s at both ends but with opposite directions is applied. The dimensions and the results are shown in Fig.4(a).

(2)

257

{ |
R i
|.|I‘f.'.'l',U.'.'lMtl_l.|1.llu,'|'!' _

0.2 0.4 06 08 1 12 14 16 18
Displacement u _ (m) = 10%

(d)




Huilong Ren et al. / Procedia Engineering 197 (2017) 224 — 232 231

Fig. 4. (a). Dimensions of the bar.(b) Void fraction distribution at the failure stage. (c) damage distribution. (d). The load-displacement curve.
6. Conclusions

In this paper, we presented a dual-horizon non-ordinary state-based peridynamics. We implemented the GTN model
to simulate ductile fracture involving large deformation including plasticity. Three numerical examples are
presented to validate the method.
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