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Abstract. Recently, for modeling biological amplification
processes, nonlinear amplifiers based on the supercritical
Andronov–Hopf bifurcation have been widely analyzed ana-
lytically. For technical realizations, digital systems have be-
come the most relevant systems in signal processing appli-
cations. The underlying continuous-time systems are trans-
ferred to the discrete-time domain using numerical integra-
tion methods. Within this contribution, effects on the qual-
itative behavior of the Andronov–Hopf bifurcation based
systems concerning numerical integration methods are an-
alyzed. It is shown exemplarily that explicit Runge–Kutta
methods transform the truncated normalform equation of the
Andronov–Hopf bifurcation into the normalform equation of
the Neimark–Sacker bifurcation. Dependent on the order of
the integration method, higher order terms are added during
this transformation.

A rescaled normalform equation of the Neimark–Sacker
bifurcation is introduced that allows a parametric design of
a discrete-time system which corresponds to the rescaled
Andronov–Hopf system. This system approximates the char-
acteristics of the rescaled Hopf-type amplifier for a large
range of parameters. The natural frequency and the peak
amplitude are preserved for every set of parameters. The
Neimark–Sacker bifurcation based systems avoid large com-
putational effort that would be caused by applying higher or-
der integration methods to the continuous-time normalform
equations.

1 Introduction

Early research has shown that the mammalian hearing pro-
cess is active (Kemp, 1978) and involves an active ampli-
fication within the cochlea (Zenner and Gitter, 1987). This
amplification characteristic can be modeled by a system near
the onset of an Andronov–Hopf bifurcation (Eguíluz et al.,

2000). Regarding this bifurcation based amplifier and af-
ter first analog realizations by Stoop et al. (2005, 2007) a
discrete-time system was developed and implemented on a
digital signal processor (DSP) (Reit et al., 2012). This im-
plementation was latterly improved and extended to com-
pare nonlinear amplifiers based on Andronov–Hopf and
Neimark–Sacker bifurcations (Feldkord et al., 2016). The
Neimark–Sacker bifurcation is also called the Andronov–
Hopf bifurcation for maps (Kuznetsov, 2013).

In this work we analyze the influence of explicit single-
step integration methods on the behavior of systems based on
the normalform equation of the Andronov–Hopf bifurcation.
This is done exemplarily for the explicit Euler method and
extended to explicit Runge–Kutta methods. Lastly, a rescaled
normalform equation of the Neimark–Sacker bifurcation is
derived that approximates the characteristics of the rescaled
Andronov–Hopf bifurcation within the discrete-time domain
while preserving the natural frequency and the peak ampli-
tude.

2 Fundamentals of the Andronov–Hopf and the
Neimark–Sacker bifurcation

The analysis in this work focusses on the truncated
normalform equation of the Andronov–Hopf bifurcation
(Kuznetsov, 2013)

dz
dt
= (µ+ iω0)z+ σ |z|

2z, (1)

where z ∈ C is the system variable, µ ∈ R the bifurcation
parameter, i the imaginary unit, σ ∈ C the first nonlinear-
ity coefficient that determines the type of the bifurcation and
ω0 ∈ R the natural frequency. For <{σ }< 0, the system is
supercritical, branching a stable limit cycle for µ > 0 from a
stable fixed point (µ≤ 0) that loses stability. On the contrary
for <{σ }> 0, the system exhibits an unstable limit cycle for
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µ < 0 that shrinks and disappears at the point of bifurcation
(µ= 0) where the encircled stable fixed point loses stability.
Here, for µ≥ 0, the system has an unstable fixed point. A
special characteristic of Eq. (1) is the mapping of an additive
sinusoidal excitation signal a0e

iωt to a sinusoidal output sig-
nal z0e

i(ωt+φ) without harmonic distortions (Eguíluz et al.,
2000; Stoop et al., 2005; Reit et al., 2016).

Similar to the normalform equation of the Andronov–Hopf
bifurcation in the continuous-time domain, the truncated nor-
malform equation of the Neimark–Sacker bifurcation in the
discrete-time domain (Kuznetsov, 2013),

z 7−→ eiθz
(

1+α+ d|z|2
)
, (2)

is analyzed. As before, z is the complex system variable. The
real-valued bifurcation parameter is denoted by α. Similar to
σ of the Andronov–Hopf system, the type of bifurcation is
dependent on the sign of <{d} while the bifurcation occurs
at α = 0. The Neimark–Sacker bifurcation based system is
embedded into a continuous-time environment by iterating
the map Eq. (2) with equidistant timesteps h. From this iter-
ation, the relation θ = h ·ω0 results. When using Andronov–
Hopf and Neimark–Sacker bifurcation based systems as non-
linear amplifiers, only the supercritical case with µ < 0 is
considered. Adding an excitation signal for µ > 0, the super-
critical case results in synchronization problems (Pikovsky
et al., 2003). The subcritical case is unstable and therefore
neglected. For modeling the cochlea, a ω0-rescaled truncated
normalform equation of the Andronov–Hopf bifurcation with
an added excitation term a(t),

dz
dt
= ω0 (µ+ i)z+ω0σ |z|

2z+ω0a(t), (3)

was introduced by Stoop et al. (2007). The special property
of Eq. (3) is that the amplitude response to a sinusoidal ex-
citation signal a(t)= a0e

iωt is independent of the absolute
value of the natural frequency. Here, the fraction ω/ω0 de-
termines the output amplitude for a given set of µ, σ and
a0. Recently, the rescaled truncated normalform equation of
the Andronov–Hopf bifurcation with excitation was imple-
mented on a DSP platform (Reit et al., 2012). In a compara-
tive study of the amplitude responses, the truncated normal-
form equation of the Neimark–Sacker bifurcation with the
excitation a(n),

zn+1 = e
iθzn

(
1+α+ d|zn|2

)
+ a(n), (4)

was implemented and analyzed for a(n)= a0e
iωhn (Feldkord

et al., 2016). It can be shown, that the input-output behavior
of the Neimark–Sacker system is very similar to that of the
not rescaled Andronov–Hopf system Eq. (1). Thus, to ap-
proximate the behavior of the ω0-rescaled Andronov–Hopf
system, an appropriate normalform equation of the Neimark–
Sacker bifurcation is desirable which is introduced later in
this work.

Since we examine the purpose of digital processing appli-
cations, where real-time processing and low latency are the
main goals, only explicit integration methods are considered
to implement the Andronov–Hopf bifurcation based systems.
The aforementioned DSP-Implementation uses the Runge–
Kutta method of 4th order.

3 Analysis of the numerically integrated normalform
equation of the Andronov–Hopf bifurcation

The following section focusses on the qualitative changes
of the system behavior due to a discrete-time implementa-
tion. We use the rescaled truncated normalform equation of
the Andronov–Hopf bifurcation in Eq. (3). The intuitive ap-
proach is to transform Eq. (3) into a system in the discrete-
time domain using a numerical integration method. Then, the
resulting difference equation can be analyzed. Due to the
nonlinearity of the equation, mixed terms of the state vari-
able and the excitation term can occur. This leads to compli-
cated expressions that makes an analytical approach almost
impossible. Therefore, the following analysis focusses on the
Andronov–Hopf system in Eq. (3) without the excitation.

To illustrate the transformation of the system parameters
due to an integration method, the explicit Euler method is
applied and the resulting iterative map

z 7−→ z+hω0

(
(µ+ i)z+ σ |z|2z

)
(5)

is compared to Eq. (2). Equation (5) has the complex conju-
gated eigenvalues λ1,2 = 1+hω0(µ± i). Since the eigenval-
ues of the Neimark–Sacker normalform equation are known
as e±iθ (1+α), a comparison leads to

α =−1+
√
h2ω2

0 + (hω0µ+ 1)2, (6)

θ = arg(1+hω0(µ± i)) . (7)

Moreover, the nonlinearity coefficient d can be calculated by

d = e−iθhω0σ. (8)

It can be concluded that the application of the explicit Euler
method to Eq. (3), omitting the excitation, results in a sys-
tem that is equivalent to the truncated normalform equation
of the Neimark–Sacker bifurcation Eq. (2). An important as-
pect of this mapping is the addition of a bifurcation offset.
Thus, the bifurcation in the discrete-time domain does not
occur at µ= 0. The mapping also changes the natural fre-
quency as well as the coefficient d of the nonlinear term. The
nonlinearity coefficient of the system is scaled by hω0 and
rotated by θ (cf. Eq. 8). Hence, the type of bifurcation can
change from supercritical to subcritical and vice versa when
a change in the sign of <{d} depending on θ occurs. Regard-
ing the relation Eq. (7), the nonlinearity coefficient is depen-
dent on µ besides hω0. The explicit Euler method often re-
quires very small timesteps to satisfactorily approximate the

Adv. Radio Sci., 15, 43–47, 2017 www.adv-radio-sci.net/15/43/2017/



S. Feldkord et al.: Discretization analysis of bifurcation based nonlinear amplifiers 45

solution of very simple differential equations. To overcome
this issue, explicit Runge–Kutta methods are preferred. The
set of complex-valued terms that are equivalent to the right
hand side of the not truncated normalform equation of the
Andronov–Hopf bifurcation can be defined as

A=

{
k∑
n=0

ξn|z|
2n
· z |ξn ∈ C, k ∈ N\{0}

}
. (9)

Every algorithmic step of an explicit Runge–Kutta method
(Stoer and Bulirsch, 1978) applied to an Andronov–Hopf
system can be generalized to either an insertion f (g(z)) or
an addition b · f (z)+ c · g(z) with f , g ∈ A and b, c ∈ C.
The addition b · f (z)+ c · g(z) is also an element of A. The
above generalization is only possible under the condition
f (g(z)) ∈ A. Assuming f (g(z)) 6∈ A, any further operations
relying on f (g(z)) would not result in elements of the set A.

Dependent on the order of the Runge–Kutta method, the
insertion f (g(z)) is an operation that can occur multiple
times through the calculation of one timestep. It can be
shown that one single insertion f (g(z)) with k =K for f (z)
and k =M for g(z), which calculates the highest exponent,
results in an element of A with k = 2 ·M+2 ·K+2 ·M ·K .
The resulting terms of any explicit Runge–Kutta method are
elements of the set A. Thus, they are also terms of the right
hand side of the not truncated normalform equation of the
Neimark–Sacker bifurcation. It can be concluded that any
explicit Runge–Kutta method maps any kind of normalform
equation of the Andronov–Hopf bifurcation to a normalform
equation of the Neimark–Sacker bifurcation. The value of k
for the highest term by using the Runge–Kutta method of 4th
order applied to Eq. (3) without excitation can be calculated
by the scheme above to k = 40.

The normalform equation is given completely by the coef-
ficients ξn. The truncated normalform Eq. (2) is obtained by
omitting all higher order terms with n > 1. This can be used
for an approximation that is easy to analyze. However, the
higher order nonlinearities might change the qualitative be-
havior of the bifurcation (Reit et al., 2016). Using the system
as amplifier, for small values of the excitation amplitude and
near the point of bifurcation, the higher order terms cannot be
neglected due to large nonlinearity coefficients, e.g. <{ξ2} ≈

0.42 for h= 1/48 kHz−1, ω0 = 2π · 5 kHz, µ=−0.1 and
σ =−1. Thus, any analysis of the truncated normalform
equation must be taken with care and a higher order term
approximation should be considered.

4 Derivation of the Rescaled Neimark–Sacker
Bifurcation

From Sect. 3, we know that explicit Runge–Kutta meth-
ods map an Andronov–Hopf system to a Neimark–
Sacker system. Moreover, the steady-state response of the
driven Neimark–Sacker bifurcation resembles the driven
Andronov–Hopf system for a wide range of parameters.

In this section, we introduce a rescaled version of the
Neimark–Sacker bifurcation based amplifier. To understand
the process of reparametrization, some insights into the map-
ping of the Andronov–Hopf bifurcation to the Neimark–
Sacker bifurcation are required. One of the conditions for the
Andronov–Hopf bifurcation is the crossing of the imaginary
axis by a complex conjugated pair of eigenvalues. For the
Neimark–Sacker bifurcation, the eigenvalues cross the unit
circle. The most simple mapping is done by applying the ex-
plicit Euler method to the differential Eq. (1). The iterative
map Eq. (5) results, that resembles the normalform equa-
tion of the Neimark–Sacker bifurcation of the same degree
since the cubic nonlinearity is the highest order term. When
the normalform equation of the Andronov–Hopf bifurcation
is rescaled and integrated by the explicit Euler method, the
terms hµ and hσ are rescaled by ω0,

z 7−→ z
(

1+hω0µ+ ihω0+hω0σ |z|
2
)
. (10)

In order to transfer this rescaling to the normalform equa-
tion of the Neimark–Sacker bifurcation, it is considered that
in the discrete-time domain not the natural frequency itself
but θ = hω0 is the parameter of interest. Modifying the pa-
rameters α and d in Eq. (2) by multiplication with θ , the
θ -rescaled truncated normalform equation of the Neimark–
Sacker bifurcation

z 7−→ eiθz
(

1+ θα+ θd|z|2
)

(11)

results. Since θ ∈ R and π > θ > 0 (Kuznetsov, 2013), the
bifurcation point at α = 0 and the sign of the nonlinear-
ity coefficient remain unchanged. The parametric design
of the rescaled Neimark–Sacker bifurcation to approximate
the rescaled Andronov–Hopf bifurcation is done by setting
α = µ, θ = hω0 and d = σ . By adding the excitation term
a0e

ihωn, we can compute algebraic amplitude responses for
the Neimark Sacker system Eq. (4), the rescaled Neimark–
Sacker system Eq. (11) and the Runge–Kutta 4 method ap-
plied to the rescaled Andronov–Hopf bifurcation (Feldkord
et al., 2016). In the excitation term, n is the iteration count
and h ·ω the scaled excitation frequency. An algebraic equa-
tion for the input-output relation can also be given for the
Andronov–Hopf bifurcation in the continuous-time domain
(Eguíluz et al., 2000; Reit et al., 2016). Applying the Runge–
Kutta 4 method analytically to the differential equation with
excitation, mixed terms of the state variable and the excita-
tion occur. Thus, the differential equation does not map to
the normalform equation of the Neimark–Sacker bifurcation.
In this case, an algebraic input-output relation is difficult or
impossible to compute.

The amplitude responses of the rescaled Neimark–Sacker
bifurcation compared to the amplitude response of the
rescaled Andronov–Hopf bifurcation, the Neimark–Sacker
bifurcation and the difference equation resulting from the
Runge–Kutta 4 method applied to the rescaled Andronov–
Hopf bifurcation are shown in Fig. 1a). Besides the inevitable

www.adv-radio-sci.net/15/43/2017/ Adv. Radio Sci., 15, 43–47, 2017



46 S. Feldkord et al.: Discretization analysis of bifurcation based nonlinear amplifiers

-1.0 -0.5 0.0 0.5 1.0
-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Neimark-Sacker
Andronov-Hopf
Runge-Kutta 4

Rescaled Neimark-Sacker

a)

-1.0 -0.5 0.5 1.0
4.0

3.5

3.0

2.5

2.0

1.5

1.0

-

-

-

-

-

-

-

-0.5

Andronov-Hopf
Runge-Kutta 4

Rescaled Neimark-Sacker

0.0

b)

)

)

Figure 1. Amplitude responses with h= 1/fS = 1/48 kHz−1, σ =
d =−1, µ= α =−0.1 and ω0 = 2π · 3 kHz (a) respectively ω0 =
2π · 15 kHz (b). The input amplitudes are 0.1, 0.01 and 0.001.

periodicity of the discrete-time systems in the frequency, the
rescaled Andronov–Hopf and the rescaled Neimark–Sacker
systems match very well. On the contrary, the Neimark–
Sacker system shows a wider bandwidth and is only equal
to the Andronov–Hopf system in the peak amplitude and the
natural frequency. The rescaled Neimark–Sacker bifurcation
shows only small differences in amplitude apart from the nat-
ural frequency (Fig. 1b). Using the Runge–Kutta 4 method,
the amplitude response deviates for higher natural frequen-

cies in amplitude and peak frequency from the solutions of
the Andronov–Hopf system (Fig. 1b).

5 Conclusions

It is shown that applying an explicit Runge–Kutta method
to the truncated normalform of the Andronov–Hopf bifurca-
tion leads to a discrete-time system represented by an itera-
tive map which is equal to the normalform equation of the
Neimark–Sacker bifurcation with higher order terms.

For the use as amplifier where the input-output character-
istic is approximately independent of the natural frequency,
a rescaled truncated normalform equation of the Neimark–
Sacker bifurcation is introduced. A comparison of the im-
plemented systems is given. It reveals the advantage of
designing the Neimark–Sacker bifurcation based system a
priori over using an integration method to implement the
continuous-time Andronov–Hopf bifurcation based system
on a digital platform. It is a much better approximation to
the behavior of the rescaled Andronov–Hopf bifurcation. It
preserves the peak amplitude and the natural frequency.
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