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Engineering interactions and anyon statistics by multicolor lattice-depth modulations
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We show that a multicolor modulation of the depth of an optical lattice allows for a flexible independent
control of correlated hopping, occupation-dependent gauge fields, effective on-site interactions without Feshbach
resonances, and nearest-neighbor interactions. As a result, the lattice-depth modulation opens the possibility of
engineering with minimal experimental complexity a broad class of lattice models in current experiments
with ultracold atoms, including Hubbard models with correlated hopping, peculiar extended models, and two-
component anyon-Hubbard models.
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I. INTRODUCTION

Floquet engineering—the averaging of fast periodic mod-
ulations to obtain an effective time-independent system—is a
ubiquitous tool for the manipulation and probing of various
systems, ranging from NMR probes in solid-state physics
to atom-light interactions or Raman-dressed states [1]. In
recent years, Floquet techniques have established themselves
as a toolbox for the creation of novel Hamiltonians for
ultracold atoms in optical lattices, including lattice shak-
ing [2–8], Raman-assisted hopping [9–12], and modulated
interactions [13–18].

A major reason for the interest on Floquet techniques lies
in the possibility of engineering gauge fields, i.e., complex
hopping rates, for neutral atoms in optical lattices [7]. Most
relevantly, synthetic magnetic fields have been created in the
last years using Raman-assisted hopping [9–12]. Interestingly,
various Floquet techniques have been recently proposed for
the creation of occupation-dependent gauge fields (ODGs)
[19–22], in which the phase of the hopping depends on the site
occupation. Under proper conditions, one-dimensional (1D)
models with ODGs may be mapped into an anyon-Hubbard
model (AHM) [19–22], in which the exchange statistics of the
atoms may be externally modified. The 1D AHM presents
a wealth of new physics, including statistically induced
transitions [20], novel superfluid phases [21], smooth fermion-
ization [22], asymmetric momentum distributions [23,24], and
intriguing dynamics [25–27]. The atomic back-action on the
synthetic gauge field given by ODGs could pave a way for
the realization of dynamical gauge fields [28,29], and leads
to interesting physics, such as chiral solitons in Bose-Einstein
condensates [30] or density-flux interplay in two-dimensional
lattices [31].

In this paper, we propose a method based on the multicolor
modulation of the depth of a tilted optical lattice. As shown by
Ma et al. [32] lattice-depth modulations may be employed to
assist different occupation-dependent hopping processes for
sufficiently strong interactions. We show for the particular
case of two-component fermions that a three-color modulation
(3CM) of the lattice depth may be employed to achieve
a separate flexible control of correlated hopping, ODGs,
effective on-site interactions without the need of Feshbach
resonances, and nearest-neighbor (NN) interactions. As a
result, 3CM allows with a minimal experimental complexity
for engineering a broad class of lattice Hamiltonians using

FIG. 1. Sketch of the lattice setup and the relevant hopping
processes.

ultracold atoms, including Hubbard models with correlated
hopping, peculiar extended models, and two-component
AHMs, the basic properties of which we analyze as well.

This work is organized as follows. In Sec. II we introduce
the multicolor modulation method and derive the effective
Hamiltonian that describes the system. Section III deals
with the investigation of the nonequilibrium dynamics, both
for sudden quenches and for a quasiadiabatic ramping, that
validates the effective Hamiltonian in comparison to the full
time-dependent Hamiltonian. Section IV presents a detailed
analysis of the physics that can be explored with the effective
Hamiltonian. Finally, Sec. V offers a summary of the work and
the outlook.

II. EFFECTIVE HAMILTONIAN

In this section we present a method that allows us to
realize in a one-dimensional optical lattice a Fermi-Hubbard
model with a density-dependent Peierls phase, and that offers
a flexible experimental control on the different terms of
the Hamiltonian. We obtain an effective time-independent
Hamiltonian that fully characterizes the ground-state physics
and the dynamics of the system.

A. Three-color modulation on the tilted lattice

We consider a balanced two-component (σ = ↑,↓) Fermi
gas in an optical lattice (equal for both components), the
depth of which is modulated in time, V (t) = V0 + δV (t),
with δV � V0. We choose two-component fermions for
simplicity, but similar ideas may be applied to bosons, and
multicomponent fermions. In the tight-binding regime, the
hopping rate is J (s)

Erec
= 4√

π
s3/4 exp(−2

√
s) [33], where s =

V/Erec = s0 + δs(t), with Erec the recoil energy associated
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to the laser that creates the lattice. Since δs � s0, then J (t) =
J0 + δJ (t), where J0 = J (s0), and δJ (t)

J0
= ( 3

4 − √
s0) δs(t)

s0
, and

hence the lattice modulation directly maps into a modulation
of the hopping rate. We assume a tilted lattice, with an energy
shift � between neighboring sites (Fig. 1). The system is then
described by the Fermi-Hubbard Hamiltonian:

H(t) =−J (t)
∑
j,σ

[c†j+1,σ cj,σ + H.c.] + UHint + �Htilt, (1)

where cj,σ is the annihilation operator of a fermion with
spin σ at site j , U characterizes the on-site interactions,
Hint = ∑

j nj,↑nj,↓, and Htilt = ∑
j,σ jnj,σ . Note that four

different hopping processes are possible (as sketched in Fig. 1).
(i) A single atom hops to an empty site to its right leading

to an energy shift �E1 = �.
(ii) An atom with spin σ , initially alone at a given site,

tunnels to the site at its right already occupied by a single
atom with σ̄ �= σ , resulting in a shift �E2 = � + U .

(iii) The same event as (ii) but the hopping is to the left: in
this case �E3 = U − �.

(iv) An atom of component σ sharing a site with a σ̄ atom
tunnels into the site at its right already occupied by a single
atom with σ̄ leading to an energy shift �E4 = �. Note that
processes (iv) and (i) are resonant.

We assume that J (t) � �,|� ± U |, and hence direct
hopping is negligible. However, a periodic modulation of δJ (t)
leads to assisted hopping if the modulation frequency matches
the energy shift associated to the hopping process [32]. Cru-
cially, processes (i), (ii) and (iii) are characterized by different
energy shifts (by twos, typically separated by several kHz,
see below), and hence the different hopping processes may be
laser assisted separately. The key point of our proposal is to
address them separately but simultaneously using a 3CM of the
laser intensity: δV (t) = ∑

s=1,2,3 δVs cos(ωst + φs), which, as
mentioned above, translates into an equivalent modulation of
the hopping, δJ (t) = ∑

s δJs cos(ωst + φs). Each component
of the modulation has an amplitude δJs and a phase shift
δφs , which may be independently controlled. The frequencies
ω1 = �, ω2 = � + U − Ũ , and ω3 = −� + U − Ũ , with
|Ũ | � U are chosen (quasi-)resonant to the hopping processes
(i) [and hence also to (iv)], (ii), and (iii), respectively.

B. Time-independent Hamiltonian

The relevant physics of the time-dependent Hamiltonian
just introduced is adequately described by an effective time-
independent Hamiltonian that we derive and comment upon
hereafter. In the interaction picture, H̃ = U†HU , with U =
exp [−it(�Htilt + UHint)]:

H̃(t) =−J (t)
∑
j,σ

[c†j+1,σ eit[� +U (nj+1,σ̄ − nj,σ̄ )]cj,σ + H.c.]. (2)

The 3CM introduces oscillating terms e±i(ωs±�Es′ )t . For J0 �
|� − U |, U the fast-oscillating terms average to zero [rotating
wave approximation (RWA)], and only quasiresonant terms
remain (see Appendix B for an alternative derivation). As a
result, processes (i) [and (iv)], (ii), and (iii) present an effective
hopping rate δJs

2 eiφs , with s = 1, 2, and 3, respectively. We
consider below the particular case with δJ2,3 = β δJ1, φ1 =
0, φ2,3 = φ. Undoing the interaction picture we obtain the

effective time-independent Hamiltonian:

Heff = −δJ1

2

∑
j,σ

c
†
j+1,σ F [|nj+1,σ̄ − nσ̄ ,j |]cj,σ + ŨHint, (3)

where F [0] = 1 and F [1] = βeiφ . The 3CM provides remark-
able control possibilities. Both the amplitude and the phase
of the hopping rate of the σ component depend on the site
occupation of the σ̄ component. As shown below, this may be
employed to realize ODGs. Moreover, the detuning Ũ results
in an effective on-site interaction, allowing for controlling
interactions even in those systems where Feshbach resonances
are not available. This is in particular the case of alkaline-earth
fermions in the lowest 1S0 state [34]. Since 3CM may be
also used with multicomponent fermions, this opens a way of
controlling the properties of SU(N) fermions [34].

Although for J (t) � �,|� ± U | direct hopping is en-
ergetically forbidden, virtual hopping may induce effective
interactions between NN sites (see Appendix B) of the form

HNN =
∑
〈i,j〉

[
2J 2

0

� + U
P 0

i P 2
j − 2J 2

0

� − U
P 2

i P 0
j

+ J 2
0

�

[
(1 − ni)P

1
j − P 1

i (1 − nj )
]

+ 2UJ 2
0

�2 − U 2

(
P

1↑
i P

1↓
j + P

1↓
i P

1↑
j − S+

i S−
j − S−

i S+
j

)]
,

(4)

where S+
i = c

†
i,↑ci,↓ and S−

i = c
†
i,↓ci,↑ are spin operators, ni =

ni,↓ + ni,↑, and we introduce the projector of two particles per
site P 2

i = ni,↓ni,↑, zero particles P 0
i = (1 − ni,↓)(1 − ni,↑),

and a single particle P 1σ
i = (1 − ni,σ̄ )ni,σ , and P 1

i = P
1↓
i +

P
1↑
i . The peculiar NN interactions depend on J 2

0 /� and
J 2

0 /(U ± �), whereas the effective hopping is given by δJi .
Hence they may be separately controlled. For sufficiently small
J0 � �,|U ± �| we may neglect HNN. However, as shown
below, HNN opens additional interesting possibilities.

The rotating wave approximation requirements necessary
for the three-color modulation are readily achievable ex-
perimentally. As an example, let us consider the Ytterbium
isotope 173Yb, with scattering length a0 = 199.4aB , a lattice
with spacing d = 380 nm [11,35] and depth s0 = 6.9, tilted
in gravity. By virtue of the tight confinement, the on-site
interaction may be quantified in harmonic approximation.
In this case, one has a hopping rate J0/h = 100 Hz, and
U = 23J0, � = 16J0 (for a lattice oriented along the gravity,
largest tilting), |� − U | = 7J0, well within the RWA require-
ments. For δJ/J0 = 0.2, the typical effective-tunneling time
is τ = �/δJ 
 8 ms.

III. NONEQUILIBRIUM DYNAMICS

We employ numerical simulations to examine the time-
dependent properties of the model of Eq. (1) and the effective
description of Eq. (3), including the second-order corrections
of Eq. (4). Figure 2 depicts our results for the dynamics of the
averaged probability of double occupancy, 〈P 2〉 = 1

2

∑
i〈P 2

i 〉.
In Fig. 2(a), we present the evolution of a small system

of six particles distributed on six sites, simulated with exact
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FIG. 2. Time evolution of the average double occupancy 〈P 2〉:
dashed (solid) curves represent the effective (full) model. (a) A
small system is initially prepared in a Mott state with δV = 0 and
temperature T = J0 (initial 〈P 2〉 
 0), and then it evolves after a
sudden quench of δV , with �/J0 = 40, U/J0 = 20, δJ1/J0 = 0.2,
and β = 1, for different values of Ũ/δJ1 and φ. (b) Quasiadiabatic
preparation (iTEBD results for ρ = 1) of a ground state, starting
from a MI and linearly increasing δV (t) from zero to its final
value in the time interval 0 < J0t < 40; we consider U/J0 = 5,
δJ1/J0 = 0.1, Ũ/δJ1 = 2, β = 1. Remarkably, 〈P 2〉(t) oscillates
around the expected value (horizontal lines) for the ground state
of the effective Hamiltonian with δJ corresponding to the final δV .

diagonalization methods. We initially set δV = 0 and prepare
a Mott-insulator (MI) state at U � J0, assuming an initial
temperature T = J0, and hence negligible initial double
occupancy 〈P 2〉 
 0. At time t = 0 we abruptly turn on the
modulation δJ (t). The results show a very good agreement
between the effective model Heff + HNN and the full model
of Eq. (1). Figure 2(a) shows that nonequilibrium experiments
should be able to reveal both the ODG and the suppression of
〈P 2〉 resulting from the repulsive effective on-site interactions
Ũ . Similar agreement between the dynamics of the full and
the effective model is obtained in the thermodynamic limit
employing infinite time evolving block decimation (iTEBD)
simulations [36], which are possible using the translational
invariant formulation of Eq. (2).

The analysis of ground-state properties requires a
(quasi-)adiabatic ramping of δV . We present in Fig. 2 our
results obtained in the thermodynamic limit, using iTEBD.
Starting again with δV = 0 from an initial MI state, we studied
the quasiadiabatic preparation of different MI ground states
of our effective Hamiltonian with second-order corrections,
for � = 20 and 40 (see Fig. 6 for ground-state phases). For
computational simplicity we restrict the initially prepared state
to m = 40 matrix states, limiting its entanglement. During the
time interval 0 < t < tramp we linearly increase δV to its final
value, monitoring 〈P 2〉. Again Heff + HNN reproduces very

well the dynamics of the full model (1). After the ramp, the
heating induced by the quasiadiabatic character of the finite
ramping time results in oscillations of 〈P 2〉 around the value
expected for the ground state of the effective model.

IV. PHASES OF THE EFFECTIVE HAMILTONIAN

At this point we focus on the ground-state physics of Heff,
at first assuming that J0 � �,|� ± U |, and hence that the
intersite interactionHNN may be neglected, recovering it when
it occurs to analyze how it affects the phase diagram. For
β �= 1, Heff realizes a broad class of Hubbard models with
correlated hopping extensively studied in the context of cuprate
superconductors [37–41], and recently revisited for ultracold
gases with modulated interactions [16,17]. For φ �= 0, the
ODG gives rise to a particularly intriguing physics.

A. Metal-insulator phase diagram

We comment hereafter on Fig. 3, which shows, as a function
of β and the chemical potential μ, the ground-state phase
diagram of Fig. 8, in the limit of hard-core bosons φ = π/2,
with balanced population of the two components, and for
Ũ = 0. The result is obtained by means of density-matrix
renormalization-group (DMRG) [42] simulations, in finite-
size open-boundary systems of up to 80 sites, keeping up to
600 matrices. The Hamiltonian in Eq. (3) is symmetric under
particle-hole exchange, and hence the region μ > 0 (ρ > 1)
is mirror symmetric to that depicted for μ < 0 (ρ < 1) in
Fig. 3(a).

We refer henceforth only to the range μ < 0. The case
β = 0 deserves particular attention. In this limit, the hopping
processes (ii) and (iii) are not activated and doubly occupied
sites (doublons) and empty ones (holons) become mutually
impenetrable. The ground state is a metal without doublons
(holons, for μ > 0), that tends to a lattice half filling ρ =
1/2 for μ → 0 (quarter filling of the energy band for each
component). If existing, two doublons confine a localized
metallic region within their sites, due to the doublon-holon
mutual impenetrability; this results in a nonconducting metal
with a vanishing Drude weight (Kohn metal) [38] for lattice
fillings within ρ = 1/2 and 3/2: all these states lie in the point
of infinite compressibility μ = 0.

For 0 < β < 1, in the absence of the ODG [17], the
system undergoes a smooth phase transition from a metal (M)
with dominant spin-density wave (SDW) correlations,
(−1)j 〈n0−nj−〉, with nj− = nj,↑ − nj,↓, to a triplet
superconductor. In contrast, for φ = π/2, the metallic phase
undergoes for β � 1.4 a commensurate-incommensurate
phase transition, marked by a kink in the μ(ρ) curve, Fig. 3(b),
to a peculiar gapless multicomponent (MC) phase. The MC
phase presents a central charge c ≈ 3 [43–45]; in contrast, the
metallic phase has c = 2. The MC phase smoothly connects
to the Kohn metal for β → 0.

For β � 1.4 and ρ �= 1, a spin gap �S opens and the
kink in μ(ρ) disappears, marking the transition to a phase
with dominant singlet-superconducting (SS) correlations,
〈Q†

0−Qj−〉, with Qj− ≡ cj+1,↓cj,↑ − cj+1,↑cj,↓. Finally, at
ρ = 1 we find a MI with dominant SDW correlations, and
a totally gapped phase with bond-ordering wave (BOW) order
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FIG. 3. (a) Phase diagram of Heff as a function of μ/δJ1 and β for φ = π/2 and Ũ = 0. The dash-dotted lines mark the commensurate-
incommensurate metal-MC transition. The dashed (blue) lines denote the opening of �S that marks the MC-SS and MI-BOW transitions.
Shaded regions depict the vacuum. (b) Equation of state ρ = ρ(μ) for β = 0, 0.5, 1, and 1.5 for the parameters of Fig. (a). (c) Single-component
momentum distribution of the ground state of the effective Hamiltonian, Eq. (8), as a function of the effective onsite interaction Ũ , for ρ = 0.5
and φ = π/2 (L = 60).

OD(j ) = ∑
σ Tσ (j ) − Tσ (j + 1), with Tσ (j ) = c

†
j,σ cj+1,σ +

H.c. and OD = ∑
j OD(j ).

B. Multicomponent phase

The multicomponent phase, which occurs even for β = 1
and Ũ = 0, is a direct consequence of the ODG. The nature of
this phase is best understood for φ = π/2 and β = 1. In that
case, the two-particle problem, with a ↑ particle and a ↓ one,
presents for any Ũ an exact bound eigenstate:

|P 〉 = cos θ |D〉 + i sin θ |S〉, (5)

with eigenenergy

EP = Ũ

2
−

√
Ũ 2

4
+ 2δJ1

2, (6)

where

tan θ = Ũ − EP√
2δJ1

,

|D〉 =
∑

j

(−1)j |↑,↓〉j , (7)

|S〉 =
∑

j

(−1)j (|↑〉j |↓〉j+1 − |↓〉j |↑〉j+1)/
√

2 .

0 0.5
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FIG. 4. Momentum distribution n(k) of one component as a
function of the Peierls phase. We used DMRG with L = 80, filling
ρ = 0.6, Ũ = 0, and δJ = 0.4. The inset shows the center of the
momentum distribution as a function of φ for different fillings ρ = 0.6
(dashed line) and ρ = 0.2 (dotted line). We included NN interactions,
with J = 1, � = 10, U = 20.

The existence of this bound state even for Ũ > 0 results from
the ODG (see Appendix A1). For sufficiently large Ũ > 0, the
eigenenergy EP is larger than EF (the Fermi energy of the
metal) and the metallic phase is stable. For decreasing Ũ ,
the system enters the regime where EP < 2EF and part of the
Fermi sea forms pairs that quasicondense in |P 〉, until the new
Fermi energy E′

F = EP /2. The MC phase results from the
coexistence of a partially depleted Fermi sea and bound pairs.
When E′

F reaches the bottom of the lattice band, the Fermi sea
is fully depleted, marking the onset of the SS phase.

The MC phase has a characteristic momentum distribution
of both components, nσ (k), and it can be thus easily revealed
in time-of-flight measurements. The momentum distribution
as a function of Ũ/δJ is conveniently analyzed in the simple
case β = 1, for which the hopping processes share the same
hopping rate δJ1/2:

Heff = −δJ1

2

∑
j,σ

c
†
j+1,σ eiφ|nj+1,σ̄ −nσ̄ ,j |cj,σ + ŨHint. (8)

Figure 3(c) shows our results for nσ (k), at φ = π/2. For
large-enough Ũ , the metallic phase presents a slablike Fermi
sea. In the MC phase, the slab shrinks due to partial
pairing. The latter results in a blurred contribution to nσ (k),

1
2π

[1 − √
2 sin(2θ ) sin(k/2) − sin2 θ cos(2k)], as expected for

|P 〉 pairs (see Appendix A2). The MC-SS transition is marked
by the vanishing Fermi sea.

Lastly, we show in Fig. 4 how the MC phase enters the
system as the Peierls phase increases, presenting numerical
results on the momentum distribution. We set ρ = 0.6, Ũ = 0,
and δJ1 = 0.4; up to a threshold Peierls phase, we observe
a metallic phase with drifted momentum distribution, and
beyond it the momentum distribution splits into a blurred
lower branch corresponding to the bound pairs, and a more
definite upper branch, the metallic component. The center of
the momentum distribution kavg, in the inset, has a maximum
in the drift which is more pronounced and occurs at larger
phases when the lattice filling is smaller.

C. Two-component anyon-Hubbard model

At low lattice filling ρ, for which processes (iv) may be
neglected, a Jordan-Wigner like transformation [20],

fj,σ = e−i2φ
∑

1�l<j nl e−iφnj cj,σ , (9)
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FIG. 5. Comparison between the effective Hamiltonian of Eq. (8)
and the anyon-Hubbard model of Eq. (10), for Ũ = 0, φ = π/2, and
β = 1.

maps Eq. (8) into a two-component anyon-Hubbard model
(2-AHM):

HAHM = −δJ1

2

∑
j,σ

(f †
j+1,σ fj,σ + H.c.) + ŨHint. (10)

The operators fj,σ and f
†
j,σ characterize anyonlike hardcore

particles, that fulfill a deformed exchange statistics (DES):

fj,σ f
†
k,σ ′ + Fj,kf

†
k,σ ′fj,σ = δj,kδσ,σ ′ ,

fj,σ fk,σ ′ + Fj,kfk,σ ′fj,σ = 0. (11)

The C parameter Fj,k determines the statistics of the system:

Fj,k :=
⎧⎨
⎩

e−i2φ, j > k

1, j = k

ei2φ, j < k

, (12)

where the conditionFj,j = 1 sets the hard-core behavior of the
particles. For φ = 0 one recovers the standard two-component
Fermi-Hubbard model, while φ = π/2 corresponds to the
two-component hard-core Bose-Hubbard model. In Fig. 5
we present a comparison between the phase diagram of
the effective Hamiltonian of Eq. (8), with β = 1, and the
anyon-Hubbard model of Eq. (10), for Ũ = 0 and φ = π/2.
Both models provide identical results at low densities. Not
unexpectedly they diverge when the density grows (ρ > 0.3).
As for the effective model, the anyon model shows as well
a (narrower) MC phase. At larger densities close to ρ = 1
model (10) presents an intermediate SS phase absent in the
effective Hamiltonian (8).

Specific cases of the 2-AHM have been studied in the
context of exactly solvable models [46,47]. In contrast, the
nonintegrable DES discussed here does strongly modify the
spectrum of the 2-AHM compared to the Fermi-Hubbard
model.

D. Intersite interactions

The nearest-neighbor interaction HNN becomes relevant
for large-enough J0/�, J0/|� ± U |. Combining effective on-
site and NN interactions constitutes an additional interesting
control possibility resulting from the three-color modulation.

Figure 6 depicts for β = 1, φ = 0, and ρ = 1 the phase
diagram as a function of Ũ/δJ and J0/� (which controls
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U
~

/ δJ1

0

0.1

J 0
/Δ

0

1

〈P
2

〉

MI (SDW)

PSDW

FIG. 6. Phase diagram of Heff + HNN for ρ = 1, U = 5J0, δJ =
0.1J0, β = 1, and φ = 0. The MI-DW transition is given by KS = 1
(extrapolated from DMRG calculations of up to L = 160 sites). The
coloring codes 〈P 2〉 are obtained from iTEBD calculations (for 200
states results are consistent with our DMRG data of 160 sites).

the strength of the NN terms). For J0/� → 0 the standard
two-component 1D Fermi-Hubbard model is recovered [48]:
for any Ũ > 0 there is a Mott-insulator (SDW) phase with a
finite charge excitation gap �c > 0 and spin gap null �S = 0;
in contrast, for Ũ < 0, a spin gap �S > 0 opens, while �c = 0.
For sufficiently large J0/� the system is driven into a fully
gapped density-wave (DW) phase, characterized by a nonva-
nishing DW order parameter ODW = ∑

j (−1)j 〈n0nj 〉. For a
dominant intersite interaction, the first term of Eq. (4) favors
the crystalline phase with—neglecting quantum fluctuations—
an energy

EDW ∼ Ũ − 4U

�2 − U 2
. (13)

In this region, the condition EDW = 0 gives a rough estimate
of the DW phase boundary, which also marks the transition
between the DW and the PS phase (dotted upper line).
For Ũ > 0 we observe two different MI phases with a
suppressed doublon number: the above-mentioned MI phase
with antiferromagnetically ordered spin, that means dominant
SDW correlations and a vanishing spin gap �S = 0, and a
region of phase separation of ferromagnetic domains (PS).
The interplay between the two phases can be understood best
from an expansion in the limit of strong interaction Ũ � δJ .
In this limit, one can project out the doubly occupied sites
and obtain an effective spin-1/2 model with superexchange
interaction Hse ∼ Jeff �S · �S, with

Jeff = 2U

δ2 − U 2
− δJ 2

4

(
1

Ũ + 2U
U�−�2

+ 1

Ũ + 2U
U�+�2

)
. (14)

At 1/� ∼ δJ/
√

4UŨ , Jeff changes sign and this marks the
transition from the SDW phase (Jeff > 0) to the PS region
(Jeff < 0), as shown in Fig. 6 with a lower dashed line. In our
DMRG and iTEBD calculations we could clearly characterize
the first-order transition to the PS region by a marked drop of
the doublon density, as illustrated by the color distribution in
the figure.

The MI-DW transition is associated to the opening of the
spin gap �S , characterized by the Luttinger-liquid parameter in
the spin sector KS = 1 (“+” symbols in Fig. 6). We extract KS
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FIG. 7. Average doublon density 〈P 2〉, order parameters ODW and
OD , and Luttinger-liquid parameter KS (cut of Fig. 6 at Ũ/δJ = 1):
DMRG simulations with L = 180 sites; small filled downwards- and
upwards-pointing triangles depict results for L = 80 and 120 sites).

from the long-wavelength behavior of the static spin structure
factor [49]:

Sn− (k) = 1

L

∑
i,j

ei(i−j )k〈ni−nj−〉. (15)

Since HNN breaks the spatial reflection symmetry, we do not
observe a separate BOW phase, as it is the case for Hubbard
models with standard density-density NN interactions [50],
but a nonvanishing BOW order OD in the DW phase, due
to the preferred creation of excitations in a particular spatial
direction.

Several physical quantities and order parameters have been
considered and numerically calculated in order to mark the
phases and the phase transitions described so far. Figure 7
presents a plot of them on a vertical cut of the phase diagram
of Fig. 6: we fix Ũ/δJ1 = 1 and vary � across the MI to DW
phase transition. As already evident from the color scale in
Fig. 6, the average double occupancy 〈P 2〉 increases rather
smoothly from a finite value at zero NN interaction to the
maximum 〈P 2〉 = 0.5 in the deep density-wave phase limit,
already at J0/� = 0.12. In the same range, the DW order
parameter ranges from zero in the MI state to its maximum
value on a narrower interval, which allows us to mark more
precisely the MI-DW transition. Conversely, the Luttinger-
parameter clearly characterizes the opening of a spin gap �S

and the simultaneous suppression of SDW correlations around
the region J0/� 
 0.6 and 0.8. The BOW order is instead

completely enclosed in the dominating DW curve, which does
not allow us to distinguish uniquely the BOW phase.

V. CONCLUSION AND OUTLOOK

A multicolor modulation of the lattice depth allows for
a flexible separate manipulation of (a) correlated hopping,
controlled by the modulation amplitudes δVs ; (b) occupation-
dependent gauge fields, given by the phase shift φs ; (c)
effective on-site interactions, provided by the detuning Ũ ; and
(d) NN interactions, that depend on J0/� and J0/|� ± U |.
The three-color modulation thus provides an experimentally
straightforward method for engineering a very broad class
of lattice models, including Hubbard Hamiltonians with
correlated hopping, peculiar extended models, and the two-
component anyon-Hubbard model. In particular, the control-
lable quantum statistics of the 2-AHM results in a peculiar
multicomponent phase of coexisting superconducting and
metallic components.

Multicolor modulation permits several further interest-
ing extensions, including the control of three-body interac-
tions [51]. In combination with a Raman-induced coupling
of several spin components [11,12] one may study density
dependent magnetic fields [31]. Other scenarios could pave a
realistic exploration path towards the simulation of dynamical
gauge fields with cold atoms in optical lattices, exploring, e.g.,
occupation-dependent non-Abelian fields and gauge fields in
Fermi-Bose mixtures.
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APPENDIX A: MULTICOMPONENT PHASE

1. Two-particle model

We assume for simplicity β = 1, hence we consider the
model described in Eq. (8). We are interested in the two-
particle problem, with one ↑ particle and one ↓ particle. Let
|D(j )〉 be a doubly occupied site, and |S(j,j + l)〉 a singlet
state placed in sites j and j + l. Then

Heff|D(j )〉 = −δJ1√
2

[eiφ|S(j,j + 1)〉 + e−iφ |S(j − 1,j )〉] + Ũ |D(j )〉, (A1)

Heff|S(j,j + 1)〉 = −δJ1√
2

[eiφ|D(j + 1)〉 + e−iφ|D(j )〉] − δJ1

2
[|S(j − 1,j + 1)〉 + |S(j,j + 2)〉], (A2)

Heff|S(j,j + l)〉 l>1= −δJ1

2
[|S(j − 1,j + l)〉 + |S(j + 1,j + l)〉 + |S(j,j + l − 1)〉 + |S(j,j + l + 1)〉]. (A3)

Let us define

|D(k)〉 = 1√
L

∑
l

eikl|D(l)〉, (A4)

|S(j,k)〉 = 1√
L

∑
l

eik(l+j/2)|S(l,l + j )〉 (A5)
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with k the center-of-mass momentum of the pair, and L

the number of sites. Then Heff = ∑
k Heff(k), with Heff(k) =

H0(k) + H1(k), where

H0(k) = Ũ |D(k)〉〈D(k)| − A(k)[|S(1,k)〉〈D(k)| + H.c.],

H1(k) = −B(k)
∑
j�1

[|S(j,k)〉〈S(j + 1,k)| + H.c.], (A6)

with A(k) = √
2δJ1 cos(k/2 − φ) and B(k) = δJ1 cos(k/2).

We may diagonalize H0:

H0(k) = E+(k)|P̃ (k)〉〈P̃ (k)| + E−(k)|P (k)〉〈P (k)|, (A7)

where the eigenenergies are

E±(k) = Ũ

2
±

√(
Ũ

2

)2

+ A(k)2, (A8)

and the corresponding eigenstates are

|P̃ (k)〉 = cos θ (k)|D(k)〉 + sin θ (k)|S(1,k)〉,
|P (k)〉 = − sin θ (k)|D(k)〉 + cos θ (k)|S(1,k)〉, (A9)

with tan θ (k) = Ũ/2−E−(k)
A(k) . The Hamiltonian H0 characterizes

deeply bound pairs. We may then split H1(k) = Hc(k) +
Hu(k), where

Hu(k) = −B(k)
∑
j�2

[|S(j,k)〉〈S(j + 1,k)| + H.c.] (A10)

determines the physics of broken pairs, where the dynamics
of the relative coordinate j is given by the hopping rate B(k),
and

Hc(k) = −B(k)(sin θ (k)|P (k)〉
+ cos θ (k)|P̃ (k)〉)〈S(2,k)| + H.c. (A11)

characterizes the coupling between deeply bound and unbound
pairs. Note that such a coupling is also given by B(k).

Let us consider φ = π
2 . In that case,

E±(k) = Ũ

2
±

√(
Ũ

2

)2

+ 2δJ 2
1 sin2(k/2). (A12)

The minimal energy is clearly for k = π , EP ≡
E−(π ) = Ũ

2 ±
√

( Ũ
2 )

2 + 2δJ 2
1 . If existing, bound pairs

will quasicondense in |P 〉 ≡ |P (π )〉. Crucially, B(π ) = 0,
and hence Hc = 0. As a result, |P 〉 remains a deeply bound
two-particle eigenstate, fully decoupled from the unbound
pairs, irrespective of the value of Ũ/δJ1. In contrast, for
φ = 0, i.e., without the ODG, the bound pairs are fully
connected with the rest and cannot be formed unless Ũ < 0
dominates. For φ in the vicinity of π/2 the coupling Hc may
be considered perturbative, and deeply bound pairs due to the
ODG still exist even if φ is not exactly π/2.

The existence of these pairs that are deeply bound by
the ODG rather than by attractive interactions is crucial
to understand the nature of the MC phase. The metallic
phase is stable if EP /2 > EF , with EF the Fermi energy
of the metal. However, for decreasing Ũ > 0, EF < EP /2,
and hence it is energetically favorable to pair part of the
Fermi sea into |P 〉 pairs, until reaching an equilibrium at a

new Fermi energy E′
F = EP /2. This partial pairing, and the

corresponding coexistence of a two-component metal and a
superconductor, explains the MC phase and its c = 3 central
charge. For E−(π ) < −2δJ1 (which occurs at Ũ/δJ1 
 −1)
the Fermi sea is completely depleted, and the system enters
the fully paired (SS) phase.

2. Momentum distribution

The momentum distribution of the ↑ component in the |P 〉
state is n

(P )
↑ (k) = ∑

i,j eik(i−j )〈P |c†i,↑cj,↑|P 〉, where

〈P |c†l,↑cl,↑|P 〉 = 1

L
, (A13)

〈P |c†l+1,↑cl,↑|P 〉 = 〈P |c†l−1,↑cl,↑|P 〉∗ = − sin[2θ (π )]

L
√

2
eiπ/2,

(A14)

〈P |c†l+2,↑cl,↑|P 〉 = 〈P |c†l−2,↑cl,↑|P 〉 = − sin2[θ (π )]

2L
, (A15)

and other correlations are zero. After normalizing,

n
(P )
↑ (k) = 1

2π
[1 −

√
2 sin[2θ (π )] sin(k/2)

− sin2 θ (π ) cos(2k)] (A16)

with θ (π ) = arctan [χ +
√

χ2 + 1], with χ = Ũ

2
√

2δJ1
. For the

↓ component the expression is identical. This expression is in
excellent agreement with the blurred momentum distribution
that is found in our numerics in the MC phase [Fig. 3(c)] in
addition to the partially depleted slablike Fermi sea.

APPENDIX B: DERIVATION OF THE EFFECTIVE
MODEL VIA MAGNUS EXPANSION

For the simplified case of a time periodic Hamiltonian, i.e.,
assuming that the frequencies ω1 = � and ω2 = � + U are
integer multiples of ω = |� − U | (ω1 = m1ω, ω2 = m2ω),
we may obtain the same effective Hamiltonian of Eqs. (3)
and (4) employing a formal Magnus expansion [52–55] or
Floquet analysis [22]. Following the presentation of Ref. [55]
we may express the effective Hamiltonian as a series in 1/ω

as Heff = H(0) + H(1)
ME + O( 1

ω2 ), ultimately resulting from an
integral over time on period T = 2π/ω. The lowest-order term

H(0) = 1

T

∫ T

0
dt1H(t1) (B1)

provides Eq. (3). The first-order correction in 1/ω may be
expressed as [52]

H(1)
ME = −i

2T

∫ T

0
dt2

∫ t2

0
dt1[H(t2),H(t1)]. (B2)
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If the time periodic Hamiltonian is given by a Fourier series H(t) = H0 + ∑
n V (n)einωt , then

H(1)
ME = 1

ω

∑
n

1

n
([V (n),V (−n)] − [V (n),H0] + [V (−n),H0]). (B3)

In our case, the Fourier series is restricted to the following three terms:

V (±1) = −δJ3

2
Hhop, V (±m1) = −e±iφ δJ1

2
Hhop, V (±m2) = −e±iφ δJ2

2
Hhop, (B4)

where Hhop = ∑
j,σ c

†
j+1,σ cj,σ . Equation (2) can be recovered by expanding the exponential term e±itUnjσ = 1 + (e±itU − 1)njσ .

Then

H̃(t) = [J0 + δJ (t)](eit[�−U ]V̄ (1) + eit�V̄ (2) + eit[�+U ]V̄ (3) + H.c.) (B5)

with

V̄ (1) =
∑
j,σ

d
†
j,σ cj+1,σ − d

†
j,σ dj+1,σ , V̄ (2) =

∑
j,σ

(d†
j,σ − cj,σ )(d†

j+1,σ − cj+1,σ ), V̄ (3) =
∑
j,σ

c
†
j,σ dj+1,σ − d

†
j,σ dj+1,σ .

where we employ the correlated annihilation operator dj,σ ≡ nj,σ̄ cj,σ . Neglecting terms of order J0δJ and δJ 2 we may write

H(1)
ME = J 2

0

� − U
[V̄ (1),V̄ (1)†] + J 2

0

�
[V̄ (2),V̄ (2)†] + J 2

0

� + U
[V̄ (3),V̄ (3)†] + O(δJ ), (B6)

which after some algebra yields Eq. (4).
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