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Abstract

We show that an algorithmic construction of sequences of recursive trees leads to
a direct proof of the convergence of random recursive trees in an associated Doob-
Martin compactification; it also gives a representation of the limit in terms of the
input sequence of the algorithm. We further show that this approach can be used to
obtain strong limit theorems for various tree functionals, such as path length or the
Wiener index.
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1 Introduction

A tree with node set [n] := {1, . . . , n} is recursive if the node numbers along the
unique path from 1 to j increase for j = 2, . . . , n. Trees with this property may be
encoded by a sequence (j1, . . . , jn−1), where jk ∈ [k] denotes the direct ancestor of k + 1

(next node on the way to the ‘root’, which is at 1). Such a sequence also gives a recipe for
growing the corresponding tree: Starting with the unique recursive tree of size (number
of nodes) 1, which consists of the root node only, we obtain the respective next tree
by joining node k to node jk−1, k = 2, . . . , n. Choosing the ancestor of the next node
uniformly at random among the nodes of the current tree we obtain a sequence Y1, Y2, . . .
of random recursive trees, which we collect into a stochastic process Y = (Yn)n∈N.

A survey of random recursive trees and their applications is given in [23]; for a
more recent reference see [4, Chapter 6]. Various functionals of these structures have
been considered by different authors, a representative but not exhaustive list being
node degrees [25, 9, 11], height [20], path length [15, 2], profiles [8], spectra [1], and
various ‘topological’ indices, such as the Wiener and the Zagreb indices [17, 6]. Often
the results are limit theorems, with (strong) convergence of the random variables or
convergence of their distributions as n→∞. This, in the authors’ view, naturally raises
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Random recursive trees

the question of convergence of the trees themselves, with the aim of developing a
systematic approach to the strong asymptotics of tree functionals. The Doob-Martin
compactification, initiated by the fundamental paper [3], is a general tool that can be
used in this context; see [26] for a recent textbook introduction. In particular, using
concepts from discrete potential theory it provides an enlargement of the state space
of a Markov chain such that the variables converge almost surely. This approach has
been used in [5] to obtain convergence results for a class of randomly growing discrete
structures that includes various random trees.

If we use the encoding explained in the opening paragraph then it is possible to
retrace the full sequence Y1, . . . , Yn−1 of previous trees from the current tree Yn. In
such a case the discrete potential theory approach leads to concept of convergence that
is of little help for proving convergence of functionals—informally, in such a situation
‘the sequence is the limit’; see [5, Section 9] for details. Noting that the functionals of
interest are often invariant under relabelling (a phrase that has to be made precise)
we therefore choose a model that is coarser in the sense that it ‘forgets the labels’ but
retains the Markov property. This partial loss of information turns the sequence Y into
a sequence X = (Xn)n∈N of randomly growing subsets of a fixed infinite tree. For this
chain, the Doob-Martin compactification has been determined in [5]. The first of our
aims here is to show that the convergence result provided by the general theory, i.e. the
fact that a (transient) Markov chain converges a.s. in its own Doob-Martin topology, can
be obtained more directly by using a suitable algorithmic construction, and that this
approach has the advantage of leading to a description of the limit X∞ in terms of the
input sequence of the algorithm. The representation serves as the basis for the analysis
of tree functionals such as different notions of path length and the Wiener index; indeed,
our second objective is to obtain strong limit theorems for such functionals.

The present paper continues the research presented in [5] and [10]. In the earlier
article the boundary theory approach was applied to Markov chains that are nested
counting processes. These models contain binary search trees and the trees in present
paper as special cases. The associated compactifications were worked out by going back
to the general definition of the Doob-Martin compactification via an extension of the
Martin kernel. Many Markov chains of randomly growing discrete structures arise in
connection with a sequential algorithm with random input. It was noted in [10] that in
the case of binary search trees the underlying algorithm can be used to obtain almost
sure convergence in the Doob-Martin topology (in fact, even in stronger topologies),
and that such convergence results on the level of the discrete structures themselves
can be used to unify and, in some cases, amplify known results on the convergence of
functionals of the structures. In the present paper we follow the strategy in [10] to
obtain similar representations and limit theorems in the case of recursive trees. As
will become apparent below, the implementation offers some challenges, resulting, for
example, from the fact that the underlying tree is no longer locally finite.

In the next section we first take care of a variety of formal details, including some
terminology and notation, and then give a new ‘constructive’ proof of the basic limit
result. In Section 3 we discuss various tree functionals and comment on the connections
to related work.

2 The limit tree and its distribution

We introduce Harris trees and the Harris chain generated by the RRT process; in
view of its confounding potential we spell out the details of the transition from recursive
to Harris trees. From the RRT sequence the Harris chain inherits a useful decomposition
property; see Section 2.2. Next, we recall from [5] the Doob-Martin compactification
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Figure 1: The Harris trees with four nodes.

of the Harris chain. As mentioned in the introduction it is one of the main points of
the present paper that an algorithmic construction provides an alternative approach:
We explain this algorithm and then use it to obtain a new proof of that part of [5,
Theorem 6.1] that is relevant for our present purposes, together with a representation
of the limit. Finally, we collect some auxiliary results on the distribution of the limit that
will be useful in the next section when we analyze tree functionals.

2.1 From recursive trees to Harris trees

We regard the set V = N? of finite sequences of natural numbers as the set of
potential tree nodes and write u :v = (u1, . . . , uk, v1, . . . , vl) for the concatenation of the
nodes u = (u1, . . . , uk) and v = (v1, . . . , vl), abbreviating u : (i) to ui, i ∈ N. By a Harris
tree we mean a finite subset x of V with the properties

(H1) if u :v ∈ x, then u ∈ x,

(H2) if ui ∈ x with i > 1, then uj ∈ x for j = 1, . . . , i− 1.

Condition (H1) is prefix stability if we regard nodes as words with letters from the
alphabet N. In a family tree interpretation, condition (H2) means that a non-root node
must either be the first child of its ancestor node or that it must have earlier-born
siblings. Harris trees are also known as Ulam-Harris trees; they may be seen as rooted
planar trees with a specific labelling of nodes.

We write H for the set of Harris trees and Hn for the subset of those trees that have
n nodes. In order to relate Harris trees to recursive trees we map the nodes j of a
recursive tree to words u(j) = (u1(j), . . . , uk(j)) ∈ V as follows: The length k of the word
is the distance to the root of (the node labelled) j, and uk(j) is the number of nodes
i ∈ [j] that have the same direct ancestor as j. The prefix sequences similarly encode
the nodes from the root to j. This corresponds to an embedding of recursive trees into
the plane where new nodes are placed to the right of their siblings.

Clearly, there are (n− 1)! possibilities for the encoding sequences for recursive trees
with n nodes, hence this is also the number of recursive trees with n nodes. Figure 1
shows the five elements of H4. Of the (4 − 1)! = 6 recursive trees with four nodes,
encoded by (1, 2, 3), (1, 1, 2), (1, 2, 1), (1, 2, 2), (1, 1, 3) and (1, 1, 1) respectively, the second
and third are mapped to the same Harris tree. The figure also offers an opportunity to
comment on the informal expression of ‘forgetting the labels’ that we used above and
that often appears in the literature: It is tempting to regard this as passing from graphs
to isomorphism classes, but this is not what is happening here—indeed, the second and
the fourth Harris tree in Figure 1 are isomorphic as rooted trees. A compatible notion of
equivalence and isomorphism in the present situation can be obtained on the basis of
the above planar embedding of recursive trees.

Writing Ψ for the function that maps recursive trees to Harris trees, we define the
Harris chain X = (Xn)n∈N by Xn := Ψ(Yn) for all n ∈ N, where Y is the RRT chain
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introduced in Section 1. Informally, instead of passing to the graph isomorphim classes
of the recursive trees we still keep track of the ordering in time of the descendants of
the individual nodes: The respective components in the representation of the nodes as
elements of N? reflect the order of the siblings, with 1 being the firstborn and so on.

In the original process, Yn is uniformly distributed on its range, but Xn is not
uniformly distributed on Hn as explained above for n = 4. In this new process, it is no
longer possible to ‘trace back’ to previous values. As Ψ does not change the number of
nodes it is adapted to the combinatorial family H in the sense that P (Xn ∈ Hn) = 1 for
all n ∈ N. To see that it retains the Markov property and to obtain the corresponding
transition probabilities we argue as follows: Let yn, y′n be recursive trees with n nodes
and let yn+1 be a recursive tree with n+ 1 nodes. Suppose that Ψ(yn) = Ψ(y′n) =: xn and
let xn+1 := Ψ(yn+1). If xn ⊂ xn+1 then there is a unique recursive tree zn+1 such that
Ψ(zn+1) = xn+1 and

P (Xn+1 = xn+1|Yn = yn) = P (Yn+1 = zn+1|Yn = yn) =
1

n
,

and similarly there is a z′n+1 with the same property for y′n. Clearly, if xn 6⊂ xn+1, then
these probabilities will be 0. This shows that

P (Xn+1 = xn+1|Yn = yn) = P (Xn+1 = xn+1|Yn = y′n)

whenever Ψ(yn) = Ψ(y′n), and further that

P (Xn+1 = xn+1|Xn = xn) =

{
1/n, xn ⊂ xn+1,

0, otherwise,

for xn ∈ Hn, xn+1 ∈ Hn+1. By [14, Lemma 2.5] the first of these implies that X is a
Markov chain; the second shows that, as with Y , we select the ancestor for the new node
uniformly at random in the step from Xn to Xn+1.

2.2 A tree decomposition

We associate with a node u = (u1, . . . , uk) ∈ V its ‘flat’ and ‘raised’ version

u[ := (1, u1, . . . , uk), u] :=

{
(1 + u1, u2, . . . , uk) if u 6= ∅,
∅, if u = ∅,

and lift this to trees x ∈ H via

x[ := {u ∈ V : u[ ∈ x}, x] := {u ∈ V : u] ∈ x}.

These are the subtree of x rooted at (1) and the shifted tree that remains if this subtree
is taken out; see Figure 2 for an illustration.

It is well known that the random variables X[
n and X]

n are conditionally independent
given Kn := #X[

n, that Kn is uniformly distributed on [n − 1], and that, conditionally
on Kn = k, X[

n and X]
n have the same distribution as Xk and Xn−k respectively. An

interesting combinatorial proof of the corresponding statement for the Y process, based
on a bijection between permutations and random recursive trees, is given in [2]. An
alternative proof can be obtained on using the algorithmic background to be given in
Section 2.4 below.

2.3 The Doob-Martin compactification of the Harris chain

The paths of the stochastic process X are sequences of growing subsets of the set
V of all potential nodes. We may regard V itself as the infinite Harris tree (note that
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Figure 2: A Harris tree x ∈ H15 and its decomposition into x[ ∈ H7 (blue) and x] ∈ H8

(red); the black edge disappears.

this tree is not locally finite). It can be shown that, in the X-sequence, every potential
node will eventually be an element of the infinite Harris tree. Hence, if we embed H into
{0, 1}V via the node indicators,

x 7→
(
u 7→ 1x(u)

)
,

then Xn converges almost surely to this infinite tree, which is represented by the
function that is constant 1. This, however, does not capture the ‘true’ asymptotics
of X. In contrast, Markov chain boundary theory provides a state space completion
(compactification) H̄ of H, the Doob-Martin compactification, which has in particular the
following properties,

(L) Xn → X∞ ∈ ∂H := H̄ \H with probability 1 as n→∞,

(T) X∞ generates the tail σ-field associated with X, up to null sets.

Here H itself is endowed with the discrete topology (which in turn derives from the
metric that assigns distance 1 to each pair of distinct points). For (T) we require that the
range of Xn is disjoint from the range of Xm if n 6= m. For the Harris sequence this is
the case, so (T) implies that the Doob-Martin compactification captures the persisting
randomness of the sequence, whereas for any one-point compactification the σ-field
generated by the limit will always be trivial in the sense that only 0 and 1 arise as
probabilities of its elements.

The Doob-Martin compactification H̄ of H with respect to the Harris chain has been
identified in [5]. Let

V̄ := N? tN∞ t
∞⊔
k=0

(
Nk × {∞}∞

)
.

In words: V̄ consists of all finite and infinite sequences of natural numbers, plus all
infinite sequences u = (ui)i∈N ⊂ N t {∞} with the property that, for some k ∈ N, ui ∈ N
for i < k and ui =∞ for i ≥ k. For u ∈ V and v ∈ V̄ write u ≤ v if u is a prefix of v and
put

Au := {v ∈ V̄ : u ≤ v}, u ∈ V.

Let V be the σ-field on V̄ generated by the sets Au, u ∈ V, let H̄ be the set of probability
measures µ on (V,V), and endow H̄ with the coarsest topology that makes the functions
µ 7→ µ(Au), u ∈ V, continuous. Finally, embed H into H̄ by identifying x ∈ H with the
uniform distribution on x as a subset of V. Then H̄ is the Doob-Martin compactification
of H induced by the chain X, up to homeomorphism.
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0

0.83 0.04 0.01

0.81 0.22 0.17

0.59 0.39

0.42

Figure 3: The tree obtained from t = (.83, .04, .81, .22, .59, .01, .39, .42, .17, . . .).

2.4 The algorithmic construction

For x ∈ H and u ∈ V let x(u) := {v ∈ V : u : v ∈ x} be the subtree of x rooted at u.
Then the embedding of H into H̄ may be written as

x 7→
(
u 7→ #x(u)/#x

)
,

and we can restate the convergence in the Doob-Martin topology of a sequence (xn)n∈N
with xn ∈ Hn for all n ∈ N to µ ∈ ∂H as

lim
n→∞

1

n
#xn(u) = µ(Au) for all u ∈ V.

Our plan is to prove the almost sure convergence of the Harris chain X in this topology
by using an algorithm that generates X if the input is chosen appropriately.

The recursive tree algorithm maps an input sequence t = (tn)n∈N of pairwise distinct
positive real numbers to an output sequence (xn, φn)n∈N of labelled trees, with xn ∈ Hn
and φn : xn → R. The algorithm works sequentially, starting with x1 = {∅} and the
label φ1(∅) = t0 := 0 for the root node. As explained in Section 1 and at the end of
Section 2.1, we need to specify the direct ancestor of the new node v to be added in the
step from xn to xn+1: We attach v as a next (resp. the first) child to the node with label
max{tj : j = 0, . . . , n − 1, tj < tn} and then label v by tn. Figure 3 shows an example
where new children are positioned to the right of their older siblings. By RT(t) we mean
the sequence (xn)n∈N, i.e. we ignore the labels.

Clearly, if the trees converge, then the limit must be a function of the input sequence.
In order to be able to specify this relationship we need some more notation: Given an
increasing sequence (xn)n∈N of Harris trees, let

τ(u) := inf{n ∈ N : u ∈ xn+1}

(note that xn is built from t1, . . . , tn−1). Further, for any sequence (tn)n∈N of pairwise
distinct elements of the open unit interval let

0 =: t
(n)
0 < t

(n)
1 < t

(n)
2 < · · · < t(n)n < t

(n)
n+1 := 1

be the augmented increasing order statistics associated with the first n values t1, . . . , tn,
and let

κ(u) := #{1 ≤ i ≤ τ(u) : ti ≤ tτ(u)}
be the rank of tτ(u) in t1, . . . , tτ(u), so that t(τ(u))κ(u) = tτ(u). In Figure 3 for example, the

node u = (2, 2) has τ(u) = 4, κ(u) = 2 and tτ(u) = 0.22.
The following result relates the algorithm and the limit object. Let unif(0, 1) be the

uniform distribution on the unit interval. We write L(Y ) for the distribution (law) of the
random quantity Y and sometimes use Y ∼ µ instead of L(Y ) = µ.
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Theorem 2.1. Let ηi, i ∈ N, be independent random variables, with ηi ∼ unif(0, 1) for
all i ∈ N.

(a) The algorithm RT generates the RRT chain in the sense that RT(η) and X are
identical in distribution.

(b) Suppose that X = RT(η). Then Xn converges almost surely to X∞ in the Doob-
Martin topology as n→∞, where on a set of probability 1 the limit X∞ is given by

X∞(Au) = η
(τ(u))
κ(u)+1 − ητ(u) for all u ∈ V. (2.1)

Proof. Part (a) belongs to the folklore of the subject. Due to its importance for the
present paper we recall for the proof that the rank of ηn in η1, . . . , ηn is uniformly
distributed on {1, . . . , n}, and that rank i means that ηn is attached to the node with label

η
(n)
i−1 (which is the root if i = 1).

With each node u we associate the interval I(u) = (ητ(u), η
(τ(u))
κ(u)+1). From the definition

of the RT algorithm, nodes added to the tree at a time n > τ(u) will have prefix u

if and only if ηn ∈ I(u). The random variables ητ(u)+n, n ∈ N, are independent and
uniformly distributed on the unit interval, hence (2.1) follows with the Glivenko-Cantelli
theorem.

Theorem 2.1 can be related to the corresponding result [10, Theorem 1] for binary
search trees via the natural or rotation correspondence between Harris trees and binary
trees [13, Section 2.3.2] [7, p.73]; details will be given in [16].

In addition to the convergence of the trees we also obtain the distribution of the
limit X∞, which takes its values in the set of probability measures µ on (V̄,V). As a
preliminary step we extend the tree decomposition introduced in Section 2.2 to H̄ as
follows: For µ ∈ ∂H with 0 < µ(A(1)) < 1 we define µ[, µ] ∈ ∂H by

µ[(Au) =
µ(Au[)

µ(A(1))
, µ](Au) =

µ(Au])

1− µ(A(1))

for all u ∈ V \ {∅}, and µ[(Au) = µ](Au) = 1 if u = ∅.
Proposition 2.2. Let X∞ be as in Theorem 2.1. Then the random variables η :=

X∞(A(1)), X
]
∞ and X[

∞ are independent. Further, η ∼ unif(0, 1), and X]
∞ and X[

∞ have
the same distribution as X∞.

Proof. Let η = (ηi)i∈N be a sequence of independent, unif(0, 1)-distributed random
variables. We define two new sequences η[ = (η[i )i∈N and η] = (η]i )i∈N by successively
transforming the ηi’s with ηi > η1 into η[j = (ηi − η1)/(1 − η1) and the ηi’s with ηi < η1

into η]j = ηi/η1. Clearly, η1, η[ and η] are independent, and η[ and η] are again sequences
of independent, unif(0, 1)-distributed random variables. From this, the statement of the
theorem follows in view of X∞(A(1)) = 1− η1, X[ = RT(η[), and X] = RT(η]).

We call µ atom-free and diffuse if

µ({u}) = 0 and µ(Au) > 0 for all u ∈ V.

Let Σ∞ ⊂ [0, 1]∞ be the infinite-dimensional probability simplex, that is, the set of all
sequences (ρi)i∈N with ρi ≥ 0 for all i ∈ N and

∑∞
i=1 ρi = 1. An atom-free and diffuse µ

associates with each u ∈ V an element ρ(µ, u) = (ρi(µ, u))i∈N of Σ∞ via

ρi(µ, u) :=
µ(Aui)

µ(Au)
for all i ∈ N.
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For later use we note that, for such µ,

ρ(µ, u]) = ρ(µ], u), ρ(µ, u[) = ρ(µ[, u) for all u ∈ V.

Clearly, µ can be reconstructed from ρ(µ, u), u ∈ V. In fact,

µ(Au) =

k∏
i=1

ρui

(
µ, (u1, . . . , ui−1)

)
for all u = (u1, . . . , uk) ∈ V. (2.2)

Of course, for a random input both the τ - and the κ-values will be random, as will be µ.
We say that a random variable ξ = (ξi)i∈N with values in Σ∞ has the (standard) GEM

(Griffiths-Engen-McCloskey) distribution if its components can be written as

ξ1 = ζ1, ξi = ζi

i−1∏
j=1

(1− ζj) for i > 1, (2.3)

with ζi, i ∈ N, independent and ζi ∼ unif(0, 1) for all i ∈ N.
At each level k, the sets Au with |u| = k provide a partition of V̄ \ Nk−1. The

corresponding values X∞(Au) are related to the kth nested decomposition of the unit
interval into descending records of the input sequence. This interpretation suggests the
following result, which gives a description of the distribution of X∞.

Theorem 2.3. Let X∞ be as in Theorem 2.1. Then the random variables ρ(X∞, u), u ∈ V,
are independent and GEM distributed.

Proof. By Proposition 2.2, ρ1(X∞, ∅) = 1− η1 = X∞(A(1)), X
[
∞ and X]

∞ are independent.
Repeating the decomposition with the respective raised part, we obtain that the variables

ρi(X∞, ∅)
ρi−1(X∞, ∅)

, i ∈ N,

with ρo(X∞, ∅) := 1, are independent and unif(0, 1)-distributed. Moreover, they are
independent of the random probability measures X∞,i, i ∈ N, defined by

X∞,i(Au) :=
X∞(A(i):u)

X∞(A(i))
, u ∈ V.

Finally, these measures are independent and identical in distribution to X∞. (It is easy to
see that X∞,i arises as the [-part of the ith iteration of the decomposition). In particular,
ρ(X∞, ∅) ∼ GEM. Taken together, this proves the case k = 0 of the following statement:

(i) ρ(X∞, u) ∼ GEM for all u ∈ V with |u| ≤ k,

(ii) the random sequences ρ(X∞, u), u ∈ V, |u| ≤ k, are independent,

(iii) the random measures X∞,v, v ∈ V, |v| = k + 1, given by

X∞,v(Au) :=
X∞(Av:u)

X∞(Av)
, u ∈ V,

are independent and identical in distribution to X∞,

(iv) {ρ(X∞, u) : u ∈ V, |u| ≤ k} and {X∞,v : v ∈ V, |v| = k + 1} are independent.

We can apply the same reasoning used for k = 0 separately to each of the nodes at level
k + 1 to obtain the induction step from k to k + 1.

This shows that the above compound statement holds for all k ∈ N; clearly, (i) and (ii)
imply the assertion of the theorem.

In view of the fact that X∞(Au) is a function of the variables ρ(X∞, v) with |v| < |u|
we obtain that X∞(Au) and ρ(X∞, u) are independent, for all u ∈ V.
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2.5 Conditional distributions

In order to be able to use the general limit theorem for the analysis of tree functionals
in the next section we need the conditional distribution of X∞ given Xn. For this we rely
on the results in [5, Section 6]; we also need some more notation.

The distribution Beta(α, β) with parameters α, β > 0 is given by its density

f(t|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
tα−1(1− t)β−1, 0 < t < 1. (2.4)

For later use we recall that

Eξ =
α

α+ β
, Eξ2 =

α(α+ 1)

(α+ β)(α+ β + 1)
if ξ ∼ Beta(α, β), (2.5)

and, clearly, Beta(1, 1) = unif(0, 1). For a = (a1, . . . , ak) ∈ N? we write GEM(a) for the
distribution of the Σ∞-valued random sequence ξ = (ξi)i∈N given by

ξ1 = ζ1, ξi = ζi

i−1∏
j=1

(1− ζj) for i > 1, (2.6)

where ζi, i ∈ N, are independent and

L(ζi) =


Beta

(
ai, 1 +

∑k
j=i+1 aj

)
, for i < k,

Beta(ak, 1), for i = k,

Beta(1, 1), for i > k.

(2.7)

Interestingly, the marginals of such random sequences are again beta distributed (of
course, they are no longer independent).

Lemma 2.4. If ξ = (ξi)i∈N ∼ GEM(a) with a = (a1, . . . , ak) ∈ N?, then, with b :=
∑k
i=1 ai,

ξi ∼ Beta(ai, 1 + b− ai) for i = 1, . . . , k.

Moreover, with (ζi)i∈N as in (2.6) and (2.7)

1−
k∑
j=1

ξj =
k∏
j=1

(1− ζj) ∼ Beta(1, b).

Proof. This follows with the known rule for products of independent beta-distributed
random variables, see e.g. [12, p.378, Exercise 11.8].

Recall that the distribution of X∞ is specified by the (joint) distribution of the
Σ∞-valued quantities ρ(X∞, u), u ∈ V, and that #x(ui) > 0 implies #x(uj) > 0 for
j = 1, . . . , i− 1 by property (H2) of Harris trees; see also (2.2).

Theorem 2.5. The conditional distribution of ρ(X∞, u) given Xn is GEM(a), where
a = (a1, . . . , ak) with

k = max{i ∈ N : #Xn(ui) > 0}, ai = #Xn(ui) for i = 1, . . . , k. (2.8)

Further, the random sequences ρ(X∞, u), u ∈ V, are conditionally independent given
Xn.

Proof. By the general theory of Markov chain boundaries the conditional distribution
Q2 of X∞ given Xn = x ∈ Hn has density K(x, ·) with respect to the (unconditional)
distribution Q1 of X∞, where K denotes the extended Martin kernel. Note that Q1 and
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Q2 are probability measures on the set H̄ of probability measures µ on (V̄,V), where
the σ-field on H̄ is the one generated by the evaluation maps µ 7→ µ(Au), u ∈ V. The
extended Martin kernel has been determined in [5]: It can be written as the product of
‘local extended kernels’,

K(x, µ) =
∏
u∈V

Ku

(
u(x), ρ(µ, u)

)
, (2.9)

where u(x) = (a1, . . . , ak) ∈ N? is given by (2.8) with x instead of Xn, and

Ku(x, s) =

(∑k
i=1 ai

)
!∏k

i=1(ai − 1)!

k∏
i=1

sai−1i

k−1∏
i=1

(
1−

i∑
j=1

si

)
(2.10)

for all s = (si)i∈N ∈ Σ∞. Also, Ku(x, ·) is the conditional density of the distribution Q2,u of
ρ(X∞, u) given Xn = x with respect to its corresponding unconditional counterpart Q1,u,
which we know to be the GEM distribution. The product form (2.9) implies that the
independence of the sequences ρ(X∞, u), u ∈ V, remains intact in the transition from Q1

to Q2. This proves the second part of the theorem.
Now let T : Σ∞ → [0, 1]∞ be given by

(si)i∈N 7→ (ti)i∈N, ti :=
si

1− s1 − · · · − si−1
for all i ∈ N.

This is the inverse of the transition from ζ to ξ in (2.6). We know that the push-forward
QT1,u of Q1,u under T is the infinite product of uniforms. The first part of the theorem
refers to the push-forward QT2,u of Q2,u under T ; it asserts that a density of QT2,u with
respect to QT1,u is given by

g(t) =

k−1∏
i=1

f
(
ti

∣∣∣ai, k∑
j=i+1

aj

)
· f(tk|ak, 1)

for almost all t = (ti)i∈N ∈ [0, 1]∞, with f as in (2.4). With all this notation in place
it remains to check that g ◦ T = Ku(x, ·), with Ku as in (2.10). This, however, is a
bookkeeping task.

The embedding of H into H̄, which maps Xn to the uniform distribution on its nodes,
leads to an interpretation of Xn as a real-valued random function onV via u 7→ #Xn(u)/n.
Similarly, the limit X∞ can be seen as the random function u 7→ X∞(Au) on V. Obviously,
all these functions are bounded and, if we endow V with the discrete topology, they
are continuous. This displays Xn, n ∈ N, and X∞ as random elements of an infinite-
dimensional separable Banach space.

Corollary 2.6. Let (Fn)n∈N, with Fn := σ(X1, . . . , Xn), n ∈ N, be the natural filtration
of the Harris chain (Xn)n∈N. Then

Xn = E[X∞|Fn] for all n ∈ N.

In particular, (Xn,Fn)n∈N is a martingale.

Proof. We have E[X∞|Fn] = E[X∞|Xn] due to the Markov property. Further, the notion
of infinite-dimensional martingale, see e.g. [18, Section-V.2], in the present context
means that we have to check that

E[X∞(Au)|Xn] =
1

n
#Xn(u) for all u ∈ V.
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Let u = (u1, . . . , uk) ∈ V be given and let

ξi := ρui

(
X∞, (u1, . . . , ui−1)

)
, i = 1, . . . , k.

From (2.2) we obtainX∞(Au) =
∏k
i=1 ξi, and by Theorem 2.5 the factors are conditionally

independent given Xn. Hence, using Lemma 2.4 and (2.5),

E[X∞(Au)|Xn] =

k∏
i=1

E[ξi|Xn]

=

k∏
i=1

#Xn

(
(u1, . . . , ui)

)
1 +

∑∞
j=1 #Xn

(
(u1, . . . , ui−1, j)

)
=

k∏
i=1

#Xn

(
(u1, . . . , ui)

)
#Xn

(
(u1, . . . , ui−1)

) =
1

n
#Xn(u).

This result may be seen as a consequence of the general Doob-Martin construction.

3 Tree functionals

Let Y = (Yn)n∈N be the RRT chain and let X = (Xn)n∈N, with Xn = Ψ(Yn) for
all n ∈ N, be the associated Harris chain. In this section we consider functionals of
the recursive trees that are invariant under Ψ and hence can be written as functions
Vn = Φ(Xn) of the X-variables. A typical example is the total path length, which is the
sum of the depth of all nodes in the tree. The methods discussed below can be applied
to fairly general functions Φ, but here we will restrict ourselves to the real-valued case.

There are two main probabilistic methods to obtain distributional or even strong limit
results for suitably standardized versions of the V -variables. In the first of these, we try
to find a suitable martingale and then apply a martingale limit theorem. In the second,
we use the internal structure of the X-variables to find a recursion for the V -variables
and then apply Banach’s fixed point theorem with a suitably chosen metric space of
probability measures. The prototypical example is the number of comparisons needed by
the Quicksort algorithm, which can be related to the total path length of binary search
trees: The martingale approach is carried out in [21], whereas [22] employed the second
approach, which since then has come to be known as the contraction method. The two
methods may fruitfully be combined, as exemplified by [2] in connection with the total
path length of random recursive trees.

On its own the martingale method does not say anything about the limit, and the
contraction method may miss the fact that the random variables converge almost surely
or in Lp and hence in a stronger mode than convergence in distribution. The method sug-
gested in the present paper and in [10] needs some additional investment in connection
with proving the convergence of the discrete structures themselves but then provides a
unifying approach: In view of the fact that X∞ generates the tail σ-field associated with
the Harris chain, see property (T) in Section 2.3, any almost sure limit Y∞ must be a
functional Y∞ = Ψ(X∞) of X∞, up to null sets. Projecting Y∞ on the natural filtration we
obtain a convergent martingale, which often turns out to be a simple transformation of
the variables Vn. Below we carry this out for two versions of the total path length and for
the Wiener index. In the final subsection we consider a new functional that combines the
two versions of the pathlength into a quantity that can serve as a measure of complexity
for the algorithm presented in Section 2.4.
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3.1 Total path length

This is simply the sum of all node depths and can be written in terms of subtree sizes
as

TPL(x) :=
∑
u∈x
|u| =

∑
u∈x

#x(u)−#x, x ∈ H.

Here we have written |u| for the length (or depth) k of u = (u1, . . . , uk) ∈ V. We need the
auxiliary function

C : Σ∞ → [−∞, 1], (si)i∈N 7→ 1 +

∞∑
i=1

si log si.

The harmonic numbers

H0 := 1, Hn :=

n∑
k=1

1

k
for all n ∈ N,

will appear repeatedly; we will write H(n) instead of Hn whenever this is typographically
more convenient. We collect some auxiliary statements.

Lemma 3.1. (a) If ξ ∼ GEM(a) for some a ∈ N? then ‖C(ξ)‖p <∞ for all p ≥ 1.

(b) If ξ ∼ GEM(a) with a = (a1, . . . , ak) ∈ N?, then

EC(ξ) = 1 +

∑k
i=1 aiH(ai)

1 +
∑k
i=1 ai

− H
(

1 +

k∑
i=1

ai

)
. (3.1)

In particular, EC(ξ) = 0 if ξ ∼ GEM.

Proof. For the proof of the first part we assume that a = ∅ and use the representation
of ξ by a sequence (ζi)i∈N of independent random variables with distribution unif(0, 1),
see (2.6). Then, for each i ∈ N,

‖ξi log ξi‖p =
∥∥∥(ζi i−1∏

j=1

(1− ζj)
)(

log ζi +

i−1∑
k=1

log(1− ζk)
)∥∥∥

p

≤
∥∥∥ζi(log ζi)

i−1∏
j=1

(1− ζj)
∥∥∥
p

+

i−1∑
k=1

∥∥∥ζi log(1− ζk)

i−1∏
j=1

(1− ζj)
∥∥∥
p

= ‖ζi log ζi‖p
i−1∏
j=1

‖1− ζj‖p

+

i−1∑
k=1

‖ζi‖p‖(1− ζk) log(1− ζk)‖p
∏

j∈[i−1]\{k}

‖1− ζj‖p

= ‖ζ1 log ζ1‖p‖ζ1‖i−1p + (i− 1)‖ζ1‖p‖ζ1 log ζ1‖p‖ζ1‖i−2p ,

where we have used independence and L(ζi) = L(1− ζi) = L(ζ1). In view of∫ 1

0

|tp(log t)p| dt <∞, ‖ζ1‖p < 1,

this shows that ‖ξi log ξi‖p decreases at an exponential rate as i→∞. The generalization
to an arbitrary a ∈ N? is straightforward.

For the proof of (b) we first note that, for ζ ∼ Beta(i, j) with i, j ∈ N,

E
(
ζ log(ζ)

)
=

i

i+ j

(
Hi −Hi+j

)
. (3.2)
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Suppose now that ξ ∼ GEM(a) with a = (a1, . . . , ak) ∈ N? and let b :=
∑k
j=1 aj . We have

ξi ∼ Beta(ai, 1 + b− ai) for j = 1, . . . , k by Lemma 2.4, hence

Eξi log ξi =
ai

1 + b

(
H(ai)−H(1 + b)

)
, i = 1, . . . , k.

Using the second part of Lemma 2.4 we see that for i > k we may write ξi = αiβi
with αi and βi independent, αi ∼ Beta(1, b) and βi the product of i − k independent
unif(0, 1)-distributed random variables. This gives, using (3.2) again,

Eξi log ξi = Eαi Eβi log βi + Eβi Eαi logαi

=
1

1 + b

i− k
2i−k−1

(−1)

4
+

1

1 + b

(
H(1)−H(1 + b)

) 1

2i−k
,

so that, after some elementary manipulations,

∞∑
i=k+1

Eξi log ξi = − H(1 + b)

1 + b
.

Putting pieces together we finally arrive at (3.1).

Let

|u|1 :=

k∑
i=1

ui for all u = (u1, . . . , uk) ∈ V. (3.3)

Concatenating (‘padding’) a finite sequence of non-negative integers with an infinite
sequence of 0’s gives a natural embedding ofN? into the space `1 of summable sequences
of real numbers; in this extension |u|1 is simply the associated `1-norm. In a family tree
interpretation |u|1 is the sum of all birth orders in the line from u to the root. Informally,
this notion enables us to cope with the fact that the infinite tree underlying the Harris
chain is not locally finite, in contrast to the situation with binary search trees.

Lemma 3.2. For u ∈ V with |u|1 = k,

X∞(Au) =d

k∏
i=1

ζi,

with ζ1, . . . , ζk independent, ζi ∼ unif(0, 1) for i = 1, . . . , k.

Proof. With each u = (u1, . . . , ul) ∈ V we associate its direct predecessor respectively
direct elder sibling ū by

ū :=

{
(u1, . . . , ul−1), if ul = 1,

(u1, . . . , ul−1, ul − 1), if ul > 1.

We may then connect the root ∅ =: u[0] to u[k] := u with nodes u[i], i = 1, . . . , k − l in
such a way that u[i − 1] = ū[i] for i = 1, . . . , k. The ratios X∞(Au[i])/X∞(Au[i−1]) are
independent and unif(0, 1)-distributed, by (2.3) for a step to the right and by Theorem 2.3
for a down-step.

The transition u 7→ ū in the proof corresponds to the transition to the direct ancestor
(next node on the path to the root) in the infinite binary tree {0, 1}? associated with V by
the natural correspondence mentioned after the proof of Theorem 2.1.
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Lemma 3.3. The sequence (Y∞,k)k∈N with

Y∞,k :=
∑

u∈V,|u|1≤k

X∞(Au)C
(
ρ(X∞, u)

)
for all k ∈ N,

converges in Lp for all p ≥ 1.

Proof. Let p > 1. We introduce the local abbreviations

V[k] := {u ∈ V : |u|1 = k}, Hk := σ({X∞(Au) : u ∈ V[k]}).

Then

Y∞,k − Y∞,k−1 =
∑
u∈V[k]

X∞(Au)C(ρ(X∞, u)).

Lemma 3.2 yields

E
(
X∞(Au)

)p
=

1

(1 + p)k
(3.4)

for all u ∈ V[k]. On X∞(Au) = α(u), u ∈ V[k], we have

L
(
Y∞,k − Y∞,k−1

∣∣Hk) = L
( ∑
u∈V[k]

α(u) ζu

)
,

with ζu, u ∈ V[k], independent and identically distributed; further, E|ζu|p <∞ by part (a)
of Lemma 3.1. Rosenthal’s inequality, see e.g. [19, p.59], gives

E
∣∣∣ ∑
u∈V[k]

α(u) ζu

∣∣∣p ≤ cp

( ∑
u∈V[k]

E
∣∣α(u) ζu

∣∣p +
( ∑
u∈V[k]

var
(
α(u) ζu

))p/2)

with some constant that depends on p only. Unconditioning and (3.4) lead to upper
bounds for both sums that decrease at an exponential rate κk for some κ < 1/2. This
offsets the cardinality 2k of V[k], and we conclude that (Y∞,k)k∈N is a Cauchy sequence
in Lp.

Let

Y∞ :=
∑
u∈V

X∞(Au)C
(
ρ(X∞, u)

)
(3.5)

be the limit in Lemma 3.3.

Theorem 3.4. As n→∞,

1

n
TPL(Xn)−Hn + 1 → Y∞,

almost surely and in Lp for every p > 0.

Proof. We project the prospective limit on the natural filtration introduced in Corol-
lary 2.6. With Y∞,k as in Lemma 3.3 and using the fact that X 7→ E[X|F ] is a contraction
on Lp we get

E[Y∞|Fn] = lim
k→∞

E[Y∞,k|Fn] = lim
k→∞

∑
v∈V,|v|≤k

E[X∞(Au)C(ρ(X∞, u))|Fn],

again in Lp. For the conditional expectation of the product we use the conditional
independence of the factors with respect to Fn. For k greater than the height of Xn this
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conditional expectation then evaluates to 0, so that we arrive at

E[Y∞|Fn]

=
∑
u∈Xn

#Xn(u)

n

(
1 +

∑∞
i=1 #Xn(ui)H(#Xn(ui))

#Xn(u)
−H(#Xn(u))

)

=
1

n

(
TPL(Xn) + n

)
− 1

n

∑
u∈Xn

(
#Xn(u)H(#Xn(u))−

∞∑
i=1

#Xn(ui)H(#Xn(ui))
)

=
1

n
TPL(Xn) + 1−H(n),

where a telescope effect simplified the sums. The statement of the theorem now follows
with the well-known martingale convergence theorems; see e.g. [18, Theorem IV-1-2,
Proposition IV-2-7].

It is easy to see that EY∞ = 0, hence it follows from the calculations in the proof that
the mean of the total path length is given by ETPL(Xn) = nHn − n for all n ∈ N.

The formula for the mean and the almost sure and Lp-convergence, p > 0, of the
standardized total path length of random recursive trees have already been obtained
in [15] and [2] respectively; we augment this by the representation of the limit variable
in terms of Doob-Martin limit X∞. The technical difficulty in the proof of almost sure and
L2-convergence in [15], as in its analogue for search trees in [21], consists of showing
that the respective martingales (which have to be found first) are bounded in L2. Here
we obtain the martingale as a projection of a variable with finite second (or pth) moment
onto the natural filtration of the Harris chain, which implies the desired boundedness by
Jensen’s inequality for conditional expectations.

3.2 Horizontal total path length

We may regard the depth |u| of a node u as its vertical position; it is the number
of downward moves (if this is the direction of tree growth, from ancestor to child in
familial terms) on the way from the root to u. The (vertical) total path length of a tree,
considered in Section 3.1, is the sum of these positions, taken over all nodes in the tree.
By the horizontal position of u we mean the number of moves to the right (if this is
where new nodes are added to an existing family) on the way from the root to u. In the
Harris encoding of nodes the horizontal position of the node u = (u1, . . . , uk) is given by
|u|1 − |u|, and the horizontal total path length of a tree is the sum of these positions over
all nodes of the tree,

HPL(x) :=
∑
u∈x

(
|u|1 − |u|

)
, x ∈ H.

The horizontal position of a node can be seen as a recursive tree analogue of the notion
of vertical position in a binary tree; see [4, Chapter 5] for the latter. The total horizontal
path length does not seem to have been considered before, but a close relative is the
total path degree length investigated in [24].

We proceed as in the previous section, now using the auxiliary function

D : Σ∞ → [−2,∞], (si)i∈N 7→ −2 +

∞∑
i=1

i si.

For ξ = (ξi)i∈N ∼ GEM the representation (2.3) implies

Eξpi = Eζpi

i−1∏
j=1

E(1− ζj)p =
1

(1 + p)i
,
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hence

‖D(ξ)‖p ≤ 2 +

∞∑
i=1

i‖ξi‖p < ∞ for all p > 1.

Using similar arguments as in the proof of Lemma 3.3 we obtain that the series

Z∞ :=
∑
u∈V

X∞(Au)D
(
ρ(X∞, u)

)
(3.6)

converges in Lp for all p > 1. Further, for ξ ∼ GEM(a) with a = (a1, . . . , ak) ∈ N? and
b := a1 + · · ·+ ak, Lemma 2.4 leads to

ED(ξ) = −2 +
1

1 + b

( ∞∑
i=1

iai + k + 2

)
(3.7)

if k > 0, and ED(ξ) = 0 for ξ ∼ GEM.

Theorem 3.5. As n→∞,

1

n
HPL(Xn)−Hn + 2 → Y∞ + Z∞,

almost surely and in Lp for every p > 0.

Proof. We project Z∞ on the natural filtration. Using (3.7) and similar arguments as at
the beginning of the proof of Theorem 3.4 we get

E[Z∞|Fn]

=
∑
u∈V

E[X∞(Au)|Fn]E[D(ρ(X∞, u))|Fn]

=
∑
u∈Xn

#Xn(u)

n

(
−2 +

1

#Xn(u)

( ∞∑
i=1

i#Xn(ui) + #{i ∈ N : ui ∈ Xn}+ 2
))

= − 2

n

∑
u∈Xn

#Xn(u) +
1

n

∑
u∈Xn

∞∑
i=1

i#Xn(ui) +
1

n

∑
u∈Xn

#{i ∈ N : ui ∈ Xn} + 2

= − 2

n
TPL(Xn) +

1

n

∑
u∈Xn

|u|1 +
n− 1

n

= − 1

n
TPL(Xn) +

1

n
HPL(Xn) +

n− 1

n
.

Now we proceed as in the proof of Theorem 3.4.

As in the vertical case, see the remark after the proof of Theorem 3.4, we may use
the calculations in the proof to obtain an explicit formula for the mean horizontal path
length,

EHPL(Xn) = −(n− 1) + nEZ∞ + ETPL(Xn) = nHn − 2n+ 1 for all n ∈ N. (3.8)

3.3 The Wiener index

The chemist H. Wiener introduced

WI(G) :=
1

2

∑
(u,v)∈V×V

d◦(u, v) (3.9)

as a measure of spread of an arbitrary finite connected graph G with node set V . Here
d◦ denotes the canonical graph distance, i.e. d◦(u, v) is the minimum length of a path
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connecting u and v in G. Let u ∧ v be the longest common prefix of u, v ∈ V. For trees
we then have

d◦(u, v) = |u|+ |v| − 2|u ∧ v|
and, as in the case of binary trees [10, eq.(34) corrected],∑

(u,v)∈x×x

|u ∧ v| =
∑
u∈x

#x(u)2 − #x 2,

so that we may rewrite the Wiener index for x ∈ Hn in terms of total path length and
subtree sizes as

WI(x) = nTPL(x) + n2 −
∑
u∈x

#x(u)2.

Again, we will show that a suitably standardized version converges almost surely if we
insert for x the random variables Xn of the Harris chain. In addition to Y∞ as in (3.5)
we need

W∞ :=
∑
u∈V

X∞(Au)2.

Arguments similar to those used for Y∞ in the proof of Lemma 3.1 show that this series
converges almost surely and that the limit has moments of all orders.

Theorem 3.6. As n→∞,

1

n2
WI(Xn)−Hn + 1 → Y∞ −W∞,

almost surely and in Lp for every p > 0.

Proof. As in the proof of the corresponding results for the other tree functionals, we
project the right hand side of the formula on the natural filtration. For Y∞ this has been
done in Section 3.1. For W∞, we proceed as follows: For u = (u1, . . . , uk) and i = 1, . . . , k

let ξi := ρui

(
X∞, (u1, . . . , ui−1)

)
. Then, as in the proof of Corollary 2.6, X∞(Au)2 =∏k

i=1 ξ
2
i , so that, using (2.5) and the conditional independence from Theorem 2.5,

E[X∞(Au)2|Fn]

=

k∏
i=1

E[ξ2i |Fn]

=

k∏
i=1

#Xn((u1, . . . , ui))
(
1 + #Xn((u1, . . . , ui))

)(
1 +

∑∞
j=1 #Xn((u1, . . . , ui−1, j))

)(
2 +

∑∞
j=1 #Xn((u1, . . . , ui−1, j))

)
=

k∏
i=1

#Xn((u1, . . . , ui))
(
1 + #Xn((u1, . . . , ui))

)
#Xn((u1, . . . , ui−1))

(
1 + #Xn((u1, . . . , ui−1))

=
#Xn(u) (#Xn(u) + 1)

n(n+ 1)

whenever u ∈ Xn.
In order to deal with the nodes not in Xn we use the operation v 7→ v̄ =: φ(v)

introduced in the proof of Lemma 3.2. Let

∂Xn := {v /∈ Xn : φ(v) ∈ Xn}

be the set of external nodes of Xn and put

Ak(v) := {w ∈ V : φk(w) = v}, k ∈ N0,
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where φ0(u) := u. Clearly, #∂Xn = n, #Ak(v) = 2k and V \Xn =
∑
v∈∂Xn

∑∞
k=0Ak(v).

With v = (v1, . . . , vk) ∈ ∂Xn, ξi := ρvi
(
X∞, (v1, . . . , vi−1)

)
and ṽ := (v1, . . . , vk−1) we get

E[X∞(Av)
2|Fn] =

( k−1∏
i=1

E[ξ2i |Fn]
)
E[ξ2k|Fn] =

#Xn(ṽ) (#Xn(ṽ) + 1)

n(n+ 1)
E[ξ2k|Fn].

Conditionally on #Xn(ṽ1) = a1, . . . ,#Xn(ṽj) = aj , j := vk − 1, the distribution of ξk is
equal to the distribution of Y Z, with Y, Z independent and

Y ∼ Beta
(

1,

j∑
i=1

ai

)
, Z ∼ unif(0, 1).

In view of 1 +
∑j
i=1 ai = #Xn(ṽ) we thus obtain, using (2.5) again,

E[ξ2k|Fn] =
2

#Xn(ṽ) (#Xn(ṽ) + 1)
· 1

3
,

and hence, for w ∈ Ak(v),

E[X∞(Aw)2|Fn] =
2

n(n+ 1)

(1

3

)k+1

.

For the contribution of the nodes not in Xn to the conditional expectation of W∞ this
gives

∑
u/∈Xn

E[X∞(Au)2|Fn] =
∑

v∈∂Xn

∞∑
k=0

∑
w∈Ak(v)

E[X∞(Aw)2|Fn]

=
∑

v∈∂Xn

2

n(n+ 1)

∞∑
k=0

2k
(1

3

)k+1

.

=
2

n+ 1
.

Putting pieces together we arrive at

E[W∞|Fn] =
1

n(n+ 1)

(
n+ TPL(Xn) +

∑
u∈Xn

#Xn(u)2
)

+
2

n+ 1
,

and we can now proceed as in the proof of Theorem 3.4.

Again, we can use the proof to obtain expected values,

EWI(Xn) = n(n+ 1)Hn − 2n2 for all n ∈ N.

This agrees with Neininger’s result [17, Theorem 1.2].

3.4 Distributional considerations

Let X∞,i, i ∈ N, be as in the proof of Theorem 2.3. For the total path length the
representation Y∞ = Φ(X∞) in Section 3.1 of the limit Y∞ in terms of X∞ leads to

Y∞ = C
(
ρ(X∞, ∅)

)
+

∞∑
i=1

X∞(A(i))Y∞,i, (3.10)
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with Y∞,i := Φ(X∞,i). Note that this is an equality for random variables (strictly speaking,
it refers to the underlying probability measure as we may have to discard a null set for
X∞ to be atom-free and diffuse). In terms of distributions this may be rewritten as

Y∞ =d C(ρ) +

∞∑
i=1

ρi Y
(i)
∞ , (3.11)

with ρ, Y (1)
∞ , Y

(2)
∞ , . . . independent, and ρ ∼ GEM, Y (i)

∞ =d Y∞ for all i ∈ N. We recall that
the ‘toll function’ C : Σ∞ : [−∞,∞) in this distributional fixed point equation is given by

C
(
(si)i∈N

)
= 1 +

∞∑
i=1

si log si.

On the other hand, it is known [2] that the limiting total path length also satisfies

Y∞ =d UY∞ + (1− U)Y ?∞ +G(U), (3.12)

with G(u) := u + u log u + (1− u) log(1− u), U, Y∞, Y ?∞ independent, U ∼ unif(0, 1), and
Y ?∞ =d Y∞. What is the connection between the two equations?

Suppose that ξ ∼ GEM and let ζ = (ζi)i∈N be related to ξ as in (2.3). Consider the
shifted sequence ζ̃ = (ζ̃i)i∈N with ζ̃i = ζi+1 for all i ∈ N. Clearly, ζ̃ is again a sequence of
independent, unif(0, 1)-distributed random variables, and it is independent of ζ1. This
implies that the corresponding ξ̃ is GEM distributed, and we have

C(ξ) = 1 + ζ1 log(ζ1) + (1− ζ1)

∞∑
i=1

ξ̃i
(
log(1− ζ1) + log ξ̃i

)
= ζ1 + ζ1 log(ζ1) + (1− ζ1) log(1− ζ1) + (1− ζ1)C(ξ̃).

Using (3.10) we now get, with ζ1 = ρ1(X∞, ∅) and ξ̃i = ρi+1(X∞, ∅),

Y∞ = G(ζ1) + ζ1Y∞,1 + (1− ζ1)Y ?∞, with Y ?∞ := C(ξ̃) +

∞∑
i=1

ξ̃i Y∞,i+1.

Together with (3.11) this leads to the distributional equation (3.12).
It is instructive to compare this with a proof of (3.12) that is based on the ‘musical

decomposition’ in Section 2.2. The limit version of the decomposition given in Proposi-
tion 2.2 transforms X∞ into independent components η = X∞(A(1)), X

[
∞ and X]

∞ with
the properties that

ρ(X∞, Au[) = ρ(X[
∞, Au) for all u ∈ V,

ρ(X∞, Au]) = ρ(X]
∞, Au) for all u ∈ V, u 6= ∅,

and with ρ(X]
∞, ∅) = ξ̃, where ξ̃ is constructed from ξ = ρ(X∞, ∅) as explained above.

With this construction,

Φ(X∞)

=
∑
u∈V

X∞(Au)C(ρ(X∞, u))

= X∞(A∅)C(ρ(X∞, ∅)) +
∑
u∈V

X∞(Au[)C(ρ(X∞, u
[)) +

∑
u∈V,u6=∅

X∞(Au])C(ρ(X∞, u
]))

= C(ξ) + η
∑
u∈V

X[
∞(Au)C(ρ(X[

∞, u)) + (1− η)
∑

u∈V,u6=∅

X]
∞(Au)C(ρ(X]

∞, u))

= C(ξ)− (1− η)C(ξ̃) + ηΦ(X[
∞) + (1− η) Φ(X]

∞),
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Figure 4: Joint distribution of the vertical and horizontal total path length for the trees
in H7.

and it remains to make use of C(ξ)− (1− η)C(ξ̃) = G(η), which we have proved above.
Once again, we note that the decomposition takes place on the level of the random
quantities themselves; there is no ‘=d’-sign.

As in the transition from Section 3.1 to Section 3.2 the detailed consideration of
the vertical case now makes it easy to treat the horizontal path length. With Ψ(X∞) =

Y∞+Z∞ the limit in Theorem 3.5 we just replace C by C+D to obtain the decomposition

Ψ(X∞) = (C +D)(ξ)− (1− η) (C +D)(ξ̃) + ηΨ(X[
∞) + (1− η) Ψ(X]

∞).

A straightforward computation gives D(ξ) − (1 − η)D(ξ̃) = 1 − 2η, which leads to the
horizontal analogue of (3.12) with G̃(u) := 1− u+ u log u+ (1− u) log(1− u) instead of G.
Clearly, G̃(η) and G(η) are equal in distribution, which implies that the limit distributions
arising in the vertical and horizontal case satisfy the same fixed point equation. It is
straightforward to set up a metric space of probability distributions which contains
these limit distributions and that turns the right hand side of (3.12) into a contraction,
hence the limit distributions arising for the vertical and horizontal path length of random
recursive trees are identical.

The above argument depends on the limit version of the decomposition. With some
additional work the finite version in Section 2.2 can be used directly to obtain the
convergence in distribution of the standardized path length; see [22] for the Quicksort
situation. As pointed out at the beginning of this section, the contraction method may
miss the fact that the random variables converge almost surely or in Lp. On the other
hand, as the above path length example shows, the approach via a fixed point relation
for the limit distribution may lead to the direct recognition of the equality of two limit
distributions, which may not be apparent from the representation of the respective limit
random variables in terms of the limit tree (indeed, the representations Y∞ and Y∞+Z∞,
given in Theorems 3.4 and 3.5 respectively, seem to suggest that the limit distributions
are different).

Equality of the limit distributions naturally raises the question whether there is
a relation between the respective distributions for finite trees. Figure 4 shows the
pair (i, j) of values i for the vertical and j for the horizontal total path length for all
6! = 720 recursive trees with 7 nodes, where the sizes of the black dots correspond to
the multiplicities of the pairs and the blue dots represent pairs that do not appear. The
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picture suggests that, up to a shift that is apparent from (3.8), the joint distribution of
total vertical and total horizontal path length is symmetric. Clearly, this would imply that
the limit distributions are the same.

We now define T : V → V by T (∅) = ∅, T ((1)) = (1) and, if u = (u1, . . . , uk) and
T (u) = v with v = (v1, . . . , vj), by

T
(
(u1, . . . , uk, 1)

)
:= (v1, . . . , vj−1, vj + 1),

T
(
(u1, . . . , uk−1, uk + 1)

)
:= (v1, . . . , vj , 1).

(3.13)

It is easy to see that T is bijective; in fact, T−1 = T (T can be related to the natural
correspondence mentioned after the proof of Theorem 2.1; see [16]). The recursive
part (3.13) translates a move downwards into a move to the right and vice versa. Further,
T is compatible with tree growth: If we add a node u to a tree x as a first child of v ∈ x,
then T (u) is the next next child to the parent of T (u) and, again, vice versa. In particular,
writing T (x) for {T (u) : u ∈ x}, we may lift T to a bijective map on H with the property
that T (Hn) = Hn for all n ∈ N. This construction proves

L
(
TPL(Xn)− (n− 1)

)
= L

(
HPL(Xn)

)
for all n ∈ N, n ≥ 2,

if we can show that the distribution of the Harris chain (Xn)n∈N is invariant under T and
that

HPL
(
T (x)

)
= TPL

(
x
)
− 1 for all x ∈ H, #x > 1. (3.14)

The first of these is an immediate consequence of the tree growth mechanism. To
obtain (3.14) it is enough to show that

|T (u)|1 − |T (u)| = |u| − 1 for all u ∈ V, u 6= ∅.

This, however, can easily be proved by induction, considering the two cases in (3.13)
separately.

In view of this simple bijective proof one may naturally wonder what the advantage
of the boundary theory approach might be. The answer becomes clear as soon as
we consider several functionals at the same time: Almost sure convergence of the
standardized vertical and horizontal path lengths implies the convergence of any linear
combinations, for example, whereas convergence in distribution does not ‘vectorize’ in
this way. This is of interest in connection with the analysis of the recursive tree algorithm
RT introduced in Section 2.4: The number Cn of comparisons needed to build the tree
Xn for n− 1 data is given by the sum of the horizontal and the vertical path length of
Xn, hence

ECn = 2nHn − 3n− 1,
1

n

(
Cn − ECn)→ 2Y∞ + Z∞ with probability 1,

with Y∞ and Z∞ as in Sections 3.1 and 3.2. While the mean can be obtained from the
symmetry and the individual results for the two versions of path length, we would need
their joint distribution in order to obtain the limit result for the sum.
Acknowledgments. We thank the referees for their supportive and constructive com-
ments.
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