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Abstract: This article reports the development of a novel
drum photocatalytic reactor for treating dye effluent
streams. The parameters for operation including drum
rotation speed, light source distance, catalyst loading
and H,0, doping have been investigated using methylene
blue as a model pollutant. Effluent can be generated by a
number of domestic and industrial sources, including
pharmaceutical, oil and gas, agricultural, food and che-
mical sectors. The work reported here proposes the appli-
cation of semiconductor photocatalysis as a final
polishing step for the removal of hydrocarbons from
effluents sources, initial studies have proved effective in
removing residual hydrocarbons from the effluent.
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1 Introduction

1.1 Photocatalytic water treatment

The application of photocatalysis for water purification has
become a widely researched topic. As a water treatment
technique, this process has several advantages as it destroys
pollutants rather than merely transferring them to another

phase (e.g. activation carbon adsorption, gas sparging) and
does so without the use of potentially hazardous oxidants
(e.g. ozone, chlorination) [1]. In order to fully assess the
potential of photocatalysis as a water purification method,
consideration needs to be given to the reactor unit in which
the photocatalyst is deployed. There are a number of issues
that need to be considered when designing a reactor to be
employed for the photocatalytic purification of water [2]. A
key parameter influencing the water treatment capability of
the photocatalytic reactor is the quantity of catalyst that can
be activated [3]. A major challenge in the development of
effective photocatalytic reactors is, therefore, the efficient
exposure of the catalyst to irradiation. Maximising the sur-
face area of catalyst exposed to irradiation will increase the
remediation potential of the photocatalytic reactor [4]. It is
also imperative to ensure that the irradiated catalyst area in
contact with the water stream is maximised, which can be
achieved by ensuring efficient mixing within the system.
Another significant issue is the effective mass transfer of
the pollutants to the catalyst surface. In order to improve
the destruction rate, the mass transfer of the process needs to
be maximised, which will improve the interaction between
the pollutant molecules and the catalyst. In order to allow for
future industrial application, a high wastewater throughput
through the reactor should also be achieved [5-7].

Typically applications utilising photocatalytic reactors
for treating polluted water exhibit the difficulty of handling
fluids having varying composition and/or concentrations;
thus, a detailed kinetic representation may not be possible.
To compare different reacting systems under similar operat-
ing conditions and to provide approximate estimations for
scaling up purposes, simplified models may be useful. For
these approximations, the model parameters should be
restricted as much as possible to initial physical and bound-
ary conditions such as initial concentrations (expressed as
such or as TOC measurements), flow rate or reactor volume,
irradiated reactor area, incident radiation fluxes and a fairly
simple experimental observation such as the photonic effi-
ciency. This article reports the development of a novel rotat-
ing drum reactor for the treatment of dye effluents.
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2 Materials and methods

2.1 Materials

Methylene blue (MB), purity: 85% (remaining 15% primar-
ily) salt, was purchased from Aldrich and used in aqueous
solution (Milli Q water). Titanium dioxide (TiO,) in pellet
form was purchased from Sachtleben Chemie, Duisburg,
Germany (Hombikat KO1) and used as purchased; the com-
position was reported to contain 80% anatase and 20%
rutile; specific surface area (BET) 95 m? g™, primary parti-
cle size ~15 nm, mean pore diameter (N,)~150 A, pH~5.5.

Degussa P25 TiO, was used as received.

2.2 Photocatalytic reactors
2.2.1 Reactor design 1

The initial design of reactor 1 was created with agitation
baffles to create a high level of interaction between the
wastewater and catalyst suspension during rotation of
the reactor drum. Figure 1 illustrates the first design of
the drum reactor supported on rubber wheels with a
plastic insert. The reactor drum was 350 mm in length,
150 mm diameter and 4 longitudinally positioned full
length baffles. The wheel was mounted to brackets by
means of a standard nut and bolt. Illumination was pro-
vided by 16 x 8 W Philips T5 UV tubes (128 W total)
supplied by RS Components Ltd, Northants, UK.

There was also an increase in friction generated at
the running surfaces due to the external force exerted
on the drum by the drive belt from the motor. The drive
belt was elasticised generating compression forces hence
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Figure 1 Reactor 1 schematic reproduced from [8] with permission.
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Figure 2 End elevation view of reactor 1 [8].

‘pulling’ on the drum (Figure 2). There were potential
issues associated with friction highlighted and this led
to a redesign of the test rig. A direct drive between the
motor using frictionless bearings was designed allowing
a reduction in friction and therefore reducing the torque
required by the motor to rotate the drum, see Figure 3.

2.2.2 Reactor design 2

The design of the reactor was assessed in order to
enhance agitation between the wastewater and catalyst
suspension during rotation of the reactor drum. Having
considered the method of agitation from reactor design 1,
and examining the mixing within a cement mixer, a
series of “paddles” fixed to the inside of the mixing
drum were designed and incorporated. On rotation of
the drum, agitation in the fluid was caused by the move-
ment of the paddles through that solution, resulting in a
turbulent flow within the fluid. With the generation of
turbulent flow, the mass transport of the pollutants to the
catalyst surface was enhanced within the reactor unit.
Figure 3 illustrates the first design of the drum reactor
supported on rubber wheels with a plastic insert. The
reactor drum was 400 mm in length with a diameter of
150 mm diameter. The wheel was mounted to brackets by
means of a standard nut and bolt. Illumination was pro-
vided by 16 x 8 W Philips T5 UV tubes (128 W total)
supplied by RS Components Ltd, Northants, UK.

The design of the paddle system was a spiral pattern
of paddle sections offset by 90° between the first and the
last section with an offset of 15° between each section.
This posed a problem in terms of placing the paddle
sections at the correct increments and spacing. This was



DE GRUYTER

M. Adams et al.: From Ideal Reactor Concepts to Reality —— 623

Reactor drum

Drive shaft

Ia
\

Drive shaft/Drum

-
drive wheel
Drive shaft support

bearings

Drive coupling

Gearbox

=

Figure 3 Diagram of the proposed redesign of the drive system.

Figure 4 Photograph of the redesigned Test Rig fully assembled.

overcome by producing a template from tracing paper of
the exact area of the inside of the drum cylinder. The
positions in which the sections had to be placed were
drawn on to the template. The template was then inserted
into the cylinder and fixed in place. With the Perspex
being transparent, the lines of where the sections were to
be placed were visible from the outside. The outside of
the cylinder was then marked with non-permanent mar-
ker, the template was removed and the sections were
glued in place using Loctite superglue. The end caps
were then glued in place and allowed to dry and the
assembled reactor drum can be observed in Figure 4.

2.2.3 Reactor design 3

The third reactor design of the unit resulted in the devel-
opment of a modular system capable of industrial appli-
cation. The photocatalytic reactor consisted of:

(i) three serially connected rotating cylindrical vessels
(570 mm length and 94 mm i.d.) with weir-like
paddles constructed along the longitudinal length
of the vessels in a V arrangement

an external illumination source. Rotation of the
cylindrical vessels was provided by three 12 dcV
electrical motors and illumination was provided by
36 W Philips PL-L sunlamp UV tubes supplied by RS
Components Ltd, Northants, UK. The tubes were
mounted in pairs, adjacent to each other on a reflec-
tive mirror, and enclosed in a wooden box to provide
control over exposure to ambient light. The lamps
were cooled by air flowing freely within the openings
between the reactor vessels and the UV tubes.

(i)

Figure 5(a) and (b) show the patented photocatalytic
drum reactor configuration [8, 9]. Sampling was achieved
via the open air vents at the fluid inlet side of the reactor
drum.
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Figure 5 (a) Reactor 3 (b) Schematic of Reactor 3 configuration
reproduced from [26] with permission from Elsevier.

2.3 Photocatalytic experiments

A stock solution of MB (10 uM) was prepared and used for
all experiments. The TiO, pellet catalyst was weighed
(0.25 g 0.1% w/v) and placed in the reaction vessel. To
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start the experiment, the feed solution was pumped
(Autoclude Peristaltic pump) from the reservoir to the
reaction vessel containing the catalyst. MB (10 pM, 1 L)
was added into the reaction vessel containing the pre-
weighed catalyst. The motor was switched on and the
aqueous suspension continuously agitated for 60 min in
the dark. Samples were drawn at 5 min intervals, centri-
fuged with Henderson T121 Centrifuge for 15 min at 6,000
rpm to eliminate any suspended TiO, particles. The
change in absorbance of MB was monitored at different
time intervals using UV-visible spectroscopy (Perkin
Elmer Lambda 950). Absorption spectra of samples were
recorded between 200 and 750 nm and a maximum
absorbance at 666 nm was used to calculate the concen-
tration of MB. Prior to irradiation, the catalyst was
immersed in distilled water for 60 min to enable effective
hydration of the granular catalyst. The catalyst was then
added to the MB solution in the drum reactor and photo-
catalysis was performed for 60 min. UV illumination
alone was also investigated. Samples were taken at 5
min intervals and treated as described previously.

3 Results and discussion
In order to optimise the reactor design assessment of the

reactor performance was carried out using the following
parameters: speed of rotation and light distance.

3.1 Speed variation — reactor design 1

The effect of rotational speeds of 15, 30, 45 and 60 rpm was
assessed by monitoring the decrease in absorbance of MB
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Figure 6 Effect of rotation speed on methylene blue degradation (version 1).
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following 60 minutes irradiation. Figure 6 illustrates the
decrease in absorbance of MB at the four rotational speeds
assessed. The optimum performance of the reactor was
recorded at a speed of 60 rpm. At a rotational speed of
60 rpm, the solution was subjected to sufficient centrifugal
force to deploy it consistently throughout the drum. A
larger surface area of catalyst and solution was exposed
to irradiation and an increase in turbulence was observed
indicating that the reactor design was mass transport con-
trolled. The plateauing in the breakdown of the dye
observed at both 15 rpm (between 20 and 30 minutes)
and 30 rpm (between 10 and 20 minutes) was most likely
due to agglomeration of the catalyst due to inadequate
dispersion through the dye effluent at these rotation
speeds. As a result of the agglomeration of the catalyst,
this would reduce to relative active area of the material
and hence reduce the photocatalytic decomposition
process.

3.2 Light distance - reactor 1

The positioning of the irradiation source is very impor-
tant for any photocatalytic reactor in order to maximise
the incident light intensity on the reactor surface and
hence ensuring effective catalyst illumination. As pre-
viously reported, however, as light intensity increases,
there is a linear increase in the photocatalytic reaction
up to a certain level where the rate of reaction becomes
proportional to the square root of the illuminating
radiation intensity [10-13]. This is believed result from
two effects. Firstly, at higher irradiation levels enhanced
recombination of the electron/hole pair may occur

=—¢— Sample 4cm == Sample 8cm
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[14, 15]. It has also been suggested that at high irradia-
tion intensities surface-bound hydroxyl radicals may
interact with one another in combination reactions
rather than interacting with the substrate [16].

A series of light distances were investigated starting
with a distance of 4 cm, with the distance doubled
for each subsequent experiment (Figure 7). The specifi-
cations are identical to that of the first set of experiments
and the speed being used was the optimum speed.
As Figure 7 shows there was an increased rate of MB
degradation from the closest lamp setting. Interestingly,
there was not an even spread of degradation between 4,
8, 16 and 32 cm which suggests the energy delivered from
the lamp to the catalyst surface was not linear with
sufficient delivery of photons up to 16 cm. The end
point for 4, 8 and 16 cm was within 10% of each other,
so for the catalyst loading of 0.25 g, the light distance
was not critical over the full run of the decomposition
reaction.

From the analysis of the results from the Drum reac-
tor, an increase in rotational speed was found to increase
mass transport which was expected. However, with speed
increase, there is also an increase in the power required
to operate the reactor thus making the process less cost
effective.

3.3 Drum reactor version 2

The drum reactor version 2 was assessed using the same
parameters as previously investigated, speed variation
and light distance variation.
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Figure 7 Effect of light distance on methylene blue degradation (version 1).
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3.3.1 Optimum rotation speed — reactor 2

The first experiment carried out involved an investigation
on the variation of MB destruction rate due to the varia-
tion in rotational speed of the reactor. For this experi-
ment, the distance between the UV lamps and the reactor
drum was 4 cm. The four speeds chosen were 15, 30, 45
and 60 rpm and samples taken and analysed once the
catalyst had settled out of solution. These results show
that the optimum performance of the reactor occurs when
the speed is 60 rpm as with reactor design 1 (Figure 8).

As the photocatalytic process progress it could be seen
that at 60 rpm, the MB solution tended to deploy itself
more consistently around the drum walls. This is due to
the friction caused between the solution and the drum wall
and was also due to a small amount of centrifugal force. In
turn this was likely to promote a larger surface area of
solution/light. Furthermore, it also increased the turbu-
lence within the solution thus increasing mass transport.
These results indicate that mass transport is the rate deter-
mining step of this type of reactor design.

=¢==Sample 15rpm =fll= Sample 30 rpm
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3.3.2 Optimum light source distance - reactor 2

In the second experiment, the destruction rate of MB
was investigated with the UV lamps at various distances
from the drum, 4, 8, 16 and 32 cm. Doubling the distance
between the UV lamps and the drum causes a fourfold
reduction in the light intensity reaching the catalyst,
i.e. it is a square root relationship.

The objective of investigating the effect of light intensity
was to determine if the reactor was purely mass transport
controlled or if other factors influence the rate of pollutant
destruction and consider the influence of this with respect to
the influence of mass transport as a rate determining factor
with the reactor design. The experimental parameters were
identical to that of the first experiment and the speed used
was the optimum speed as detailed above (Figure 9).

As the optimum light distance was 4 cm, the results are
the same as that of the optimum speed because the speed
variation experiments were conducted with a light at a dis-
tance of 4 cm. Thus, the distance between the UV lamps and
that reactor tube does affect the rate of the reaction.
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Figure 8 Effect of rotation speed on methylene blue degradation (version 2).
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Figure 9 Effect of light distance on methylene blue degradation (version 2).
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3.3.3 Hydrogen peroxide loading — reactor 2

The addition of H,0, can enhance the rate of photocata-
lytic processes through two mechanisms. Firstly, the per-
oxide can function as an alternative electron acceptor to
oxygen (eq. 1). This process is thermodynamically more
favourable reaction than oxygen reduction [17, 18] (E° =
-0.13 for O, reduction, E° = 0.72 for H,0, reduction).
Furthermore, the conductance band reduction of H,0,
will also generate hydroxyl radicals that will be available
for attack on the substrate molecules [18]. As demon-
strated by eq. (2), the peroxide may also react with super-
oxide generated by the reduction of oxygen at the
conductance band, again producing hydroxyl radicals
[19]. Consequently in the presence of H,0, additional
oxidising hydroxyl radicals may be generated in the sys-
tem, no matter which conductance band reaction predo-
minates, hence increasing the oxidising power of the
system.

egs + H,0, — OH™ + OH' (1)

05 + H,0, — OH™ + OH' + 0, (2)
Four different concentrations of H,0, were used — 0.05,
0.1, 0.5 and 1.0% (w/v) respectively and for each experi-
ment the UV light was set at a distance of 4 cm from the
reactor vessel. On addition of H,0,, the dye solution
started to degrade as soon as the catalyst was inserted
in to the reactor (Figure 10).

From Figure 10, it can be seen that at higher concen-
trations of H,0,, initially greater initial rate of MB degra-
dation was achieved with the majority of MB was degraded
in the first 10 minutes of the experiment. As detailed
above, this is likely to be due to the greater concentration

== 0.05% H,0, == 0.10% H,0,
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of H,0, is generating a greater number of OH radicals in
the reactor which enhances the MB destruction. Even
though the higher two peroxide concentrations initially
caused a greater level of degradation, the overall break-
down values start overlapping between 10 and 15 minutes.

Consequently, it was concluded that the lowest percen-
tage of H,0, be chosen as the optimum loading for com-
plete removal of the dye. It has previously been reported
that higher peroxide concentrations can lower the destruc-
tion rate by competing for sites on the photocatalyst with
the pollutant [20]. Also with the addition of H,0,, it was
noted that the catalyst settled to the bottom of the solution
far more rapidly than in the absence of H,0,. It is thought
that the peroxide is influencing the surface charge on the
catalyst and reducing its tendency to suspend.

3.3.4 Effluent trial — reactor design 2

To determine the overall breakdown of the hydrocarbons,
and applicability of the drum reactor concept to indus-
trial effluent streams, samples of “produced water” from
the oil and gas sector were applied to the reactor. Table 1

Table 1 Chemical oxygen demand values after trial runs through
reactor version 2.

Sample Raw 1st run through 2nd run through
effluent reactor (version 2) reactor (version 2)

COD mg/L COD mg/L COD mg/L

1 3,490 2,000 720
2 3,490 2,170 1,430
3 3,620 2,180 400
4 4,120 1,990 710
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Figure 10 Absorbance at 664 nm, for H,0, at 0.05, 0.1, 0.5 and 1.0%.
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shows the chemical oxygen demand (COD) levels for
2 experimental runs.

From Table 1, it can be seen that even on one pass
through the reactor there was between 40 and 50%
reduction in COD levels in the polluted water sample.
On the second pass reduction levels of COD over 80%
were attained.

3.4 Drum reactor design 3

The photocatalytic degradation of MB (Figure 11) was
assessed as a model pollutant in reactor design 3. The
rate of photodegradation was studied by monitoring the
change in the maximum absorption in UV-visible spectra
at 666 nm of the residual MB solution over irradiation
time. Temporal changes in the concentration of MB were
monitored by examining the changes in maximal absorp-
tion at 666 nm [21]. Absorbance of MB occurs typically at
668 and 609 nm [22]. The amount of residual MB
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decreased, while a blue shift of the maximum peak around
650—-665 nm was observed, as the photocatalytic reaction
proceeded, and this peak almost disappeared completely
after 60 minutes of irradiation time (Figure 11). It was
reported that the blue shift was caused by photo oxidative
N-demethylation of MB resulting from the production of
intermediate species [23]. Prior to the experiment, the
catalyst had been immersed in distilled water for 60 min-
utes. This was to ensure that the decrease in MB concen-
tration observed resulted from photocatalysis and not
adsorption of MB on to the catalyst surface. The quantity
of TiO, to be used for the experiment was placed in a
beaker, and 500 mL of distilled water was added. When
using new catalyst direct from the manufacturer, it was
best to wash this way several times to remove excess sur-
face powder from mechanical abrasion to ensure no sus-
pended catalyst in the reactor.

Figure 12 also illustrates the degradation of MB in the
presence of 0.1 gL of Degussa P25 catalyst. Following 20
minutes irradiation of MB, 90% remediation of MB was
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Figure 11 GC/MS Chromatogram of wastewater effluent (a) Pure sample with no treatment, (b) 1st pass through drum reactor, (c) 2nd pass
through drum reactor and (d) 3rd pass through drum reactor (accumulative total) catalyst treatments over a 10 minutes irradiation.

Source: Reproduced from [9] with permission from Hindawi.
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observed. This result demonstrates the inherent advan-
tage of the reactor design. The patented baffles allow an
increased surface area contact between catalyst and pol-
lutant as well as high illumination of the catalyst. There
have been many reports of reactors utilising Degussa P25
with various lamps for the remediation for MB ranging
from 100% degradation of 20_M solution irradiated for
270 minutes with a 500 W Xenon lamp in the presence of
0.2 g L™* catalyst [24]. Zhang et al. remediated a 0.1 mM
MB solution following 120 minutes irradiation from a
75 W Hg lamp. The same group also reported the reme-
diation of 25_M MB solution using a parabolic round
concentrator reactor and solar illumination. This required
30 minutes to completely degrade MB [25].

The drum reactor was configured to be either a single
pass or continuous flow system for produced water/efflu-
ents generated by the oil and gas sector. If after one pass,
the water was still above the discharge level for hydro-
carbons, the water was allowed to run into a lower reser-
voir. Typically, the residence time in each drum was just
over 3 minutes, with a total treatment time after passing
through three drum modules being around 10 minutes. If
at this stage the sample was still contaminated, it was
then recirculated. The novel reactor configuration exhi-
bits certain features, which are important for the viability
of the process in a large-scale application, these include
the ability to operate the reactor in both batch and con-
tinuous mode. The use of Hombikat pellet catalyst
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removes the filtration problems associated with batch
reactors; the reactor is constructed from Perspex, which
has a high light penetration which leads to improved
energy utilization. The reactor configuration also elimi-
nates the need for oxygenation other than oxygen uptake
from air through openings on both sides of the reaction
vessels. The degradation of MB is reported under three
sets of conditions (i) UV illumination alone, (ii) catalyst
+ UV illumination and (iii) catalyst without UV illumina-
tion. The wastewater sample was taken from an intercep-
tor wastewater collecting effluent from a Garage
Forecourt. This sample contained a mixture of hydrocar-
bons at a total COD level of between 3,500 and 4,000
ppm. The destruction of the hydrocarbons was monitored
by both measuring the chemical oxygen demand of the
sample and also by gas chromatography/mass spectro-
metry (GCMS) using a Hewlett Packard model 5890 series
IIGC connected to a Hewlett Packard model 5971A mass
selective detector (Figure 13).

The COD of the water samples was also measured as
an indicator of the total hydrocarbon level in the
untreated and treated samples. Table 2 shows the mean
COD values obtained from five experimental runs with
each point being an average of three samples. It can be
seen that the COD value decreases very quickly during
the time it takes to process through the three consecutive
reaction drums (10-minutes reaction time). As these
experiments were performed on different days and the

9
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7 +30g Cat+ UV
X Deg P25
1% ace,
S 5] + *e000000
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Figure 13 Methylene blue degradation by pelletised TiO, (30 g Cat alone and 30 g Cat + UV) and Degussa P25 (1 g/L Deg P25) reproduced

from [26] with permission from Elsevier.
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Table 2 Chemical oxygen demand values after continuous flow
reaction through three reactor drums.

Sample pass Mean COD mg/L

0 pass treatment 3,618
1st pass through drum reactor 2,166
2nd pass through drum reactor 868

Source: Reproduced from [9] with permission from Hindawi

wastewater effluent was decanted from a large storage
drum, it is possible that the effluent content was not
100% consistent.

4 Conclusion

The results of this study have shown the development of
a drum reactor through evolutionary designs, which
proved effective for the removal of both dye and hydro-
carbon contamination from wastewater effluents. With
the development of the pelletised TiO,, it has been pos-
sible to develop an alternative reactor configuration with
a smaller foot print. Conventional powder catalyst sys-
tems have traditionally posed removal problems down-
stream, requiring filtration and settling to remove powder
from the effluent. This limits the type of reactor design to
batch, as it is impractical to provide online filtration for a
continuous flow reactor system.

The three photocatalytic reactor versions reported in
this study were configured for batch and eventually con-
tinuous flow. From the initial single drum batch proto-
type through the three drum continuous flow unit, there
has been a progressive increase in treatment capacity.
From reactor version 1, it was shown that increased
drum rotation speeds greatly increased the degradation
rate of target compounds. This indicated the important
relationship between catalyst agitation, catalyst—target
interaction and photons reaching the catalyst surface.
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