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Abstract

The interplay between surface tension and electrostatics is the underlying mecha-
nism of many processes taking place on small length-scales. There are various examples
in nature and technology, including the whole field of micro-electro-mechanical systems.

This thesis is devoted to a free boundary problem modelling a prototypical set-up
in which both surface tension and electrostatics have the ability to break the set-up.
The set-up consists of a conductive soap film spanned between two parallel rings, which
are placed inside an outer metal cylinder. On the one hand, if the gap between the
rings is not too big, surface tension forces the soap film to take the shape of a catenoid.
In particular, surface tension pushes the film inwards. On the other hand, applying
a voltage between the catenoid and the outer cylinder results in an electrostatic force
pulling the film outwards. While a previous mathematical investigation focused on a
simplified small aspect ratio model of the set-up and did not yet include time, we drop
the small aspect ratio assumption which yields a completely different type of model.
We also include time into our considerations.

In the first part of this thesis, we derive the new model for the soap film catenoid
subjected to an electrostatic force. The model consists of a quasilinear parabolic equa-
tion for the evolution of the film coupled with an elliptic equation for the electrostatic
potential in the unknown domain between outer cylinder and soap film catenoid. Then,
for the rotationally symmetric case, we show local well-posedness of this free bound-
ary problem by recasting it as a single quasilinear parabolic equation with a non-local
source term. As the source term turns out to have slightly weaker regularity than re-
quired, the proof of local well-posedness contains a refinement of a classical fixed point
argument based on semigroup theory.

In the second part of this thesis, we discuss different kinds of behaviour that the
soap film displays depending on the strength of the applied voltage. For small voltages
as well as voltages for which surface tension and electrostatics are balanced, we show
the existence of stationary solutions and study their stability. Moreover, we prove
that stable stationary solutions behave physically in the sense that they always deflect
outwards if the applied voltage is increased. Finally, for large applied voltages, we show
that solutions to the evolution problem do not exist globally for a large class of initial
values. The proofs in the second part of this thesis mostly, but not exclusively, rely
on the implicit function theorem, the principle of linearized stability, (anti-)maximum
principles as well as positivity of a certain Fourier series.
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Introduction

Soap bubbles and soap films fascinate mathematicians and non-mathematicians
alike. While the latter find the play of colours, originating from the reflection of light
on the surface of a bubble, and the different shapes taken by a bubble floating in air
optically appealing, the former are particularly attracted by the close connection be-
tween soap films and minimal surfaces [17]. If, for example, a soap film is spanned
between two parallel rings with a small gap, its surface tension forces it to take the
shape of a catenoid, a minimal surface which is depicted in Figure 0.1.

Less present but no less fascinating is the response of soap bubbles or films to elec-
trostatics. Experiments dealing with the deformation and breaking of soap bubbles
and films due to electrostatics can be found in [56, 59, 68, 69]. Particularly, Taylor’s
work [68] from the 1960’s, in which he studied the breaking of drops and soap bubbles
in an electric field, has to be stressed. While his actual interest was in the formation of
thunderstorms, he used the experiments with soap as prototypical set-ups to explain
processes driven by the interplay of surface tension and electrostatics.

In the same sense, this thesis is devoted to a new mathematical model for a proto-
typical set-up investigating the interaction of surface tension and electrostatics. The
specific feature of the set-up is that both surface tension and electrostatics have the
ability to break it. The set-up was suggested by Moulton [58], see also Moulton and
Pelesko [59, 60], and consists of a soap film catenoid placed inside an outer metal cylin-
der. On the one hand, surface tension pulls the film inwards and might even break the
film if the gap between the rings is too big. On the other hand, applying a voltage
between the catenoid and the outer cylinder results in an electrostatic force pulling
the film outwards, in the extreme case until it touches the outer metal cylinder. We
aim at understanding the interplay between these forces pulling the film in opposite
directions. In particular, we are led by the following questions:

• How does the film respond to an increase of the electrostatic force?
• Can breaking of the film be prevented by the electrostatic force?
• Can breaking of the film be triggered by the electrostatic force?

The answers are not only interesting for the set-up itself, but may also allow con-
clusions for applications of the interplay between surface tension and electrostatics in
technology and nature. Examples of applications are the fabrication of microstructures
[40], electrowetting [9] as well as the whole field of micro-electro-mechanical systems
(MEMS). The latter includes tiny sensors and switches, used everywhere in modern
technology.
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INTRODUCTION 3

Figure 0.1. Picture of a soap film catenoid taken from the ad-
ditional material of [34]. In this thesis, the soap film catenoid
will be placed inside an outer metal cylinder with larger radius.
Creative Commons Attribution 4.0 International; colour and contrast changed.

We now present the new model for the soap film catenoid driven by an electrostatic
force and explain its main mathematical features. While our model describes the same
set-up as [58], it has a completely different mathematical structure than the model
used there. Instead, it is a variant of a class of models for MEMS [46]. Our model is a
free boundary problem, meaning that it includes a partial differential equation posed
in an a-priori unknown domain. In dimensionless and shifted form, it describes the
evolution of two unknown functions. The first unknown u : [0, T ] × (−1, 1) → (−1, 1)
models the film deflection, which is given by the surface of revolution with profile u+1.
The case u = −1 corresponds to self-touching of the film, while u = 1 means that the
film touches the outer cylinder. At fixed time, the second unknown ψ : Ω(u(t)) → R is
the electrostatic potential defined on the closure of the a-priori unknown domain

Ω(u(t)) :=
{
(z, r) ∈ (−1, 1)× (0, 2)

∣∣u(t, z) + 1 < r < 2
}

between the soap film and the outer cylinder. Assuming that the evolution of (u, ψ) is
quasi-static in ψ, it is governed by the following system of equations:

∂tu− ∂zarctan(∂zu) = − 1

u+ 1
+ λ (1 + (∂zu)

2)1/2 |∇ψ( · , u+ 1)
∣∣2 ,

u(t,±1) = 0 ,

u(0, · ) = u0 in (−1, 1) ,

∆ψ = 0 in Ω(u(t)) ,

ψ = hu on ∂Ω(u(t)) .

(0.1)

Here, u0 describes an initial film shape, which might not necessarily be the catenoid,
and hu is a certain fixed function, introduced rigorously later, which is 0 on the film
and 1 on the outer metal cylinder. Finally, the control parameter λ ∈ [0,∞) is of great
importance for the study of qualitative properties as it measures the relative strength
of the applied voltage.

If no voltage is applied, that is λ = 0 in (0.1), then the soap film evolves according
to rotationally symmetric mean curvature flow, see [19]. This yields a quasilinear par-
abolic equation for u only.

https://creativecommons-org.translate.goog/licenses/by/4.0/?_x_tr_sl=en&_x_tr_tl=de&_x_tr_hl=de&_x_tr_pto=sc


4 INTRODUCTION

However, in the interesting case of an applied voltage λ > 0, the parabolic equation
for u is coupled with an elliptic equation for ψ. The coupling is due to the electrostatic
force (

1 + (∂zu)
2
)1/2∣∣∇ψ( · , u+ 1)

∣∣2
contained as a source term in the equation for u and due to the unknown domain
Ω(u(t)) on whose closure ψ is defined. The latter makes the coupling highly non-local,
and thus it is challenging to treat (0.1), in particular its qualitative behaviour. The
specific feature of the set-up, namely that both surface tension and electrostatics can
break it, is reflected by u taking values in (−1, 1) and by the opposite signs of the
source term

− 1

u+ 1
+ λ (1 + (∂zu)

2)1/2 |∇ψ( · , u+ 1)
∣∣2 .

Each part can become singular, which follows for the second one from the fact that
the electrostatic potential ψ has to jump immediately from 0 to 1 for u = 1. Finally,
we mention the technical, not yet apparent difficulty that ψ has limited regularity as
Ω(u(t)) is not a smooth domain, while defining the electrostatic force requires the trace
of the squared gradient of ψ to be meaningful.

Before we describe the contributions of this thesis regarding the free boundary prob-
lem (0.1), let us have a closer look at the mathematical literature. There are numerous
investigations of models dealing with the interplay of surface tension and electrostat-
ics, including variational models for charged drops [61, 62] as well as different types of
MEMS-models, like singular equations [8, 28, 65], free boundary problems [23, 46] or
transmission problems [49]. In the following, we focus on the two most relevant previ-
ous investigations for our work. These are the MEMS-model [24] by Escher, Laurençot
and Walker as well as the model [58] by Moulton.

First, the model from [58], see also [60], describes the same set-up as we do. How-
ever, it is restricted to the stationary case and consists of a singular but local elliptic
equation. In particular, the model from [58] is no free boundary problem. It can be
derived from the stationary version of (0.1) by assuming a small aspect ratio of the
set-up. Besides modelling, [58] contains an investigation of the qualitative behaviour
of solutions using numerical and formal methods, like formal asymptotics, stability
analysis or bifurcation. Therefore, it serves as a valuable inspiration for our analytical
results. Though the assumption of a small aspect ratio is crucial to derive the model
from [58], it may be seen as a controversial assumption as there are other model pa-
rameters approximately of the same order as the aspect ratio.

Second, the model [24] belongs to a class of free boundary problems modelling
MEMS, which were introduced and analytically investigated for the first time by Lau-
rençot and Walker in [42] for the stationary case and shortly after by Escher, Laurençot
and Walker in [23] for the evolution case. While an overview of further developments
for free boundary problems modelling MEMS can be found in [46], we restrict ourselves
to reviewing the model from the article [24] by Escher, Laurençot and Walker in more
detail.
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Mathematically, the model is a free boundary problem for two unknowns (u, ψ)
consisting of a parabolic equation for u and Laplace equation for ψ in an a-priori
unknown domain. Insofar, our model (0.1) has the same mathematical structure.
However, the parabolic equation for u in [24] differs significantly from that in (0.1)
and reads

∂tu−
∂2zu(

1 + (∂zu)2
)3/2 = −λ

∣∣∇ψ( · , u)∣∣2 , (0.2)

where u is allowed to take values in the whole interval (−1,∞) and the electrostatic
force pulls in the other direction. Since

∂zarctan(∂zu) =
∂2zu

1 + (∂zu)2

in (0.1), we observe that the equation (0.2) contains an additional factor
(
1+(∂zu)

2
)−1/2.

The main difference is now that the source term of (0.2) consists only of the electrostatic
force and has therefore a fixed sign. This reflects the fact that only electrostatics has
the ability to break the set-up in [24] and not both surface tension and electrostatics
which is the special feature of our set-up. Finally, we mention that [24] is formulated
in cartesian coordinates, while we use cylindrical coordinates, which require an adap-
tation of the boundary conditions for ψ.

In [24] well-posedness as well as qualitative properties of solutions are rigorously
proven. However, the opposite signs in the source term of (0.1) yield a significantly
different set of stationary solutions compared to [24], and proofs of qualitative prop-
erties of solutions to (0.1) require adaptation as well as new ingredients.

We end the literature review with a brief summary of qualitative properties pre-
viously established in free boundary problems for MEMS. Stationary solutions have
been studied in [14, 22, 24, 43, 44, 64] and include the construction via implicit
function theorem as well as the study of stability based on the principle of linearized
stability. For results concerning finite time blow-up for large λ, which correspond to a
strong electrostatic force, we refer to [22, 23, 24, 47, 52]. Another qualitative prop-
erty is the direction in which u deflects. A first attempt to characterize the direction
of deflection for an evolution problem, in which the source term may have terms of
opposite signs, is contained in [25, 52], while the direction of deflection for station-
ary problems of 4-th order, but with fixed sign of the source term, is treated in [43, 64].

We now give an overview of the contributions of this thesis. In the first part,
Chapters 1-3, we derive the free boundary problem (0.1) and show that it is locally
well-posed in Sobolev spaces. More precisely, in Chapter 1, we state the modelling
assumptions and derive the new model for the soap film catenoid in an electric field.
Its dimensionless form coincides then, up to an additional parameter, with the free
boundary problem (0.1). Next, Chapter 2 serves as a preparation for the proof of
local well-posedness. It contains a complete argument showing elliptic regularity on
non-smooth convex domains.
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The first part of this thesis ends with Chapter 3, in which we establish local well-
posedness of the free boundary problem (0.1) by reinterpreting it as a single quasilinear
parabolic equation with a non-local source term. After a detailed investigation of the
non-local term, this single equation is then solved with the aid of semigroup theory and
Banach’s fixed point theorem. The proof follows [24], and the reason for performing
the whole fixed point argument by hand is that the non-local source term has slightly
weaker regularity than usually required, see [3, 5].

a

0 λcritλcyl λ

Chapter 6:
Time-dependent so-
lutions do not exist
globally for a large set
of initial values in the
range dominated by
electrostatics

Chapter 5:
Existence and qual-
itative properties of
stationary solutions
close to a cylinder,
occuring for nearly
balanced forces

Chapter 4:
Existence and qual-
itative properties of
stationary solutions in
the range dominated
by surface tension

Figure 0.2. Schematic overview of the results from Chapters 4-6 in
which we explore the behaviour of the soap film for λ reaching from 0 to
infinity. Each chapter is devoted to a different range (depicted in red) of
the control parameter λ. The values λcyl and λcrit will be introduced in
the corresponding chapters.

In the second part of this thesis, consisting of Chapters 4-6, we study qualitative
properties of solutions to the free boundary problem (0.1). A common focus is set on
the behaviour of the film deflection u in response to the control parameter λ which
modulates the applied voltage and is thus responsible for the strength of the electro-
static force. We identify three ranges for the control parameter λ, in which different
behaviours of the film deflection u are observable. To each range, a chapter is devoted,
and the results are summarized in Figure 0.2. In Chapter 4, we study stationary solu-
tions for small applied voltages, while in Chapter 5 we are concerned with stationary
solutions in the situation where surface tension and electrostatic force are nearly bal-
anced. Besides answering classical questions such as the ones about existence and
stability, both chapters contain the following result as a highlight: Stable stationary
solutions behave physically in the sense that they are always deflected outwards if the
applied voltage λ is increased. Its strategy of proof appears to be new in the context
of problems driven by surface tension and electrostatics. Finally, in Chapter 6, we
consider solutions to the evolution problem and show that these cease to exist if λ is
big enough and if the initial value satisfies an additional condition. This condition on
the initial value is explicitly given and easy to verify.



CHAPTER 1

Modelling

In this chapter, we explain the precise set-up of our problem, state the modelling
assumptions and use energy methods to formally derive a model for the soap film in
an electric field. Finally, we present the dimensionless mathematical equations, whose
analytical investigation is the main issue of this thesis.

1.1. Problem Set-Up
We study a tiny soap film spanned between two parallel metal rings of equal size

and subjected to an external electrostatic force. The set-up was introduced in [58, 60]
for the first time and is schematically depicted in Figure 1.1. To realize the electrostatic
force, the soap film, which forms a tubular bridge, is placed inside a larger outer metal
cylinder, and a voltage between this cylinder and the metal rings is applied. Since
the rings and the outer cylinder are not connected and soap films are conductive, an
electrostatic force, changing the film’s shape, is induced. The top and bottom of the
system are left open and the set-up is surrounded by air.

z

le
ng

th
2ℓ

outer radius b inner
radius a

rigid cylinder
held at potential V

soap film
held at potential 0

fixed boundary

Figure 1.1. Depiction of the soap film (blue) inside a rigid outer cylin-
der (red). The film, which is surrounded by air, is fixed at two parallel
rings of equal size (light blue) whereas the remaining part of the film is
free to move (dark blue). Applying a voltage between the film and the
rigid outer cylinder changes the shape of the film.

7



8 1. MODELLING

The problem includes an interesting competition of two dominant forces on the
microscale: surface tension and electrostatic force, see [65, 70]. The surface tension
pushes the film inwards, while the electrostatic force pulls the film outwards, in the
extreme case until it touches the rigid outer cylinder and breaks. Experimental realiza-
tions of related set-ups may be found in [34] without electrostatic force and in [59] in
the presence of a voltage but applied between the soap film bridge and an inner metal
cylinder instead of an outer metal cylinder.

1.2. Model Derivation
In this section, we describe both the dynamical as well as the static behaviour of

the film. The model derivation does not focus on mathematical rigour. Nevertheless,
some assumptions are introduced only for the mathematical treatment later on. We
start with the time-independent situation:

1.2.1. Static Case. We assume that the problem is entirely driven by surface
tension and the electrostatic force coming from the applied voltage. All other effects, for
example gravitational effects are neglected (as the film is tiny and has a light weight).
Therefore, the problem can be described by two unknowns, the film deflection u as
well as the electrostatic potential ψ . Compared to the introduction, the unknowns are
not yet time-dependent, shifted or dimensionless. Moreover, we work with cylindrical
coordinates, and, for simplicity, assume that the problem is rotationally symmetric.
Then, we can look at the two-dimensional cross section, which is depicted in Figure
1.2, instead of the full set-up from Figure 1.1. The film deflection u, now describing
the profile function of a surface of revolution, and the electrostatic potential ψ are then
given by:

Film Deflection : u = u(z) : [−`, `] → (0, b) , u(±`) = a

Electrostatic Potential : ψ = ψ(z, r) : Ω(u) → R , ψ(z, u) = 0 ,

ψ(z, b) = V .

z

r

0

a

b

`−`

Ω(u)

u

ψ = V

ψ = 0

Figure 1.2. Cross section of the soap film bridge in an electric field.
Compared to Figure 1.1, the picture is rotated by 90 degrees.
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Note that we chose z as the first coordinate. Moreover, 2` is the distance between
the metal rings, a is their radius, b is the radius of the outer cylinder and V denotes
the applied voltage. Finally, we assume that the electrostatic potential ψ is defined on
Ω(u) which denotes the space between film and outer cylinder.

Electrostatic Potential. The behaviour of the electrostatic potential ψ is cap-
tured by Gauss’s law from electrostatics [35]. For a fixed film deflection u, it states
that the corresponding potential ψ solves ∆ψ = 0 as the charge distribution between
film and outer cylinder vanishes. Moreover, ψ = 0 at the film and ψ = V at the outer
cylinder are prescribed.

Less obvious is how ψ should behave at the open top and bottom of the system. As
ψ is not defined on the whole space, we cannot prescribe a certain behaviour of ψ at
infinity. Instead a different approach is taken: Similar to the treatment of a cylindrical
capacitor [35], we ignore fringing effects which allows to prescribe the behaviour of ψ
at the top and bottom directly. To find the boundary condition without fringing, one
imagines an infinity long cylindrical capacitor (i.e. we assume that the film forms a
cylinder and extend the set-up at the top and bottom to infinity). In this setting, the
electrostatic potential is

ψcyl(z, r) = V
ln
(r
a

)
ln
( b
a

) ,
and plugging in z = ±` yields the desired behaviour of ψ at the top and bottom with-
out fringing.

In summary, the electrostatic potential ψ satisfies

{
∆ψ = 1

r
∂r (r∂rψ) + ∂2zψ = 0 in Ω(u) ,

ψ = hu on ∂Ω(u)

with
Ω(u) =

{
(z, r) ∈ (−`, `)× (0, b)

∣∣ r > u(z)
}
,

and

hu(z, r) = V

ln
( r

u(z)

)
ln
( b

u(z)

)
as a short hand for the boundary behaviour described above. Here, we recall that
u(±`) = a. Finally, we mention that by [35, 65] the electrostatic energy is given by

Ee = −πε0
∫
Ω(u)

|∇ψ|2r d(z, r) . (1.1)
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The constant ε0 > 0 denotes the electric permittivity of the vacuum, which can
also be used for air, and the factor π stems from the rotational symmetry.

Film Deflection. We use an energy consideration to find an equation for the film
deflection u. More precisely, we first give a formula for the total energy of the system
in dependence on u and then use the fact that an actual film deflection should minimize
this energy. This approach is adapted from [7, 12, 30], see also [48].

Total Energy. As we take into account only surface tension and electrostatic
force, the total energy is given by

E(u) = Em(u) + Ee(u) . (1.2)

It combines the mechanical energy

Em(u) = 2πT

∫ ℓ

−ℓ

u
√
1 + (∂zu)2 dz ,

which consists of the surface tension T > 0 of the film times its surface area and
accounts for stretching, with the electrostatic energy

Ee(u) = −πε0
∫
Ω(u)

|∇ψu|2r d(z, r) ,

which is (1.1) with additional emphasis on the u-dependencies. In particular, it is
worth mentioning that not only the domain Ω(u), but also the electrostatic potential
ψu depend on the film deflection u.

Minimizers of the Total Energy. A necessary condition for the film deflection
u to minimize the total energy is that the first variation δE(u) vanishes. We will
formally compute δE in the following. While δEm is easy to compute, the non-local
and complicated dependency of ψu on u via its domain of definition Ω(u) makes the
computation of δEe more intricate, and we provide only a formal reasoning.

First Variation of Mechanical Energy. Let u be a fixed film deflection and
v ∈ D(−`, `) such that u + sv satisfies 0 < u + sv < b for |s| << 1 . Then, the
mechanical energy of the perturbed film deflection is given by

em(s) = Em(u+ sv) = 2πT

∫ ℓ

−ℓ

(u+ sv)

√
1 +

(
∂z(u+ sv)

)2
dz

with the derivative

e′m(s) = 2πT

∫ ℓ

−ℓ

(
v

√
1 +

(
∂z(u+ sv)

)2
+(u+ sv)

2∂z(u+ sv) ∂zv

2
√
1 +

(
∂z(u+ sv)

)2
)
dz .
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Hence, the first variation of the mechanical energy is

δEm(u)v = e′m(0) = 2πT

∫ ℓ

−ℓ

(
v
√

1 + (∂zu)2 +
u ∂zu ∂zv√
1 + (∂zu)2

)
dz

= 2πT

∫ ℓ

−ℓ

(√
1 + (∂zu)2 − ∂z

( u ∂zu√
1 + (∂zu)2

))
v dz ,

where we integrated by parts in the last step. Since

∂z

( u∂zu√
1 + (∂zu)2

)
=

(∂zu)
2 + u ∂2zu√

1 + (∂zu)2
− (u ∂zu)

(∂zu)(∂
2
zu)(

1 + (∂zu)2
)3/2

=
(∂zu)

2 + u ∂2zu+ (∂zu)
4

(1 + (∂zu)2)3/2
,

the result can be simplified to

δEm(u)v = 2πT

∫ ℓ

−ℓ

(
1 + 2(∂zu)

2 + (∂zu)
4 −

(
(∂zu)

2 + u (∂2zu) + (∂zu)
4
)

(1 + (∂zu)2)3/2

)
v dz

= 2πT

∫ ℓ

−ℓ

(
1 + (∂zu)

2 − u (∂2zu)

(1 + (∂zu)2)3/2

)
v dz

= 2πT

∫ ℓ

−ℓ

(
1

(1 + (∂zu)2)1/2
− u

(1 + (∂zu)2)3/2
∂2zu

)
v dz . (1.3)

First Variation of Electrostatic Energy. Let u be a fixed film deflection and
v ∈ D(−`, `) such that u + sv is still between 0 and b for |s| << 1 . As u is fixed
throughout the following computation, we introduce the abbreviations

Ω = Ω(u) , Ωs = Ω(u+ sv) , ψ = ψu , ψs = ψu+sv .

The electrostatic energy of the perturbed film deflection is then given by

ee(s) = Ee(u+ sv) = −(ε0 π)

∫
Ωs

(
|∂zψs|2 + |∂rψs|2

)
r d(z, r) , (1.4)

where both Ωs and ψs depend on s. To compute the derivative of ee, we transform Ωs

back to the s-independent domain Ω via the map Φs = (Φ1
s,Φ

2
s) : Ω → Ωs defined by

Φ1
s(z, r) = z ,

Φ2
s(z, r) = (u(z) + sv(z))

[
1−

(
r − u(z)

b− u(z)

)]
+ b

(
r − u(z)

b− u(z)

)
= r + sv(z)

(
b− r

b− u(z)

)
,

and depicted in Figure 1.3. Since the second component Φ2
s(z, · ) maps the line [u(z), b]

to the line [u(z)+sv(z), b], we see that Φs is a diffeomorphism. Moreover, we note that

∂sΦs(z, r) =

(
0, v(z)

(
b− r

b− u(z)

))
(1.5)
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as well as

det
(
D(z,r)Φs

)
= det

(
1 0

∗ 1− sv(z)
b−u(z)

)
=
b−

(
u(z) + sv(z)

)
b− u(z)

> 0 , |s| << 1 .

z
ℓ−ℓ

u

ψ = V

ψ = 0

Φs

Φ−1
s

Ω

ψs = V

ψs = 0

z
ℓ−ℓ

u+ sv

Ωs

1

Figure 1.3. The diffeomorphism Φ−1
s transforms the domain Ωs be-

tween the perturbed film deflection u + sv and the rigid outer cylinder
to the fixed domain Ω between the fixed film deflection u and the rigid
outer cylinder.

Therefore, Reynold’s transport theorem [20, Proposition 5.4.] is applicable to (1.4)
and yields

δEe(u)v = e′e(0) = (− ε0π)

∫
Ω

(
r ∂s

(
|∂zψs|2 + |∂rψs|2

)
|s=0

+ div
((
|∂zψ|2 + |∂rψ|2

)
r ∂sΦs|s=0

))
d(z, r)

= (− ε0π)

∫
Ω

(
2r (∇ψs · ∇∂sψs)

∣∣
s=0

+ div
((
|∂zψ|2 + |∂rψ|2

)
r ∂sΦs|s=0

))
d(z, r) ,

(1.6)
where the gradient and divergence are taken with respect to z and r. Recalling that
ψs solves the Laplace equation in cylindrical coordinates, we see that

div
(
(∂sψs) r (∂zψs, ∂rψs)

)∣∣
s=0

=
(
(∂z∂sψs) r ∂zψs + (∂sψs)∂

2
zψs r

+ (∂r∂sψs) r ∂rψs + (∂sψs) ∂r(r ∂rψs)
)∣∣

s=0

= (∂z∂sψs)|s=0 r ∂zψ + (∂r∂sψs)|s=0 r ∂rψ

= r∇ψ · ∇(∂sψs)|s=0 .

Hence, also the first term in (1.6) may be written in divergence form, and by Gauss’s
theorem the expression can be simplified to

δEe(u)v = (− ε0π)

∫
∂Ω

(
2 (∂sψs)|s=0 r∇ψ · ν

+
(
|∂zψ|2 + |∂rψ|2

)
r ∂sΦs|s=0 · ν

)
do(z, r) , (1.7)
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where ν denotes the outer normal on ∂Ω. By (1.5) the expression ∂sΦs|s=0 vanishes on
the boundary parts {±`} × (a, b) and [−`, `]× {b}.
Since Φs maps each point from these boundary parts onto itself and the boundary
condition for ψs is independent of s, (∂sψs)|s=0 also vanishes at these three boundary
parts. Therefore, only the boundary integral along graph(u) contributes to (1.7). At
this part, the normal ν points towards the z-axis and is given by

ν =
1√

1 + (∂zu)2

(
∂zu,−1) , (1.8)

while the surface measure for integrating over the graph of u is

do(z) =
√
1 + (∂zu)2 dz . (1.9)

Next, to compute (∂sψs)|s=0 on graph(u), we differentiate the equality

ψs

(
Φs(z, r)

)
= ψs

(
z, r + sv(z)

( b− r

b− u(z)

))
= 0 on graph(u)

with respect to s yielding
(∂sψs)

(
Φs(z, r)

)
+∇ψs

(
Φs(z, r)

)
· ∂sΦs(z, r) = 0 ,

so that
(∂sψs)|s=0(z, r) = −∇ψ(z, r) · ∂sΦs|s=0(z, r) on graph(u) . (1.10)

In view of (1.5), and (1.8) - (1.10), the expression for δEe(u) from (1.7) becomes

δEe(u)v = (ε0π)

∫ ℓ

−ℓ

(
2∇ψ

(
z, u(z)

)
·
(
0, v(z)

)
u(z)∇ψ

(
z, u(z)

)
·
(
∂zu(z),−1

)
−
(∣∣∂zψ(z, u(z))∣∣2 + ∣∣∂rψ(z, u(z))∣∣2)u(z) (0, v(z)) · (∂zu(z),−1

))
dz

= (ε0π)

∫ ℓ

−ℓ

(
2∂rψ

(
z, u(z)

)
v(z) u(z)

[
∂zψ

(
z, u(z)

)
∂zu(z)− ∂rψ

(
z, u(z)

)]
+
(∣∣∂zψ(z, u(z))∣∣2 + ∣∣∂rψ(z, u(z))∣∣2)u(z) v(z))dz

= (ε0π)

∫ ℓ

−ℓ

(
2∂rψ

(
z, u(z)

)
v(z) u(z) ∂zψ

(
z, u(z)

)
∂zu(z)

+
(∣∣∂zψ(z, u(z))∣∣2 − ∣∣∂rψ(z, u(z))∣∣2)u(z) v(z))dz . (1.11)

Finally, from
ψ
(
z, u(z)

)
= 0 , z ∈ (−`, `) ,

it follows that
∂zψ

(
z, u(z)

)
+ ∂rψ

(
z, u(z)

)
∂zu(z) = 0 , z ∈ (−`, `) .
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Consequently, (1.11) can be simplified to

δEe(u)v = (−ε0π)
∫ ℓ

−ℓ

∣∣∇ψ(z, u(z))∣∣2 u(z) v(z) dz . (1.12)

First Variation of the Total Energy. From the necessary condition for the film
deflection u

0 = δE(u)v = δEm(u)v + δEe(u)v , v ∈ D(−`, `),
and the expressions for δEm(u) and δEe(u) in (1.3) and (1.12) respectively, it follows
that u satisfies the equation

0 = 2T

(
1

(1 + ∂zu2)1/2
− u

(1 + ∂zu2)3/2
∂2zu

)
− ε0 u

∣∣∇ψ(z, u(z))∣∣2 . (1.13)

Summary of Static Case. In this subsection, we derived a model for the static
behaviour of a soap film exposed to an electric field. The complete model consists of
the unknown film deflection u : (−`, `) → (0, b) given by 0 = 2T

(
1

(1 + ∂zu2)1/2
− u

(1 + ∂zu2)3/2
∂2zu

)
− ε0 u

∣∣∇ψ(z, u(z))∣∣2 ,
u(±`) = a ,

(1.14)

and the electrostatic potential ψ : Ω(u) → R satisfying{
∆ψ = 1

r
∂r (r∂rψ) + ∂2zψ = 0 in Ω(u) ,

ψ = hu on ∂Ω(u)
(1.15)

with
Ω(u) =

{
(z, r) ∈ (−`, `)× (0, b)

∣∣ r > u(z)
}
.

The boundary condition is given by

hu(z, r) = V

ln
( r

u(z)

)
ln
( b

u(z)

) . (1.16)

1.2.2. Dynamical Case. Having described the static behaviour of the soap film,
we now focus on its dynamical behaviour. Instead of treating the full time evolution
within the theory of electrodynamics, we use the common approach for related prob-
lems on the microscale [28, 46, 65] and assume that the electric part of the problem
behaves quasi-statically. So we ignore the magnetic field, induced by the film’s dynam-
ics, and treat the electric problem approximately, for frozen films, within the theory of
electrostatics. Hence, our unknowns are again the film deflection u(t), now depending
on t, and the corresponding electrostatic potential ψ.
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In the following, we take all assumptions and all simplifications from the static case
as well as the new assumed quasi-static behaviour of ψ into account:

• The problem is rotationally symmetric,
• The only forces involved are due to the applied voltage and the surface tension

of the film,
• For fixed time, the total energy E is given by (1.2),
• The electrostatic potential ψ(t) satisfies (1.15) and (1.16) for fixed time.

Note that due to the quasi-static assumption, time naturally occurs in the equation
for the electrostatic potential only as a parameter (and is therefore often suppressed)
whereas the equation itself remains the same as in the static case. Consequently, we
turn directly to the dynamical behaviour of u(t).

Dynamical Behaviour of the Film. First, we review the situation in which no
voltage is applied between soap film and rigid outer cylinder since the general case will
follow from a similar consideration. Without applied voltage, the film’s dynamics is
determined by its surface tension only and can be described by mean curvature flow.
As pointed out in [34], mean curvature flow is a simplified model for the evolution of
the film in which inertial forces are neglected. In the situation of a surface of revolution,
the mean curvature flow is given by

βVu(t) = TH
(
u(t)

)
,

where
Vu =

−∂tu
(1 + (∂zu))1/2

is the normal velocity of the surface of revolution with profile u,

H(u) =

(
1

u (1 + ∂zu2)1/2
− 1

(1 + ∂zu2)3/2
∂2zu

)
denotes its mean curvature, see [19], and β > 0 is a damping constant. Note that there
is a close connection between mean curvature flow and the mechanical surface energy
Em. Namely, as u(t,±`) = a, we have ∂tu(t,±`) = 0 and find, in view of (1.3), that

d

dt
Em

(
u(t)

)
= δEm

(
u(t)

)
∂tu

= 2π

∫ ℓ

−ℓ

T

(
1

(1 + ∂zu2)1/2
− u

(1 + ∂zu2)3/2
∂2zu

)
∂tu dz

= 2π

∫ ℓ

−ℓ

T H(u) u ∂tu dz

= −
∫
graph(u)

T H(u)Vu(t) do(z) .

In the last step, we also used do(z) = 2π(1+ (∂zu)
2)1/2 u dz for a surface of revolution.

So letting Vu evolve according to the mean curvature flow reduces the surface energy
Em most efficiently, see [16, 31].
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Now we consider the general situation of an applied voltage between the film and
the rigid outer cylinder. Then, according to (1.2), the total energy consists not only of
surface energy but also of the electrostatic energy

E
(
u(t)

)
= Em

(
u(t)

)
+ Ee

(
u(t)

)
.

As before, we want to find a law for Vu such that the total energy is reduced most
efficiently. Recalling the expression for δEe from (1.12), we find that

d

dt
E
(
u(t)

)
= δE

(
u(t)

)
∂tu = δEm

(
u(t)

)
∂tu+ δEe

(
u(t)

)
∂tu

= π

∫ ℓ

−ℓ

(
2TH(u) u− ε0

∣∣∇ψ(z, u)∣∣2 u) ∂tu dz
= −1

2

∫
graph(u)

(
2TH(u)− ε0

∣∣∇ψ(z, u)∣∣2 )Vu(t) do(z) .
Hence, the film deflection should evolve according to

βVu(t) = 2TH(u)− ε0
∣∣∇ψ(z, u)∣∣2 .

Plugging in the expression for H(u) and Vu, and rewriting the second order term in
divergence form, we get

β∂tu− 2T ∂zarctan(∂zu) = −2T

u
+ ε0 (1 + (∂zu)

2)1/2
∣∣∇ψ(z, u)∣∣2 .

Summary of Dynamical Case. In this subsection, we have derived a model
for the dynamical behaviour of a soap film exposed to an electric field. The complete
model consists of the unknown film deflection u(t, · ) : (−`, `) → (0, b) given by

β∂tu− 2T ∂zarctan(∂zu) = −2T

u
+ ε0 (1 + (∂zu)

2)1/2
∣∣∇ψ(z, u)∣∣2 ,

u(t,±`) = a ,

u(0, z) = u0

(1.17)

with initial shape u0, and the electrostatic potential ψ : Ω(u) → R satisfying{
∆ψ = 1

r
∂r (r∂rψ) + ∂2zψ = 0 in Ω(u) ,

ψ = hu on ∂Ω(u)
(1.18)

with
Ω(u) =

{
(z, r) ∈ (−`, `)× (0, b)

∣∣ r > u(z)
}
.

The boundary condition is given by

hu(z, r) = V

ln
( r

u(z)

)
ln
( b

u(z)

) . (1.19)

In the equations (1.18)-(1.19) as well as in the evolving domain Ω(u), we suppressed
the t-dependency.
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Moreover, we recall the notation:
• T tension of soap film,
• V applied voltage between film and outer cylinder,
• 2` distance of parallel metal rings,
• a inner radius of the metal rings and b radius of outer cylinder,
• ε0 electric permittivity of the vacuum.

1.3. Dimensionless Equations
In the investigation of (1.17)-(1.19), we focus on the interplay between the elec-

trostatic force and the surface tension measured in terms of V and T , as well as the
distance of the metal rings 2` compared to their radii a. To exclude further impacts,
we fix the ratio between the radius of the rings and that of the rigid outer cylinder

b/a = 2

for the rest of this thesis. The choice of ratio 2 will eliminate further constants in the
dimensionless system of equations. Denoting variables from the previous section with
a subscribed old, we introduce the new dimensionless variables

z =
zold
`
, ψ =

ψold

V
, r =

rold
a
, u =

uold
a

− 1 , t =
2T told
a2β

,

transforming (1.17) into
∂tu−σ ∂zarctan(σ∂zu)

= − 1

u+ 1
+ λ (1 + σ2(∂zu)

2)1/2
(
σ2
∣∣∂zψ(z, u+ 1)

∣∣2 + ∣∣∂rψ(z, u+ 1)
∣∣2) ,

u(t,±1) = 0 , −1 < u < 1 ,

u(0, z) = u0 , z ∈ (−1, 1) ,

(1.20)
with initial shape −1 < u0 < 1, and new parameters

σ =
a

`
and λ =

ε0V
2

2Ta
.

The control parameter λ measures the relative strength of the applied voltage V be-
tween film and outer cylinder compared to the surface tension T of the film whereas
σ is the relative distance of the parallel metal rings. For small σ, the rings are pulled
further apart. The equation (1.18)-(1.19) for the electostatic potential ψ becomes

1

r
∂r (r∂rψ) + σ2∂2zψ = 0 in Ω(u) ,

ψ = hu on ∂Ω(u) ,
(1.21)

where
Ω(u) =

{
(z, r) ∈ (−1, 1)× (0, 2) | u(z) + 1 < r < 2

}
,

and

hu(z, r) = ln
( r

u(z) + 1

)/
ln
( 2

u(z) + 1

)
. (1.22)
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Here, we suppressed, once again, the t-dependency of the equation and the t-dependency
of the domain Ω(u).

The system (1.20)-(1.22) consists of the parabolic equation (1.20) for the film deflection
u and the elliptic equation (1.21)-(1.22) for the electrostatic potential ψ. The equations
are coupled through the source term of (1.20), and the unknown domain Ω(u), on whose
closure the electrostatic potential ψ is defined. Hence, the coupled system (1.20)-(1.22)
is a free boundary problem.
The analytical investigation of (1.20)-(1.22) as well as its time-independent version,
which corresponds to the dimensionless version of the static case (1.14) -(1.16), is the
main subject of this thesis.

We conclude this chapter with some remarks:

Remarks 1.1 (a) In [58, 60] a time-independent and simplified version of (1.20)-
(1.22) is studied, in which the equation for the electrostatic potential ψ can be solved
explicitly resulting in a single equation for the film deflection u. Including time, this
equation reads 

∂tu− σ ∂zarctan(σ∂zu) = − 1

u+ 1
+ λ gsar(u) ,

u(t,±1) = 0 , −1 < u < 1 ,

u(0, z) = u0 , z ∈ (−1, 1) ,

(1.23)

with initial value −1 < u0 < 1, and electrostatic force

gsar(u) := (1 + σ2(∂zu)
2)1/2

1

(u+ 1)2 ln2
( 2

u+ 1

) , (1.24)

depending only pointwise on u and ∂zu. One refers to (1.23)-(1.24) as the small aspect
ratio model since its formal derivation is based on the assumption that a certain model
parameter is small. The derivation of the small aspect ratio model can be found in
Appendix B.
(b) The electrostatic force gsar(u) in the small aspect ratio model (1.23)-(1.24) tends to
infinity at z ∈ (−1, 1) either if u(z) → 1, which corresponds to the soap film touching
the outer cylinder, or if u(z) → −1, which might be interpreted as a self-repulsion
of the film. This asymptotic behaviour of gsar(u) follows easily from the fact that
gsar(u) ≥ g̃(u) on (−1, 1) where

g̃(s) :=
1

(s+ 1)2 ln2
( 2

s+ 1

) , s ∈ (−1, 1) .

A plot of g̃ is depicted in Figure 1.4.
(c) In models for MEMS, where a deformable membrane or plate is suspended above a
fixed ground plate, it is usually assumed that each point of the membrane or plate can
move only perpendicular to the ground plate, see [28] for small aspect ratio models
or [46] for models with a free boundary. Our modelling assumption is that the film
always moves in normal direction.
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a
(d) Since the computation for the first variation of the electrostatic energy δEe is not
rigorous, the derivation of (1.20)-(1.22) is only formal. However, it might be possible
to adapt [43, Proposition 2.2] to our setting to make the computation rigorous.

s

g̃(s)

−1 1

5

10

15

20

25

30

Figure 1.4. Plot of the function g̃ which bounds the electrostatic force
in the small aspect ratio model from below.



CHAPTER 2

Preliminaries

In this chapter, we provide some preliminary material needed to show local well-
posedness of the free boundary problem (1.20)-(1.22). In Section 2.1, we collect nota-
tions from analytic semigroup theory, which can be used to solve parabolic equations
with general non-local right-hand sides. In Section 2.2, we prove a regularity result for
elliptic equations on convex domains (including rough domains like a rectangle).

2.1. Notations from Semigroup Theory
For q ∈ (2,∞) and s ∈ (0, 2], we denote the fractional Sobolev spaces with Dirichlet

boundary conditions by

W s
q,D(−1, 1) :=

{
W s

q (−1, 1) for s ∈ (0, 1/q) ,{
v ∈ W s

q (−1, 1)
∣∣ v(±1) = 0

}
for s ∈ (1/q, 2]

and refer to Appendix A for further properties of these spaces.

We then say that an operator B : W 2
q,D(−1, 1) → Lq(−1, 1) belongs to

H
(
W 2

q,D(−1, 1), Lq(−1, 1)
)

if −B generates an analytic semigroup on Lq(−1, 1) with domain W 2
q,D(−1, 1). More-

over, we require a more quantitative characterisation of generators of analytic semi-
groups from [5]: For ω > 0 and k ≥ 1, an operator B ∈ H

(
W 2

q,D(−1, 1), Lq(−1, 1)
)

belongs to the class
H
(
W 2

q,D(−1, 1), Lq(−1, 1), k, ω
)

(2.1)
if ω +B is an isomorphism from W 2

q,D(−1, 1) onto Lq(−1, 1) and if

1

k
≤

∥∥(µ+B)v
∥∥
Lq(−1,1)

|µ|‖v‖Lq(−1,1) + ‖v‖W 2
q,D(−1,1)

≤ k , Reµ ≥ ω , v ∈ W 2
q,D(−1, 1) \ {0} .

The classes (2.1) make it possible to derive uniform estimates on semigroups, and hence
to treat quasilinear parabolic equations with a non-local right-hand side.

2.2. Elliptic Regularity on Convex Domains
The goal of this section is to give a detailed and complete proof of the following

elliptic regularity result on bounded, convex domains:

20
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Theorem 2.1 Suppose that
• Ω0 ⊂ Rn is convex, open and bounded,
• A ∈

[
W 1

q (Ω0)
]n×n, where q > n, is symmetric,

• there is α > 0 with
ξTA(x)ξ ≥ α|ξ|2 , x ∈ Ω0 , ξ ∈ Rn .

Then, for each F ∈ L2(Ω0), the problem{
−div

(
A(x)∇φ

)
= F in Ω0 ,

φ = 0 on ∂Ω0

(2.2)

has a unique solution φ ∈ W 2
2,D(Ω0). Moreover, there exists a constant C depending

only on q, n, Ω0, the W 1
q -norm of the coefficients of A and the ellipticity constant α

such that
‖φ‖W 2

2 (Ω0) ≤ C ‖F‖L2(Ω0) . (2.3)

Theorem 2.1 can also be found in [41, Theorem 3.10.1], but with a proof scattered
over the book, while the special case q = ∞ is presented in [37, Theorem 3.2.1.2]. In
the context of MEMS in [45, Proposition 2.7], a version of Theorem 2.1 for n = 3,
q ≥ 3 and coefficient matrix A ∈

[
W 1

q (Ω0)
]n×n satisfying additional structural con-

straints is proven. Finally, another very special case of Theorem 2.1 in which A( · )
is replaced by a simple scalar function a ∈ W 1

q (Ω0) is contained in [18, Proposition 7.6].

We note that, thanks to the Riesz Representation Theorem, problem (2.2) has a
unique weak solution φ ∈ W 1

2,D(Ω0), that is φ satisfies∫
Ω0

∇φTA(x)∇ϕ dx =

∫
Ω0

Fϕ dx , ϕ ∈ W 1
2,D(Ω0) .

The difficult part is to improve its regularity because such an improvement of regular-
ity is usually derived for bounded C2-domains, see for example [29, Theorem 6.3.4].
But convex domains as assumed in Theorem 2.1 are merely Lipschitz domains [37,
Corollary 1.2.2.3], for which, in general, an improvement of regularity may even fail.

The proof from [37] for the special case q = ∞ is based on an approximation of Ω0

from the inside by a sequence of smooth convex domains (Ωm) on which the elliptic
problem possesses a sequence of unique W 2

2 -solutions (φm). Furthermore, using the
convexity of the domains, a remarkable W 2

2 -a-priori estimate for φm independent of
m is derived, which allows the author to extract a subsequence of (φm) converging
to a W 2

2 - solution to the original problem on Ω0. We combine the idea of domain
approximation from [37] with an approximation of the coefficients of A( · ) to reduce
the assumption from q = ∞ to q > n. To this end, we first study improved Sobolev
embeddings for convex domains, then refine the a-priori-estimate from [37] and finally
give a new and detailed proof of Theorem 2.1.
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Non-Sharp Sobolev Embedding on Convex Domains. For convex domains,
it is possible to give a precise characterization of the embedding constant in Sobolev’s
embedding theorem depending on the volume and diameter of the domain but not on
other quantities of it such as the shape of its boundary. Though this fact is often used,
it is difficult to find it stated explicitly in the standard literature. However, a more
general version than needed for our purposes may be found in [57] for example. For
convenience, we recall the proof of a special case here. First, we clarify some notations:

If Ω ⊂ Rn is measurable, we denote its volume by |Ω| and its diameter by diam(Ω).
Moreover, if v ∈ L1(Ω), we let

vΩ = |Ω|−1

∫
Ω

v dy

be the average of v over Ω.

Now we state two lemmata from which Sobolev’s embedding theorem on convex
domains will follow easily:

Lemma 2.2 Let Ω be a bounded and measurable subset of Rn, and q > n. Given
v ∈ L2(Ω), let

R(v)(x) :=

∫
Ω

|x− y|1−nv(y) dy

be the Riesz potential. Then, there exists a constant C > 0 depending only on q, n and
|Ω| such that

‖R(v)‖L 2q
q−2

(Ω) ≤ C ‖v‖L2(Ω) , v ∈ L2(Ω) .

Proof. This is [33, Lemma 7.12.] applied for 0 ≤ 1
2
− q−2

2q
< 1

n
. □

Lemma 2.3 Let Ω be a convex, bounded and open subset of Rn. Then,

|v(x)− vΩ| ≤
diam(Ω)n

n|Ω|
R
(
|∇v|

)
(x)

for a.a. x ∈ Ω and v ∈ W 1
1 (Ω).

Proof. This is proven in [33, Lemma 7.16.]. □

Sobolev’s embedding theorem on convex domains is now a direct consequence.

Proposition 2.4 Let Ω be a convex, bounded and open subset of Rn, let q > n. Then,
there exists a constant C > 0 depending only on q, n, diam(Ω) and |Ω| such that

‖v‖L 2q
q−2

(Ω) ≤ C ‖v‖W 1
2 (Ω) , v ∈ W 1

2 (Ω) .

Proof. We estimate
‖v‖L 2q

q−2
(Ω) ≤ ‖vΩ‖L 2q

q−2
(Ω) + ‖v − vΩ‖L 2q

q−2
(Ω) .
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Because of

‖vΩ‖L 2q
q−2

(Ω) ≤ |Ω|−1/q‖v‖L2(Ω)

and

‖v − vΩ‖L 2q
q−2

(Ω) =
(∫

Ω

|v(x)− vΩ|
2q
q−2 dx

) q−2
2q

≤ C
(
n, diam(Ω), |Ω|

) ∥∥R(|∇v|)∥∥
L 2q

q−2
(Ω)

≤ C
(
q, n, diam(Ω), |Ω|

)
‖∇v‖L2(Ω)

due to Lemma 2.2 and Lemma 2.3, the statement follows. □

We will need the above Proposition 2.4 in the following form:

Corollary 2.5 Let Ω be a convex, bounded and open subset of Rn. Let q > n and
δ > 0. Then, there exists a constant C > 0 depending only on q, n, δ, diam(Ω) and |Ω|
such that

‖v‖2L 2q
q−2

(Ω) ≤ δ‖v‖2W 1
2 (Ω) + C ‖v‖2L2(Ω) (2.4)

for all v ∈ W 1
2 (Ω).

Proof. For fixed ε ∈ (0, q − n), we deduce from

2 <
2q

q − 2
<

2(q − ε)

(q − ε)− 2

and Hölder’s inequality that

‖v‖2L 2q
q−2

(Ω) ≤ ‖v‖2(1−θ)
L2(Ω) ‖v‖2θL 2(q−ε)

(q−ε)−2

(Ω)

for suitable θ = θ(q, n) ∈ (0, 1) and all v ∈ W 1
2 (Ω). Now an application of Proposi-

tion 2.4 together with the weighted Young’s inequality completes the proof of (2.4). □

Remark 2.6 Note that for n > 2 the threshold value q = n may be included in
Proposition 2.4 by using the Hardy-Littlewood-Sobolev inequality, see [57] for example.
However, we cannot utilize this sharp embedding result in Corollary 2.5 since in any
case we loose some integrability.

Improved a-priori Estimate. With a suitable control over the constants in
Sobolev’s embedding theorem at hand, we can now turn to the improved a-priori
estimate on smooth convex domains (here that means: ∂Ω ∈ C2). The starting point
is [37, Theorem 3.1.2.1], in which an a-priori estimate for the Dirichlet-Laplacian on
smooth convex domains is proven:
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Theorem 2.7 [37, Theorem 3.1.2.1] Let Ω be a convex, bounded open subset of Rn

with a C2-boundary. Let q > n. Then, there exists a constant C depending only on
diam(Ω) such that

‖φ‖W 2
2 (Ω) ≤ C ‖∆φ‖L2(Ω) , φ ∈ W 2

2 (Ω) ∩W 1
2,D(Ω) . (2.5)

Using a transformation to the principal axes, this result readily generalizes to el-
liptic operators with constant coefficients. We recall the proof here to point out the
dependence of the estimate on the occuring parameters.

Corollary 2.8 [37, Lemma 3.1.3.2] Let Ω be a convex, bounded open subset of Rn

with a C2-boundary, and A a symmetric n×n-matrix with each eigenvalue larger than
α > 0. Then, there exists a constant C1 depending only on the diameter of Ω and α
such that

‖φ‖W 2
2 (Ω) ≤ C1

∥∥div(A∇φ)∥∥
L2(Ω)

, φ ∈ W 2
2 (Ω) ∩W 1

2,D(Ω) . (2.6)

Proof. Let φ ∈ W 2
2 (Ω) ∩W 1

2,D(Ω). Denote by λ1 to λn the eigenvalues of A and
let S be the orthogonal matrix with

STAS =

λ1 0
. . .

0 λn

 .

Put

R := (
√
A)−1 = ST

1/
√
λ1 0

. . .
0 1/

√
λn

S .

Then RΩ is again convex, open and bounded with C2-boundary as well as

diam(RΩ) ≤ 1√
α
diam(Ω) . (2.7)

Note that the function v defined by v(x) := φ(R−1x) for x ∈ RΩ belongs to W 2
2 (RΩ)∩

W 1
2,D(RΩ) again and solves

∆v = G , G(x) := div
(
A∇φ

(
R−1x

))
.

Consequently, Theorem 2.7 together with (2.7) implies that
‖v‖W 2

2 (RΩ) ≤ C
(
α, diam(Ω)

)
‖G‖L2(RΩ) ,

and transforming this inequality back to Ω yields
‖φ‖W 2

2 (Ω) ≤ C
(
n, α, diam(Ω)

) ∥∥div(A∇φ)∥∥
L2(Ω)

.

□

We can now generalize the a-priori estimate for elliptic operators with variable
coefficients from [37, Lemma 3.1.3.2, Theorem 3.1.3.1]. As in [37, Lemma 3.1.3.2],
we treat variable coefficient operators locally as a perturbation of constant coefficient
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operators. Our new ingredient is the Sobolev’s embedding theorem for convex domains.
It allows us to formulate an a-priori estimate in which the constant does not depend
on the W 1

∞-norm of the coefficient matrix A( · ) as in [37], but only on the W 1
q -norm

of this matrix for q > n.
Theorem 2.9 Suppose that

• Ω0 ⊂ Rn is convex, open and bounded,
• q > n,
• A ∈

[
C∞(Ω0)

]n×n is symmetric,
• there is α > 0 with

ξTA(x)ξ ≥ α|ξ|2 , x ∈ Ω0 , ξ ∈ Rn .

Then, there exists a constant C depending only on the W 1
q -norm of the coefficients of

A, the ellipticity constant α and Ω0 such that for each convex and open Ω ⊂ Ω0 with
C2-boundary and |Ω| ≥ 1

2
|Ω0| the estimate

‖φ‖W 2
2 (Ω) ≤ C

∥∥div(A( · )∇φ)∥∥
L2(Ω)

, φ ∈ W 2
2 (Ω) ∩W 1

2,D(Ω) , (2.8)
holds.

Proof. (i) Local Estimate:
Near fixed x0 ∈ Ω0, our first goal is to prove a local version of (2.8). To this end,
we interpret the operator locally as a perturbation of the constant coefficient operator
−div

(
A(x0)∇φ

)
treated in Corollary 2.8. Assume that φ ∈ W 1

2,D(Ω) with support
contained in B(x0, r) ∩ Ω (where r > 0 will be determined later). Writing A(x0) =
[aij(x0)] and A(x) = [aij(x)] we deduce from

div
(
A(x0)∇φ

)
− div

(
A(x)∇φ

)
=

n∑
i,j=1

∂i
(
aij(x0)∂jφ

)
−

n∑
i,j=1

∂i
(
aij(x)∂jφ

)
=

n∑
i,j=1

(
aij(x0)− aij(x)

)
∂i∂jφ−

n∑
i,j=1

∂iaij(x)∂jφ

that∣∣div(A(x0)∇φ)− div
(
A(x)∇φ

)∣∣2
≤ C(n)

( n∑
i,j=1

|aij(x0)− aij(x)|2 |∂i∂jφ|2 +
n∑

i,j=1

|∂iaij(x)|2 |∂jφ|2
)
.

Integrating w.r.t. x ∈ Ω and using that W 1
q (Ω0) ↪→ Cs(Ω0) with s = 1 − n/q > 0, we

get∥∥div(A(x0)∇φ)− div
(
A( · )∇φ

)∥∥2
L2(Ω)

≤ C
(
n, ‖A‖W 1

q (Ω0),Ω0

)(
r2s ‖φ‖2W 2

2 (Ω) +
n∑

i,j=1

∫
Ω

|∂iaij|2 |∂jφ|2 dx
)
.

(2.9)
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Applying Hölder’s inequality with exponents 2
q
+ q−2

q
= 1 together with Corollary 2.5

to the second term in (2.9) gives∫
Ω

|∂iaij|2 |∂jφ|2 dx ≤ ‖aij‖2W 1
q (Ω) ‖∂jφ‖2L 2q

q−2
(Ω)

≤ C
(
‖A‖W 1

q (Ω0), q, n,Ω0

)(
δ ‖∂jφ‖2W 1

2 (Ω) + C(δ) ‖∂jφ‖2L2(Ω)

)
for each δ > 0. Plugging this back into (2.9) yields∥∥div(A(x0)∇φ)− div

(
A( · )∇φ

)∥∥2
L2(Ω)

≤ C
(
‖A‖W 1

q (Ω0), n, q,Ω0

)(
(r2s + δ) ‖φ‖2W 2

2 (Ω) + C(δ)‖φ‖2W 1
2 (Ω)

)
.

(2.10)
Now we infer from Corollary 2.8, the triangle inequality and (2.10) that there exists a
constant C2 = C2

(
‖A‖W 1

q (Ω0), q, n,Ω0

)
with

‖φ‖2W 2
2 (Ω) ≤ 2C2

1

(∥∥div(A( · )∇φ)∥∥2
L2(Ω)

+
∥∥div(A(x0)∇φ)− div

(
A( · )∇φ

)∥∥2
L2(Ω)

)
≤ C2

(∥∥div(A( · )∇φ)∥∥2
L2(Ω)

+ (r2s + δ) ‖φ‖2W 2
2 (Ω) + C(δ)‖φ‖2W 1

2 (Ω)

)
.

Choosing r and δ > 0 with
(r2s + δ) ≤ 1

2C2

,

we arrive at
‖φ‖2W 2

2 (Ω) ≤ C
(
‖A‖W 1

q (Ω0), q, n,Ω0

) (∥∥div(A( · )∇φ)∥∥2
L2(Ω)

+ ‖φ‖2W 1
2 (Ω)

)
(2.11)

for all φ ∈ W 2
2,D(Ω) with support contained in B(x0, r) ∩ Ω. Finally, it follows from

Friedrich’s inequality, Gauss’s theorem and the weighted Young’s inequality that
‖φ‖2W 1

2 (Ω) ≤ C
(
diam(Ω0)

)
‖∇φ‖2L2(Ω)

≤ 1
α
C
(
diam(Ω0)

) ∫
Ω

∇φTA(x)∇φ dx

≤ C
(
diam(Ω0), α

) ∥∥div(A( · )∇φ)‖2L2(Ω) +
1
2
‖φ‖2W 1

2 (Ω) ,

so that we can eliminate the W 1
2 -norm of φ on the right-hand side of (2.11) and get

‖φ‖2W 2
2 (Ω) ≤ C

∥∥div(A( · )∇φ)∥∥2
L2(Ω)

(2.12)

for all φ ∈ W 1
2,D(Ω) with support contained in B(x0, r)∩Ω where C and also r depend

only on q, n , ‖A‖W 1
q (Ω0), the ellipticity constant α, and Ω0 (but not on Ω).

(ii) Global Estimate:
We aim for a global version of (2.12). To this end, note that Ω0 is compact so that
there are x1, . . . , xm ∈ Ω0 with

Ω0 ⊂
m⋃
i=1

B(xi, r).
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Let {θi | i = 1, . . . ,m} be a smooth partition of unity on Ω0 subordinated to
⋃m

i=1 B(xi, r)
and note that it only depends on Ω0 and r (and hence not on Ω). The situation is
depicted in Figure 2.1. For φ ∈ W 2

2,D(Ω), it follows that θiφ ∈ W 2
2,D(Ω) with support

in B(xi, r) ∩ Ω and

‖φ‖W 2
2 (Ω) ≤

m∑
i=1

‖θiφ‖W 2
2 (Ω)

≤ C
(
‖A‖W 1

q (Ω0), n, q,Ω0, α
) m∑

i=1

∥∥div(A( · )∇(θiφ)
)∥∥

L2(Ω)
(2.13)

thanks to (2.12). For the right-hand side, we compute

div
(
A(x)∇(θiφ)

)
= θi div

(
A(x)∇φ

)
+

n∑
j=1

(
(∂jφ)

[
A(x)∇θi

]
j
+ (∂jθi)

[
A(x)∇φ

]
j

)
+ φ div

(
A(x)∇θi

)
=: I + II + III .

Since
‖θi‖C2(Ω0)

≤ C
(
‖A‖W 1

q (Ω0), q, n,Ω0, α
)

for each i = 1, . . . ,m, we find
‖I‖L2(Ω) ≤ C

(
‖A‖W 1

q (Ω0), q, n,Ω0, α
) ∥∥div(A( · )∇φ)∥∥

L2(Ω)
(2.14)

as well as
‖II‖L2(Ω) ≤ 2n2‖θi‖C1(Ω0)

‖A‖C(Ω0)
‖∇φ‖L2(Ω)

≤ C
(
‖A‖W 1

q (Ω0), q, n,Ω0, α
)
‖∇φ‖L2(Ω) , (2.15)

where we used that W 1
q (Ω0) ↪→ C(Ω0). For III, we compute further

III =
n∑

j,k=1

φ ∂jajk ∂kθi + ajk φ ∂j∂kθi ,

and hence

‖III‖L2(Ω) ≤ C
(
‖A‖W 1

q (Ω0), q, n,Ω0, α
) n∑

j,k=1

(
‖φ ∂jajk‖L2(Ω) + ‖φ‖L2(Ω)

)
,

where we applied the embedding W 1
q (Ω0) ↪→ C(Ω0) once more. Since

‖φ ∂jajk‖2L2(Ω) =

∫
Ω

φ2(∂jajk)
2 dx ≤ ‖φ‖2L 2q

q−2
(Ω)‖A‖2W 1

q (Ω0)

≤ C
(
‖A‖W 1

q (Ω0), q, n,Ω0

)
‖φ‖2W 1

2 (Ω)

due to Hölder’s inequality and Sobolev’s embedding theorem 2.4, we arrive at
‖III‖L2(Ω) ≤ C

(
‖A‖W 1

q (Ω0), q, n,Ω0, α
)
‖φ‖W 1

2 (Ω) . (2.16)
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Plugging the estimates for I to III in (2.14)-(2.16) back into (2.13), we find that

‖φ‖W 2
2 (Ω) ≤ C

(
‖A‖W 1

q (Ω0), q, n,Ω0, α
) (∥∥div(A( · )∇φ)∥∥

L2(Ω)
+ ‖φ‖W 1

2 (Ω)

)
for φ ∈ W 2

2,D(Ω). Eventually, we can apply the same steps which lead to (2.12) to
eliminate the W 1

2 -norm of φ on the right-hand side. □

r

Ωℓ

Ω1

Ω0

Figure 2.1. Depiction of Ω0 (blue) covered by balls of radius r (grey),
together with a sequence of different choices for Ω, denoted by Ω1, . . . ,Ωℓ

(red). Note that the covering of Ω0 is independent of (Ωℓ).

Elliptic Regularity on Convex Domains: Proof of Theorem 2.1. Based on
the improved a-priori estimate (2.8), we can complete the proof of Theorem 2.1 .

Proof of Theorem 2.1. (i) Approximation of the domain:
Suppose first that A ∈

[
C∞(Ω0)

]n×n. Then, we can follow the lines of the proof of
[37, Theorem 3.2.1.2] with [37, Equation (3.2.1.3)] replaced by the improved a-priori
estimate from Theorem 2.9.1 Hence, problem (2.2) has a unique solution φ ∈ W 2

2,D(Ω0)
which additionially satisfies the estimate

‖φ‖W 2
2 (Ω0) ≤ C

(
q, n,Ω0, ‖A‖W 1

q (Ω), α
)
‖F‖L2(Ω0) . (2.17)

(ii) Approximation of the coefficients:
Now we treat the general case A ∈

[
W 1

q (Ω0)
]n×n with q > n. Recall that Ω0 has a

1It is not difficult to ensure that |Ωm| ≥ 1
2 |Ω0| where (Ωm) denotes the approximative sequence

of smooth convex subsets of Ω0 with dist
(
∂Ωm, ∂Ω0) → 0 as m → ∞ from [37]. Indeed, we may

assume without loss of generality that 0 ∈ int(Ω0). Since 1
n√2

Ω0 ⊂ int(Ω0) with
∣∣ 1

n√2
Ω0

∣∣ = 1
2

∣∣Ω0

∣∣ and
dist

(
1
n√2

Ω0, ∂Ω0

)
> 0, we find m0 ∈ N with 1

n√2
Ω0 ⊂ Ωm for m ≥ m0 and consequently |Ωm| ≥ 1/2|Ω0|

for m ≥ m0.
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Lipschitz boundary so that we find a sequence (A(m)) ⊂
[
C∞(Ω0)

]n×n such that each
A(m)(x) is symmetric and A(m) → A in

[
W 1

q (Ω0)
]n×n. Moreover, we may assume that

sup
m

‖A(m)‖W 1
q (Ω0) ≤ 2‖A‖W 1

q (Ω0) .

It remains to arrange that the (A(m)) have a common ellipticity constant. To this end,
note that q > n implies that∣∣ξTA(x)ξ − ξTA(m)(x)ξ

∣∣ ≤ |ξT | ‖A− A(m)‖C(Ω0)
|ξ|

≤ C ‖A− A(m)‖W 1
q (Ω0) → 0

for m → ∞ and for each ξ ∈ Rn with |ξ| = 1 and x ∈ Ω0. Hence, we may assume
without loss of generality that∣∣ξTA(x)ξ − ξTA(m)(x)ξ

∣∣ ≤ α/2 , |ξ| = 1 , x ∈ Ω0 , m ∈ N ,

which immediately implies that each A(m) is uniformly elliptic with a common ellipticity
constant α/2.

Now it follows from part (i) that there exists a unique solution φm ∈ W 2
2,D(Ω0) to

the problem {
−div

(
A(m)(x)∇φm

)
= F in Ω0 ,

φm = 0 on ∂Ω0

with
‖φm‖W 2

2 (Ω0) ≤ C
(
q, n,Ω0, ‖A‖W 1

q (Ω), α
)
‖F‖L2(Ω0) , m ∈ N , (2.18)

due to (2.17). Hence, we find a subsequence (φm) and φ ∈ W 2
2,D(Ω0) with φm → φ in

W 1
2 (Ω0) and φm ⇀ φ in W 2

2 (Ω0). Letting m→ ∞ in the weak formulation∫
Ω0

∇φT
mA

(m)(x)∇ϕ dx =

∫
Ω0

Fϕ dx , ϕ ∈ D(Ω0) ,

we see that φ is a solution to (2.2). It is unique due to the Riesz Representation
Theorem. Finally, estimate (2.3) follows from (2.18) and the weak lower semi-continuity
of ‖ · ‖W 2

2 (Ω0). □



CHAPTER 3

Local Well-Posedness

In this chapter, we establish local well-posedness of the free boundary problem
(1.20)-(1.22). To this end, we want to recast (1.20)-(1.22) as a single parabolic equation
for the film deflection u only,

∂tu− σ ∂zarctan(σ∂zu) = − 1

u+ 1
+ λ g(u) ,

u(t,±1) = 0 , −1 < u < 1 ,

u(0, z) = u0 , z ∈ (−1, 1) ,

with initial shape −1 < u0 < 1 and electrostatic force

g(u) := (1 + σ2(∂zu)
2)3/2

∣∣∂rψu(z, u+ 1)
∣∣2 . (3.1)

Because the spatial derivative of the boundary condition ψu

(
z, u(z) + 1)

)
≡ 0 gives

∂zψu(z, u+ 1) = −(∂zu)∂rψu(z, u+ 1) ,

this single parabolic equation is exactly equivalent to equation (1.20). The difference is
now that we view the electrostatic force as a non-local map [u 7→ g(u)] between suitable
function spaces. More precisely, for fixed time, this map should first take the function
u to the electrostatic potential ψu, which solves the elliptic equation (1.21)-(1.22) on
the u-dependent domain Ω(u), and then do further manipulations with ψu resulting
in (3.1). In this reinterpretation of (1.20)-(1.22), the electrostatic potential occurs no
longer as an equal unknown, but only as a quantity completely subordinated to and
determined by the film deflection u at fixed time. This is also the reason for using the
notation ψu with subscribed u.

Of course, it is not clear if the non-local map [u 7→ g(u)] is meaningful. Therefore,
Section 3.1 is devoted to the study of [u 7→ g(u)]. In particular, we show that [u 7→ g(u)]
is Lipschitz continuous in a suitable functional analytic setting. Then, in Section 3.2,
we prove local well-posedness of (1.20)-(1.22) relying on its reinterpretation in terms
of u, semigroup theory and Banach’s fixed point theorem. The whole chapter follows
[24], in which local well-posedness for a quasilinear free boundary problem modelling
MEMS is established.

3.1. Elliptic Subproblem
We analyse the map [v 7→ g(v)], where g(v) denotes the electrostatic force from

(3.1), and v ∈ W 2
q,D(−1, 1) with q > 2 and −1 < v(z) < 1 is a time-independent film

30
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deflection. The key step in the analysis of [v 7→ g(v)] is the investigation of [v 7→ ψv]
with ψv being the solution to the elliptic subproblem (1.21)-(1.22), i.e. to

1

r
∂r (r∂rψv) + σ2∂2zψv = 0 in Ω(v) ,

ψv = hv on ∂Ω(v)

with
Ω(v) =

{
(z, r) ∈ (−1, 1)× (0, 2) | v(z) + 1 < r < 2

}
and boundary condition

hv(z, r) = ln
( r

v(z) + 1

)/
ln
( 2

v(z) + 1

)
.

As in [46], we note that this elliptic equation has a unique weak solution ψv ∈ W 1
2

(
Ω(v)

)
by Lax-Milgram Theorem, but that this regularity is by no means sufficient to define
the electrostatic force g(v) as it contains the square of the trace of the derivative of ψv.
In addition, the Lax-Milgram Theorem provides no information on the dependency of
ψv on v. To make the dependency of ψv on v accessible, we transform the domain Ω(v),
on whose closure ψv is defined, to an v-independent reference domain, and work out
how the resulting equations depend on its coefficients.

More precisely, for a given film deflection v ∈ W 2
q,D(−1, 1) with −1 > v(z) > 1 and

q > 2, we transform the domain Ω(v) to the fixed rectangle
Ω = (−1, 1)×

(
1, 2)

via Tv : Ω(v) → Ω defined by

Tv(z, r) :=

(
z,
r − 2v(z)

1− v(z)

)
, (z, r) ∈ Ω(v) . (3.2)

z
1−1

1

2

v + 1

Tv

T−1
v

Ω(v)

z
1−1

1

2

Ω

1

Figure 3.1. The diffeomorphism Tv transforms the domain Ω(v) to the
fixed reference domain Ω, which is a rectangle.

Due to the chain rule as well as transformation results for Sobolev functions [63,
Lemma 2.3.2], we get that the electrostatic potential ψv solves (1.21)-(1.22) weakly or
strongly on Ω(v) if and only if φv := ψv ◦ (Tv)−1 is a weak or strong solution toLvφv = 0 in Ω ,

φv =
ln(r)

ln(2)
on ∂Ω ,

(3.3)
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where the transformed v-dependent differential operator Lv is given by

Lvw := σ2(1− v)∂2zw − 2σ2 ∂zv (2− r)∂r∂zw

+
1 + σ2(∂zv)

2(2− r)2

1− v
∂2rw

+

[
−σ2(2− r)

(
∂2zv +

2(∂zv)
2

1− v

)
+

1

2v + (1− v)r

]
∂rw . (3.4)

In divergence form this operator reads

Lvw = div (A(v)∇w) + d(v) · ∇w (3.5)

with

A(v) = [aij(v)]
2
i,j=1 :=

 σ2(1− v) −σ2 ∂zv (2− r)

−σ2 ∂zv (2− r)
1 + σ2(∂zv)

2(2− r)2

1− v

 ,

d(v) =

(
d1(v)
d2(v)

)
:=

 0
1

2v + (1− v)r

 .

On the one hand, if the soap film touches the outer rigid cylinder, i.e. v(z0) = 1
for some z0 ∈ (−1, 1), the coefficient a11(v) will vanish, while a22(v) will develop a
singularity in z0. On the other hand, self-touching of the film, i.e. v(z0) = −1, would
yield a singularity of the lower-order coefficient d2(v) in (z0, 1). To exclude these critical
phenomena, we will study the dependency of (3.3) on v only on the sets

S(κ) :=
{
v ∈ W 2

q,D(−1, 1)
∣∣∣ ‖v‖W 2

q (−1,1) ≤ 1/κ , −1 + κ ≤ v(z) ≤ 1− κ
}

for κ > 0 and fixed q > 2.

3.1.1. Solution Theory. The aim of this subsection is threefold: We present the
weak and strong solution theory for the problem{

LvΦv = F in Ω ,

Φv = 0 on ∂Ω
(3.6)

with F in W−1
2,D(Ω) or L2(Ω) respectively, which is closely related to the transformed

problem (3.3), we derive a-priori estimates for Φv holding uniformly on S(κ), and we
use interpolation theory to improve these a-priori estimates. The applied methods are
similar to those leading to [24, Lemma 2.2].

As a preliminary step, we check that the transformed operator −Lv is again uni-
formly elliptic with ellipticity constant independent of v ∈ S(κ).

Lemma 3.1 There exists a constant α = α(κ) > 0 such that

α|ξ|2 ≤ ξTA(v)ξ ≤ 1

α
|ξ|2 , ξ ∈ R2 , (z, r) ∈ Ω , v ∈ S(κ) .
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Proof. The real eigenvalues µ± of A(v) satisfy

tr
(
A(v)

)
= µ+ + µ− , det

(
A(v)

)
= µ+µ−

with

det
(
A(v)

)
= σ2 > 0

and

tr
(
A(v)

)
=
σ2(1− v)2 + 1 + σ2(∂zv)

2(2− r)2

1− v
> 0

as well as

tr
(
A(v)

)
≤ 4σ2 + 1 + σ2C(q)2 κ−2

κ
,

where C(q) denotes the embedding constant of W 2
q (−1, 1) ↪→ C1([−1, 1]). Thus, we

find α(κ) > 0 with

1

α(κ)
≥ tr

(
A(v)

)
≥ µ+ ≥ µ− ≥

det
(
A(v)

)
tr
(
A(v)

) ≥ α(κ) > 0

for all (z, r) ∈ Ω and v ∈ S(κ). □

Weak Solutions. We consider weak solutions to (3.6) and corresponding a-priori
estimates. Though existence and uniqueness results for solutions are usually supple-
mented by a-priori estimates, see [33, Corollary 8.7, Lemma 9.17] and [29, Theorem
6.2.6], we have to repeat the arguments to include the v-dependency.

Lemma 3.2 For each v ∈ S(κ) and each F ∈ W−1
2,D(Ω), there exists a unique weak

solution Φv ∈ W 1
2,D(Ω) to (3.6), i.e. to the equation{

LvΦv = F in Ω ,

Φv = 0 on ∂Ω .

Moreover, there exists C1(κ) > 0 (independent of F , Φv and v) such that

‖Φv‖W 1
2,D(Ω) ≤ C1(κ)‖F‖W−1

2,D(Ω) . (3.7)

Proof. The existence of a unique weak solution to problem (3.6) is a consequence
of [33, Theorem 8.3]. So it remains to prove (3.7):
(i) As a first step, we show the existence of C(κ) > 0 with

‖Φv‖W 1
2 (Ω) ≤ C(κ)

(
‖Φv‖L2(Ω) + ‖F‖W−1

2,D(Ω)

)
(3.8)

for each v ∈ S(κ) and F ∈ W−1
2,D(Ω). To this end, we test the weak formulation of (3.6)

with Φ = Φv resulting in∫
Ω

∇ΦTA(v)∇Φd(z, r) =

∫
Ω

(
d(v) · ∇Φ

)
Φd(z, r)− 〈F,Φ〉W 1

2 (Ω) .
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Combining now the uniform ellipticity of −Lv with v-independent ellipticity constant
α(κ) > 0 from Lemma 3.1 with Friedrich’s inequality yields

‖Φ‖2W 1
2 (Ω) ≤ C(κ)

(∣∣∣ ∫
Ω

(
d(v) · ∇Φ

)
Φd(z, r)

∣∣∣+ ‖F‖W−1
2,D(Ω)‖Φ‖W 1

2 (Ω)

)
for some C(κ) > 0. Finally, the fact that ‖d(v)‖∞ is uniformly bounded on S(κ)
together with Hölder’s inequality and Young’s inequality gives

‖Φ‖2W 1
2 (Ω) ≤ C(κ)

(
‖Φ‖2L2(Ω) + ‖F‖W−1

2,D(Ω)‖Φ‖W 1
2 (Ω)

)
for some new C(κ) > 0, which is obviously equivalent to (3.8).
(ii) It remains to eliminate the L2-norm of Φv on the right-hand side of (3.8). We
proceed by contradiction and therefore assume that (3.7) is not true. Then, we find
sequences (vk) ∈ S(κ), (Φk) ∈ W 1

2,D(Ω) and (Fk) ⊂ W−1
2,D(Ω) such that Φk is the unique

weak solution to {
LvkΦk = Fk in Ω ,

Φk = 0 on ∂Ω ,

satisfying the estimate
‖Φk‖W 1

2 (Ω) ≥ k‖Fk‖W−1
2,D(Ω) > 0 . (3.9)

Putting Φ̃k := Φk/‖Φk‖L2(Ω) as well as F̃k := Fk/‖Φk‖L2(Ω) ∈ W−1
2,D(Ω), we see that

Φ̃k ∈ W 1
2,D(Ω) is the unique weak solution to{

LvkΦ̃k = F̃k in Ω ,

Φ̃k = 0 on ∂Ω .
(3.10)

For k ≥ 2C(κ) with C(κ) given in (3.8), it follows from (3.8) and (3.9) that

‖Φ̃k‖W 1
2 (Ω) ≤ 2C(κ) , ‖F̃k‖W−1

2,D(Ω) ≤
2C(κ)

k
,

in particular F̃k → 0 in W−1
2,D(Ω). Furthermore, the Theorem of Eberlein-Smulyan to-

gether with the Theorem of Rellich-Kondrachov implies the existence of a subsequence
(not relabeled) (Φ̃k) and Φ∗ ∈ W 1

2,D(Ω) with ‖Φ∗‖L2(Ω) = 1 and Φ̃k ⇀ Φ∗ in W 1
2 (Ω).

Moreover, for ε ∈ (0, 1/q′), with q′ denoting the dual exponent of q, we have

(vk) ⊂ S(κ) ⊂ W 2
q (−1, 1)

c
↪→ W 2−ε

q (−1, 1) ↪→ C1([−1, 1]) ,

so that the convexity of S(κ) implies the existence of another subsequence (vk) and
v ∈ S(κ) with vk → v in C1([−1, 1]). As a consequence, we find

aij(vk) → aij(v) in C([−1, 1]) , di(vk) → di(v) in C1([−1, 1]) .

Using this fact together with F̃k → 0 in W−1
2,D(Ω), Φ̃k ⇀ Φ∗ in W 1

2 (Ω) and the triangle
inequality, we may take the limit k → ∞ in the weak formulation of (3.10). It follows
that Φ∗ is a weak solution to {

LvΦ
∗ = 0 in Ω ,

Φ∗ = 0 on ∂Ω ,



3.1. ELLIPTIC SUBPROBLEM 35

and the uniqueness of weak solutions implies that Φ∗ = 0, which already contradicts
the fact that ‖Φ∗‖L2(Ω) = 1. So the assumption was wrong and we find C1(κ) with

‖Φ‖W 1
2 (Ω) ≤ C1(κ)‖F‖W−1

2,D(Ω) , v ∈ S(κ) , F ∈ W−1
2,D(Ω) ,

as claimed. □

Regularity Step: Strong Solutions. We establish that Φv is a strong solution
to (3.6) if the right-hand side F is more regular. Since Ω is a rectangle, i.e. a domain
with corners, this result does not follow from standard elliptic regularity theory, but
from Theorem 2.1, the refined version of [37, Theorem 3.2.1.2].

Lemma 3.3 For each v ∈ S(κ) and each F ∈ L2(Ω), there exists a unique strong
solution Φv ∈ W 2

2,D(Ω) to (3.6), i.e to the equation{
LvΦv = F in Ω ,

Φv = 0 on ∂Ω .

Moreover, there exists C2(κ) > 0 (independent of F , Φv and v) such that
‖Φv‖W 2

2 (Ω) ≤ C2(κ)‖F‖L2(Ω) .

Proof. By Lemma 3.2, we find Φv ∈ W 1
2,D(Ω) being the unique weak solution to{

div
(
A(v)∇w

)
= F − d(v) · ∇Φv in Ω ,

w = 0 on Ω .

From the facts that W 1
q (−1, 1) is a Banach algebra and W 1

q (−1, 1) ↪→ C([−1, 1]), we
deduce that the coefficients of −Lv satisfy

2∑
i,j=1

‖aij(v)‖W 1
q (Ω) +

2∑
i=1

‖di(v)‖∞ ≤ C(κ) , v ∈ S(κ) .

Because the ellipticity constant α(κ) > 0 of −Lv is independent of v ∈ S(κ), see
Lemma 3.1, we deduce from Theorem 2.1 that Φv belongs to W 2

2,D(Ω) and that there
exists C(κ) > 0 with

‖Φv‖W 2
2 (Ω) ≤ C(κ)

(
‖Φv‖W 1

2 (Ω) + ‖F‖L2(Ω)

)
.

Since ‖F‖W−1
2,D(Ω) ≤ ‖F‖L2(Ω), it follows from Lemma 3.2 that

‖Φv‖W 2
2 (Ω) ≤ C2(κ)‖F‖L2(Ω)

for some C2(κ) > 0, and the proof is complete. □

In summary, the previous two Lemmata 3.2 and 3.3 ensure unique weak and strong
solvability of (3.6). More precisely, for v ∈ S(κ), the operator

LD(v)Φ := LvΦ , Φ ∈ W 1
2,D(Ω) (3.11)

satisfies
LD(v) ∈ Lis(W

1
2,D(Ω),W

−1
2,D(Ω)) ∩ Lis(W

2
2,D(Ω), L2(Ω)),
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and its inverse LD(v)
−1 is uniformly bounded for v ∈ S(κ).

From a solution to (3.6) one easily obtains a solution to the transformed electrostatic
problem: Noting that fv := Lv

ln(r)
ln(2)

belongs to L2(Ω) one finds that

φv := −LD(v)
−1fv +

ln(r)

ln(2)
∈ W 2

2 (Ω) (3.12)

is the unique strong solution to the transformed electrostatic problem (3.3). Thanks
to

‖fv‖L2(Ω) ≤ C(κ) , v ∈ S(κ) , (3.13)
and the uniform estimates on LD(v)

−1, the function φv also satisfies a uniform estimate
‖φv‖W 2

2 (Ω) ≤ C(κ) , v ∈ S(κ) . (3.14)

Remark 3.4 We briefly comment on the regularity of the original electrostatic poten-
tial ψv = φv ◦ Tv solving

1

r
∂r(r∂rψv) + ∂2zψv = 0 in Ω(v) ,

ψv = hv on ∂Ω(v) ,

where we set σ = 1 in this remark, and hv is given by (1.21). Due to the corners of
Ω(v), one might expect the regularity ψv ∈ W 2

2 (Ω(v)) ∩ C∞(Ω(v) \ {(±1, 1), (±1, 2)}
)

to be optimal in general. However, one can show that ψv is smooth up to the boundary
in (±1, 2). In addition, if v ∈ W 3

∞(−1, 1) with v(±1) = vz(±1) = vzz(±1) = 0, then
ψv ∈ C2,α(Ω(v)) for any α ∈ (0, 1), i.e. ψv is a classical solution. This follows from the
Schwarz reflection principle [33, Exercise 2.4] and Schauder Theory, see [33, Lemma
6.18].

Fine Tuning Via Interpolation. Finally, using interpolation theory, we get an
improved norm estimate for the inverse of LD(v), which results in better estimates for
[v 7→ φv] in the next subsection. The proof is exactly the same as in [24].
Proposition 3.5 Given θ ∈ [0, 1] \ {1/2}, there is a constant C3(κ) > 0 such that

‖LD(v)
−1‖L(W θ−1

2,D (Ω),W θ+1
2,D (Ω)) ≤ C3(κ) , v ∈ S(κ) .

Proof. See [24, Lemma 2.3]. □

3.1.2. Regularity of the Electrostatic Force. In this subsection, we prove Lip-
schitz continuity and analyticity of the electrostatic force [v 7→ g(v)], understood as a
map in two different functional analytic settings. We start with the Lipschitz continu-
ity, for which we follow [24], while the subsequently proven analyticity will be based on
[23]. At the end of this subsection, we also explain the need for the different mapping
properties of [v 7→ g(v)].
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For convenience, we recall the notation

S(κ) =
{
v ∈ W 2

q,D(−1, 1)
∣∣∣ ‖v‖W 2

q (−1,1) ≤ 1/κ , −1 + κ ≤ v(z) ≤ 1− κ
}

for κ > 0 and q > 2 while q′ denotes the dual exponent of q.

The Lipschitz continuity of the electrostatic force [v 7→ g(v)] is proven in several
steps. First, we derive continuity properties of [v 7→ Lv] where Lv is defined in (3.4).
Subsequently, we establish continuity of [v 7→ φv], and finally, we transfer the continuity
properties to [v 7→ g(v)]. The regularity of [v 7→ Lv] follows as in [24, Lemma 2.4].

Lemma 3.6 Given ξ ∈ [0, 1/q′) and α ∈ (ξ, 1), there exists C4(κ) such that

‖Lv − Lw‖L(W 2
2 (Ω),W−α

2,D(Ω)) ≤ C4(κ)‖v − w‖W 2−ξ
q (−1,1)

for all v, w ∈ S(κ).

Proof. Let v, w ∈ S(κ) and Φ ∈ W 2
2 (Ω). Then, LvΦ ∈ L2(Ω) ⊂ W−α

2,D(Ω) where
the critical term −σ2(2 − r) ∂2zv ∂rΦ belongs to L2(Ω) thanks to Hölder’s inequality
and the embedding W 1

2 (Ω) ↪→ L 2q
q−2

(Ω). For ψ ∈ W α
2,D(Ω), the definition of Lv in

non-divergence form yields∫
Ω

[
(Lv − Lw)Φ

]
ψ d(z, r)

= σ2

∫
Ω

[w − v] ∂2zΦψ d(z, r)

− 2σ2

∫
Ω

(2− r) [∂zv − ∂zw] ∂z∂rΦψ d(z, r)

+

∫
Ω

(
1 + σ2(∂zv)

2(2− r)2

1− v
− 1 + σ2(∂zw)

2(2− r)2

1− w

)
∂2rΦψ d(z, r)

− σ2

∫
Ω

(2− r) [∂2zv − ∂2zw] ∂rΦψ d(z, r)

− 2σ2

∫
Ω

(2− r)

(
(∂zv)

2

1− v
− (∂zw)

2

1− w

)
∂rΦψ d(z, r)

+

∫
Ω

(
1

2v + (1− v)r
− 1

2w + (1− w)r

)
∂rΦψ d(z, r)

=: I + II + · · ·+ V I .

We point out again that IV is the critical term since the second weak derivatives of
v and w occur. Now we estimate each integral, treating the difficult task IV at the end.
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For I: It follows from Hölder’s inequality and the embeddingW 2−ξ
q (−1, 1) ↪→ C1([−1, 1])

that

|I| ≤ σ2

∫
Ω

|w − v||∂2zΦ| |ψ| d(z, r)

≤ σ2‖w − v‖∞ ‖∂2zΦ‖L2(Ω) ‖ψ‖L2(Ω)

≤ C σ2‖v − w‖W 2−ξ
q (−1,1)‖Φ‖W 2

2 (Ω) ‖ψ‖Wα
2,D(Ω) .

For II: Similar to I, we find

|II| ≤ 4σ2

∫
Ω

|∂zv − ∂zw| |∂z∂rΦ| |ψ| d(z, r)

≤ 4σ2‖∂zv − ∂zw‖∞‖∂z∂rΦ‖L2(Ω)‖ψ‖L2(Ω)

≤ C 4σ2‖v − w‖W 2−ξ
q (−1,1)‖Φ‖W 2

2 (Ω)‖ψ‖Wα
2,D(Ω) .

For III: Noting that 1− v ≥ κ for v ∈ S(κ), we find

|III| ≤
∥∥∥∥1 + σ2(∂zv)

2(2− r)2

1− v
− 1 + σ2(∂zw)

2(2− r)2

1− w

∥∥∥∥
∞
‖Φ‖W 2

2 (Ω)‖ψ‖Wα
2,D(Ω)

≤ 1

κ2
max

{
1, 4σ2

}(∥∥(∂zv)2(1− w)− (∂zw)
2(1− v)

∥∥
∞

+ ‖w − v‖∞
)
‖Φ‖W 2

2 (Ω)‖ψ‖Wα
2,D(Ω)

≤ C(κ)
(
‖∂zv‖2∞‖w − v‖∞ + ‖1− v‖∞‖∂zv + ∂zw‖∞‖∂zv − ∂zw‖∞

+ ‖w − v‖∞
)
‖Φ‖W 2

2 (Ω)‖ψ‖Wα
2,D(Ω)

≤ C(κ)‖v − w‖W 2−ξ
q (−1,1)‖Φ‖W 2

2 (Ω)‖ψ‖Wα
2,D(Ω) .

For V : Similar to the previous integrals, we estimate

|V | ≤ 4σ2

∥∥∥∥(∂zv)2(1− w)− (∂zw)
2(1− v)

(1− v)(1− w)

∥∥∥∥
∞
‖∂rΦ‖L2(Ω)‖ψ‖L2(Ω)

≤ 4σ2

κ2

(
‖∂zv‖2∞‖w − v‖∞

+ ‖1− v‖∞‖∂zv + ∂zw‖∞‖∂zv − ∂zw‖∞
)
‖Φ‖W 2

2 (Ω)‖ψ‖Wα
2,D(Ω)

≤ C(κ)‖v − w‖W 2−ξ
q (−1,1)‖Φ‖W 2

2 (Ω)‖ψ‖Wα
2,D(Ω) .

For V I: Since r ≥ 1, we have
2v + (1− v)r ≥ κ , v ∈ S(κ) ,

and hence

|V I| ≤ 2

κ2
‖v − w‖∞‖∂rΦ‖L2(Ω)‖ψ‖L2(Ω)

≤ C(κ)‖v − w‖W 2−ξ
q (−1,1)‖Φ‖W 2

2 (Ω)‖ψ‖Wα
2,D(Ω) .

For IV : The estimate of integral IV is special as second derivatives of v and w occur.
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Therefore, a simple application of Hölder’s inequality combined with Sobolev’s
embedding theorem only yields existence of the integral IV but not the desired es-
timate. Instead, we argue as follows: Due to Fubini’s Theorem and the fact that
∂2z ∈ L

(
W 2−ξ

q (−1, 1),W−ξ
q,D(−1, 1)

)
by [37, Theorem 1.4.4.6] (as 1− ξ 6= 1/q), we find

|IV | ≤ σ2

∣∣∣∣ ∫
Ω

(2− r) [∂2zv − ∂2zw] ∂rΦψ d(z, r)

∣∣∣∣
= σ2

∣∣∣∣ ∫ 1

−1

[∂2zv − ∂2zw](z)

(∫ 2

1

(2− r)∂rΦ(z, r)ψ(z, r) dr

)
dz

∣∣∣∣
≤ σ2‖∂2zv − ∂2zw‖W−ξ

q,D(−1,1)

∥∥∥∥ ∫ 2

1

(2− r)∂rΦ( · , r)ψ( · , r) dr
∥∥∥∥
W ξ

q′ (−1,1)

≤ C σ2‖v − w‖W 2−ξ
q (−1,1)

∥∥∥∥ ∫ 2

1

(2− r)∂rΦ( · , r)ψ( · , r) dr
∥∥∥∥
W ξ

q′ (−1,1)

.

Here, we also used the fact that W ξ
q′,D(−1, 1) = W ξ

q′(−1, 1) due to the choice ξ < 1/q′

so that the dual space of W ξ
q′(−1, 1) coincides with W−ξ

q,D(−1, 1). Next, we deduce from
Lemma A.2 that

|IV | ≤ C σ2‖v − w‖W 2−ξ
q (−1,1)

∥∥(2− r)∂rΦψ
∥∥
W ξ

q′ (Ω)
.

Finally, the Multiplication Theorem A.1 ensures

W 1
2 (Ω) ·W 1

2 (Ω) ·Wα
2 (Ω) ↪→ W ξ

q′(Ω) ,

and we arrive at

|IV | ≤ C‖v − w‖W 2−ξ
q (−1,1)‖2− r‖W 1

2 (Ω)‖∂rΦ‖W 1
2 (Ω)‖ψ‖Wα

2,D(Ω)

≤ C‖v − w‖W 2−ξ
q (−1,1)‖Φ‖W 2

2 (Ω)‖ψ‖Wα
2,D(Ω) .

Summing up the estimates for I to V I, we have shown that∣∣∣ ∫
Ω

[
(Lv − Lw)Φ

]
ψ d(z, r)

∣∣∣ ≤ C4(κ)‖v − w‖W 2−ξ
q (−1,1) ‖Φ‖W 2

2 (Ω) ‖ψ‖Wα
2,D(Ω) .

Taking the supremum over ψ ∈ W α
2,D(Ω) with ‖ψ‖Wα

2,D(Ω) ≤ 1, we get∥∥(Lv − Lw)Φ
∥∥
W−α

2,D(Ω)
≤ C4(κ)‖v − w‖W 2−ξ

q (−1,1)‖Φ‖W 2
2 (Ω) ,

and thus

‖Lv − Lw‖L(W 2
2 (Ω),W−α

2,D(Ω)) ≤ C4(κ)‖v − w‖W 2−ξ
q (−1,1)

as claimed. □

Next, we study the dependence of φv on v. The result is the analogue to [24,
Lemma 2.6].
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Lemma 3.7 Let ξ ∈ [0, 1/q′) and α ∈ (ξ, 1) with α 6= 1/2 be given. Then, there exists
C5(κ) such that

‖φv − φw‖W 2−α
2,D (Ω) ≤ C5(κ)‖v − w‖W 2−ξ

q (−1,1) , v, w ∈ S(κ) .

Proof. Let us recall from (3.12) that

φv = −LD(v)
−1fv +

ln(r)

ln(2)
, fv = Lv

ln(r)

ln(2)
.

First, we deduce from Lemma 3.6 that

‖fv − fw‖W−α
2,D(Ω) ≤ ‖Lv − Lw‖L(W 2

2 (Ω),W−α
2,D(Ω))

∥∥∥∥ ln(r)ln(2)

∥∥∥∥
W 2

2 (Ω)

≤ C(κ)‖v − w‖W 2−ξ
q (−1,1) . (3.15)

Next, we write
φv − φw = −LD(v)

−1(fv − fw) +
(
LD(w)

−1 − LD(v)
−1
)
fw .

Then, a combination of (3.15) with Proposition 3.5 (for θ = 1−α 6= 1/2 and θ = 1)
as well as Lemma 3.6 yields
‖φv − φw‖W 2−α

2,D (Ω) ≤ ‖LD(v)
−1(fv − fw)‖W 2−α

2,D (Ω) + ‖(LD(v)
−1 − LD(w)

−1)fw‖W 2−α
2,D (Ω)

≤ ‖LD(v)
−1‖L(W−α

2,D(Ω),W 2−α
2,D (Ω))‖fv − fw‖W−α

2,D(Ω)

+ ‖LD(v)
−1(Lw − Lv)LD(w)

−1fw‖W 2−α
2,D (Ω)

≤ C(κ)‖v − w‖W 2−ξ
q (−1,1) + ‖LD(v)

−1‖L(W−α
2,D,W 2−α

2,D (Ω))

× ‖Lw − Lv‖L(W 2
2 (Ω),W−α

2,D(Ω))‖LD(w)
−1‖L(L2(Ω),W 2

2,D(Ω))‖fw‖L2(Ω)

≤ C(κ)‖v − w‖W 2−ξ
q (−1,1)

(
1 + ‖fw‖L2(Ω)

)
.

Finally, estimate (3.13) ensures that the L2-norm of fw is uniformly bounded on S(κ),
and the assertion follows.

□

Having established continuity properties of [v 7→ φv], we turn to the main issue of
this section and provide Lipschitz continuity of the electrostatic force [v 7→ g(v)]. The
result is an adaptation of [24, Proposition 2.1]:

Proposition 3.8 Let q ∈ (2,∞), κ ∈ (0, 1) and λ, σ > 0. For ξ ∈ [0, 1/2) and
ν ∈ [0, 1/2− ξ), the map

[v 7→ g(v)] : S(κ) → W ν
2,D(−1, 1)

is bounded, and there exists a constant C6(κ) > 0 such that
‖g(v)− g(w)‖W ν

2,D(−1,1) ≤ C6(κ)‖v − w‖W 2−ξ
q,D (−1,1) (3.16)

as well as∥∥∥∥ 1

v + 1
− 1

w + 1

∥∥∥∥
W ν

2,D(−1,1)

≤ C6(κ)‖v − w‖W 2−ξ
q,D (−1,1) , v, w ∈ S(κ) . (3.17)
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Proof. (i) As a first step, we express the electrostatic force

g(v) =
(
1 + σ2(∂zv)

2
)3/2 ∣∣∂rψv

(
z, v + 1

)∣∣2
defined in (3.1) in terms of the transformed electrostatic potential φv. To this end, we
recall from (3.2) that

ψv(z, r) = φv

(
Tv(z, r)

)
= φv

(
z,
r − 2v(z)

1− v(z)

)
, (z, r) ∈ Ω(v) ,

and consequently

∂rψv

(
z, v(z) + 1

)
=
∂rφv(z, 1)

1− v(z)
, z ∈ (−1, 1) .

This yields

g(v) =
(
1 + σ2(∂zv)

2
)3/2 |∂rφv( · , 1)|2

(1− v)2
, v ∈ S(κ) . (3.18)

Moreover, as the second preliminary observation, we note that∥∥∂rφv( · , 1)
∥∥
W

1/2
2 (−1,1)

≤ C(κ) , v ∈ S(κ) . (3.19)

Indeed, since φv belongs to W 2
2 (Ω), the trace theorem [37, Theorem 1.5.1.2] yields

‖∂rφv( · , 1)‖W 1/2
2 (−1,1)

≤ C ‖φv‖W 2
2 (Ω) , v ∈ S(κ) ,

for some constant C > 0 independent of v. In combination with the fact that φv is
uniformly bounded on S(κ) due to (3.14), estimate (3.19) then follows.
(ii) We deduce from the representation of g in (3.18) and

W 1
q (−1, 1) ·W 1/2

2 (−1, 1) ·W 1/2
2 (−1, 1) ↪→ W ν

2 (−1, 1) ,

due to the Multiplication Theorem A.1, that

‖g(v)‖W ν
2,D

≤ C

∥∥∥∥∥
(
1 + σ2(∂zv)

2
)3/2

(1− v)2

∥∥∥∥∥
W 1

q (−1,1)

∥∥∂rφv( · , 1)
∥∥2
W

1/2
2 (−1,1)

≤ C(κ)

for v ∈ S(κ). Here, the last inequality follows from (3.19). Consequently, g maps S(κ)
to W ν

2,D(−1, 1) and is bounded.
(iii) We present the main part of the proof. Namely, we derive the stated Lipschitz
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continuity of g based on (3.18). To this end, we write
‖g(v)− g(w)‖W ν

2,D(−1,1)

≤
∥∥∥∥(1 + σ2w2

z)
3/2

(1− w)2

(
|∂rφv( · , 1)|2 − |∂rφw( · , 1)|2

)∥∥∥∥
W ν

2,D(−1,1)

+

∥∥∥∥(1 + σ2w2
z)

3/2

(
1

(1− w)2
− 1

(1− v)2

)
|∂rφv( · , 1)|2

∥∥∥∥
W ν

2,D(−1,1)

+

∥∥∥∥((1 + σ2v2z)
3/2 − (1 + σ2w2

z)
3/2
) 1

(1− v)2
|∂rφv( · , 1)|2

∥∥∥∥
W ν

2,D(−1,1)

=: I + II + III ,

and estimate each part separately:
For I: We let α ∈ (ξ, 1/2− ν), and write

I =

∥∥∥∥(1 + σ2w2
z)

3/2

(1− w)2

(
∂rφv( · , 1) + ∂rφw( · , 1)

)(
∂rφv( · , 1)− ∂rφw( · , 1)

)∥∥∥∥
W ν

2,D(−1,1)

.

From
W 1

q (−1, 1) ·W 1/2
2 (−1, 1) ·W 1/2−α

2 (−1, 1) ↪→ W ν
2 (−1, 1),

which holds thanks to the Multiplication Theorem A.1, we deduce that

I ≤
∥∥∥∥(1 + σ2w2

z)
3/2

(1− w)2

∥∥∥∥
W 1

q (−1,1)

∥∥∂rφv( · , 1) + ∂rφw( · , 1)
∥∥
W

1/2
2 (−1,1)

×
∥∥∂rφv( · , 1)− ∂rφw( · , 1)

∥∥
W

1/2−α
2 (−1,1)

≤ C(κ)
∥∥∂rφv( · , 1)− ∂rφw( · , 1)

∥∥
W

1/2−α
2 (−1,1)

≤ C(κ) ‖∂rφv − ∂rφw‖W 1−α
2 (Ω) , v, w ∈ S(κ) .

In addition to the Multiplication Theorem, we applied (3.19), the fact that W 1
q (−1, 1)

is a Banach algebra and the chain rule to derive the second estimate, while the third
estimate follows from properties of the trace, see [37, Theorem 1.5.1.2]. Now using
continuity of differentiation between fractional Sobolev spaces due to [37, Theorem
1.4.4.6] (which is applicable as 1−α 6= 1/2) and subsequently Lemma 3.7, we conclude
that

I ≤ C(κ) ‖φv − φw‖W 2−α
2 (Ω)

≤ C(κ)‖v − w‖W 2−ξ
q (−1,1) , v, w ∈ S(κ) .

For II: We estimate

II ≤
∥∥(1 + σ2w2

z)
3/2
∥∥
W 1

q (−1,1)

∥∥∥∥ 1

(1− w)2
− 1

(1− v)2

∥∥∥∥
W 1

q (−1,1)

‖∂rφv( · , 1)‖2W 1/2
2 (−1,1)

≤ C(κ)

∥∥∥∥ 1

(1− w)2
− 1

(1− v)2

∥∥∥∥
W 1

q (−1,1)

, v, w ∈ S(κ) ,
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where we use that W 1
q (−1, 1) is a Banach algebra and

W 1
q (−1, 1) ·W 1/2

2 (−1, 1) ·W 1/2
2 (−1, 1) ↪→ W ν

2 (−1, 1) ,

thanks to the Multiplication Theorem A.1. Writing
1

(1− w)2
− 1

(1− v)2
=

2− w − v

(1− w)2 (1− v)2
(w − v) ,

and using once more that W 1
q (−1, 1) is an algebra, we deduce further that

II ≤ C(κ) ‖v − w‖W 1
q (−1,1)

≤ C(κ) ‖v − w‖W 2−ξ
q (−1,1) , v, w ∈ S(κ).

For III: We rewrite

(1 + σ2v2z)
3/2 − (1 + σ2w2

z)
3/2 = (1 + σ2v2z)

1/2
(
(1 + σ2v2z)− (1 + σ2w2

z)
)

+ (1 + σ2w2
z)
(
(1 + σ2v2z)

1/2 − (1 + σ2w2
z)

1/2
)

= r(v, w) (vz + wz)(vz − wz)

with

r(v, w) := σ2

(
(1 + σ2v2z)

1/2 +
(1 + σ2w2

z)√
1 + σ2v2z +

√
1 + σ2w2

z

)
∈ W 1

q (−1, 1) .

Then, we estimate III by

III =

∥∥∥∥r(v, w)(vz + wz)

(1− v)2
(vz − wz) |∂rφv( · , 1)|2

∥∥∥∥
W ν

2,D(−1,1)

≤ C(κ)‖vz − wz‖W 1−ξ
q (−1,1)

≤ C(κ)‖v − w‖W 2−ξ
q (−1,1)

using

W 1
q (−1, 1) ·W 1−ξ

q (−1, 1) ·W 1/2
2 (−1, 1) ·W 1/2

2 (−1, 1) ↪→ W ν
2,D(−1, 1)

due to the Multiplication Theorem, (3.8). Combining the estimates for I-III yields
(3.16).
(iv) The second estimate (3.17) follows directly:∥∥∥∥ 1

v + 1
− 1

w + 1

∥∥∥∥
W ν

2,D(−1,1)

≤ C

∥∥∥∥ w − v

(v + 1)(w + 1)

∥∥∥∥
W 1

q (−1,1)

≤ C(κ)‖w − v‖W 2−ξ
q,D (−1,1) , v, w ∈ S(κ) .

□

Thanks to Sobolev’s embedding theorem, we have the following Lq-Lq-version of
Proposition 3.8:
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Corollary 3.9 Let q ∈ (2,∞), κ ∈ (0, 1) and λ, σ > 0. For ξ ∈ [0, 1/q) and 2µ ∈
[0, 1/q − ξ), there exists a constant C7(κ) > 0 such that the map

[v 7→ g(v)] : S(κ) → W 2µ
q,D(−1, 1)

is bounded by C7(κ) and

‖g(v)− g(w)‖Lq(−1,1) ≤
C7(κ)

2λ
‖v − w‖W 2−ξ

q,D (−1,1) ,

as well as∥∥∥∥ 1

v + 1
− 1

w + 1

∥∥∥∥
Lq(−1,1)

≤ C7(κ)

2
‖v − w‖W 2−ξ

q,D (−1,1) , v, w ∈ S(κ) .

Proof. Since
2µ+ 1/2− 1/q < 1/q − ξ + 1/2− 1/q = 1/2− ξ ,

we can fix ν ∈
(
2µ+1/2− 1/q , 1/2− ξ

)
. While Sobolev’s embedding theorem ensures

that
W ν

2,D(−1, 1) ↪→ W 2µ
q,D(−1, 1) ,

the choice of ξ and ν is compatible with Proposition 3.8. □

Note that Proposition 3.8 and the corresponding Corollary 3.9 establish Lipschitz
continuity of g with respect to a weaker norm than the ‖ · ‖W 2

q,D(−1,1)-norm, which will
be essential to prove local existence in the quasilinear setting. Besides local existence,
we will study stability of stationary solutions to the free boundary problem (1.20)-
(1.22) via the principle of linearized stability as well. To this end, we require at least
Fréchet-differentiability of the electrostatic force g. The next proposition shows that
g, considered on an open subset of W 2

q,D(−1, 1) equipped with the usual ‖ · ‖W 2
q,D(−1,1)-

norm, is even analytic. The proof is similar to that of [23, Proposition 5].

Proposition 3.10 Let q ∈ (2,∞) and put
S := {w ∈ W 2

q,D(−1, 1) | − 1 < w < 1} .
Then, the electrostatic force g is analytic from S to Lq(−1, 1).

Proof. First, we note that the mappings[
v 7→ 1

1− v

]
,

[
v 7→

(
1 + σ2(∂zv)

2
)3/2]

are analytic from S to W 1
q (−1, 1), which follows from an adaptation of [13, Exam-

ple 4.3.6] and from the fact that the composition of analytic maps is again analytic.
Next, we deduce that the maps

[v 7→ LD(v)] : S → L
(
W 2

2,D(Ω), L2(Ω)
)
, [v 7→ fv] : S → L2(Ω)

are also analytic so that the definition of φv from (3.12) combined with the analyticity
of the inversion map [` 7→ `−1] for bounded linear operators implies that [v 7→ φv] is an-
alytic from S to W 2

2 (Ω) as well. Finally, the representation of g in terms of φv in (3.18)
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and the Multiplication Theorem A.1 yield the analyticity of g from S to Lq(−1, 1). □

3.2. Coupled System
We are now in a position to prove local well-posedness as well as a global existence

criterion for the coupled free boundary problem (1.20)-(1.22). As already mentioned,
the main idea is to reinterpret the system (1.20)-(1.22) as the following single quasi-
linear parabolic equation for the film deflection

∂tu− σ∂zarctan(σ∂zu) = G(u) (3.20)
with the non-local right-hand side [u 7→ G(u)] given by

G(u) := − 1

u+ 1
+ λg(u) . (3.21)

Having established Lipschitz continuity of [u 7→ G(u)] between fractional Sobolev
spaces in the last section, we now solve (3.20). Our proof follows [24] with smaller
changes according to [44]. In particular, our proof is again based on semigroup theory
(more precisely: its time-dependent counterpart [5]) and Banach’s fixed point theorem,
and strongly relies on arguments from the quasilinear theory [5, 3]. We point out that
the regularity of [u 7→ G(u)] from Corollary 3.9 is slightly different to the one usually
required for local well-posedness results in the quasilinear theory, see for example [3,
Theorem 12.1] or also [55, Theorem 1.1]. This makes an adaptation of some of the
arguments necessary.

Before we start, we introduce some notations: Let q ∈ (2,∞) and ξ ∈ (0, 1/q′)
where q′ denotes the dual exponent of q. For κ ∈ (0, 1), we put

Z(κ) :=
{
v ∈ W 2−ξ

q (−1, 1)
∣∣ ‖v‖W 2−ξ

q (−1,1) ≤ 1/κ , −1 + κ ≤ v(z) ≤ 1− κ
}

and define

B(v)w := − σ2

(1 + σ2v2z)
wzz , w ∈ W 2

q,D(−1, 1) ,

for v ∈ Z(κ), where the connection between [v 7→ B(v)] and (3.20) is given via

B(u)u = − σ2uzz
(1 + σ2u2z)

= −σ∂z arctan(σ∂zu) , u ∈ W 2
q,D(−1, 1)1 ,

which is the second order operator occuring on the left-hand side of (3.20). Further-

more, the choice of ξ and Sobolev’s embedding theorem ensure that − σ2

(1 + σ2v2z)
∈

C
(
[−1, 1]

)
so that each B(v) is uniformly elliptic.

In the next two lemmata, we investigate properties of [v 7→ B(v)]. More precisely,
we show that [v 7→ B(v)] is globally Lipschitz continuous on Z(κ) and that each −B(v)
generates an analytic semigroup satisfying uniform estimates for v ∈ Z(κ).

1It is clear that B(u) is also defined in this case.
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Lemma 3.11 Let q ∈ (2,∞), κ ∈ (0, 1) and ξ ∈ (0, 1/q′). Then, there exists a
constant l(κ) such that

‖B(w)− B(v)‖L(W 2
q,D(−1,1),Lq(−1,1)) ≤ l(κ)‖w − v‖W 2−ξ

q,D (−1,1)

for v, w ∈ Z(κ).
Proof. It is clear that B(v) ∈ L

(
W 2

q,D(−1, 1), Lq(−1, 1)
)
. The Lipschitz continuity

follows from
‖B(w)− B(v)‖L(W 2

q,D(−1,1),Lq(−1,1))

≤ σ2

∥∥∥∥ 1

(1 + σ2w2
z)

− 1

(1 + σ2v2z)

∥∥∥∥
∞

≤ σ4

∥∥∥∥ 1

(1 + σ2w2
z)(1 + σ2v2z)

∥∥∥∥
∞

‖wz + vz‖∞ ‖wz − vz‖∞

≤ l(κ)‖w − v‖W 2−ξ
q,D (−1,1) ,

where we made use of Z(κ) being continuously embedded and bounded in C1
(
[−1, 1]

)
due to Sobolev’s embedding theorem. □

Lemma 3.12 Let q ∈ (2,∞), κ ∈ (0, 1) and ξ ∈ (0, 1/q′). Moreover, let ω > 0 be
fixed. Then, there is a constant k := k(κ) ≥ 1 such that for each v ∈ Z(κ) one has

B(v) ∈ H
(
W 2

q,D(−1, 1), Lq(−1, 1), k, ω
)
.

Proof. In [5, Remark I.1.2.1 (a)] a criterion for B(v) to belong to one of the quan-
titative versions of H

(
W 2

q,D(−1, 1), Lq(−1, 1)
)
, introduced in (2.1), is presented. The

criterion is relatively easy to check and allows us to deduce the uniform statement of
this lemma. We now give the precise criterion:

Assume that there are constants Ci(κ) > 0 for i = 8, 9 such that for all v ∈ Z(κ)
one has:

(i)
∥∥B(v)

∥∥
L(W 2

q,D(−1,1),Lq(−1,1))
≤ C8(κ) ,

(ii) [Reµ ≥ ω] ∈ ρ(−B(v)) and∥∥[µ+B(v)]−1
∥∥
L(Lq(−1,1))

≤ C8(κ)

|µ|
, Reµ ≥ ω ,

(iii)
∥∥[ω +B(v)]−1

∥∥
L(Lq(−1,1),W 2

q,D(−1,1))
≤ C9(κ).

Then, the assertion of the lemma follows from [5, Remark I.1.2.1 (a)].

Thus, we only have to check (i)–(iii). We first define V := (1 + σ2v2z)/σ
2 so that

B(v)w = −1/V wzz. Then,
1/σ2 ≤ V ≤ C10(κ) , v ∈ Z(κ) , (3.22)

and the differential operator B(v) satisfies∥∥B(v)
∥∥
L(W 2

q,D(−1,1),Lq(−1,1))
≤ σ2 , v ∈ Z(κ) ,



3.2. COUPLED SYSTEM 47

which is condition (i).

Next, we check condition (ii). To this end, we note that B(v) is uniformly elliptic.
Consequently, for f ∈ Lq(−1, 1), the equation{

B(v)u = f ,

u(±1) = 0

is uniquely solvable in W 2
q,D(−1, 1) with B(v)−1 ∈ L

(
Lq(−1, 1),W 2

q,D(−1, 1)
)

due to
[33, Theorem 9.15, Lemma 9.17]. It follows from the Theorem of Rellich-Kondrachov
that B(v)−1 ∈ L

(
Lq(−1, 1)

)
is compact, and [39, Theorem 6.29] implies that the

spectrum σ(−B(v)) consists only of eigenvalues. Now we fix an eigenvalue µ of −B(v)
and a corresponding eigenfunction ϕ ∈ W 2

q,D

(
(−1, 1),C

)
. Testing

µϕ− 1

V
∂2zϕ = 0

with V ϕ ∈ W 2
q′,D

(
(−1, 1),C

)
and using integration by parts yields

µ =
−
∫ 1

−1
|∂zϕ|2 dz∫ 1

−1
V |ϕ|2 dz

< 0

so that [
Reµ > 0] ⊂ ρ(−B(v)) , v ∈ Z(κ) .

Next, let u ∈ W 2
q,D(−1, 1) be the unique solution to

[µ+B(v)]u = f , f ∈ Lq

(
(−1, 1),C

)
,

for µ > 0. Testing this equation with V |u|q−2u ∈ Lq′
(
(−1, 1),C

)
yields – along the

lines of the proof of [53, Proposition 2.4.2] – the resolvent estimate (ii).

Finally, we turn to condition (iii). For v ∈ Z(κ) and u ∈ W 2
q,D(−1, 1), we find

‖u‖q
W 2

q,D(−1,1)
≤ ‖u‖qW 1

q (−1,1) + C10(κ)
q
∥∥B(v)u

∥∥q
Lq(−1,1)

≤ 1

2
‖u‖q

W 2
q,D(−1,1)

+ C ‖u‖qLq(−1,1) + C10(κ)
q
∥∥[ω +B(v)]u

∥∥q
Lq(−1,1)

(3.23)

thanks to (3.22), the triangle inequality and Ehrling’s lemma. Bringing the first term
on the right-hand side of (3.23) to the left-hand side, we deduce from (ii) the existence
of a constant C9(κ) > 0 with

‖u‖W 2
q,D(−1,1) ≤ C9(κ)

∥∥[ω +B(v)]u
∥∥
Lq(−1,1)

, v ∈ Z(κ) , u ∈ W 2
q,D(−1, 1) ,

which is equivalent to condition (iii). Now everything is proven.
□

If v now depends on t, then −B(v) generates a parabolic evolution operator (instead
of an analytic semigroup), which satisfies regularity estimates holding uniformly on
Z(κ). The corresponding result is [23, Proposition 3.2].
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Proposition 3.13 Let q ∈ (2,∞), κ ∈ (0, 1), ρ ∈ (0, 1) and ξ ∈ (0, 1/q′). For
τ ∈ (0, 1], we define

Vτ (κ) :=

{
v : [0, τ ] → W 2−ξ

q,D (−1, 1)

∣∣∣∣
‖v(t)− v(s)‖W 2−ξ

q,D (−1,1) ≤ |t− s|ρ , v(t) ∈ Z(κ) , s, t ∈ [0, τ ]

}
.

Then, for each v ∈ Vτ (κ), there exists a unique parabolic evolution operator{
UB(v)(t, s)

∣∣ 0 ≤ s ≤ t ≤ τ
}

possessing W 2
q,D(−1, 1) as regularity subspace. Moreover, for fixed 2µ ∈ (0, 1/q), there

exists a constant C11(κ) ≥ 1 independent of τ and v ∈ Vτ (κ) such that∥∥UB(v)(t, s)
∥∥
L(W 2

q,D(−1,1))
+
(
t− s)1−µ

∥∥UB(v)(t, s)‖L(W 2µ
q,D(−1,1),W 2

q,D(−1,1)) ≤ C11(κ)

for 0 ≤ s < t ≤ τ .
Proof. Let ω > 0 and put

B :=
{[
t 7→ B(v(t))

] ∣∣∣ v ∈ Vτ (κ)
}
.

From Lemma 3.11 and Lemma 3.12, we deduce that

B ⊂ Cρ
(
[0, τ ] , H

(
W 2

q,D(−1, 1), Lq(−1, 1), k, ω
))

is bounded, which implies that B satisfies condition [5, Equation II (5.0.1)]. Here,
k = k(κ) ≥ 1 is the same as in Lemma 3.12. Since condition [5, Equation II (5.0.1)] is
satisfied, we can use the uniform estimates for parabolic evolution operators from [5,
Section II.5]. More precisely, the statement follows from [5, Theorem II.5.1.1, Lemma
II.5.1.3] and the identification of interpolation spaces as fractional Sobolev spaces with
Dirichlet boundary conditions based on [3, Theorem 5.2]. The latter originates from
[36, 66]. □

Remark 3.14 The above proof ensures that the uniform estimates from [5, Section
II.5] hold true. Together with the regularity estimates for the non-local operator
[u 7→ G(u)] defined in (3.21), see Corollary 3.9, they form the basis for the upcoming
fixed point argument.

We turn to the proof of the main result of this chapter:

Theorem 3.15 (Local Well-Posedness)
Let q ∈ (2,∞), λ, σ > 0 and u0 ∈ W 2

q,D(−1, 1) with 1 > u0(z) > −1 for z ∈ (−1, 1).
Then, there exists a unique maximal solution (u, ψu) to the coupled free boundary
problem (1.20)-(1.22) on the maximal interval of existence

[
0, Tmax

)
in the sense that

u ∈ C1
(
[0, Tmax), Lq(−1, 1)

)
∩ C

(
[0, Tmax),W

2
q,D(−1, 1)

)
solves (1.20) and ψu(t) ∈ W 2

2

(
Ω(u(t))

)
solves (1.21)-(1.22) for each t ∈ [0, Tmax).
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Proof. It suffices to show the existence of a unique local solution u to (3.20),
which may subsequently be extended to a unique maximal solution. We want to apply
Banach’s fixed point theorem:
(i) Choice of a complete metric space: Fix κ > 0 with

u0 ∈ S(2κ) ∩ Z(2κ)
as well as

ξ ∈ (0, 1/q) , ρ ∈ (0, ξ/4) , 2µ ∈ (0, 1/q − ξ) , τ ∈ (0, 1] .

Here, we recall that u0 ∈ S(2κ) is equivalent to

‖u0‖W 2
q,D(−1,1) ≤

1

2κ
, 1− 2κ ≥ u0 ≥ −1 + 2κ ,

while u0 ∈ Z(2κ) is equivalent to

‖u0‖W 2−ξ
q,D (−1,1) ≤

1

2κ
, 1− 2κ ≥ u0 ≥ −1 + 2κ ,

where different norms are used due to the fact that the analysis of the right-hand side of
(3.20) requires control of the W 2

q -norm, while the arguments from [5, Section II.5] only
apply for slightly weaker norms. Moreover, by Proposition 3.13, we find C11(κ) ≥ 1
independent of τ such that∥∥UB(v)(t, s)

∥∥
L(W 2

q,D(−1,1))
+
(
t− s)1−µ

∥∥UB(v)(t, s)‖L(W 2µ
q,D(−1,1),W 2

q,D(−1,1)) ≤ C11(κ)

(3.24)

for each v ∈ Vτ (κ) and 0 ≤ s < t ≤ τ . Now, we put κ̃ :=
κ

C11(κ)
≤ κ and define

Vτ (κ, κ̃) :=

{
v : [0, τ ] → W 2

q,D(−1, 1)

∣∣∣∣
‖v(t)− v(s)‖W 2−ξ

q,D (−1,1) ≤ |t− s|ρ , v(t) ∈ S(κ̃) ∩ Z(κ) , s, t ∈ [0, τ ]

}
with Vτ (κ, κ̃) ⊂ Vτ (κ). Thanks to the Theorem of Eberlein-Smulyan, Vτ (κ, κ̃), equipped
with the metric

d(v, w) := sup
t∈[0,τ ]

‖v(t)− w(t)‖W 2−ξ
q,D (−1,1) ,

is a complete metric space.
(ii) Definition of the map Λ: Recall from (3.21) that we use the abbreviation

G(v(t)) =
−1

1 + v(t)
+ λg(v)(t) , v ∈ Vτ (κ, κ̃) , t ∈ [0, τ ] ,

for the right-hand side of (3.20), and note that
[t 7→ G(v(t))] ∈ Cρ

(
[0, τ ], Lq(−1, 1)

)
due to Corollary 3.9. Hence, thanks to [5, Theorem II.1.2.1, Remark II.2.1.2 (b)], the
variation-of-constant-formula

Λ(v)(t) := UB(v)(t, 0)u0 +

∫ t

0

UB(v)(t, s)G(v(s)) ds , t ∈ [0, τ ] ,
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defines for each v ∈ Vτ (κ, κ̃) the unique solution
Λ(v) ∈ C1

(
[0, τ ], Lq(−1, 1)

)
∩ C

(
[0, τ ],W 2

q,D(−1, 1)
)

to the linear problem
∂tu+B(v)u = G(v) , u(0) = u0 .

It remains to adjust τ ∈ (0, 1] such that the map Λ possesses further properties:
(iii) Λ is a self-mapping: It follows from [5, Theorem II.5.3.1] (with α = 1− ξ/2 + 2ρ
and β = 1− ξ/2) that

‖Λ(v)(t)− Λ(v)(s)‖W 2−ξ
q,D (−1,1)

≤ C12(κ) |t− s|2ρ
(
‖u0‖W 2−ξ+4ρ

q,D (−1,1) + ‖G(v(t))‖L∞((0,t),Lq(−1,1))

)
≤ C13(κ)

(
1

2κ
+ C7(κ̃)

)
τ ρ |t− s|ρ v ∈ Vτ (κ, κ̃) , s, t ∈ [0, τ ] ,

where we additionally used the choice of κ and Corollary 3.9. Making τ smaller, if
necessary, we find, for arbitrary v ∈ Vτ (κ, κ̃) and s, t ∈ [0, τ ], that

‖Λ(v)(t)− Λ(v)(s)‖W 2−ξ
q,D (−1,1) ≤ |t− s|ρ . (3.25)

Next, the triangle inequality and (3.25) imply that
‖Λ(v)(t)‖W 2−ξ

q,D (−1,1) ≤ ‖Λ(v)(t)− Λ(v)(0)‖W 2−ξ
q,D (−1,1) + ‖u0‖W 2−ξ

q,D (−1,1)

≤ τ ρ +
1

2κ
, (3.26)

while (3.25) combined with Sobolev’s embedding theorem gives
Λ(v)(t) ≤ u0 + ‖Λ(v)(t)− Λ(v)(0)‖∞

≤ 1− 2κ+ C ‖Λ(v)(t)− Λ(v)(0)‖W 2−ξ
q,D (−1,1)

≤ 1− 2κ+ C τ ρ . (3.27)
A similar argument yields

Λ(v)(t) ≥ −1 + 2κ− C τ ρ . (3.28)
Moreover, we have

‖Λ(v)(t)‖W 2
q,D(−1,1) ≤ C11(κ)‖u0‖W 2

q,D(−1,1) + C11(κ)

∫ t

0

(t− s)µ−1‖G(v(s))‖W 2µ
q,D(−1,1) ds

≤ C11(κ)

2κ
+ C11(κ)C7(κ̃)

∫ t

0

sµ−1 ds

≤ 1

2κ̃
+ C11(κ)C7(κ̃)

τµ

µ
, (3.29)

where we applied (3.24) for the first inequality and Corollary 3.9 for the second one,
while the last inequality follows from the choice of κ̃2. Making τ ∈ (0, 1] smaller, if

2In (3.29), the role of κ̃ becomes clear as we can only show that ‖UB(v)(t, 0)u0‖W 2
q,D(−1,1) is

bounded, but have no possibility to adjust the bound to be smaller than 1
2κ .
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necessary, equations (3.25)-(3.29) imply that Λ maps Vτ (κ, κ̃) into itself.
(iv) Λ is a contraction: Finally, for v, w ∈ Vτ (κ, κ̃) and t ∈ [0, τ ], it follows from [5,
Theorem II.5.2.1] (with α = 1, β = 1− ξ/2 and γ = µ) that

‖Λ(v)(t)− Λ(w)(t)‖W 2−ξ
q,D (−1,1)

≤ C14(κ) τ
ξ/2

(
‖G(v)−G(w)‖L∞((0,t),Lq(−1,1))

+ ‖B(v)− B(w)‖C([0,t],L(W 2
q,D ,Lq) ·

(
‖u0‖W 2

q,D(−1,1) + ‖G(v)‖L∞((0,t),W 2µ
q,D(−1,1))

))
≤ C14(κ) τ

ξ/2

(
C7(κ̃) + `(κ)

( 1

2κ
+ C7(κ̃)

))
d(v, w) .

Here, we have also applied Corollary 3.9 and Lemma 3.11 for the second inequality.
Making τ ∈ (0, 1] smaller, if necessary, and taking the supremum over t ∈ [0, τ ], we
find

d
(
Λ(v),Λ(w)

)
≤ 1

2
d(v, w) , v, w ∈ Vτ (κ, κ̃) ,

i.e. Λ is a contraction.

Gathering (i)-(iv) together, Banach’s fixed point argument yields the local exis-
tence of a unique solution u ∈ C1

(
[0, τ ], Lq(−1, 1)

)
∩ C

(
[0, τ ],W 2

q,D(−1, 1)
)

while for
fixed time t ∈ [0, τ) the transformed electrostatic potential φu(t) belongs to W 2

2 (Ω) with
Ω = (−1, 1) × (1, 2), see (3.12), which is equivalent to ψu(t) ∈ W 2

2

(
Ω(u(t))

)
. Hence,

everything is proven. □

Since τ in the above fixed point argument only depends on κ and κ̃ which itself
only depends on κ, we can show the typical global existence criterion for solutions to
parabolic equations:

Theorem 3.16 (Global Existence Criterion)
If for each τ > 0, there exists κ(τ) ∈ (0, 1) such that the unique maximal solution u
from Theorem 3.15 satisfies u(t) ∈ S(κ(τ)) for all t ∈ [0, Tmax) ∩ [0, τ ], then u exists
globally, that is, Tmax = ∞.

Proof. This follows easily from Theorem 3.15 by a contradiction argument. □

Theorem 3.16 implies that if Tmax < ∞, then the soap film touches itself, touches
the outer metal cylinder or the ‖ · ‖W 2

q,D(−1,1)-norm of u blows up. Here, all three cases
may happen at once. While the first two cases possess a direct physical interpretation,
the interpretation of the third one is less clear. The norm blow-up might indicate that
the soap film can no longer be described by a graph of a function. For example, this
could be due to a rupture of the film, or a non-physical behaviour of the film due to a
limitation of the model.

Another consequence of the uniqueness of solutions is the following:
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Corollary 3.17 (Symmetry)
If the initial value u0 is even, i.e. u0(z) = u0(−z), then the unique maximal solution
u from Theorem 3.15 and the corresponding electrostatic potential ψu are even with
respect to z at each time t ∈ [0, Tmax).

Proof. First, let v ∈ S(κ) for some κ > 0 and define ṽ(z) := v(−z). Then, the
unique solvability of the electrostatic problem implies that ψṽ(z, r) = ψv(−z, r) for all
(z, r) ∈ Ω(ṽ) and consequently g(ṽ)(z) = g(v)(−z) for z ∈ (−1, 1) by definition of the
electrostatic force in (3.1). Now, if the initial value u0 in Theorem 3.15 is even, i.e.
u0(z) = u0(−z), then the uniqueness of solutions implies that the maximal solution u
is even in z, too. In particular, ũ(t) = u(t) for each t ∈ [0, Tmax) and consequently
ψu(t)(z, r) = ψu(t)(−z, r). □

We conclude this chapter with two remarks on the local existence result presented
in Theorem 3.15:
Remarks 3.18 (a) Note that we do not provide conditions on λ, σ and the initial
value u0 which ensure global existence of solutions. This is due to the fact that the
right-hand side of (3.20),

G(u) =
−1

1 + u
+ λg(u) ,

consists of terms of opposite signs with unknown growth of [u 7→ g(u)]. Nevertheless,
in later chapters, we achieve global existence results in the form of stable stationary
solutions.
(b) We mention that the Fréchet-derivative of

−B(u)u =
σ2uzz

(1 + σ2u2z)
, u ∈ W 2

q,D(−1, 1) ,

evaluated at any initial value u0 ∈ W 2
q,D(−1, 1), generates an analytic semigroup. This

allows an alternative fixed point argument based on linearization around the initial
value.



CHAPTER 4

Stationary Solutions near the Catenoids

In this chapter, we study existence and qualitative properties of stationary solutions
to (1.20)-(1.22) for small values of λ and σ fixed above a certain critical value. As the
electrostatic potential ψu can always be recovered from the film deflection u, we solely
focus on u. The stationary version of (1.20)-(1.22) is then given by the non-local elliptic
equation  −σ∂zarctan(σ∂zu) = − 1

u+ 1
+ λ g(u) ,

u(±1) = 0 , −1 < u < 1
(4.1)

with non-local term g(u) defined in (3.1) and capturing the impact of the electrostatic
potential ψu. Throughout the whole chapter, we use the abbreviation

F (u) := σ∂zarctan(σ∂zu)−
1

u+ 1
. (4.2)

4.1. Existence of Stationary Solutions near the Catenoids
We address the existence of stationary solutions for small λ and σ large enough. As

a starting point, we recall the situation in which no voltage is applied, that is λ = 0 in
(4.1):  −σ∂zarctan(σ∂zu) = − 1

u+ 1
,

u(±1) = 0 , −1 < u < 1 .
(4.3)

This is the well-known minimal surface equation for a surface of revolution. It can be
found in many textbooks, see for example [38, p. 282], that there exists a threshold
value σcrit such that (4.3) has:

• no solution for σ < σcrit ,
• exactly one solution for σ = σcrit ,
• exactly two solutions for σ > σcrit .

The threshold value can be computed as σcrit = cosh(ccrit)
ccrit

≈ 1.5 with ccrit ≈ 1.2 being
the unique positive solution to

ccritsinh(ccrit)− cosh(ccrit)
!
= 0 . (4.4)

Moreover, all stationary solutions have the shape of a (translated) catenoid

u∗(z) :=
cosh(cz)

cosh(c)
− 1 , z ∈ (−1, 1) ,

53
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where the constant c > 0 satisfies the relation

σ =
cosh(c)

c
. (4.5)

For σ > σcrit, there are two possible choices for this constant which we denote by cin
and cout. They satisfy

cout < ccrit < cin (4.6)

and result in an inner catenoid uin corresponding to cin and an outer catenoid uout with
uout > uin in (−1, 1). For σ ↘ σcrit, the inner and outer catenoid merge into a single
critical one ucrit, whereas for σ ↗ ∞ the outer catenoid tends to the constant function
0, while the inner one touches itself at z = 0. The inner and outer catenoid together
with the critical one are depicted in Figure 4.1.

−1

1
z

uoutucrituin

Figure 4.1. Depiction of the critical catenoid (red) for σ = σcrit to-
gether with the pair of inner catenoid (blue) and outer catenoid (green)
for σ ≈ 1.9. The corresponding c-values are cin ≈ 2.0 and cout ≈ 0.6.

Based on the analysis for λ = 0, we now prove the existence of at least two stationary
solutions for small λ > 0 and σ > σcrit by applying the implicit function theorem. A
similar result is proven in [23, Theorem 3 (i)] and [24, Theorem 1.2 (i)] in which the
existence of at least one steady state in different models for MEMS-devices is shown.
The main difference is that we have to solve an additional ordinary differential equation.

Theorem 4.1 Let q ∈ (2,∞) and σ > σcrit. Then, there exists δ = δ(σ) > 0 and
analytic functions

[λ 7→ uλin] : [0, δ) → W 2
q,D(−1, 1) , u0in = uin ,

[λ 7→ uλout] : [0, δ) → W 2
q,D(−1, 1) , u0out = uout

such that uλin and uλout are two different solutions to (4.1) for each λ ∈ (0, δ). Moreover,
uλin and uλout as well as the corresponding electrostatic potentials ψuλ

in
∈ W 2

2

(
Ω(uλin)

)
and ψuλ

out
∈ W 2

2

(
Ω(uλout)

)
are symmetric with respect to the r-axis.
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Proof. Put
S :=

{
w ∈ W 2

q,D(−1, 1)
∣∣ − 1 < w < 1

}
.

In the following, we want to resolve equation (4.1), that is F (w) + λg(w) = 0 with
F from (4.2), locally around (w, λ) = (uin, 0) and (w, λ) = (uout, 0). Because F and
g (see Proposition 3.10) are analytic from S to Lq(−1, 1), this is possible if and only
if DF (uin) and DF (uout) are isomorphisms from W 2

q,D(−1, 1) to Lq(−1, 1). Using the
definition of F and the relation

σ∂zarctan(σ∂zw) =
σ2∂2zw

1 + σ2(∂zw)2
,

we compute

DF (w)v =
σ2

(1 + σ2w2
z)
vzz −

2σ4wzwzz

(1 + σ2w2
z)

2
vz +

1

(w + 1)2
v , w ∈ S . (4.7)

Evaluating DF at the generic catenoid

u∗(z) =
cosh(cz)

cosh(c)
− 1

with c being either cin or cout and using

σ =
cosh(c)

c
, (u∗)z =

sinh(cz)

σ
,

(u∗)zz =
c cosh(cz)

σ
, 1 + σ2(u∗)

2
z = cosh2(cz) (4.8)

several times, we find

DF (u∗)v =
σ2

cosh2(cz)
vzz −

2σ2 c cosh(cz) sinh(cz)

cosh4(cz)
vz +

cosh2(c)

cosh2(cz)
v

=
σ2

cosh2(cz)
vzz −

2σ2 c

cosh2(cz)
tanh(cz)vz +

σ2 c2

cosh2(cz)
v . (4.9)

Due to the Fredholm alternative and elliptic regularity theory, DF (u∗) is an isomor-
phism if and only if DF (u∗)v = 0 has the unique solution v = 0 in W 2

q,D(−1, 1).
Multiplying DF (u∗)v = 0 by − cosh2(cz)

σ2 yields the equivalent condition that{
−vzz + 2 c tanh(cz)vz − c2v = 0 ,

v(±1) = 0
(4.10)

only possesses the trivial solution for c equal to cin or cout. This has already been
shown in [58, p. 49] with the aid of the shooting method, which is briefly recalled here
for the reader’s convenience: First, one fixes C1, C2 ∈ R and observes that the initial
value problem {

−vzz + 2 c tanh(cz)vz − c2v = 0 ,

v(0) = C1 , vz(0) = C2 c

has the unique solution
v(z) = C2 sinh(cz)− C1

(
c z sinh(cz)− cosh(cz)

)
. (4.11)
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Next, one tries to adjust C1 and C2 such that v satisfies the boundary conditions in
(4.10),

v(1) = C2 sinh(c)− C1

(
c sinh(c)− cosh(c)

) !
= 0 ,

v(−1) = −C2 sinh(c)− C1

(
c sinh(c)− cosh(c)

) !
= 0 ,

or, equivalently,

C2
!
= 0 and C1

(
c sinh(c)− cosh(c)

) !
= 0 .

As c sinh(c)− cosh(c) = 0 if and only if c = ccrit by (4.4), it follows that C1 = C2 = 0
for c 6= ccrit. Hence,

(4.10) has only the trivial solution for c 6= ccrit, (4.12a)
while

v(z) = C1

(
ccrit z sinh(ccritz)− cosh(ccritz)

)
, C1 ∈ R \ {0}

is a non-trivial solution to (4.10) for c = ccrit. (4.12b)
Since cin > ccrit > cout, we find that DF (uin) as well as DF (uout) are isomorphisms
between W 2

q,D(−1, 1) and Lq(−1, 1). Hence, the implicit function theorem in the form
[13, Theorem 4.5.4] yields some δ > 0 and analytic functions

[λ 7→ uλin] : [0, δ) → W 2
q,D(−1, 1) , u0in = uin ,

[λ 7→ uλout] : [0, δ) → W 2
q,D(−1, 1) , u0out = uout

such that uλin and uλout are two different solutions to (4.1) for each λ ∈ (0, δ) with
‖uλin − uin‖W 2

q,D(−1,1) < δ , ‖uλout − uout‖W 2
q,D(−1,1) < δ .

Additionally, if u solves (4.1) for some λ ∈ (0, δ) with
‖u− uin‖W 2

q,D(−1,1) < δ or ‖u− uout‖W 2
q,D(−1,1) < δ , (4.13)

then u = uλin or u = uλout. Because
[
z 7→ uλin(−z)

]
is a second solution to (4.1), see

the proof of Corollary 3.17, having the same W 2
q -distance to uin as uλin, we deduce

from (4.13) that uλin(−z) = uλin(z). As a consequence, the electrostatic potential ψuλ
in

is
also symmetric with respect to the r-axis. The symmetry of uλout is shown similarly. □

Remark 4.2 For σ = σcrit, the existence of stationary solutions for small λ seems to
be unknown. Since in this case (4.10) possesses a non-trivial solution, it follows that
DF (ucrit) is not an isomorphism, and the implicit function theorem is not applicable.
Remark 4.3 We deduce from (4.13) that for σ > σcrit and each λ ∈

(
0, δ(σ)

)
no other

solution u ∈ W 2
q,D(−1, 1) to (4.1), having sufficiently small W 2

q,D-distance to one of the
catenoids, exists. However, based on the numerical analysis performed for the small
aspect ratio model in [58], one would expect to find other, non-convex but oscillating
steady states.
Remark 4.4 In agreement with Theorem 4.1 we denote from now on the inner catenoid
uin by u0in, the outer catenoid uout by u0out, and the generic catenoid u∗ by u0∗.
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4.2. Stability of Stationary Solutions near the Catenoids
We study stability of stationary solutions to (1.20)-(1.22) under rotationally invari-

ant perturbations in the presence of a small voltage. Here, we restrict ourselves to
the case σ > σcrit, for which there are (at least) two stationary solutions uλin and uλout
thanks to Theorem 4.1. Our main result reads as follows:

Theorem 4.5 Let q ∈ (2,∞) and σ > σcrit. Then, there exists δ = δ(σ) > 0 such that
for each λ ∈ [0, δ):
(i) The stationary solution uλin to (1.20)-(1.22) is unstable in W 2

q,D(−1, 1).
(ii) The stationary solution uλout to (1.20)-(1.22) is exponentially asymptotically stable
in W 2

q,D(−1, 1). More precisely, there exist numbers ω0,m,M > 0 such that for each
initial value u0 ∈ W 2

q,D(−1, 1) with ‖u0−uλout‖W 2
q,D

< m, the solution u to (1.20)-(1.22)
exists globally in time and the estimate

‖u(t)− uλout‖W 2
q,D(−1,1) + ‖∂tu(t)‖Lq(−1,1) ≤M e−ω0t‖u0 − uλout‖W 2

q,D(−1,1)

holds for t ≥ 0.

In second-order MEMS-models, see [23, Theorem 3 (ii)] and [24, Theorem 1.2 (ii)],
the principle of linearized stability has been applied to prove asymptotic exponential
stability of a steady state for small λ .

We pursue a similar approach for our set-up, but due to the λ-independent term
on the right-hand side of (4.1), we face a more complicated situation, even for λ = 0.
Thus, we postpone the proof of the full statement of Theorem 4.5 to the end of this
section and first turn to the special case of λ = 0 in Theorem 4.5. That is, we discuss
stability of the inner and outer catenoid u0in and u0out, which are precisely the steady
states for λ = 0. Note that the catenoids u0in and u0out are classically studied in the field
of calculus of variations, in which another notion of stability is used. We comment on
this in Remark 4.10.

Stability Analysis of the Inner and Outer Catenoid. Fix σ > σcrit and set
λ = 0. For a uniform computation, we linearize (1.20)-(1.22) around

u0∗(z) =
cosh(cz)

cosh(c)
− 1

with c being either cin or cout. For a solution u ∈ W 2
q,D(−1, 1) to (1.20)-(1.22) with

initial value u0 close to u0∗, we put v := u− u0∗ and write
∂tv = ∂t(u− u0∗) = F (u0∗ + v)− F (u0∗)

with F given by (4.2) and being smooth in a W 2
q,D-neighbourhood of u0∗. In (4.9), we

already computed the derivative of F , which we now require in divergence form

DF (u0∗)v =
σ2

cosh2(cz)
vzz −

2σ2 c

cosh2(cz)
tanh(cz)vz +

σ2 c2

cosh2(cz)
v

= σ2

[
∂z

( 1

cosh2(cz)
vz

)
+

c2

cosh2(cz)
v

]
. (4.14)
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Thus, the linearization of (1.20)-(1.22) around the generic catenoid u0∗ is given by
∂tv −DF (u0∗)v = F (v + u0∗)− F (u0∗)−DF (u0∗)v =: G(v)

with DF (u0∗) as above and G ∈ C∞(O, Lq(−1, 1)
)

for a small neighbourhood O of 0 in
W 2

q,D(−1, 1) satisfying G(0) = 0 as well as DG(0) = 0. Moreover, since −DF (u0∗) is a
uniformly elliptic operator of second order with bounded smooth coefficients, −DF (u0∗)
belongs to H

(
W 2

q,D(−1, 1), Lq(−1, 1)
)
, see [53, Theorem 2.5.1 (ii)]. Letting µ0(c) be

the first eigenvalue of DF (u0∗) − for details on the spectrum of DF (u0∗), we refer to
Lemma 4.6 below − the stability criterion [54, Theorem 9.1.2, Theorem 9.1.3] takes
the following simple form:

• if µ0(c) < 0, then u0∗ is exponentially asymptotically stable,
• if µ0(c) > 0, then u0∗ is unstable.

As only the sign of this first eigenvalue is crucial, we multiply 0 =
(
µ−DF (u0∗)

)
v for

µ ∈ C by 1/σ2 > 0 and instead study the sign of the first eigenvalue of the resulting
problem  0 = µv − c2

cosh2(cz)
v − ∂z

( 1

cosh2(cz)
vz

)
,

v(±1) = 0 .

(4.15)

This is a regular Sturm-Liouville problem. Therefore, our analysis starts with the
collection of some classical results about the spectrum of such problems:

Lemma 4.6 For fixed c ∈ (0,∞), the spectrum of (4.15) consists only of countably
infinitely many, algebraically simple eigenvalues

µ0(c) > µ1(c) > · · · > µn(c) → −∞ .

The eigenfunction vcn corresponding to µn(c) has exactly n zeroes in (−1, 1) and satisfies
vcn(−z) = (−1)n vcn(z) , z ∈ (−1, 1) .

Proof. For fixed c, we write µn = µn(c) and vn = vcn. By [71, p. 286], the spectrum
of (4.15) consists only of countably infinitely many eigenvalues of geometric multiplicity
1 tending to −∞. Moreover, the corresponding eigenfunction vn has exactly n zeroes
in (−1, 1). Note that with vn(z) also vn(−z) is a solution to (4.15). Since µn has
geometric multiplicity 1, it follows that vn(z) = C vn(−z) for some C ∈ R \ {0}. In
particular, it is

vn(0) = C vn(0) , ∂zvn(0) = −C∂zvn(0).
If n is even, then vn(0) 6= 0 and C = 1. If n is odd, then ∂zvn(0) 6= 0 and C = −1.
It remains to check that each eigenvalue of (4.15) is semi-simple in the sense of [54,
Definition A.2.3]. To this end, we introduce for p ≥ 2 the closed operator

Bpv :=
1

σ2
DF (u0∗)v =

c2

cosh2(cz)
v + ∂z

( 1

cosh2(cz)
vz

)
on Lp(−1, 1) with domain D(Bp) := W 2

p,D(−1, 1) associated with (4.15). We have to
check, first for the auxiliary case p = 2 and then for p = q > 2, that im(µn − Bp) is
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closed in Lp(−1, 1) and
Lp(−1, 1) = ker(µn − Bp)⊕ im(µn − Bp) . (4.16)

For p = 2, this follows directly from the Fredholm alternative [29, Theorem 6.2.4 (iii)]
and elliptic regularity theory. The latter also implies that

ker(µn − Bq) = ker(µn − B2) , im(µn − Bq) = im(µn − B2) ∩ Lq(−1, 1) .

Hence, for q > 2, im(µn −Bq) is closed in Lq(−1, 1). Based on these observations, the
decomposition (4.16) for p = q follows from the one for p = 2. □

The function [c 7→ µ0(c)] is called first eigencurve for (4.15). In [10], qualitative
properties of eigencurves for Sturm-Liouville problems depending linearly on a pa-
rameter c are stated. Though (4.15) depends non-linearly on c, it is still possible to
adapt the idea of [10, Section 2.1] to derive sufficient qualitative properties of the first
eigencurve:

unstablestableµ0

cout ccrit cin c

Figure 4.2. Qualitative behaviour of the first eigencurve [c 7→ µ0(c)]
for the problem (4.15). The sign of µ0(c) decides whether the catenoid
corresponding to c is asymptotically exponentially stable or unstable.

Proposition 4.7 The first eigencurve
µ0 : (0,∞) → R , c 7→ µ0(c)

of (4.15) is smooth and has exactly one zero. It is attained at ccrit with µ′
0(ccrit) > 0.

Proof. (i) Smoothness: Let v( · ; c, µ) be the unique non-trivial solution to

0 = µv − c2

cosh2(cz)
v − ∂z

( 1

cosh2(cz)
vz

)
(4.17)

supplemented with initial conditions
v(−1) = 0 , vz(−1) = 1 , (4.18)

and define
D(c, µ) := v(1; c, µ) . (4.19)
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As v( · ; c, µ) depends smoothly on the parameters (c, µ), see for example [4, Theo-
rem 9.5, Remark 9.6 (b)], we have D ∈ C∞((0,∞) × R,R

)
. Moreover, we note that

µ and v( · ; c, µ) are a pair of eigenvalue and eigenfunction to (4.15) if and only if
D(c, µ) = 0. We claim that it is further possible to characterize the first eigenvalue
µ0(c) via D and v( · ; c, µ):

D(c, µ) = 0 and v(z; c, µ) 6= 0 for z ∈ (−1, 1) ⇐⇒ µ = µ0(c) . (4.20)

Indeed, if D(c, µ) = 0 and v(z; c, µ) 6= 0 for z ∈ (−1, 1), then v( · ; c, µ) is an eigen-
function of (4.15) corresponding to the eigenvalue µ and having no zero in (−1, 1). It
then follows from Lemma 4.6 that µ = µ0(c). Otherwise, if µ coincides with the first
eigenvalue µ0(c) of (4.15), then the unique solvability of initial value problems yields
a constant C ∈ R \ {0} with

v
(
· , c, µ0(c)

)
= Cvc0 ,

where vc0 denotes the first eigenfunction from Lemma 4.6. Thus, by Lemma 4.6 the
function v

(
· , c, µ0(c)

)
satisfies Dirichlet boundary conditions and has no zero in (−1, 1).

This proves (4.20).

For fixed c > 0, we wish to resolve D(c, µ) = 0 for µ locally around (c, µ) =(
c, µ0(c)

)
. Recalling that v = v( · ; c, µ) depends smoothly on µ and c, we let vµ and

vc be the derivatives of v with respect to µ and c. Moreover, we compute that the
derivative of (4.17) with respect to µ is given by

0 = v + µvµ −
c2

cosh2(cz)
vµ − ∂z

(
1

cosh2(cz)
vzµ

)
. (4.21)

Multiplying (4.17) by vµ and subtracting the product of (4.21) and v, we find

0 = −v2 − ∂z

( 1

cosh2(cz)
vz

)
vµ + ∂z

( 1

cosh2(cz)
vzµ

)
v .

Integrating the previous identity over (−1, 1) yields

0 <

∫ 1

−1

v2 dz =

∫ 1

−1

(
∂z

( 1

cosh2(cz)
vzµ

)
v − ∂z

( 1

cosh2(cz)
vz

)
vµ

)
dz

=

[
1

cosh2(cz)
(vzµv − vzvµ)

]z=1

z=−1

. (4.22)

We want to evaluate (4.22) at (c, µ) =
(
c, µ0(c)

)
. For µ = µ0(c), it follows from (4.20)

that v
(
· ; c, µ0(c)

)
is a first eigenfunction, and Lemma 4.6 yields that v( · ; c, µ0(c)

)
is

even with v
(
± 1; c, µ0(c)

)
= 0. By symmetry and the initial conditions (4.18), we

get vz(1; c, µ0(c)) = −vz(−1; c, µ0(c)) = −1. Moreover, applying the initial condition
v(−1; c, µ) = 0 for all (c, µ), we find vµ

(
− 1; c, µ0(c)

)
= 0. Consequently, (4.22) can be

reduced to

0 <

∫ 1

−1

v2 dz =
vµ
(
1; c, µ0(c)

)
cosh2(c)

.
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Recalling that D(c, µ) = v
(
1; c, µ) by (4.19), we deduce further that

∂µD
(
c, µ0(c)

)
= vµ

(
1; c, µ0(c)

)
= cosh2(c)

∫ 1

−1

v2 > 0 . (4.23)

Hence, for fixed c > 0, the implicit function theorem yields some ρ > 0 and a function
µ̃ ∈ C∞((c− ρ, c+ ρ),R

)
with µ̃(c) = µ0(c) and

D
(
c̃, µ̃(c̃)

)
= D

(
c, µ0(c)

)
= 0 , c̃ ∈ (c− ρ, c+ ρ) . (4.24)

In addition, by the smooth dependence of v
(
· , c̃, µ̃(c̃)

)
on c̃, we may assume that

v
(
· , c̃, µ̃(c̃)

)
has no zero in (−1, 1) as the same holds true for v

(
· , c, µ0(c)

)
. Thus,

(4.20) implies

µ0(c̃) = µ̃(c̃) , c̃ ∈ (c− ρ, c+ ρ) ,

and the smoothness of [c 7→ µ0(c)] follows from that.

(ii) Zeroes: Rewriting (4.15) for µ = 0 in non-divergence form, we see that it is
equivalent to (4.10). Hence, it follows from (4.12a) and (4.12b) that 0 is an eigenvalue
of (4.15) if and only if c = ccrit. In this case, the corresponding eigenfunction is a
multiple of

w(z) := ccrit z sinh(ccritz)− cosh(ccritz) .

Since w has no zeroes in (−1, 1), we deduce from Lemma 4.6 that 0 is the first eigen-
value of (4.15) for c = ccrit so that ccrit is indeed the only zero of µ0.

(iii) Derivative at ccrit: Since

µ′
0(ccrit) = − ∂cD(ccrit, 0)

∂µD(ccrit, 0)
(4.25)

and ∂µD(ccrit, 0) > 0 thanks to (4.23), we have to check that ∂cD(ccrit, 0) < 0. Differ-
entiating (4.17) with respect to c yields

0 = µvc +
2c2sinh(cz)z

cosh3(cz)
v − 2c

cosh2(cz)
v − c2

cosh2(cz)
vc

+ ∂z

(2 sinh(cz)z
cosh3(cz)

vz

)
− ∂z

( 1

cosh2(cz)
vzc

)
. (4.26)

Multiplying (4.26) by v = v( · ; c, µ) and subtracting the product of (4.17) and vc yields

0 = ∂z

( 1

cosh2(cz)
vz

)
vc

+
2c2sinh(cz)z

cosh3(cz)
v2 − 2c

cosh2(cz)
v2 + ∂z

(2 sinh(cz)z
cosh3(cz)

vz

)
v − ∂z

( 1

cosh2(cz)
vzc

)
v .

(4.27)
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Plugging (c, µ) = (ccrit, 0) into (4.27) and then integrating from −1 to 1 gives∫ 1

−1

(
∂z

( 1

cosh2(ccritz)
vz

)
vc − ∂z

( 1

cosh2(ccritz)
vzc

)
v

)
dz

=

∫ 1

−1

2ccrit

cosh2(ccritz)

(
1− ccrit tanh(ccritz)z

)
v2dz +

∫ 1

−1

2sinh(ccritz)z

cosh3(ccritz)
v2z dz . (4.28)

For the second integral on the right-hand side, we have used integration by parts
and the fact that the boundary terms vanish due to v(±1; ccrit, 0) = 0 by (4.20) and
µ0(ccrit) = 0. From

1− ccrittanh(ccritz)z ≥ 1− ccrittanh(ccrit)

=
cosh(ccrit)− ccritsinh(ccrit)

cosh(ccrit)
= 0 , z ∈ (−1, 1) ,

which is due to (4.4) combined with the positivity of the second integral on the right-
hand side of (4.28), we deduce that

0 <

∫ 1

−1

(
∂z

( 1

cosh2(ccritz)
vz

)
vc − ∂z

( 1

cosh2(ccritz)
vzc

)
v

)
dz

=
[ 1

cosh2(ccritz)

(
vzvc − vzcv

)]z=1

z=−1

=
−∂cD(ccrit, 0)

cosh2(ccrit)
,

where we have used vz(1; ccrit, 0) = −vz(−1; ccrit, 0) by symmetry, the initial values
(4.18) and the definition of D. Finally, (4.23) and (4.25) yield µ′

0(ccrit) > 0. □

Corollary 4.8 The inequalities µ0(cout) < 0 and µ0(cin) > 0 > µ1(cin) hold true.

Proof. This follows from Proposition 4.7 and the fact that cout < ccrit < cin, see
(4.6). Note that similar arguments as in step (i) guarantee the smoothness of the sec-
ond eigencurve [c 7→ µ1(c)], which always lies below the first eigencurve [c 7→ µ0(c)].
Because the first eigencurve is sign-changing and the only eigencurve with a zero by
step (ii) in the above proof, it follows that 0 > µ1(cin). □

In particular, DF (u0out) has only strictly negative eigenvalues, while DF (u0in) has
exactly one strictly positive eigenvalue and all other eigenvalues are strictly negative.
Regarding the stability analysis of the catenoids, we end up with the following:

Corollary 4.9 For σ > σcrit and λ = 0, the inner catenoid u0in is unstable whereas the
outer catenoid u0out is exponentially asymptotically stable in W 2

q,D(−1, 1).

Finally, we come to our main purpose and show the corresponding properties of uλin
and uλout for λ > 0 sufficiently small:
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Proof of Theorem 4.5. Letting uλ∗ be either uλin or uλout, the linearization of
(1.20)-(1.22) around uλ∗ reads
∂tv −

(
DF (uλ∗) + λDg(uλ∗)

)
v = F (uλ∗ + v)− F (uλ∗)−DF (uλ∗)v

+ λ
(
g(uλ∗ + v)− g(uλ∗)−Dg(uλ∗)v

)
=: Gλ(v) , (4.29)

where F is given by (4.2). Thanks to Proposition 3.10, we find Gλ ∈ C∞(O, Lq(−1, 1)
)

for a small neighbourhood O of 0 in W 2
q,D(−1, 1) satisfying Gλ(0) = 0 as well as

DGλ(0) = 0. Moreover, since
‖DF (uλ∗) + λDg(uλ∗)−DF (u0∗)‖L(W 2

q,D ,Lq)

≤ ‖DF (uλ∗)−DF (u0∗)‖L(W 2
q,D ,Lq) + λ‖Dg(uλ∗)‖L(W 2

q,D ,Lq) → 0 ,

as λ→ 0 by Theorem 4.1, and −DF (u0∗) ∈ H
(
W 2

q,D(−1, 1), Lq(−1, 1)
)
, we deduce from

[5, Theorem 1.3.1 (i)] the existence of δ > 0 such that
−
(
DF (uλ∗) + λDg(uλ∗)

)
∈ H

(
W 2

q,D(−1, 1), Lq(−1, 1)
)
, λ ∈ [0, δ) .

We now investigate the stability of uλin and uλout separately:

(i) Instability of uλin: Due to Corollary 4.8 and Lemma 4.6, the operator DF (u0in)
possesses a positive, isolated and algebraically simple eigenvalue so that the per-
turbation result [54, Proposition A.3.2] for such eigenvalues allows to make δ > 0
smaller such that DF (uλin) + λDg(uλin) also has an eigenvalue with positive real part
for λ ∈ [0, δ). Moreover, since the embedding W 2

q,D(−1, 1) ↪→ Lq(−1, 1) is compact,
the spectrum of DF (uλin) + λDg(uλin) consists only of eigenvalues with no finite accu-
mulation point, see [39, Theorem 6.29]. Thus, there is a constant C > 0 such that the
strip

{
µ ∈ C

∣∣ 0 < Reµ < C
}

is contained in the resolvent set of DF (uλin) + λDg(uλin).
Applying now [54, Theorem 9.1.3] to (4.29) shows the instability of uλin.

(ii) Stability of uλout: Since the spectral bound of DF (u0out) is negative due to
Corollary 4.8, it follows from [5, Corollary 1.4.3] that we may take δ > 0 so small that
DF (uλout) + λDg(uλout) also has a negative spectral bound for λ ∈ [0, δ). Hence, [54,
Theorem 9.1.2] implies that uλout is exponentially asymptotically stable.

□

We end this section with a discussion of two alternative approaches to the stability
behaviour of the outer catenoid u0out:

Remarks 4.10 (a) For cout < ccrit, it is possible to apply the comparison principle for
eigenvalues of Sturm-Liouville problems [71, p. 294] to get that µ0(cout) < µ0(ccrit) = 0,
from which the stability of the outer catenoid u0out follows.
(b) One might apply results from the Calculus of Variation. In the Calculus of Varia-
tion, one is concerned with critical points of energy functionals, which are sometimes
called stable, see [32], if they are local minimizers of the energy functional.
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Critical points of the surface energy

Em(u) =

∫ 1

−1

(u+ 1)
√

1 + σ2u2z dz , u(±1) = 0

associated with a surface of revolution with profile u + 1 are precisely the stationary
solutions to (1.20)-(1.22) with λ = 0. For σ > σcrit, the critical points are the inner and
outer catenoid u0in and u0out. It is known that u0out is a local minimizer of the surface
energy, while u0in is not, see [32, Sections 5.2.4, 6.2.3]. The connection to our notion
of stability stems from the necessary condition for a local minimizer that the second
variation

δ2Em(u
0
out; v) :=

d2

dt2
Em(u

0
out + tv)

∣∣∣∣
t=0

is non-negative. Assuming that v is an eigenfunction of DF (u0out) corresponding to the
eigenvalue µ, one might compute

0 ≤ δ2Em(u
0
out; v) = − 1

cosh(cout)

∫ 1

−1

vDF (u0out)v dz = − µ

cosh(cout)
‖v‖2L2(−1,1).

Since µ 6= 0, which is due to (4.12a), it follows that µ < 0 and consequently u0out is
stable in our notion.

4.3. Direction of Deflection
We investigate the directions in which the stationary solutions uλout and uλin, stem-

ming from u0out and u0in respectively, are deflected for small λ. For the small aspect
ratio model (1.23)-(1.24), formal asymptotic analysis is used in [58] to argue that in-
creasing λ results in the outer catenoid u0out being pulled outwards and (at least the
middle part of) the inner catenoid u0in being pulled inwards. For the free boundary
problem (1.20)-(1.22), we will recover the same behaviour of the outer catenoid:

Theorem 4.11 For fixed σ > σcrit, there exists δ > 0 such that

uλout(z) < uλout(z) , 0 ≤ λ < λ < δ , z ∈ (−1, 1) .

Note that Theorem 4.11 reflects a physically expected behaviour: A larger electro-
static force pulls stable configurations of the film outwards.
Regarding the unstable deflections uλin, the situation is more complicated and we are
only able to present some rigorously proven results in case of the small aspect ratio
model formally analysed in [58], see Proposition 4.16 later.

Preliminary Considerations. For the moment, let uλ∗ be either uλin or uλout. Be-
cause uλ∗ was constructed in Theorem 4.1 by applying the implicit function theorem to
the analytic function

[
w 7→ F (w) + λg(w)

]
, we may write

uλ∗ = u0∗ + λ ∂λu
0
∗ + o(λ) , λ→ 0

with
∂λu

0
∗ = −

(
DF (u0∗)

)−1
g(u0∗) (4.30)
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in W 2
q,D(−1, 1). Here, g is the electrostatic force, u0∗ is either u0in or u0out and c will, in

the following, denote the corresponding constant cin or cout. Moreover, we recall from
(4.14) that

DF (u0∗)v = σ2

[
∂z

( 1

cosh2(cz)
vz

)
+

c2

cosh2(cz)
v

]
, (4.31)

as well as g(u0∗)(z) ≥ 0, z ∈ (−1, 1) by (3.1). Thus, the sign of
uλ∗ − u0∗ = λ

(
−DF (u0∗)

)−1
g(u0∗) + o(λ) , λ→ 0

for small λ is closely related to the question whether or not −DF (u0∗) satisfies a maxi-
mum principle, an anti-maximum principle in the spirit of [15] or none of them. Note
that the scalar function − c2

cosh2(cz)
< 0 appearing in the definition of −DF (u0∗) has the

wrong sign for the common weak and strong maximum principles [29, Theorem 6.4.2,
Theorem 6.4.4] to apply.

4.3.1. Deflection from the Outer Catenoid: Proof of Theorem 4.11. Our
goal is to prove Theorem 4.11, i.e. that uλout deflects monotonically outwards for small
λ > 0. To this end, we have seen that −DF (u0out) needs to satisfy a maximum principle.
Since −DF (u0out) is of the form (4.31), it falls in the class of operators investigated in
[6], and we can rely on a strong maximum principle from [6]. It is based on functional
analysis and requires that DF (u0out) has a negative spectral bound, which is true thanks
to Corollary 4.8.
Lemma 4.12 Let c = cout and f ∈ Lq(−1, 1) with f ≥ 0 a.e. and f 6≡ 0. Then, the
function v :=

(
− DF (u0out)

)−1
f ∈ W 2

q,D(−1, 1) satisfies v(z) > 0 for z ∈ (−1, 1) as
well as vz(−1) > 0 and vz(1) < 0 .

Proof. Recall that q > 2, hence W 2
q,D(−1, 1) ↪→ C1([−1, 1]), and that the spectrum

of DF (u0out) is contained in
(
− ∞, 0) thanks to Corollary 4.8. Now [6, Theorem 15]

yields the assertion. □

Furthermore, we check that the right-hand side g(u0out) satisfies the conditions of
the above lemma:
Lemma 4.13 The function g(u0out) belongs to Lq(−1, 1) with g(u0out) ≥ 0 a.e. and
g(u0out) 6≡ 0.

Proof. This follows from the definition of g in (3.1) combined with an application
of Hopf’s Lemma to the electrostatic potential ψu0

out
corresponding to u0out. □

Eventually, we show the main result of this subsection:

Proof of Theorem 4.11 From Lemma 4.12, Lemma 4.13 and (4.30), it follows
that ∂z[∂λu0out](1) < 0 as well as ∂z[∂λu0out](−1) > 0. Thanks to the embedding of
W 2

q,D(−1, 1) in C1([−1, 1]) , we find ε > 0 such that
∂z[∂λu

0
out](z) ≤ −4ε , z ∈ (1− ε, 1] ,

∂z[∂λu
0
out](z) ≥ 4ε , z ∈ (−1,−1 + ε] . (4.32)
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Furthermore, since ∂λu0out is continuous and strictly positive on [−1+ε, 1−ε] by Lemma
4.12, we find ε̃ > 0 such that

∂λu
0
out(z) ≥ 4ε̃ , z ∈ [−1 + ε, 1− ε] . (4.33)

Finally, the continuity of
[
(z, λ) → ∂λu

λ
out(z)

]
and

[
(z, λ) → ∂z[∂λu

λ
out](z)

]
allows us to

extend (4.32) and (4.33) to
∂z[∂λu

λ
out](z) ≤ −2ε , z ∈ (1− ε, 1] , λ ∈ [0, δ1] ,

∂z[∂λu
λ
out](z) ≥ 2ε , z ∈ [−1,−1 + ε) , λ ∈ [0, δ1] , (4.34)

and
∂λu

λ
out(z) ≥ 2ε̃ , z ∈ [−1 + ε, 1− ε] , λ ∈ [0, δ1] , (4.35)

for suitably chosen δ1 > 0. Let us now write

uλout = uλout + ∂λu
λ
out (λ− λ) + R(λ, λ) (4.36)

in W 2
q,D(−1, 1) ↪→ C1

(
[−1, 1]

)
with error term

R(λ, λ) :=

∫ 1

0

(1− t) ∂2λ u
λ+t(λ−λ)
out dt (λ− λ)2

satisfying the uniform estimate
‖R(λ, λ)‖C1

|λ− λ|
≤ C |λ− λ|

for some C > 0 independent of λ , λ ∈ [0, δ1]. As a consequence, we find δ2 > 0 with
‖R(λ, λ)‖C1

|λ− λ|
≤ min

{
ε, ε̃
}
, 0 < λ− λ ≤ δ2 , λ ≤ δ1 . (4.37)

From (4.35)-(4.37), it follows that

uλout(z)− uλout(z)

λ− λ
≥ ε̃ , z ∈ [−1 + ε, 1− ε] ,

while (4.34) - (4.37) yield

∂zu
λ
out(z)− ∂zu

λ
out(z)

λ− λ
≥ ε , z ∈ [−1,−1 + ε) ,

as well as
∂zu

λ
out(z)− ∂zu

λ
out(z)

λ− λ
≤ −ε , z ∈ (1− ε, 1] .

Here, all three estimates above hold for 0 < λ − λ ≤ δ2 and λ ≤ δ1. From these
estimates and the fact that

uλout(±1) = uλout(±1) = 0 ,

we deduce
uλout(z) > uλout(z) , z ∈ (−1, 1) , 0 < λ− λ ≤ δ2 , λ ≤ δ1. (4.38)
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This is the assertion at least for λ close to λ. For the general case, put δ := δ1. Then,
for arbitrary 0 ≤ λ ≤ λ < δ, the assertion follows after iterating (4.38) finitely many
times. □
Remark 4.14 Similar results can be proven for u0out in the small aspect ratio model
(1.23)-(1.24). More precisely, also in the small aspect ratio model we can construct
a local curve of stable stationary solutions emanating from u0out and deflecting mono-
tonically outwards. The reason is that we only used the positivity and analyticity of
the electrostatic force [u 7→ g(u)] in the proofs above, which are also properties of the
simplified electrostatic force [u 7→ gsar(u)] in the small aspect ratio model.

4.3.2. Deflection from the Inner Catenoid in the Small Aspect Ratio
Model. In this subsection, we focus on the simpler small aspect ratio model (1.23)-
(1.24). All previous results of this chapter remain valid if g(u) is replaced by gsar(u)
from (1.24). In particular, there exists again a local curve of unstable stationary so-
lutions [λ 7→ uλin] emanating from u0in in the small aspect ratio model. Note that, in
general, this curve differs from the curve of stationary solutions emanating from u0in in
the full free boundary problem.

We aim at understanding in which direction uλin deflects in the small aspect ratio
model (1.23)-(1.24). Letting

gsar(z) := gsar(u
0
in)(z) =

cosh2(cin)

cosh(cinz)

1

ln2
(
2 cosh(cin)

cosh(cinz)

) > 0 , z ∈ (−1, 1) ,

our starting point for the investigation of the direction of deflection is again the formula
∂λu

0
in =

(
−DF (u0in)

)−1
gsar ,

which is analogue to (4.30), and we are interested in the sign of ∂λu0in. Since cin > ccrit,
Corollary 4.8 implies now that DF (u0in) has exactly one strictly positive eigenvalue
and all other eigenvalues of DF (u0in) are strictly negative so that the maximum princi-
ple from [6] fails. Instead, we investigate whether an anti-maximum principle applies,
which would yield negativity of ∂λu0in. In Appendix C, we present a criterion from
[67] for such an anti-maximum principle to hold, which we complemented by a short
argument that ∂λu0in is sign-changing in case that the criterion fails.

In the following, we want to apply the criterion from Appendix C to −DF (u0in) and
gsar. To state it precisely, let

ϕ(z) := cosh(cinz)− cin z sinh(cinz)

be the unique solution to the initial value problem 0 = −∂z
( 1

cosh2(cinz)
ϕz

)
− c2in

cosh2(cinz)
ϕ on (−1, 1) ,

ϕ(0) = 1 , ϕz(0) = 0 ,

(4.39)

associated with the boundary value differential operator −DF (u0in).
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The function ϕ, which is depicted in Figure 4.3, is symmetric, has exactly two zeroes
z = ±ccrit/cin in (−1, 1) and is sign-changing.

1

−1 1 z

ϕ

Figure 4.3. The solution ϕ to (4.39) for some cin > ccrit.

With ϕ at hand, the criterion reads:

∫ 1

−1

gsar(z)ϕ(z) dz > 0 =⇒ ∂λu
0
in < 0 in (−1, 1) ,∫ 1

−1

gsar(z)ϕ(z) dz < 0 =⇒ ∂λu
0
in is sign-changing in (−1, 1) .

Dependent on the parameter σ, we get:

Lemma 4.15 (i) There exists σ∗ > σcrit such that for each σ ∈ (σcrit, σ∗) the corre-
sponding deflection [λ 7→ uλin] satisfies

∂λu
0
in(z) < 0 , z ∈ (−1, 1) , ∂z[∂λu

0
in](−1) < 0 , ∂z[∂λu

0
in](1) > 0 .

(ii) There exists σ∗ > σcrit such that for each σ > σ∗ and each corresponding deflection
[λ 7→ uλin] there exists r0 ∈ (0, 1), depending on σ, such that ∂λu0in < 0 on (−r0, r0) and
∂λu

0
in > 0 on (−1,−r0) ∪ (r0, 1) as well as

∂z[∂λu
0
in](−1) > 0 , ∂z[∂λu

0
in](−r0) < 0 ,

∂z[∂λu
0
in](r0) > 0 , ∂z[∂λu

0
in](1) < 0 .

Moreover, one has σ∗ ≥ σ∗ > σcrit.
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Proof. For simplicity, we use the abbreviation c = cin. We write

∫ 1

−1

gsar(z)ϕ(z) dz

=

∫ 1

−1

(
cosh2(c)

cosh(cz)

1

ln2
(
2 cosh(c)

cosh(cz)

)[cosh(cz)− cz sinh(cz)
])

dz

=
cosh2(c)

c

∫ c

−c

(
1

cosh(z)

1

ln2
(
2 cosh(c)

cosh(z)

)[cosh(z)− z sinh(z)
])

dz

= 2
cosh2(c)

c

∫ c

0

(
1

ln2
(
2 cosh(c)

cosh(z)

)[1− z tanh(z)
])

dz

=: 2
cosh2(c)

c
I1(σ) , (4.40)

where we recall from (4.5) and (4.6) that c = cin is completely determined by being
the largest solution to σ = cosh(c)

c
. Moreover, note that 2 cosh2(c)

c
> 0 is irrelevant for

the sign of (4.40) and that

1− z tanh(z)

{
≥ 0 , z ∈ (0, ccrit] ,

< 0 , z ∈ (ccrit, c) ,
(4.41)

due to the choice of ccrit in (4.4) . We first estimate I1(σ) from below and then from
above:

(i) From (4.41) we deduce that I1(σcrit) > 0. Since the integral I1(σ) depends
continuously on c = cin, hence continuously on σ ≥ σcrit, we find σ∗ > σcrit with

I1(σ) > 0 , σ ∈ (σcrit, σ∗) .

Thus, (4.40) is positive for such σ and the assertion follows from Lemma C.1.

(ii) For the estimate from above, we write

I1(σ) =

∫ ccrit

0

(
1

ln2
(
2 cosh(c)

cosh(z)

)[1− z tanh(z)
])

dz

+

∫ c

ccrit

(
1

ln2
(
2 cosh(c)

cosh(z)

)[1− z tanh(z)
])

dz

=: I2(σ) + I3(σ)
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and deduce from (4.41) that the integrand in I2(σ) is positive, while the integrand in
I3(σ) is negative. Since ln

(
2 cosh(c)

cosh(z)

)
> 0 for all z ∈ (0, c), we estimate

I2(σ) + I3(σ) ≤
1

ln2
(
2 cosh(c)

cosh(ccrit)

) ∫ ccrit

0

[
1− z tanh(z)

]
dz

+
1

ln2
(
2 cosh(c)

cosh(ccrit)

) ∫ c

ccrit

[
1− z tanh(z)

]
dz

=
1

ln2
(
2 cosh(c)

cosh(ccrit)

) ∫ c

0

[
1− z tanh(z)

]
dz .

Now the right-hand side is negative if and only if

I4(σ) :=

∫ c

0

[
1− z tanh(z)

]
dz < 0 .

Because σ ↗ ∞ implies c = cin ↗ ∞, the integral I4(σ) diverges to −∞ and we find
σ∗ ≥ σcrit such that I4(σ) < 0 for all σ > σ∗. Hence, (4.40) is negative for such values
of σ and the assertion follows from Lemma C.1. □

Based on Lemma 4.15, we describe the qualitative behaviour of [λ 7→ uλin] in the
small aspect ratio model in case the parameter σ is either sufficiently close to σcrit or
sufficiently large. The results are depicted in Figure 4.4. In particular, for σ sufficiently
close to σcrit, we discover a contrary behaviour to uλout: The deflection uλin of u0in is
directed inwards instead of outwards.

Proposition 4.16 Let σ > σcrit be fixed and σ∗, σ∗ be as in Lemma 4.15.
(i) If σ < σ∗, then there exists δ > 0 such that

uλin(z) > uλin(z) , 0 ≤ λ < λ < δ , z ∈ (−1, 1) .

(ii) If σ > σ∗, then there exist δ > 0, r0 ∈ (0, 1) and n ∈ N with 2/n < min{r0, 1− r0}
such that

uλin(z) > uλin(z) , 0 ≤ λ < λ < δ , z ∈ [−r0 + 1/n, r0 − 1/n]

as well as
uλin(z) < uλin(z) , 0 ≤ λ < λ < δ , z ∈ (−1,−r0 − 1/n] ∪ [r0 + 1/n, 1) .

Moreover, uλin intersects uλin on (−1, 1) in exactly two points z1, z2 with
z1 ∈ (−r0 − 1/n,−r0 + 1/n) , z2 ∈ (r0 − 1/n, r0 + 1/n) ,

and uλin is strictly decreasing on [−r0 − 1/n,−r0 + 1/n] as well as strictly increasing
on [r0 − 1/n, r0 + 1/n].

Proof. (i) By Lemma 4.15 (i), this follows exactly as in the proof of Theorem 4.11.
(ii) The argument is again quite similar to the one in Theorem 4.11: First, we use
Taylor’s expansion as in Theorem 4.11 together with Lemma 4.15 (ii) to deduce the
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existence of r0 ∈ (0, 1) and n ∈ N with 1/n small enough (which replaces ε from the
proof of Theorem 4.11) as well as δ > 0 such that

uλin(z) < uλin(z) , z ∈ [−r0 + 1/n, r0 − 1/n] , (4.42)

uλin(z) > uλin(z) , z ∈ [−1 + 1/n,−r0 − 1/n] ∪ [r0 + 1/n, 1− 1/n] , (4.43)

∂zu
λ
in(z) > ∂zu

λ
in(z) , z ∈ [−1,−1 + 1/n] ∪ [r0 − 1/n, r0 + 1/n] , (4.44)

∂zu
λ
in(z) < ∂zu

λ
in(z) , z ∈ [−r0 − 1/n,−r0 + 1/n] ∪ [1− 1/n, 1] , (4.45)

for 0 ≤ λ < λ < δ. Next, we deduce from (4.43) - (4.45) and the fact that uλin as well
as uλin satisfy Dirichlet boundary conditions that

uλin(z) < uλin(z) , z ∈ (−1,−r0 − 1/n] ∪ [r0 + 1/n, 1) , (4.46)

for 0 ≤ λ < λ < δ. Moreover, since

u0in(z) =
cosh(cinz)

cosh(cin)
− 1

with derivative

∂zu
0
in(z) =

sinh(cinz)

σ

{
≤ 0 , z ≤ 0 ,

> 0 , z > 0 ,

we infer from (4.44) with λ = 0 that uλin is strictly increasing on [r0 − 1/n, r0 + 1/n].
Similarly, (4.45) yields that uλin is strictly decreasing on [−r0 − 1/n,−r0 + 1/n]. It
remains to study the intersection points of uλin and uλin. To this end, we deduce from
(4.42) and (4.46) that uλin and uλin may only intersect on

(−r0 − 1/n,−r0 + 1/n) ∪ (r0 − 1/n, r0 + 1/n) ⊂ (−1, 1) .

Thanks to (4.42) and (4.46), we find

uλin(−r0 − 1/n) > uλin(−r0 − 1/n) , uλin(−r0 + 1/n) < uλin(−r0 + 1/n)

for 0 ≤ λ < λ < δ. Consequently, (4.45) yields that uλ and uλ have exactly one
intersection point z1 in (−r0 − 1/n,−r0 + 1/n). Finally, note that the existence of the
second intersection point z2 in (r0 − 1/n, r0 + 1/n) follows similarly. Now, everything
is proven. □
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−1

1
z

u0in uλin

Figure 4.4. Qualitative behaviour of the deflection uλin (red) of the in-
ner catenoid u0in (blue) for small applied voltages in the small aspect ratio
model. On the left a possible deflection for σ ∈ (σcrit, σ∗) is depicted,
while on the right a possible deflection for σ ∈ (σ∗,∞) is shown. For
σ ∈ (σ∗, σ

∗), the qualitative behaviour of the deflection is unknown. The
outer cylinder is not depicted in this graphic.



CHAPTER 5

Stationary Solutions near the Cylinder

We have seen that for small λ > 0 and σ > σcrit there exist at least two stationary
solutions to the free boundary problem (1.20)-(1.22). However, for arbitrary σ, we find
another interesting stationary solution: We may choose a larger λcyl > 0 such that
electrostatic force and surface tension are perfectly balanced. Then, the soap film is
time-independent and takes the shape of a cylinder u = 0. In this chapter, we will
determine λcyl, do some preliminary considerations and then turn to the core issue – the
study of existence and qualitative properties of stationary solutions close to u = 0. As
in the previous chapter, these stationary solutions solve the non-local elliptic equation{

F (u) + λ g(u) = 0 ,

u(±1) = 0 , −1 < u < 1
(5.1)

with non-local electrostatic force g(u) given by (3.1) and

F (u) := σ∂zarctan(σ∂zu)−
1

u+ 1
. (5.2)

However, this time the control parameter λ is not small, resulting in an impact of the
free boundary on the linearization of (5.1) and thus making the exact computation of
its spectrum difficult. Instead, we derive qualitative properties of it in two preliminary
sections using a Fourier series ansatz. This ansatz is also used in [1, 26, 27, 50].

To determine λcyl, we plug u = 0 into (5.1). Then, the equation for the film
deflection reads

0 =− 1 + λcyl g(0)

=− 1 + λcyl |∂rψ0(z, 1)|2 , (5.3)
while the equation for the electrostatic potential becomes

1

r
∂r
(
r∂rψ0

)
+ σ2∂2zψ0 = 0 in Ω ,

ψ0(z, r) =
ln(r)

ln(2)
on ∂Ω

with Ω = (−1, 1)× (1, 2). Its solution is explicitly given by
ψ0(z, r) = ln(r)/ ln(2) . (5.4)

Inserting ψ0 into (5.3) first yields

g(0) =
1

ln(2)2
, (5.5)

73
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and then
λcyl = ln(2)2 . (5.6)

Remark 5.1 Note that λcyl is independent of σ. Also in the small aspect ratio model
[58], the value λcyl does only depend on the ratio between outer radius and inner radius,
which is 2 for simplicity in our model. Nevertheless, for both models it is surprising,
that neither the length nor the inner radius of the set-up have a direct impact on λcyl.

5.1. Linearized Operator
In this preliminary section, we compute the linearization DF (0) + λcylDg(0) for

λcyl = ln(2)2 around the cylinder u = 0. We also check that DF (0) + λcylDg(0) gener-
ates an analytic semigroup and derive first properties of its spectrum.

Recall that we already computed DF in (4.7) which we evaluate at u = 0 now:
DF (0)v = σ2∂2zv + v.

We note that this is the generator of an analytic semigroup, i.e.
−DF (0) ∈ H

(
W 2

q,D(−1, 1), Lq(−1, 1)
)
. (5.7)

Introducing the notation

−∆cyl,D : W 2
2,D(Ω) → L2(Ω) , f 7→ −1

r
∂r
(
r∂rf

)
− σ2∂2zf , (5.8)

we find the following expression for the remaining term:

Lemma 5.2 The linearization of g around 0 is given by

λcylDg(0)v = 2v + 2 ∂r(−∆cyl,D)
−1
[
− 2

r3
v − σ2 2− r

r
vzz

]
( · , 1)

for v ∈ W 2
q,D(−1, 1).

Proof. Using the definition of g from (3.1), (5.4) and the relation ψu = φu ◦ Tu
with Tu defined in (3.2), we compute

Dg(0)v = D
[
(1 + σ2u2z)

3/2
∣∣∂rψu(z, u+ 1)

∣∣2] ∣∣∣
u=0

v

= 2 ∂rψ0(z, 1)D
[
∂rψu(z, u+ 1)

] ∣∣∣
u=0

v

=
2

ln(2)
D

[
∂rφu(z, 1)

1− u

] ∣∣∣∣
u=0

v

=
2

ln(2)

(
∂rφ0(z, 1) v +D

[
∂rφu(z, 1)

]∣∣∣
u=0

v
)
. (5.9)

At this point, we recall from (3.12) that φu, the transformation of ψu to the fixed
domain Ω, is given by

φu = −LD(u)
−1Lu

( ln(r)
ln(2)

)
+

ln(r)

ln(2)
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with Lu and LD(u) defined in (3.4) and (3.11) respectively. In particular,

L0

( ln(r)
ln(2)

)
=

1

ln(2)

(1
r
∂r
(
r∂r ln(r)

)
+ σ2∂2z ln(r)

)
= 0 , (5.10)

and hence

φ0 =
ln(r)

ln(2)
,

as well as

∂rφ0(z, 1) =
1

ln(2)
. (5.11)

Moreover,

Lu

( ln(r)
ln(2)

)
=
1 + σ2u2z(2− r)2

1− u
∂2r

( ln(r)
ln(2)

)
+
(
− σ2(2− r)uzz − 2σ2 2− r

1− u
u2z +

1

2u+ (1− u)r

)
∂r

( ln(r)
ln(2)

)
=

1

ln(2)

[
− 1 + σ2u2z(2− r)2

(1− u)

1

r2

+
(
− σ2(2− r)uzz − 2σ2 2− r

1− u
u2z +

1

2u+ (1− u)r

) 1

r

]
implies that

DLu

( ln(r)
ln(2)

)∣∣∣
u=0

v =
1

ln(2)

[
− 1

r2
v +

(
− 1

r2
(2− r) v − σ2(2− r)vzz

) 1

r

]
=

1

ln(2)

[
− 2

r3
v − σ22− r

r
vzz

]
. (5.12)

Combining (5.10) and (5.12) gives

Dφu

∣∣
u=0

v = D
[
− LD(u)

−1Lu

( ln(r)
ln(2)

)] ∣∣∣
u=0

v

=
1

ln(2)

(
− LD(0)

)−1
[
− 2

r3
v − σ22− r

r
vzz

]
=

1

ln(2)
(−∆cyl,D)

−1
[
− 2

r3
v − σ22− r

r
vzz

]
. (5.13)

For the last line, we used
(
− LD(0)

)−1
= (−∆cyl,D)

−1. Because the chain rule yields

D
[
∂rφu( · , 1)

]∣∣∣
u=0

v = ∂r
(
Dφu

∣∣
u=0

v
)
( · , 1) ,

it follows from (5.9), (5.11) and (5.13) that

Dg(0)v =
2

ln(2)2

[
v + ∂r(−∆cyl,D)

−1
[
− 2

r3
v − σ22− r

r
vzz

]
( · , 1)

]
.
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Finally, the assertion follows as λcyl = ln(2)2 by (5.6). □

In summary, the linearized operator is given by(
DF (0) + λcylDg(0)

)
v = σ2∂2zv + 3v + 2 ∂r(−∆cyl,D)

−1
[
− 2

r3
v − σ2 2− r

r
vzz

]
( · , 1) .

(5.14)
Next, we show that λcylDg(0) is compact and consequently, in view of (5.7), that the

perturbed operator DF (0)+λcylDg(0) again is the generator of an analytic semigroup:

Proposition 5.3 For q > 2, we have
−
(
DF (0) + λcylDg(0)

)
∈ H

(
W 2

q,D(−1, 1), Lq(−1, 1)
)
.

Proof. We note that the following composition of maps

L2(Ω)
(−∆cyl,D)−1

−→ W 2
2,D(Ω)

∂r−→ W 1
2 (Ω)

tr−→ W
1/2
2 (−1, 1)

c
↪→ Lq(−1, 1)

defines a compact linear operator from L2(Ω) to Lq(−1, 1). The notion tr denotes
the trace operator with respect to the boundary part r ≡ 1. Because the map[
v 7→ −2/r3 v− σ2(2− r)/r vzz

]
is bounded from W 2

q,D(−1, 1) to L2(Ω), it follows that
λcylDg(0) ∈ L

(
W 2

q,D(−1, 1), Lq(−1, 1)
)

is compact as the composition of a compact
and a bounded operator. Now the assertion follows from (5.7) and the perturbation
result [54, Proposition 2.4.3] (or [5, Theorem I.1.5.1]). □

Remark 5.4 We note that DF (0) + λcylDg(0) can also be considered as a bounded
linear operator (or even a generator of an analytic semigroup) from W 2

2,D(−1, 1) to
L2(−1, 1). This fact allows one to work with Fourier series.

We introduce eigenvalues and eigenfunctions of −∆cyl,D : W 2
2,D(Ω) → L2(Ω) de-

fined in (5.8) with Ω = (−1, 1) × (1, 2). For details on the following descriptions, we
refer to Appendix D.

First, we observe that −∆cyl,D is not symmetric with respect to the standard scalar
product. Therefore, we introduce the spaces

L2,r(1, 2) :=
(
L2(1, 2), ( · | · )L2,r(1,2)

)
with weighted scalar product

(f |h)L2,r(1,2) :=

∫ 2

1

f(r)h(r) r dr , f, h ∈ L2(1, 2) ,

and, analogously,
L2,r(Ω) :=

(
L2(Ω), ( · | · )L2,r(Ω)

)
with weighted scalar product

(f |h)L2,r(Ω) :=

∫ 1

−1

∫ 2

1

f(r)h(r) r dr dz f, h ∈ L2(Ω) .
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These spaces are obviously isomorphic to L2(1, 2) and L2(Ω) respectively. We abbre-
viate both scalar products by ( · | · )L2,r .

Second, we note that the operator −∆cyl,D splits into two parts acting on the z and
r variable respectively:

The one-dimensional Dirichlet-Laplacian −∂2z : W 2
2,D(−1, 1) → L2(−1, 1) acts on

the first variable z. Its spectrum consists entirely of eigenvalues

νj :=
(j + 1)2π2

4
, j ∈ N ,

with geometric multiplicity 1 and corresponding normalized eigenfunctions

ϕj(z) :=


cos

(
(j + 1)π

2
z

)
if j is even ,

sin

(
(j + 1)π

2
z

)
if j is odd

for z ∈ (−1, 1). The eigenfunctions {ϕj}j∈N form an orthonormal basis of L2(−1, 1).

The operator −1
r
∂r(r∂r · ) : W 2

2,D(1, 2) → L2(1, 2) acts on the second variable r. Its
spectrum consists entirely of eigenvalues

0 < ξ0 < ξ1 < · · · < ξk → ∞ (5.15)

with geometric multiplicity 1. The corresponding sequence of normalized eigenfunc-
tions {ρk}k∈N belongs to C∞([1, 2]) ∩ W 2

2,D(1, 2) and forms an orthonormal basis of
L2,r(1, 2).

As a consequence, the spectrum of the composite operator −∆cyl,D consists entirely
of eigenvalues

ξk + σ2νj , j, k ∈ N ,

and the corresponding eigenfunctions ρkϕj ∈ C∞(Ω) ∩W 2
2,D(Ω) form an orthonormal

basis of L2,r(Ω). Moreover, for each f ∈ W 2
2,D(Ω), there exists bjk ∈ R such that

f =
∑
j,k

bjkρkϕj ,

where the sequence converges unconditionally in W 2
2 (Ω). Based on this preparation,

we can compute the Fourier representation of DF (0) + λcylDg(0).

Lemma 5.5 For q > 2 and v ∈ W 2
q,D(−1, 1), the linearized operator can be written as

(DF (0) + λcylDg(0)
)
v = σ2∂2zv + 3v + 2(B1 +B2)v

in L2(−1, 1), where

B1v :=
∑
j,k

ck
ξk + σ2νj

∂rρk(1) (v|ϕj)L2 ϕj
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with (unconditional) convergence in L2(−1, 1) and

B2v :=
∑
j,k

σ2νj dk
ξk + σ2νj

∂rρk(1) (v|ϕj)L2 ϕj

with (unconditional) convergence in L2(−1, 1). The coefficients (ck), (dk) ∈ `2 are
given by

ck :=
(
− 2

r3

∣∣∣ ρk)
L2,r

, dk :=
(2− r

r

∣∣∣ ρk)
L2,r

, k ∈ N.

Proof. For v ∈ W 2
q,D(−1, 1) ↪→ W 2

2,D(−1, 1), we represent the corresponding solu-
tion f ∈ W 2

2,D(Ω) to

(−∆cyl,D)f = − 2

r3
v − σ22− r

r
vzz (5.16)

by its Fourier series

f =
∑
j,k

bjk ρk ϕj , bjk ∈ R ,

with respect to the eigenfunctions of −∆cyl,D and aim to determine the bjk. Recall that
this series converges unconditionally in W 2

2 (Ω). Expressing both sides of (5.16) by its
Fourier series and using the orthogonality of {ρk ϕj}j,k in L2,r(Ω), we find

bjk
(
ξk + σ2νj

)
=
(
− 2

r3

∣∣∣ ρk)
L2,r

(v|ϕj)L2 + σ2
(2− r

r

∣∣∣ ρk)
L2,r

(−vzz|ϕj)L2

=

[(
− 2

r3

∣∣∣ ρk)
L2,r

+ σ2νj

(2− r

r

∣∣∣ ρk)
L2,r

]
(v|ϕj)L2

= (ck + σ2νj dk) (v|ϕj)L2 .

Hence, we have

f =
∑
j,k

ck + σ2νj dk
ξk + σ2νj

(v|ϕj)L2 ϕj ρk (5.17)

and

∂rf( · , 1) =
∑
j,k

ck + σ2νj dk
ξk + σ2νj

∂rρk(1) (v|ϕj)L2 ϕj (5.18)

in L2(−1, 1) with (ck) , (dk) ∈ `2. Noting that

(DF (0) + λcylDg(0)
)
v = σ2∂2zv + 3v + 2 ∂rf( · , 1)

thanks to (5.14), the assertion follows from (5.18). □

Based on the Fourier representation of DF (0) + λcylDg(0) in Lemma 5.5, we can
prove that all eigenvalues of its complexification are real and that they are given by
scaled versions of the same profile function:
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Definition 5.6 We call µ : (0,∞) → R, given by

µ(s) := −s+ 3 + 2

[∑
k

ck
ξk + s

∂rρk(1)

]
+ 2s

[∑
k

dk
ξk + s

∂rρk(1)

]
, s > 0 , (5.19)

eigencurve profile for DF (0) + λcylDg(0). The coefficients (ck) and (dk) are the same
as in Lemma 5.5.

The well-definedness of [s 7→ µ(s)] is a consequence of the next Lemma 5.7 in which
we establish a connection between [s 7→ µ(s)] and the eigenvalues of the linearization
DF (0) + λcylDg(0). Furthermore, we already mention that the eigencurve profile is
defined also in s = 0, see Lemma 5.9 below.

Lemma 5.7 The spectrum of DF (0) + λcylDg(0) consists entirely of real eigenvalues
with no finite accumulation point. These eigenvalues are given by

µj(σ) := µ
(
σ2νj

)
for j ∈ N (at this stage possibly neither ordered nor distinct). An eigenfunction which
coincides with the j-th eigenfunction ϕj of the one-dimensional Dirichlet-Laplacian
corresponds to each eigenvalue.

Proof. Because W 2
q,D(−1, 1) is compactly embedded in Lq(−1, 1), the spectrum

of the complexification of the linearized operator consists only of eigenvalues with no
finite accumulation point, see [39, Theorem 6.29]. Moreover, Lemma 5.5 ensures that((

DF (0) + λcylDg(0)
)
w1

∣∣∣w2

)
L2

=
(
w1

∣∣∣ (DF (0) + λcylDg(0)
)
w2

)
L2

for w1, w2 ∈ W 2
q,D(−1, 1). Consequently, all eigenvalues of the complexification of

DF (0) + λcylDg(0) are real, and eigenfunctions to different eigenvalues are orthogonal
with respect to the L2-scalar product. A short computation based on Lemma 5.5 shows
that (

DF (0) + λcylDg(0)
)
ϕj = µj(σ)ϕj , j ∈ N ,

for the j-th eigenfunction ϕj of the one-dimensional Dirichlet-Laplacian. Finally, as
{ϕj}j forms an orthogonal basis of L2(−1, 1), there are no other eigenvalues than the
µj’s. □

5.2. Qualitative Properties of the Eigencurve Profile
To further analyse the spectrum of the linearized operator DF (0) + λcylDg(0), it

suffices to investigate the eigencurve profile [s 7→ µ(s)]. In particular, we will show the
following:

Proposition 5.8 The eigencurve profile [s 7→ µ(s)] is strictly decreasing on [0,∞)
and there exists s0 ∈ (0,∞) with µ(s0) = 0.

The proof of Proposition 5.8 is given after some preparation. As a first step towards
it, we present another representation of the eigencurve profile [s 7→ µ(s)], which includes
the case s = 0. We also compute the derivative of the eigencurve profile.
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Lemma 5.9 The eigencurve profile µ may equivalently be written as
µ(s) = −s+ 3 + 2 ∂rhs(1) , s ∈ (0,∞) , (5.20)

where hs ∈ W 2
2,D(−1, 1) solves −1

r
∂r
(
r ∂rhs

)
+ s hs =

−2

r3
+ s

2− r

r
,

hs(1) = hs(2) = 0 .
(5.21)

This representation holds even for s > −ξ0 with ξ0 > 0 from (5.15). In particular,
µ ∈ C∞((−ξ0,∞),R

)
with

µ′(s) = −1 + 2 ∂rps(1) , (5.22)
where ps ∈ W 2

2,D(−1, 1) solves −1

r
∂r
(
r ∂rps

)
+ s ps =

2− r

r
− hs ,

ps(1) = ps(2) = 0 .
(5.23)

Proof. (i) We derive the alternative formula (5.20) for µ: For s ∈ (0,∞), we find
σ ∈ (0,∞) such that s = σ2ν0. Let us note that the solution fs to

(−∆cyl,D)fs = − 2

r3
ϕ0 − σ22− r

r
∂2zϕ0

=
(
− 2

r3
+ s

2− r

r

)
ϕ0

with ϕ0 denoting the first eigenfunction of the one-dimensional Dirichlet-Laplacian,
can be written in the form

fs(z, r) = hs(r)ϕ0(z) (5.24)
due to its Fourier representation (5.17) (with v = ϕ0). Next, we compute

(−∆cyl,D)fs = −1

r
∂r
(
r ∂rhs(r)

)
ϕ0(z)− σ2 hs(r)∂zzϕ0(z)

=
(
− 1

r
∂r(r ∂rhs(r)) + s hs(r)

)
ϕ0(z) ,

and deduce that hs has to solve −1

r
∂r
(
r ∂rhs

)
+ s hs = − 2

r3
+ s

2− r

r
, r ∈ (1, 2) ,

hs(1) = hs(2) = 0 .

By elliptic regularity theory, we even have hs ∈ C∞([1, 2]). We now derive from the
relation s = σ2ν0, (5.14) and (5.24) that(

DF (0) + λcylDg(0)
)
ϕ0 = (−s+ 3)ϕ0 + 2 ∂rfs( · , 1)

=
(
− s+ 3 + 2 ∂rhs(1)

)
ϕ0 .

Combining this with Lemma 5.7 yields
µ(s) = −s+ 3 + 2 ∂rhs(1) , s ∈ (0,∞) ,
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which is formula (5.20).
(ii) Note that the operator −1

r
∂r
(
r∂r · )+s is invertible for each s ∈ (−ξ0,∞). Because

the right-hand side of (5.21) depends smoothly on s, and taking the inverse is a smooth
operation, it follows that µ ∈ C∞((−ξ0,∞),R). Moreover, its derivative is given by

µ′(s) = −1 + 2 ∂rps(1) ,

where ps := ∂shs ∈ W 2
2,D(−1, 1). Finally, we note that taking the derivative of both

sides of (5.21) with respect to s results in (5.23). This shows the remaining formula
(5.22) for µ′. □

Remark 5.10 Note that the solution hs to (5.21) can be expressed in terms of Bessel
functions of the first and second kind. Nevertheless, this expression is very lengthy,
and we were not able to deduce properties of the eigencurve profile from it.

For the special case s = 0, it is possible to give explicit formulas for µ(0) and µ′(0):

Lemma 5.11 The values µ(0) and µ′(0) are given by

µ(0) = −1 +
2

ln(2)
> 0

and

µ′(0) = −2 +
3

2 ln(2)2
− 1

ln(2)
< − 3

10
.

Proof. (i) For µ(0), we note that (5.21) with s = 0 reads −1

r
∂r
(
r ∂rh0

)
=

−2

r3
,

h0(1) = h0(2) = 0 .

This equation is solved by

h0(r) =
2− r

r
+

ln(r)

ln(2)
− 1 (5.25)

with derivative

∂rh0(1) = −2 +
1

ln(2)
. (5.26)

Hence, equation (5.20) gives

µ(0) = −1 +
2

ln(2)
> 0 .

(ii) For µ′(0), we first recall from (5.22) that

µ′(0) = −1 + 2 ∂rp0(1) .



82 5. STATIONARY SOLUTIONS NEAR THE CYLINDER

The function p0 solves  −1

r
∂r
(
r ∂rp0

)
= 1− ln(r)

ln(2)
,

p0(1) = p0(2) = 0 ,

which is (5.23) with s = 0 and inserted expression for h0 from (5.25). This equation
has the explicit solution

p0(r) =

(
3− ln(2)

4 ln(2)2

)
ln(r) +

1 + ln(2)

4 ln(2)
+
r2 ln(r/2)− r2

4 ln(2)

with

∂rp0(1) =
3− ln(2)

4 ln(2)2
+

−2 ln(2) + 1− 2

4 ln(2)

=
3

4 ln(2)2
− 1

2 ln(2)
− 1

2
.

Plugging ∂rp0(1) into the formula for µ′(0) yields the assertion. □

Based on this preparation, we provide a proof that [s 7→ µ(s)] is strictly decreasing
on [0,∞) and has exactly one zero.

Proof of Proposition 5.8. As µ is smooth with µ(0) > 0 as well as µ′(0) < 0 by
Lemma 5.9 and Lemma 5.11, it is enough to show that [s 7→ µ′(s)] is decreasing for
s ≥ 0. We will achieve that by applying the weak maximum principle several times.
(i) First, we apply it to [s 7→ hs], where we recall from (5.21) that hs solves −1

r
∂r
(
r ∂rhs

)
+ s hs =

−2

r3
+ s

2− r

r
,

hs(1) = hs(2) = 0 .

Because 2−r
r

solves  −1

r
∂r
(
r ∂rf(r)

)
= − 2

r3
,

f(1) = 1 , f(2) = 0 ,

it follows that 2−r
r

− hs is a solution to −1

r
∂r
(
r ∂rf(r)

)
+ s f(r) = 0 ,

f(1) = 1 , f(2) = 0 .

An application of the weak maximum principle yields

hs ≤
2− r

r
, s ≥ 0 . (5.27)
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For s > s̃ ≥ 0, the difference hs − hs̃ solves −1

r
∂r
(
r∂rf(r)

)
+ sf(r) = (s− s̃)

(2− r

r
− hs̃(r)

)
,

f(1) = f(2) = 0 ,

where the right-hand side is non-negative thanks to (5.27). Consequently, the weak
maximum principle gives

hs ≥ hs̃ , s > s̃ ≥ 0 . (5.28)

(ii) Now we apply the weak maximum principle for s ≥ 0 to the solution ps = ∂shs to
(5.23), i.e. to  −1

r
∂r
(
r ∂rps

)
+ s ps =

2− r

r
− hs ,

ps(1) = ps(2) = 0 .

Due to (5.27), the right-hand side of this equation is non-negative and the weak max-
imum principle yields ps ≥ 0. For s > s̃ ≥ 0, we then find that ps − ps̃ solves −1

r
∂r
(
r ∂rf

)
+ s f = (hs̃ − hs) + (s̃− s)ps̃ ,

f(1) = f(2) = 0

with non-positive right-hand side thanks to ps̃ ≥ 0 and (5.28). Applying the weak
maxiumum principle once more, we see that ps − ps̃ attains its maximum at r = 1 and
hence

∂rps(1) ≤ ∂rps̃(1) , s > s̃ ≥ 0 ,

which shows µ′(s) ≤ µ′(s̃) for s > s̃ ≥ 0 as claimed. □

Remark 5.12 Since hs(1) = hs̃(1) = 0 and hs − hs̃ ≥ 0 on [1, 2] for s > s̃ ≥ 0 by
(5.28), it follows that [s 7→ ∂rhs(1)] is increasing. Hence, it is not useful for proving
that [s 7→ µ(s)] is decreasing, and we had to work with the derivative [s 7→ µ′(s)]
instead.

Through the relation

µj(σ) = µ(σ2νj) , j ∈ N ,

where µj(σ) are the eigenvalues of the linearized operator DF (0) + λcylDg(0), we can
derive properties of its spectrum from properties of its eigencurve profile.

Lemma 5.13 The eigenvalues of DF (0) + λcylDg(0) are ordered

µ0(σ) > µ1(σ) > · · · > µj(σ) > µj+1(σ) > . . . , j ∈ N ,

and have geometric multiplicity 1.
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Proof. Because [s 7→ µ(s)] is strictly decreasing by Proposition 5.8 and the eigen-
values of the one-dimensional Dirichlet-Laplacian (νj) are strictly increasing, the eigen-
values (µj(σ)) are strictly decreasing. In particular, they are distinct and each one has
geometric multiplicity 1 where the corresponding eigenfunction is the j-th eigenfunc-
tion ϕj of the Dirichlet-Laplacian, see Lemma 5.7. □

Further properties of the eigenvalues µj(σ), following from properties of the eigen-
curve profile [s 7→ µ(s)], are discussed in the next sections: First, to construct station-
ary solutions close to the cylinder in Section 5.3, we require µj(σ) 6= 0 for all j ∈ N.
For the analysis of stability in Section 5.4, we need to know whether µ0(σ) is positive
or negative. If µ0(σ) is negative, we also require that it is algebraically simple. Finally,
in Section 5.5, we require upper and lower bounds on µj(σ) for j ∈ N to investigate in
which direction the cylinder is deflected when the electrostatic force is increased.

5.3. Existence of Stationary Solutions near the Cylinder.
In this section, we show existence of stationary solutions for λ close to λcyl by

applying the implicit function theorem. We recall that the stationary cylinder u = 0
occurs exactly for the parameter λcyl given by (5.6).

Theorem 5.14 Let q ∈ (2,∞), and s0 > 0 be the unique zero of the eigencurve profile
[s 7→ µ(s)] from Proposition 5.8. Then, for each σ > 0 with

σ2 6= 4 s0
π2 (j + 1)2

, j ∈ N ,

there exists δ = δ(σ) > 0 and an analytic function

[λ 7→ uλcyl] : (λcyl − δ, λcyl + δ) → W 2
q,D(−1, 1) , u

λcyl

cyl = 0

such that uλcyl is a solution to (5.1) for each λ ∈ (λcyl − δ, λcyl + δ). Moreover, uλcyl
as well as the corresponding electrostatic potential ψuλ

cyl
∈ W 2

2

(
Ω(uλcyl)

)
are symmetric

with respect to the r-axis.

Proof. Put
S :=

{
w ∈ W 2

q,D(−1, 1)
∣∣ − 1 < w < 1

}
.

In the following, we want to resolve equation (4.1), that is F (w) + λg(w) = 0 with F
from (5.2), locally around (w, λ) = (0, λcyl). Because F and g (see Proposition 3.10)
are analytic from S to Lq(−1, 1) and the spectrum of DF (0) + λcylDg(0) consists only
of eigenvalues, this is possible if and only if 0 is no eigenvalue of DF (0) + λcylDg(0).
For j ∈ N, we have

σ2 6= 4 s0
π2 (j + 1)2

⇐⇒ σ2νj 6= s0 ⇐⇒ µj(σ) = µ(σ2νj) 6= 0

by the properties of the eigencurve profile and by assumption. Consequently, the
implicit function theorem (in the form [13, Theorem 4.5.4]) is applicable. It yields
some δ > 0 and an analytic function

[λ 7→ uλcyl] : (λcyl − δ, λcyl + δ) → W 2
q,D(−1, 1) , u

λcyl

cyl = 0
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such that uλcyl is a solution to (5.1) for each λ ∈ (λcyl − δ, λcyl + δ) with

‖uλcyl‖W 2
q,D(−1,1) < δ .

Additionally, if u solves (5.1) for some λ ∈ (λcyl − δ, λcyl + δ) with

‖u‖W 2
q,D(−1,1) < δ , (5.29)

then u = uλcyl. Because
[
z 7→ uλcyl(−z)

]
is a second solution to (5.1), see the proof of

Corollary 3.17, having the same W 2
q -distance to 0 as uλcyl, it follows from (5.29) that

uλcyl(−z) = uλcyl(z). As a consequence, the electrostatic potential ψuλ
cyl

is symmetric
with respect to the r-axis. □

5.4. Stability of Stationary Solutions near the Cylinder.
We study stability of stationary solutions near the cylinder under rotationally sym-

metric perturbations. We find a sharp threshold value σcyl > 0 such that the stationary
solution uλcyl to (1.20)-(1.22), which was constructed for most σ > 0 in Theorem 5.14,
is unstable for σ < σcyl and stable for σ > σcyl.

Theorem 5.15 Let q ∈ (2,∞) and σ2 6= 4s0
π2(j + 1)2

for j ∈ N and s0 being the unique

zero of the eigencurve profile [s 7→ µ(s)] from Proposition 5.8. Define

σcyl :=

√
s0
ν0
, (5.30)

where ν0 = π2/4. Then, there exists δ > 0 such that for each λ ∈ (λcyl − δ, λcyl + δ) the
stationary solution uλcyl to (1.20)-(1.22) satisfies:
(i) If σ < σcyl, then uλcyl is unstable in W 2

q,D(−1, 1).
(ii) If σ > σcyl, then uλcyl is exponentially asymptotically stable in W 2

q,D(−1, 1). More
precisely, there exist numbers ω0,m,M > 0 such that for each initial value u0 ∈
W 2

q,D(−1, 1) with ‖u0 − uλcyl‖W 2
q,D

< m, the solution u to (1.20)-(1.22) exists globally in
time and the estimate

‖u(t)− uλcyl‖W 2
q,D(−1,1) + ‖∂tu(t)‖Lq(−1,1) ≤M e−ω0t‖u0 − uλcyl‖W 2

q,D(−1,1)

holds for t ≥ 0.

The stability result will be complemented with a numerical approximation of σcyl,
and a discussion of an important stabilizing effect of the electrostatic force.

As in Section 4.2, we want to apply the principle of linearized stability. We roughly
follow [1, 26, 27, 50].
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For a solution u ∈ W 2
q,D(−1, 1) to (1.20)-(1.22) with initial value u0 close to uλcyl,

we put v := u− uλcyl. Then, v satisfies the linearized equation
∂tv −

(
DF (uλcyl) + λDg(uλcyl)

)
v = F (uλcyl + v)− F (uλcyl)−DF (uλcyl)v

+ λ
(
g(uλcyl + v)− g(uλcyl)−Dg(uλcyl)v

)
=: Gcyl(v).

(5.31)
Thanks to Proposition 3.10, we have Gcyl ∈ C∞(O, Lq(−1, 1)

)
for a small neighbour-

hood O of 0 in W 2
q,D(−1, 1) satisfying Gcyl(0) = 0 as well as DGcyl(0) = 0.

First, we study the stability of the cylinder uλcyl

cyl = 0:
Lemma 5.16 Let q ∈ (2,∞) and λ = λcyl. Then, the following holds:
(i) If σ < σcyl, then the stationary solution u = 0 to (1.20)-(1.22) is unstable in
W 2

q,D(−1, 1).
(ii) If σ > σcyl, then the stationary solution u = 0 to (1.20)-(1.22) is exponentially
asymptotically stable in W 2

q,D(−1, 1).

Proof. Because of (5.31) and the fact that −
(
DF (0) + λcylDg(0)

)
belongs to

H
(
W 2

q,D(−1, 1), Lq(−1, 1)
)

by Proposition 5.3, we can apply results from [54]. The
choice of σcyl in (5.30) guarantees that the largest eigenvalue µ0(σ) of DF (0)+λcylDg(0)
satisfies

µ0(σ) = µ(σ2ν0)

{
< 0 , σ > σcyl ,

> 0 , σ < σcyl .

Hence, the assertion follows from [54, Theorem 9.1.2, Theorem 9.1.3]. □

Second, we transfer the (in-)stability of the cylinder to the stationary solutions uλcyl
going through the cylinder. To transfer the instability result, we require that µ0(σ) is
algebraically simple:
Lemma 5.17 The eigenvalue µ0(σ) of DF (0) + λcylDg(0) is algebraically simple in
the sense of [54, Definition A.2.7].

Proof. For simplicity, we put A := DF (0) + λcylDg(0) and write µj for the j-th
eigenvalue µj(σ) of A throughout this proof. Since µ0 has geometric multiplicity 1 due
to Lemma 5.13, it remains to check that µ0 is semi-simple. Because W 2

q,D(−1, 1) is
compactly embedded in Lq(−1, 1), the operator A has a compact resolvent and [21,
1.19 Corollary] ensures that µ0 is a pole of the resolvent of A. Consequently, [54,
Remark A.2.4] shows that µ0 is semi-simple if and only if

ker(µ0 − A)2 = ker(µ0 − A) = R · ϕ0 ,

where ϕ0 is the first eigenvalue of the one-dimensional Dirichlet-Laplacian, see Lemma
5.7. Now let f ∈ ker(µ0 − A)2 and C ∈ R with (µ0 − A)f = C ϕ0. It remains to show
that C = 0: To this end, we write

f =
∞∑
j=0

aj ϕj , aj ∈ R ,
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with convergence in W 2
2 (−1, 1). Moreover, we recall from Remark 5.4 that µ0 −A can

be considered as an operator from W 2
2,D(−1, 1) to L2(−1, 1). Consequently, we find

(µ0 − A)f =
∞∑
j=0

(µ0 − µj) ajϕj

in L2(−1, 1). Since Fourier series are unique, it follows that aj = 0 for j > 0 and
C = (µ0 − µ0)a0 = 0. We conclude that µ0 is a semi-simple eigenvalue of A and hence
even a simple one. □

Proof of Theorem 5.15. For σ ∈ (0,∞) with σ2 6= 4s0
π2(j + 1)2

for j ∈ N, we have

‖DF (uλcyl) + λDg(uλcyl)−DF (0)− λcylDg(0)‖L(W 2
q,D ,Lq)

≤ ‖DF (uλcyl)−DF (0)‖L(W 2
q,D ,Lq) + λ‖Dg(uλcyl)−Dg(0)‖L(W 2

q,D ,Lq)

+ |λ− λcyl| ‖Dg(0)‖L(W 2
q,D ,Lq) → 0 ,

as λ → λcyl by Theorem 5.14. Since the linearized operator −
(
DF (0) + λcylDg(0)

)
belongs to H

(
W 2

q,D(−1, 1), Lq(−1, 1)
)
, we deduce from [5, Theorem I.1.3.1 (i)] the ex-

istence of δ > 0 such that
−
(
DF (uλcyl) + λDg(uλcyl)

)
∈ H

(
W 2

q,D(−1, 1), Lq(−1, 1)
)
, λ ∈ (λcyl − δ, λcyl + δ) .

We now investigate the stability of uλcyl

cyl for σ < σcyl and σ > σcyl separately:

(i) Instability for σ < σcyl: In this case, we know that the first eigenvalue µ0(σ)
of the operator DF (0) + λcylDg(0) is positive. Because it is also isolated and alge-
braically simple by Lemma 5.17, the perturbation result [54, Proposition A.3.2] for
such eigenvalues allows to make δ > 0 smaller such that DF (uλcyl)+λDg(uλcyl) also has
an eigenvalue with positive real part for λ ∈ (λcyl − δ, λcyl + δ). Moreover, since the
embedding W 2

q,D(−1, 1) ↪→ Lq(−1, 1) is compact, the spectrum of DF (uλcyl)+λDg(uλcyl)
consists only of eigenvalues with no finite accumulation point, see [39, Theorem 6.29].
Thus, there is a constant C > 0 such that the strip

{
µ ∈ C

∣∣ 0 < Reµ < C
}

is con-
tained in the resolvent set of DF (uλcyl)+λDg(uλcyl). Applying now [54, Theorem 9.1.3]
to (5.31) shows the instability of uλcyl for σ < σcyl.

(ii) Stability for σ > σcyl: Since the spectral bound of DF (0)+λcylDg(0) is negative
due to the choice σ > σcyl, it follows from [5, Corollary I.1.4.3] that we may take
δ > 0 so small that also DF (uλcyl) + λDg(uλcyl) has a negative spectral bound for
λ ∈ (λcyl − δ, λcyl + δ). Hence, uλcyl is exponentially asymptotically stable by [54,
Theorem 9.1.2].

□
Note that Theorem 5.15 is in accordance with the stability analysis of the cylindri-

cal solution for the small aspect ratio model in [58]. However, in the models [23, 24]
no analogue steady state seems to exist.
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Next, we derive an approximate upper bound for σcyl.
Remark 5.18 In Figure 5.1, a numerical plot of the eigencurve profile [s 7→ µ(s)] is
shown. We observe that the unique zero s0 of the plot satisfies s0 ≤ 4.2. This indicates
the following upper bound

σcyl =
2
√
s0
π

≤ 2
√
4.2

π
≈ 1.3 .

Figure 5.1. Numerical plot of the eigencurve profile [s 7→ µ(s)] (blue)
together with the constant [s 7→ 0] (red).

We want to explain an important physical implication of Remark 5.18. As prepa-
ration, we first recall the meaning of the parameter σ, and then have a closer look at
the soap film bridge in absence of the electrostatic force.

The parameter σ gives the ratio between the radius of the metal rings between
which the soap film is spanned divided by half of their distance. A smaller σ indicates
that the metal rings are pulled farther apart. Without electrostatic force, we recall that
the dynamics of the soap film are modelled by rotationally symmetric mean curvature
flow, i.e. the film deflection satisfies (1.20)-(1.22) with λ = 0. Moreover, there exists
the critical ratio σcrit ≈ 1.5 below which no stationary solutions to (1.20)-(1.22) with
λ = 0 exist, see Chapter 4. Further, for σ < σcrit and arbitrary initial shape of the
film, there exists no global solution for the film’s dynamics at all. This follows from
[19] and the parabolic comparison principle [51, Theorem 9.7]1. After this overview
we can explain the stabilizing effect of the electrostatic force indicated by Remark 5.18.

1Consider the rotationally symmetric mean curvature flow with Dirichlet boundary conditions,
that is (1.20)-(1.22) with λ = 0, and arbitrary initial value u0. First, one can compare a solution to
this problem with a shrinking cylinder (depending on u0 this might not be necessary) and subsequently
with the solution to the flow with Dirichlet boundary conditions and cylinder as initial value. The
latter pinches-off, that is touches itself, in finite time by [19].
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Remark 5.19 Since σcrit ≈ 1.5 and σcyl ≈ 1.3, at least numerically, we have σcrit >
σcyl. Here, the stability of the cylinder and also that of uλcyl switches at σcyl. Hence, for
σ ∈ (σcyl, σcrit) and suitably scaled electrostatic force we find stability of the cylinder
by Theorem 5.15 – in particular many solutions to (1.20)-(1.22) with λ close to λcyl
do exist globally in time – while in absence of the electrostatic force, i.e. for λ = 0
in (1.20)-(1.22), all solutions cease to exist after a finite time. In other words, the
electrostatic force might be used to avoid self-touching (or spontaneous breaking) of
the soap film bridge, and hence to stabilize the film in a range where the two metal
rings are pulled farther apart than the critical ratio σcrit. This effect is observed also
for the small aspect ratio model in [59].

Finally, we discuss an analytic estimate of σcyl:
Remark 5.20 Recalling that [s 7→ µ′(s)] is a decreasing function, we find

µ(s) = µ(0) +

∫ s

0

µ′(s̃) ds̃ ≤ µ(0) + sµ′(0) , s ≥ 0 ,

with µ(0) > 0 and µ′(0) < 0 explicitly given by Lemma 5.11. Consequently,

s >
µ(0)

−µ′(0)

is a sufficient condition for µ(s) < 0. In particular, the unique zero s0 of [s 7→ µ(s)]
satisfies

s0 ≤
µ(0)

−µ′(0)
,

and we find

σcyl =
2
√
s0
π

≤ 2

π

√
µ(0)

−µ′(0)
.

Unfortunately, this upper bound turns out to be slightly bigger than σcrit. Hence, it is
not good enough to display the stabilizing effect of the electrostatic force.

5.5. Direction of Deflection
For the stable range σ > σcyl, we show that the stationary solutions uλcyl, stemming

from the cylinder u = 0, are deflected monotonically outwards with respect to λ:

Theorem 5.21 For σ > σcyl, there exists δ > 0 such that

uλcyl(z) < uλcyl(z) , λcyl − δ < λ < λ < λcyl + δ , z ∈ (−1, 1) .

This reflects the physically expected behaviour that increasing the control param-
eter λ, i.e. increasing the impact of the electrostatic force, pulls the film farther out-
wards. For the simpler small aspect ratio model, formal asymptotic analysis has been
used in [58] to establish a similar result.
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Our proof is based on the linear approximation

uλcyl = u
λcyl

cyl + (λ− λcyl) ∂λu
λcyl

cyl + o
(
λ− λcyl

)
= (λ− λcyl) ∂λu

λcyl

cyl + o(λ− λcyl) , λ→ λcyl (5.32)
with

∂λu
λcyl

cyl = −
[
DF (0) + λcylDg(0)

]−1
g(0)

= − 1

ln(2)2
[
DF (0) + λcylDg(0)

]−1
1 (5.33)

in W 2
q,D(−1, 1). Here, we inserted g(0) = ln(2)−2 from (5.5) and used the fact that

[λ 7→ uλcyl] was constructed via the implicit function theorem. We now ask for posi-
tivity of (5.33). Recall that the same ansatz has been used in Chapter 4 to analyse
in which direction the stable catenoid is deflected. In Chapter 4, the question of posi-
tivity was answered by a maximum principle. However, the linearized operator under
consideration includes the complicated non-local part +λcylDg(0), which most likely
precludes the use of maximum principles. Instead, we expand ∂λu

λcyl

cyl in a Fourier series
and show positivity of this series. An essential ingredient for the positivity proof are
estimates on the eigencurve profile [s 7→ µ(s)].

We start with computing the Fourier series of the function 1 := [z 7→ 1] occurring
on the right-hand side of (5.33).

Lemma 5.22 The Fourier series of 1 with respect to the L2-eigenbasis of the one-
dimensional Dirichlet-Laplacian is

1 =
4

π

∞∑
j=0

(−1)j

(2j + 1)
cos

(
(2j + 1)π

2
z

)
, z ∈ (−1, 1) ,

with (unconditional) convergence in L2(−1, 1).

Proof. We write

1 =
∞∑
i=0

(1|ϕi)L2ϕi ,

where we recall that the eigenfunctions (ϕi)i∈N of the one-dimensional Dirichlet-Laplacian
are given by suitable scaled sine- and cosine-functions. Since the eigenfunctions ϕ2j+1

are sine-functions, they are odd and we clearly have (1|ϕ2j+1)L2 = 0. Moreover, we
find

(1|ϕ2j)L2 =

∫ 1

−1

cos

(
(2j + 1)π

2
z

)
dz

=
4

(2j + 1)π
sin

(
(2j + 1)π

2

)
=

4

π

(−1)j

(2j + 1)
, j ∈ N .

□
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Next, we compute the Fourier series of ∂λu
λcyl

cyl . This is possible because DF (0) +
λcylDg(0) can be extended to a bounded linear operator from W 2

2,D(−1, 1) to L2(−1, 1),
see Remark 5.4.

Lemma 5.23 Let σ > σcyl. Then, the Fourier series of ∂λu
λcyl

cyl is

∂λu
λcyl

cyl (z) =
4

π ln(2)2

∞∑
j=0

aj cos

(
(2j + 1)π

2
z

)
(5.34)

with coefficients

aj :=
(−1)j

(2j + 1)
(
− µ2j(σ)

) , j ∈ N ,

and (unconditional) convergence in C1
(
[−1, 1]

)
. Here, µ2j(σ) denotes the 2j-th eigen-

value of DF (0) + λcylDg(0).

Proof. We write

∂λu
λcyl

cyl =
∞∑
j=0

bjϕj

with suitable bj ∈ R and (unconditional) convergence in W 2
2 (−1, 1) ↪→ C1

(
[−1, 1]

)
.

We have convergence in W 2
2 (−1, 1) since ∂λu

λcyl

cyl belongs to W 2
2,D(−1, 1). We write

−[DF (0) + λcylDg(0)
]
∂λu

λcyl

cyl =
∞∑
j=0

−µj(σ)bjϕj

with
(
µj(σ)

)
j

denoting the eigenvalues of DF (0) + λcylDg(0), which are all strictly
smaller than zero. Based on (5.33) and Lemma 5.22, a comparison of Fourier coeffi-
cients in L2(−1, 1) yields the assertion. □

Since each cosine in the series (5.34) is scaled by an odd multiple of π/2, each of its
partial sums is an odd cosine sum in the sense of Appendix E. A sufficient condition
for such a sum to be positive is presented in Lemma E.2. More precisely, the condition
yields that if

C1 := a0 −
∞∑
j=1

(2j + 1)|aj| > 0

with coefficients aj from Lemma 5.23, then

∂λu
λcyl

cyl (z) ≥ C1
4

π ln(2)2
cos
(π
2
z
)
, z ∈ (−1, 1) . (5.35)

Inserting the aj’s, we are left with checking convergence and sign of

C1 =
1

(−µ0(σ))
−

∞∑
j=1

1

(−µ2j(σ))
.
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We recall that the eigenvalues µ2j(σ) of DF (0) + λcylDg(0) can be written as

µ2j(σ) = µ(σ2ν2j)

with eigencurve profile [s 7→ µ(s)] and the eigenvalues of the Dirichlet-Laplacian

ν2j =
(2j + 1)2

4
π2 , j ∈ N .

Upper and lower bounds for the eigenvalues µ2j(σ) are derived from properties of the
eigencurve profile [s 7→ µ(s)]:

Lemma 5.24 Let σ > σcyl. Then, the eigenvalues of DF (0) + λcylDg(0) satisfy

−σ2 (2j + 1)2

4
π2 < µ2j(σ) < − 3

10

π2

4
σ2
(
(2j + 1)2 − 1

)
, j ∈ N.

Proof. (i) We derive the lower bound: For s ∈ [0,∞), we have

µ(s) = −s+ 3 + 2∂rhs(1)

with hs being the solution to (5.21). Because [s 7→ ∂rhs(1)] is an increasing function
by Remark 5.12 and ∂rh0(1) = −2 + 1/ ln(2), see (5.26), we deduce that

µ(s) ≥ −s+ 3 + 2∂rh0(1) = −s+ 2

ln(2)
− 1 > −s .

Inserting s = σ2ν2j results in the estimate from below.
(ii) We derive the upper bound: Since σ > σcyl, we find σ2ν2j > s0 with s0 being the
unique zero of the eigencurve profile [s 7→ µ(s)]. Because [s 7→ µ′(s)] is decreasing on
[0,∞), see the proof of Proposition 5.8, with µ′(0) < −3/10 by Lemma 5.11, it follows
that

µ2j(σ) = µ(σ2ν2j) =

∫ σ2ν2j

s0

µ′(s̃) ds̃ ≤ −3

10
(σ2ν2j − s0) ≤

−3

10
σ2(ν2j − ν0) .

Inserting the expressions for ν2j and ν0 finishes off the proof. □

Now we check the sign of C1 to establish (5.35).

Proposition 5.25 For σ > σcyl, equation (5.35) holds. In particular, ∂λu
λcyl

cyl (z) > 0

for each z ∈ (−1, 1), and ∂z[∂λu
λcyl

cyl ](−1) > 0 as well as ∂z[∂λu
λcyl

cyl ](1) < 0.

Proof. Due to Lemma 5.24, we have

0 <
1(

− µ2j(σ)
) ≤ 10

3

4

π2σ2

1

(2j + 1)2 − 1
, j ∈ N ,
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where the infinite sum over the right-hand side converges. Consequently, the constant
C1 is finite. Moreover, a second application of Lemma 5.24 ensures that

C1 =
1

(−µ0(σ))
−

∞∑
j=1

1

(−µ2j(σ))

≥ 4

π2σ2

(
1− 10

3

∞∑
j=1

1(
(2j + 1)2 − 1

))

=
4

π2σ2

(
1− 10

3
· 1
4

)
=

2

3π2σ2
> 0 ,

where the relation
∞∑
j=1

1(
(2j + 1)2 − 1

) = lim
n→∞

1

4
· n

n+ 1
=

1

4

follows by induction. Now an application of Lemma E.2 finishes off the proof. □

Finally, we prove Theorem 5.21, the main result of this section. It states that the
local branch of stationary solutions [λ 7→ uλcyl] going through the stable cylinder is
deflected monotonically outwards if the applied voltage is increased.

Proof of Theorem 5.21. Recall that our ansatz in (5.32)-(5.33) is the same as in
the analysis of the direction of deflection for the outer catenoid. Only for the positivity
of ∂λu

λcyl

cyl , we required a new argument presented in Proposition 5.25. Hence, after
having established positivity of ∂λu

λcyl

cyl in Proposition 5.25, the remaining steps of the
proof are similar to the analysis of the outer catenoid, see the proof of Theorem 4.11.

□
Remark 5.26 Let σ < σcyl so that the cylinder is unstable. For the small aspect ratio
model, also the direction of deflection of the unstable cylinder has been formally anal-
ysed in [58], see in particular [58, Equation (2.67)]. Translated to the full free boundary
problem, one would hope to find the following: If the total number of strictly posi-
tive eigenvalues µj(σ) of DF (0) + λcylDg(0) is even, the unstable cylinder is deflected
outwards, while an odd number would imply a deflection directed inwards.



CHAPTER 6

Non-Existence of Global Solutions for Large Voltages

We study the dynamical behaviour of the film deflection u for large applied volt-
ages, which corresponds to an increase of the control parameter λ. For such large λ, a
dominance of the electrostatic force is expected and, as a consequence, non-existence
of global solutions. The goal of the current chapter is to prove non-existence of global
solutions for λ above a critical value λcrit and initial film deflection u0 lying above the
inner catenoid uin. The question of non-existence of global solutions for large λ in
variants of MEMS models has been previously studied in [22, 23, 47, 52].

Before we state the precise theorem and outline its proof, we recall the equations
for the dynamics: The dynamical film deflection u solves the parabolic equation

∂tu− σ ∂zarctan(σ∂zu) = − 1

u+ 1
+ λ g(u) ,

u(t,±1) = 0 , −1 < u < 1 ,

u(0, z) = u0 , z ∈ (−1, 1) ,

(6.1)

with initial value u0 ∈ W 2
q,D(−1, 1) satisfying −1 < u0 < 1, and electrostatic force

g(u) = (1 + σ2(∂zu)
2)3/2|∂rψu(z, u+ 1)|2 . (6.2)

Moreover, the electrostatic potential ψu is given by
1

r
∂r (r∂rψu) + σ2∂2zψu = 0 in Ω(u) ,

ψu = hu on ∂Ω(u) ,
(6.3)

where
Ω(u) =

{
(z, r) ∈ (−1, 1)× (0, 2) | u(z) + 1 < r < 2

}
with suppressed t-dependency and

hu(z, r) =

ln
( r

u(z) + 1

)
ln
( 2

u(z) + 1

) . (6.4)

We also recall from Chapter 4 that, in the range σ > σcrit, there exist two stationary
solutions to (6.1)-(6.4) with λ = 0, one being the inner catenoid uin. Now we state the
main result precisely:

94
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Theorem 6.1 Let σ ≥ σcrit
1. There exists λcrit(σ) > 0 such that for each λ > λcrit

and each initial condition u0 ≥ uin, the corresponding solution (u, ψu) to (6.1)-(6.4)
has a finite maximal time of existence Tmax(u0) <∞.

For t↗ Tmax, the film touches the rigid outer cylinder, as expected for a dominant
electrostatic force, or ‖u(t)‖W 2

q (−1,1) explodes, for example due to a spontaneous rup-
ture of the film. This asymptotic behaviour of the film is a consequence of Theorem
3.16 and the fact that u0 ≥ uin will guarantee u(t) ≥ uin as we shall see below.

To outline the proof of Theorem 6.1, we fix σ ≥ σcrit and a solution (u, ψu) to
(6.1)-(6.4) with initial value u0 ≥ uin. We consider the functional

E(t) := −
∫ 1

−1

ln
(
u(t, z) + 1

)
dz , t ∈ [0, Tmax) , Tmax = Tmax(u0) ,

which is bounded from below
E(t) ≥ −2 ln(2) , t ∈ [0, Tmax) ,

while we aim at showing
d

dt
E(t) ≤ −C < 0 , t ∈ [0, Tmax) , (6.5)

for λ above a critical threshold value. Obviously, this is only possible if Tmax <∞.

A related result is contained in [22], in which non-existence of global solutions to
a quasilinear MEMS model for large λ is shown by deriving a more involved inequal-
ity for the functional Ẽ(t) :=

∫ 1

−1
u(t, z) dz. Note that in the model (6.1)-(6.4) the

right-hand side of (6.1) has two terms of opposite signs. The term −1/(u + 1) will
be controlled by the restriction u0 ≥ uin, while the positivity of the electrostatic force
+λg(u) is accounted for by using the logarithm in the definition of E. Finally, the
electrostatic force (6.2) contains an additional factor

(
1 + σ2(∂zu)

2
)1/2 stemming from

the modelling assumption that the film always moves in normal direction. This factor
makes it possible to derive the simpler functional inequality (6.5) for E.

The inequality (6.5) will follow from several auxiliary results. Similarly to [43], an
important technical tool in some of the proofs will be the approximation of u by its
smoother time averages. We recall their definition and smoothing properties in the
next remark.
Remark 6.2 Let T ∈ (0, Tmax) and δ ∈ (0, Tmax−T ). As u is in C

(
[0, Tmax),W

2
q (−1, 1)

)
and C1

(
[0, Tmax), Lq(−1, 1)

)
, its Steklov average

uδ(t, z) :=
1

δ

∫ t+δ

t

u(s, z) ds , z ∈ (−1, 1) ,

belongs to C1
(
[0, T ],W 2

q (−1, 1)
)
⊂ C1

(
[0, T ]× [−1, 1],R) with

uδ −→ u in C
(
[0, T ],W 2

q (−1, 1)
)
. (6.6)

1For σ = σcrit, we slightly abuse notation and denote the critical catenoid ucat by uin as well.
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Moreover, we have

∂tuδ(t, z) =
u( · + δ)− u( · )

δ
−→ ∂tu in C

(
[0, T ], Lq(−1, 1)

)
(6.7)

for δ → 0.
As a first auxiliary result, we compute the derivative of E.

Lemma 6.3 The functional E belongs to C1
(
[0, Tmax),R

)
with derivative

d

dt
E(t) = −

∫ 1

−1

∂tu(t, z)

u(t, z) + 1
dz . (6.8)

Proof. Let T ∈ (0, Tmax). The Steklov average uδ of u satisfies

uδ(t, z) ≥ min
(t,z)∈[0,T ]×[−1,1]

u(t, z) > −1 ,

because u is continuous and always stays above −1. Consequently,

Eδ(t) := −
∫ 1

−1

ln
(
uδ(t) + 1

)
dz , t ∈ [0, T ] ,

is continuously differentiable with

Eδ(t)− Eδ(0) = −
∫ t

0

∫ 1

−1

∂tuδ(s, z)

uδ(s, z) + 1
dz ds .

In view of (6.6)-(6.7), passing to the limit δ → 0 yields

E(t)− E(0) = −
∫ t

0

∫ 1

−1

∂tu(s, z)

u(s, z) + 1
dz ds ,

and hence E ∈ C1
(
[0, Tmax),R

)
with derivative given by (6.8). □

Next, we show that in the specific situation σ ≥ σcrit under consideration, the
parabolic comparison principle is applicable to (6.1)-(6.4). More precisely, since the
non-local electrostatic force g(u) is always positive, one can show that u0 ≥ uin implies
u(t) ≥ uin for all times t ∈ [0, Tmax). Based on the book [51], we include a proof here.
We point out that in the situation σ < σcrit, where no steady states for λ = 0 exist,
the comparison principle seems not applicable.

Proposition 6.4 If u0 ≥ uin, then u(t) ≥ uin for all t ∈ [0, Tmax).

Proof. We fix T ∈ (0, Tmax) and introduce, for better readability, the notation
v := uin. Since this is a steady state of (6.1) for λ = 0, the difference w := v − u ∈
C
(
[0, T ],W 2

q (−1, 1)
)
∩ C1

(
[0, T ], Lq(−1, 1)

)
satisfies

∂tw + σ
(
∂z arctan(σ∂zu)− ∂z arctan(σ∂zv)

)
+

(
1

v + 1
− 1

u+ 1

)
= −λg(u) ≤ 0 .
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Testing this equation for t ∈ [0, T ] against w+(t) ∈ W 1
q,D(−1, 1), we find

0 ≥
∫ 1

−1

∂tw(t, z)w+(t, z) dz

− σ

∫ 1

−1

(
arctan

(
σ∂zu(t, z)

)
− arctan

(
σ∂zv(t, z)

))
∂zw+(t, z) dz

+

∫ 1

−1

(
1

v(t, z) + 1
− 1

u(t, z) + 1

)
w+(t, z) dz =: I + II + III . (6.9)

We treat each term separately starting with the easiest one:
For III: We note that

III =

∫ 1

−1

u(t, z)− v(t, z)(
v(t, z) + 1

)(
u(t, z) + 1

) w+(t, z) dz =

∫ 1

−1

b(t, z)w+(t, z)
2 dz

with

b(t, z) := − 1(
v(t, z) + 1

)(
u(t, z) + 1

) , |b(t, z)| ≤ C , (t, z) ∈ [0, T ]× [−1, 1] ,

for some constant C > 0.
For II: We compute that

− σ
(
arctan

(
σ∂zu(t, z)

)
− arctan

(
σ∂zv(t, z)

))
= σ

(∫ 1

0

∂z arctan
(
sσ∂zv(t, z) + (1− s)σ∂zu(t, z)

)
ds

)(
∂zv(t, z)− ∂zu(t, z)

)
= σ

(∫ 1

0

1

1 + σ2
(
s∂zv(t, z) + (1− s)∂zu(t, z)

)2 ds
)
∂zw(t, z)

=: a(t, z)∂zw(t, z) ,

and consequently

II =

∫ 1

−1

a(t, z)∂zw+(t, z)
2 dz ≥ 0 .

For I: We use an approximation argument to show that∫ t

0

I dτ =

∫ t

0

∫ 1

−1

∂tww+ dz dτ =
1

2

∫ 1

−1

w+(t)
2 dz , t ∈ [0, T ] . (6.10)

Let wδ = uin − uδ be the Steklov average of w. Then, wδ ∈ C1([0, T ]× [−1, 1],R) with∫ t

0

∫ 1

−1

∂twδ (wδ)+ dz dτ =

∫ 1

−1

∫ t

0

∂τ

(∫ wδ(τ,z)

0

s+ ds

)
dτ dz

=
1

2

∫ 1

−1

((
wδ(t)+

)2 − (wδ(0)+
)2)

dz .
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In view of (6.6), (6.7) as well as w(0) = uin − u0 ≤ 0, the limit δ ↘ 0 yields (6.10).
Integrating (6.9) from 0 to t and inserting the results for I to III gives

0 ≥ 1

2

∫ 1

−1

w+(t)
2 dz − C

∫ t

0

∫ 1

−1

w2
+ dz dτ ,

or, equivalently,

2C

∫ t

0

‖w+(τ)‖2L2(−1,1) dτ ≥ ‖w+(t)‖2L2(−1,1) , t ∈ [0, T ] .

Since w+ ∈ C
(
[0, T ], Lq(−1, 1)

)
, also

[
t 7→ ‖w+(t)‖2L2(−1,1)

]
is continuous on [0, T ], and

Gronwall’s lemma implies

‖w+(t)‖2L2(−1,1) = 0 , t ∈ [0, T ] .

Because w = uin − u and T < Tmax was arbitrary, it follows that u(t) ≥ uin for
t ∈ [0, Tmax) as claimed. □

ψu = 0ψu = 0

ψcat = 0

z
1−1

r

1

2

Ω(u)

Figure 6.1. The situation in the proof of Proposition 6.5: The film
deflection u+1 (red) lies above the inner catenoid uin+1 (blue). Note that
the electrostatic potentials ψu and ψcat coincide on the black boundary
parts of Ω(u) and are positive there.

We want to derive suitable estimates for the right-hand side of (6.8), and, as the
main step in this direction, we have to connect the electrostatic force with the L1-norm
of ∂zu. The proof is based on Gauss’s theorem and its idea is inspired by [22].

Proposition 6.5 There exists a constant C1(σ) > 0 (independent of t and u0) such
that ∫ 1

−1

(
1 + (σ∂zu)

2
)3/2|∂rψu(z, u+ 1)|2 dz ≥ εC1(σ)− ε2

∫ 1

−1

√
1 + (σ∂zu)2 dz

for each t ∈ [0, Tmax) and each ε > 0.

Proof. In the following, we fix t ∈ [0, Tmax) and use the abbreviations ψu := ψu(t)

(as usual) and ψcat := ψuin
. The situation is depicted in Figure 6.1. Since u always

stays above the inner catenoid uin, we can consider the function f := ψu−ψcat in Ω(u).



6. NON-EXISTENCE OF GLOBAL SOLUTIONS FOR LARGE VOLTAGES 99

On the boundary of Ω(u), this function satisfies

f = 0 on {±1} × [1, 2] ,

f = 0 on [−1, 1]× {2} ,
f ≤ 0 on graph(u+ 1) .

Therefore, the maximum principle implies that f attains its maximum on the whole
boundary parts {±1} × [1, 2] and [−1, 1]× {2}. Hence, the outer normal derivative of
f satisfies

∂νf ≥ 0 on {±1} × (1, 2) and on (−1, 1)× {2} ,

which is equivalent to

∂νψu ≥ ∂νψcat on {±1} × (1, 2) and on (−1, 1)× {2} .

Since ψu solves

0 = div

(
r

(
σ2∂zψu

∂rψu

))
in Ω(u) , (6.11)

we deduce from Gauss’s theorem and ∂zψu = −∂zu ∂rψu on graph(u+ 1) that∫ 1

−1

(u+ 1)
(
1 + (σ∂zu)

2
)
∂rψu(z, u+ 1) dz

= −
∫
graph(u+1)

r

(
σ2∂zψu

∂rψu

)
· ν do(z, r)

= −
∫ 2

1

σ2r ∂zψu(−1, r) dr +

∫ 1

−1

2 ∂rψu(z, 2) dz +

∫ 2

1

σ2 r ∂zψu(1, r) dr

=

∫ 2

1

σ2 r ∂νψu(−1, r) dr +

∫ 1

−1

2 ∂νψu(z, 2) dz +

∫ 2

1

σ2 r ∂νψu(1, r) dr

≥
∫ 2

1

σ2 r ∂νψcat(−1, r) dr +

∫ 1

−1

2 ∂νψcat(z, 2) dz +

∫ 2

1

σ2 r ∂νψcat(1, r) dr

= −
∫ 2

1

σ2r ∂zψcat(−1, r) dr +

∫ 1

−1

2 ∂rψcat(z, 2) dz +

∫ 2

1

σ2 r ∂zψcat(1, r) dr

= −
∫
graph(uin+1)

r

(
σ2∂zψcat

∂rψcat

)
· ν do(z, r)

=

∫ 1

−1

(uin + 1)
(
1 + (σ∂zuin)

2
)
∂rψcat(z, uin + 1) dz =: C1(σ) . (6.12)

In the last step, we have used that ψcat solves (6.11) in Ω(uin). Next, we show that
C1(σ) > 0: Because ψcat attains its minimum on the whole graph(uin + 1), it follows
from Hopf’s Lemma that ∂νψcat < 0, and hence

0 > ∂zψcat

(
z, uin(z) + 1

)
∂zuin(z)− ∂rψcat

(
z, uin(z) + 1

)
= −

(
1 + ∂zuin(z)

2
)
∂rψcat

(
z, uin(z) + 1

)
.
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Consequently, ∂rψcat > 0 on graph(uin + 1) and(
σ2∂zψcat

∂rψcat

)
· ν =

(
σ2∂zψcat

∂rψcat

)
· 1√

1 + ∂zu2in

(
∂zuin
−1

)
=

−
(
1 + (σ∂zuin)

2
)√

1 + ∂zu2in
∂rψcat

(
z, uin(z) + 1

)
< 0 ,

which implies C1(σ) > 0. Now we are ready to finish off the proof: A combination of
(6.12) with u+ 1 ∈ (0, 2) and the weighted Young’s inequality gives

C1(σ)

2
≤
∫ 1

−1

(
1 + (σ∂zu)

2
)3/4+1/4|∂rψu(z, u+ 1)| dz

≤ 1

2ε

∫ 1

−1

(
1 + (σ∂zu)

2
)3/2|∂rψu(z, u+ 1)|2 dz + ε

2

∫ 1

−1

√
1 + (σ∂zu)2 dz

for ε > 0, and multiplying this inequality by 2ε yields∫ 1

−1

(
1 + (σ∂zu)

2
)3/2|∂rψu(z, u+ 1)|2 dz ≥ εC1(σ)− ε2

∫ 1

−1

√
1 + (σ∂zu)2 dz

as claimed. □

Finally, the last auxiliary result compares the integral of arctan(σ∂zu) σ∂zu with
the L1-norm of ∂zu:

Lemma 6.6 For each t ∈ [0, Tmax), the estimate∫ 1

−1

arctan(σ∂zu) σ∂zu dz ≥
π

4

∫ 1

−1

√
1 + (σ∂zu)2 dz − π

holds.

Proof. We recall that
arctan(x)x ≥ 0 , arctan(1) =

π

4
,

√
x2 + y2 ≤ |x|+ |y|

for x, y ∈ R and introduce the set

A :=
{
z ∈ [−1, 1]

∣∣∣ ∣∣ arctan(σ∂zu(z))∣∣ ≥ π

4

}
.

Noting that σ|∂zu| ≤ 1 on Ac, we estimate∫ 1

−1

arctan(σ∂zu) σ∂zu dz ≥
∫
A

arctan(σ∂zu) σ∂zu dz

≥ π

4

∫
A

σ|∂zu| dz +
π

4

∫
Ac

σ|∂zu| dz −
π

2

=
π

4

∫ 1

−1

σ|∂zu| dz +
π

4

∫ 1

−1

1 dz − π

≥ π

4

∫ 1

−1

√
1 + (σ∂zu)2 dz − π .



6. NON-EXISTENCE OF GLOBAL SOLUTIONS FOR LARGE VOLTAGES 101

□
Based on Lemma 6.3−Lemma 6.6, we can prove the main result of this chapter:

Proof of Theorem 6.1. Let λ > 0 and (u, ψu) be a solution to (6.1)-(6.4) with
u0 ≥ uin. We have to show that Tmax <∞. Since the functional

E(t) = −
∫ 1

−1

ln
(
u(t) + 1

)
dz , t ∈ [0, Tmax)

is bounded from below by −2 ln(2), it suffices to show
d

dt
E(t) < −C < 0 , t ∈ [0, Tmax) ,

for some C > 0 independent of t, to exclude the possibility of global existence. Intro-
ducing the constant

C2(σ) :=
1

minz∈[−1,1] uin + 1
∈ (0,∞) ,

we note that
1

2
≤ 1

u+ 1
≤ C2(σ) ,

as u always stays above the inner catenoid uin by Proposition 6.4. Using (6.8) and
(6.1), we find

d

dt
E(t) = −σ

∫ 1

−1

∂zarctan(σ∂zu)
1

u+ 1
dz +

∫ 1

−1

1

(u+ 1)2
dz

− λ

∫ 1

−1

1

u+ 1

(
1 + (σ∂zu)

2
)3/2|∂rψu(z, u+ 1)|2 dz

≤ −
∫ 1

−1

arctan(σ∂zu) σ∂zu

(u+ 1)2
dz −

[
σ arctan(σ∂zu)

u+ 1

]1
−1

+ 2C2(σ)
2

− λ

2

∫ 1

−1

(
1 + (σ∂zu)

2
)3/2|∂rψu(z, u+ 1)|2 dz

≤ −1

4

∫ 1

−1

arctan(σ∂zu)σ∂zu dz + σπ + 2C2(σ)
2

− λ

2

∫ 1

−1

(
1 + (σ∂zu)

2
)3/2|∂rψu(z, u+ 1)|2 dz .

Next, for ε > 0, Proposition 6.5 and Lemma 6.6 imply that

d

dt
E(t) ≤ − π

16

∫ 1

−1

√
1 + (σ∂zu)2 dz +

π

4
+ σπ + 2C2(σ)

2

− λ

2

(
εC1(σ)− ε2

∫ 1

−1

√
1 + (σ∂zu)2 dz

)
.
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Choosing ε =
√

π

8λ
, we reduce this inequality to

d

dt
E(t) ≤ π

4
σπ − 2C2(σ)

2 −
√
λπ C1(σ)

4
√
2

. (6.13)

The right-hand side is strictly less than zero if λ > λcrit(σ) where

λcrit(σ) :=
32

πC1(σ)2

(π
4
+ σπ + 2C2(σ)

2
)2
. (6.14)

Hence, for λ > λcrit(σ), the solution (u, ψu) cannot be global.
□

Remark 6.7 (i) Computing the smallest possible value for λcrit(σ) in Theorem 6.1 is
of particular interest. An upper bound for λcrit(σ) is given by formula (6.14), where σ,
the radius of the rings divided by their distance, is easy to determine, and the constants

C1(σ) =

∫ 1

−1

(uin + 1)
(
1 + (σ∂zuin)

2
)
∂rψcat(z, uin + 1) dz

from (6.12), and

C2(σ) =
1

minz∈[−1,1] uin + 1
, min

z∈[−1,1]
uin =

1

cosh(cin)
− 1 ,

where cin > ccrit solves cosh(cin)
cin

= σ, may be accessible through numerical computations.

(ii) A consequence of the proof of Theorem 6.1 is that, for given λ > λcrit(σ), there
exists a uniform upper bound on the blow-up time Tmax : Abbreviating the right-hand
side of (6.13) by

−C3(σ, λ) :=
π

4
σπ − 2C2(σ)

2 −
√
λπ C1(σ)

4
√
2

,

we deduce from (6.13), the fact that u0 ≥ uin, and the definition of E that

E(t) = E(0) +

∫ t

0

d

dτ
E(τ) dτ

≤ −
∫ 1

−1

ln
(
uin(z) + 1

)
dz − t C3(σ, λ) , t ∈ [0, Tmax) .

Now, using E(t) ≥ −2 ln(2), we find

Tmax ≤
(
2 ln(2)−

∫ 1

−1

ln
(
uin(z) + 1

)
dz

)
C3(σ, λ)

−1 ,

where the right-hand side is independent of the initial value u0 ≥ uin. As in (i), this
upper bound may be accessible through numerical computations.



Conclusion

In this thesis, we have investigated a free boundary problem modelling a soap film
spanned between two parallel rings and subjected to an electrostatic force. While we
have established local well-posedness of the model in Sobolev spaces, a particular focus
has been on qualitative behaviour of solutions. We have shown that the model is capa-
ble of displaying several aspects of the interplay of surface tension and electrostatics,
and we restrict ourselves to summarizing the results regarding this interplay:

• Stable stationary film shapes, which are the physically most relevant ones,
deflect monotonically outwards if the electrostatic force is increased. This
response of the film to an increase of the electrostatic force has been proven
in Section 4.3 and Section 5.5.

• For nearly balanced forces, that is λ close to λcyl, and most σ, there exists a
stationary solution close to the cylinder. We have demonstrated numerically
that this stationary solution remains stable even for some distances between
the two metal rings at which the soap film would always break without elec-
trostatic force. Hence, the electrostatic force may prevent the soap film from
breaking. For details, we refer to Section 5.4.

• In the range dominated by electrostatics, many solutions cease to exist in finite
time. More precisely, for σ ≥ σcrit, which means that the metal rings are close
enough to each other so that the soap film can form a catenoid, and λ ≥ λcrit,
all solutions with initial value lying above the inner (or critical) catenoid cease
to exist in finite time. This result hints at a breaking of the film triggered by
the electrostatic force. It has been shown in Chapter 6.

Let us now mention a few extensions that might be worth investigating. Based on
our study of stability of stationary solutions close to the cylinder, it might be pos-
sible, for fixed voltage λ = λcyl, to perform a rigorous bifurcation analysis of the
cylinder in dependence on the parameter σ. Of course, it would also be interesting
to extend the result concerning non-existence of global solutions for large λ from the
range σ ∈ [σcrit,∞) to the whole range σ ∈ (0,∞). For σ ∈ (0, σcrit), no parabolic
comparison principle seems to apply, and it is unclear how a possible self-touching
of the film can be treated alternatively. Finally, it would be interesting to study a
three-dimensional version of the free boundary problem modelling the set-up without
rotational symmetry. Here, the difficulty lies in the treatment of the electrostatic force
due to weaker multiplication results for Sobolev functions.
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Appendices

A. Fractional Sobolev Spaces
In this appendix, we recall the definition of fractional Sobolev spaces and collect

two results on these spaces.

Let U ⊂ Rn be open and bounded with a Lipschitz boundary. Moreover, let
p ∈ (1,∞) and s ∈ (0, 1). Then, the fractional Sobolev space

W s
p (U) :=

{
f ∈ Lp(U)

∣∣∣∣ ∫
U×U

|f(x)− f(y)|p

|x− y|n+sp
dx dy <∞

}
,

equipped with the norm

‖f‖pW s
p (U) := ‖f‖pLp(U) +

∫
U×U

|f(x)− f(y)|p

|x− y|n+sp
dx dy , f ∈ W s

p (U) ,

is a Banach space. Analogously, for s ∈ (0, 1), the fractional Sobolev space

W 1+s
p (U) :=

{
f ∈ W 1

p (U)
∣∣ ∂αf ∈ W s

p (U) for all α ∈ Nn with |α| = 1
}
,

equipped with the norm

‖f‖p
W 1+s

p (U)
:= ‖f‖pW 1

p (U) +
∑
|α|=1

∫
U×U

|∂αf(x)− ∂αf(y)|p

|x− y|n+sp
dx dy , f ∈ W 1+s

p (U) ,

is a Banach space. Moreover, for p ∈ (1,∞) and s ∈ (0, 2] with s 6= 1/p, we set

W s
p,D(U) :=

{
W s

p (U) for s ∈ (0, 1/p) ,{
f ∈ W s

p (U)
∣∣ f = 0 on ∂U

}
for s ∈ (1/p, 2] ,

i.e. we include Dirichlet boundary conditions into the fractional Sobolev space when-
ever the trace on ∂U is defined. Finally, we let W−s

p′,D(U) be the dual space of W s
p,D(U)

where p′ denotes the dual exponent of p.

Now we include two results on fractional Sobolev spaces. While the first one is an
important general result on multiplication of fractional Sobolev functions from [2], the
second one is a simple lemma. Both results are also used in [22].
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Theorem A.1 (Multiplication Theorem)
Let U ⊂ Rn be a bounded domain with Lipschitz boundary. Let m ∈ N with m ≥ 2 and
p, pj ∈ (1,∞) as well as s, sj ∈ (0,∞) for 1 ≤ j ≤ m. If s ≤ min{sj} and

s− n

p
<


∑

sj<n/pj

(
sj −

n

pj

)
if min

1≤j≤m

{
sj −

n

pj

}
< 0 ,

min
1≤j≤m

{
sj −

n

pj

}
otherwise ,

then pointwise multiplication
m∏
j=1

W sj
pj
(U) → W s

p (U)

is continuous.

Proof. The statement follows from [2, Theorem 4.1, Remark 4.2 (d)]. □

Lemma A.2 Let Ω = (−1, 1)× (1, 2), s ∈ [0, 1] and p ∈ (1,∞). Then,[
ζ 7→

∫ 2

1

ζ( · , r) dr
]
∈ L

(
W s

p (Ω),W
s
p (−1, 1)

)
.

Proof. (i) For ζ ∈ Lp(Ω), we have∥∥∥ ∫ 2

1

ζ( · , r) dr
∥∥∥p
Lp(−1,1)

=

∫ 1

−1

∣∣∣ ∫ 2

1

ζ(z, r) dr
∣∣∣p dz

≤
∫ 1

−1

(∫ 2

1

|ζ(z, r)|p dr
)
dz

= ‖ζ‖pLp(Ω) .

(ii) Next, let ζ ∈ W 1
p (Ω). Thanks to (i), it remains to check that

∫ 2

1
∂zζ( · , r) dr is the

weak derivative of
∫ 2

1
ζ( · , r) dr. To this end, let ϕ ∈ D(−1, 1) and note that

−
∫ 1

−1

(∫ 2

1

ζ(z, r) dr
)
∂zϕ(z) dz = −

∫ 1

−1

(∫ 2

1

ζ(z, r) ∂z ϕ(z)︸︷︷︸
/∈D(Ω)

dr
)
dz . (A.1)

Choose ϕ̃n ∈ D(1, 2) with 1 ≥ ϕ̃n ≥ 0 and ϕ̃n(r) → 1 as n → ∞ for each r ∈ (1, 2).
Applying Lebesgue’s theorem to equation (A.1), we find

−
∫ 1

−1

(∫ 2

1

ζ(z, r) dr
)
∂zϕ(z) dz = − lim

n→∞

∫ 1

−1

(∫ 2

1

ζ(z, r) ∂z(ϕ̃n(r)ϕ(z))dr
)
dz

= lim
n→∞

∫ 1

−1

(∫ 2

1

∂zζ(z, r) (ϕ̃n(r)ϕ(z))dr
)
dz

=

∫ 1

−1

(∫ 2

1

∂zζ(z, r)dr
)
ϕ(z) dz ,

and the assertion follows.
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(iii) From (i) and (ii) we get[
ζ 7→

∫ 2

1

ζ( · , r) dr
]
∈ L

(
Lp(Ω), Lp(−1, 1)

)
∩ L
(
W 1

p (Ω),W
1
p (−1, 1)

)
.

Since fractional Sobolev spaces can be characterized via real interpolation, i.e.(
(Lp(−1, 1),W 1

p (−1, 1)
)
s,p

= W s
p (−1, 1) ,

(
Lp(Ω),W

1
p (Ω)

)
s,p

= W s
p (Ω) ,

interpolation finishes off the proof. □
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B. Small Aspect Ratio Model
We briefly explain how the small aspect ratio model, described in Remark 1.1 (a)

and introduced for the stationary case in [58, 60], can be obtained formally from the
free boundary problem. To this end, we drop the assumption b/a = 2 for the moment
and scale the free boundary problem (1.17)-(1.19) according to [58] by

z =
zold
`
, ψ =

ψold

V
, r =

rold
b− a

, u =
uold
a

− 1 , t =
2T told
a2β

.

Here, we recall that the radius of the outer cylinder b is always strictly greater than the
radius of the metal rings a. Moreover, we note that the scaling of r, with the inverse
of the radii difference b− a, differs from Chapter 1 for b/a 6= 2, while z, ψ, u and t are
scaled as before. Introducing the aspect ratio

ε =
b− a

`
,

the dimensionless model then becomes

∂tu− σ ∂zarctan(σ∂zu) = − 1

u+ 1
+ λ

( a

b− a

)2
g(u) ,

u(t,±1) = 0 , −1 < u < 1 ,

u(0, z) = u0 , z ∈ (−1, 1) ,
1
r
∂r (r∂rψ) + ε2∂2zψ = 0 in Ω(u) ,

ψ = hu on ∂Ω(u)

(B.1)

with

Ω(u) =

{
(z, r) ∈ (−1, 1)×

(
0,

b

b− a

) ∣∣∣∣ a

b− a
(u(z) + 1) < r <

b

b− a

}
,

and

g(u) := (1 + σ2(∂zu)
2)1/2

(
ε2
∣∣∣∣∂zψ(z,( a

b− a

)
(u(z) + 1)

)∣∣∣∣2
+

∣∣∣∣∂rψ(z,( a

b− a

)
(u(z) + 1)

)∣∣∣∣2
)
, (B.2)

as well as

hu(z, r) = ln

(
(b− a)r

a(u(z) + 1)

)/
ln

(
b

a(u(z) + 1)

)
. (B.3)

Here, the new parameter ε occurs in the equation for the electrostatic potential ψ
and in the definition of the electrostatic force g.2 Assuming a small aspect ratio, i.e.
ε << 1, one formally considers the case ε = 0 in (B.1)-(B.3).

2For details on g, we refer to its rigorous introduction in Chapter 3.
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Then, the electrostatic potential solves 1
r
∂r(r∂rψ) = 0 and is explicitly given by

ψ(z, r) = hu(z, r). Consequently, (B.1)-(B.3) reduces to the small aspect ratio model
∂tu− σ ∂zarctan(σ∂zu) = − 1

u+ 1
+ λ gsar(u) ,

u(t,±1) = 0 , −1 < u < 1 ,

u(0, z) = u0 , z ∈ (−1, 1) ,

(B.4)

with explicitly given electrostatic force

gsar(u) := (1 + σ2(∂zu)
2)1/2

1

(u+ 1)2 ln2
( b

a(u+ 1)

) . (B.5)

Note that this simplified electrostatic force gsar(u) in (B.5) depends only pointwise
on u and ∂zu, while the electrostatic force in the free boundary problem, see (B.2),
depends on u and ψ. Choosing b/a = 2, which is allowed in [58], yields equations
(1.23)-(1.24) from Remark 1.1 (a), while the stationary version of (B.4)-(B.5) coincides
with the model from [58, 60].
Remark B.1 In second-order MEMS models, more precisely models for a membrane
suspended above a fixed ground plate, a rigorous derivation of the small aspect ratio
model from the free boundary problem is possible, see [42] for the stationary case and
[23, 24] for the time-dependent one. However, the situation in (B.1)-(B.3) is different.
The main reason lies in the relation

ε = σ
b− a

a
which makes the passage to the limit ε↘ 0 impossible without changing other param-
eters explicitly contained in the equations. Therefore, we refrain from a rigorous study
of ε↘ 0 in (B.1)-(B.3).
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C. Anti-Maximum Principle
In this appendix, we present a criterion to decide whether or not an anti-maximum

principle applies to the uniformly elliptic second order operator

−DF (u0in)v = −σ2

[
∂z

( 1

cosh2(cinz)
vz

)
+

c2in
cosh2(cinz)

v

]
, v ∈ W 2

q,D(−1, 1)

from (4.14) and a given function f > 0 on (−1, 1). We recall that −DF (u0in) is the
linearization of (4.2) around the inner catenoid u0in, and cin > 0 denotes the con-
stant corresponding to u0in. If an anti-maximum principle applies, it would yield that
v =

(
−DF (u0in)

)−1
f is negative. The presented criterion stems from [67] but is slightly

extended to include a statement for the case where no such principle applies.

To state the criterion precisely, let us recall from Subsection 4.3.2 that
ϕ(z) = cosh(cinz)− cin z sinh(cinz)

is the unique solution to the initial value problem 0 = −∂z
( 1

cosh2(cinz)
ϕz

)
− c2in

cosh2(cinz)
ϕ on (−1, 1) ,

ϕ(0) = 1 , ϕz(0) = 0

associated with the boundary value differential operator −DF (u0in). Now the criterion
reads:

Lemma C.1 Let f ∈ C
(
[−1, 1]

)
with f(z) = f(−z) > 0 for each z ∈ [−1, 1] and

consider the even function v :=
(
−DF (u0in)

)−1
f ∈ W 2

q,D(−1, 1) ∩ C2
(
[−1, 1]

)
.

(i) If ∫ 1

−1

f(z)ϕ(z) dz > 0 ,

then v satisfies a strong anti-maximum principle meaning that v < 0 on (−1, 1) with
vz(−1) < 0 and vz(1) > 0.
(ii) If ∫ 1

−1

f(z)ϕ(z) dz < 0 ,

then v does not satisfy an anti-maximum (or maximum) principle. Instead, v is sign-
changing: there exists r0 ∈ (0, 1) such that v < 0 on (−r0, r0) and v > 0 on (−1,−r0)∪
(r0, 1) as well as

vz(−1) > 0 , vz(−r0) < 0 ,

vz(r0) > 0 , vz(1) < 0 .

Proof. Throughout, we use the abbreviation c = cin. Because f is strictly positive
and Corollary 4.8 ensures that DF (u0in) has exactly one strictly positive eigenvalue,
while all other eigenvalues are strictly negative, we can rely on the anti-maximum
principle from [67] and its proof:
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(i) This follows directly from [67, Theorem 2.3].
(ii) In the proof of [67, Theorem 2.3], it is shown that the set

I− :=
{
z ∈ (−1, 1)

∣∣ v(z) < 0
}

coincides either with (−1, 1) or with (−r0, r0) for some 0 < r0 < 1. Because v satisfies
Dirichlet boundary conditions, vz(0) = 0 due to symmetry, and ϕz(0) = 0 as initial
data, integration by parts yields

1

cosh2(c)
ϕ(1) vz(1)

=
[ 1

cosh2(cz)
ϕ(z) vz(z)−

1

cosh2(cz)
ϕz(z) v(z)

]z=1

z=0

=

∫ 1

0

(
∂z

( 1

cosh2(cz)
vz(z)

)
ϕ(z)− ∂z

( 1

cosh2(cz)
ϕz(z)

)
v(z)

)
dz . (C.1)

Adding ± c2

cosh2(cz)
v(z)ϕ(z) to the integrand in (C.1) and using the differential equa-

tion for ϕ as well as the relation −DF (u0in)v = f , we see that
1

cosh2(c)
ϕ(1) vz(1) =

1

σ2

∫ 1

0

(
DF (u0in)v

)
(z)ϕ(z) dz

= − 1

σ2

∫ 1

0

f(z)ϕ(z) dz

= − 1

2σ2

∫ 1

−1

f(z)ϕ(z) dz > 0 . (C.2)

The last integral is positive by assumption. Now we deduce from (C.2) and ϕ(1) < 0,
where the negativity of ϕ(1) can be seen in Figure 4.3 on p. 68, that also vz(1) < 0.
Since v satisfies Dirichlet boundary conditions, it follows that v is non-negative close
to z = 1, and consequently I− cannot be the whole interval (−1, 1). Hence, we have
I− = (−r0, r0) for some 0 < r0 < 1. Moreover, we note that also vz(−1) > 0 by
symmetry. To show that v is strictly positive on (−1,−r0) ∪ (r0, 1), we assume for
contradiction that v(z0) = 0 for some z0 with r0 < |z0| < 1. Since v ≥ 0 close to z0, it
follows that v has a local minimum at z0 and hence necessarily vz(z0) = 0. But then
we find that

0 > − 1

σ2
f(z0)

=
1

σ2

[
DF (u0in)v

]
(z0)

= ∂z

( 1

cosh2(cz)

)∣∣∣
z=z0

vz(z0) +
1

cosh2(cz0)
vzz(z0)

+
c2

cosh2(cz0)
v(z0)

=
1

cosh2(cz0)
vzz(z0) , (C.3)
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i.e. v has a strict local maximum at z0 which is not possible. Hence, v is indeed strictly
positive on (−1,−r0) ∪ (r0, 1). Since v is negative on (−r0, r0), we have v(r0) = 0
and vz(r0) ≥ 0. Finally, assume for contradiction that vz(r0) = 0. Then, a similar
computation as in (C.3) shows that vzz(r0) < 0, i.e. v has a local maximum at r0,
which is impossible. Hence, we have established vz(r0) > 0, and also vz(−r0) < 0 by
symmetry. □
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D. Eigenbasis of the Laplacian in Cylindrical Coordinates
In this appendix, we recall some facts about the Dirichlet-Laplacian in cylindrical

coordinates

−∆cyl,D : W 2
2,D(Ω) → L2(Ω) , f 7→ −1

r
∂r
(
r∂rf

)
− σ2∂2zf

on Ω = (−1, 1)× (1, 2) under rotational symmetry. Therefore, we introduce the spaces

L2,r(1, 2) :=
(
L2(1, 2), ( · | · )L2,r(1,2)

)
with scalar product

(f |h)L2,r(1,2) :=

∫ 2

1

f(r)h(r) r dr , f, h ∈ L2(1, 2) ,

and
L2,r(Ω) :=

(
L2(Ω), ( · | · )L2,r(Ω)

)
with scalar product

(f |h)L2,r(Ω) :=

∫ 1

−1

∫ 2

1

f(r)h(r) r dr dz f, h ∈ L2(Ω) .

These spaces are obviously isomorphic to L2(1, 2) and L2(Ω) respectively.

The operator −∆cyl,D splits into two parts acting on the z and r variable respec-
tively:

The one-dimensional Dirichlet-Laplacian −∂2z : W 2
2,D(−1, 1) → L2(−1, 1) acts on

the first variable z. Its spectrum consists entirely of eigenvalues

νj :=
(j + 1)2π2

4
, j ∈ N ,

with geometric multiplicity 1 and corresponding normalized eigenfunctions

ϕj(z) :=


cos

(
(j + 1)π

2
z

)
if j is even ,

sin

(
(j + 1)π

2
z

)
if j is odd

for z ∈ (−1, 1). The eigenfunctions {ϕj}j form an orthonormal basis of L2(−1, 1).

The operator −1
r
∂r(r∂r · ) : W 2

2,D(1, 2) → L2(1, 2) acts on the second variable r. Its
spectrum consists entirely of eigenvalues

0 < ξ0 < ξ1 < · · · < ξk → ∞
with geometric multiplicity 1. The corresponding sequence of normalized eigenfunc-
tions {ρk}k belongs to C∞([1, 2]) ∩ W 2

2,D(1, 2) and forms an orthonormal basis of
L2,r(1, 2), see [71, §27].
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The next proposition shows that the spectrum and eigenfunctions of the composite
operator −∆cyl,D are entirely determined by the spectrum and eigenfunctions of its two
parts. A related computation for a more complicated operator splitting in two parts is
contained in [1].

Proposition D.1 The spectrum of
−∆cyl,D : W 2

2,D(Ω) → L2(Ω)

consists entirely of eigenvalues
ξk + σ2νj , j, k ∈ N.

The corresponding eigenfunctions ρkϕj ∈ W 2
2,D(Ω)∩C∞(Ω) form an orthonormal basis

of L2,r(Ω). Moreover, for each f ∈ W 2
2,D(Ω), there exist bjk ∈ R such that

f =
∑
j,k

bjkρkϕj ,

where the sequence converges unconditionally in W 2
2 (Ω).

Proof. (i) First, we check that
{
ρk ϕj

}
j,k

forms an orthonormal basis of L2,r(Ω).
Since (

ρk ϕj

∣∣ ρl ϕi

)
L2,r(Ω)

= (ϕj |ϕi)L2(−1,1) (ρk | ρl)L2,r(1,2) = δijδkl ,

the set
{
ρk ϕj

}
j,k

is orthonormal in L2,r(Ω). Because D(Ω) is dense in L2,r(Ω), we only
have to show that

0 =
(
h
∣∣ ρk ϕj

)
L2,r(Ω)

∀ j, k ∈ N =⇒ h ≡ 0

for h ∈ D(Ω). Because the scalar product may be written as

0 =
(
h
∣∣ ρk ϕj

)
L2,r(Ω)

=

∫ 1

−1

(∫ 2

1

h(z, r) ρk(r) r dr

)
ϕj(z) dz

=

(∫ 2

1

h( · , r)ρk(r) r dr
∣∣∣∣ϕj

)
L2(−1,1)

, j, k ∈ N

and {ϕj}j is an orthonormal basis of L2(−1, 1), it follows that

0 =

∫ 2

1

h(z, r)ρk(r) r dr =
(
h(z, · )

∣∣ ρk)L2,r(1,2)
, k ∈ N , z ∈ (−1, 1) .

But {ρk}k is again an orthonormal basis of L2,r(1, 2), and hence h ≡ 0. Consequently,{
ρkϕj

}
j,k

is indeed an orthonormal basis of L2,r(Ω).
(ii) We investigate the eigenvalues and eigenfunctions of −∆cyl,D : Because W 2

2,D(Ω)

is compactly embedded in L2(Ω) and −∆cyl,D ∈ L
(
W 2

2,D(Ω), L2(Ω)
)

is invertible by
Lemma 3.3, the spectrum of −∆cyl,D consists only of eigenvalues with no finite accu-
mulation point, see [39, Thorem 6.29]. Moreover, a direct computation gives(

−∆cyl,Dw1

∣∣∣w2

)
L2,r(Ω)

=
(
w1

∣∣∣ −∆cyl,Dw2

)
L2,r(Ω)
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for w1, w2 ∈ W 2
2,D(Ω). Consequently, all eigenvalues of −∆cyl,D are real, and eigenfunc-

tions to different eigenvalues are orthogonal with respect to the L2,r(Ω)-scalar product.
Moreover

−∆cyl,Dρkϕj = (ξk + σ2νj)ρkϕj , j, k ∈ N ,

and by step (i) the corresponding eigenfunctions
{
ρk ϕj

}
j,k

form an orthonormal basis
of L2,r(Ω). Hence, we have found all eigenvalues of −∆cyl,D.
(iii) Finally, for f ∈ W 2

2,D(Ω), there exists h ∈ L2,r(Ω) with f = (−∆cyl,D)
−1h. Writing

h as
h =

∑
j,k

(
h
∣∣ ρkϕj

)
L2,r(Ω)

ρkϕj

with unconditional convergence in L2,r(Ω) and applying (−∆cyl,D)
−1 to both sides gives

f =
∑
j,k

bjkρkϕj , bjk =

(
h
∣∣ ρkϕj

)
L2,r(Ω)

ξk + σ2νj
, j, k ∈ N ,

with unconditional convergence in W 2
2,D(Ω). Now everything is proven. □
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E. Odd Cosine Sums
We present a sufficient condition for an odd cosine sum to be positive on (−1, 1).

In the following, a cosine sum is odd if each cosine is scaled by an odd multiple of π/2.

As the first step, we reduce odd cosine sums to even ones by applying trigonometric
identities. The ansatz is taken from [11, Lemma 5]. However, we require a slightly
different formula for the coefficients of the even cosine sum.

Lemma E.1 Let n ∈ N and a0, . . . , an ∈ R. Consider the sum of odd cosines

f(z) :=
n∑

j=0

aj cos

(
(2j + 1)π

2
z

)
, z ∈ (−1, 1) .

Then
f(z)

cos(π
2
z)

=
n∑

j=0

bj cos(jπz) , z ∈ (−1, 1) ,

with coefficients

b0 :=
n∑

k=0

(−1)kak , bj := 2
n∑

k=j

(−1)k−jak , j = 1, . . . , n .

Proof. We proceed by induction. For n = 0, the assertion is obviously true. And
for n = 1, the assertion follows directly from the trigonometric identity

cos

(
(2n+ 1)π

2
z

)
+ cos

(
(2n− 1)π

2
z

)
= 2 cos(nπz) cos

(π
2
z
)
.

For the step from n− 1 to n, we now apply the above identity to rewrite f as

f(z) =
n−2∑
j=0

aj cos

(
(2j + 1)π

2
z

)
+ (an−1 − an) cos

(
(2(n− 1) + 1)π

2
z

)
+ 2an cos(nπz) cos

(π
2
z
)
,

which implies that the coefficients b0 to bn−1 of f(z)
cos(π

2
z)

are given by3

b0 =
n−2∑
k=0

(−1)kak + (−1)n−1(an−1 − an) =
n∑

k=0

(−1)kak ,

bj = 2
n−2∑
k=j

(−1)k−jak + 2(−1)n−1−j(an−1 − an) = 2
n∑

k=j

(−1)k−jak , j = 1, . . . , n− 1,

while bn = 2an = 2
n∑

k=n

(−1)k−nak

is also fulfilled. □
3For bn−1, we use the convention

∑n−2
k=n−1(−1)k−(n−1)ak = 0.
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As the second and final step, we prove a sufficient condition for an odd cosine sum
to be positive on (−1, 1).
Lemma E.2 Let n ∈ N and a0, . . . , an ∈ R. Moreover, let C > 0 with

a0 −
n∑

j=1

(2j + 1) |aj| ≥ C > 0 .

Then, the sum of odd cosines

f(z) :=
n∑

j=0

aj cos

(
(2j + 1)π

2
z

)
, z ∈ (−1, 1) .

satisfies
f(z) ≥ C cos

(π
2
z
)
, z ∈ (−1, 1) .

In particular, f(z) > 0 for each z ∈ (−1, 1) and fz(±1) 6= 0.
Proof. We prove the equivalent statement

f(z)

cos(π
2
z)

≥ C , z ∈ (−1, 1).

Lemma E.1 yields
f(z)

cos(π
2
z)

=
n∑

j=0

bj cos(jπz)

with coefficients

b0 =
n∑

k=0

(−1)kak , bj = 2
n∑

k=j

(−1)k−jak , j = 1, . . . , n ,

so that
f(z)

cos(π
2
z)

≥ b0 −
n∑

j=1

|bj| ≥
n∑

k=0

(−1)kak − 2
n∑

j=1

n∑
k=j

|ak|

≥ a0 −
n∑

k=1

|ak| − 2
n∑

j=1

j |aj| = a0 −
n∑

j=1

(2j + 1)|aj| ≥ C .

□
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