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Abstract

I introduce a way of constructing a fiber bundle whose fibers are given by hypercomplex algebras and 
woven by appropriate structure group, and present that a novel gauge theory can be built on the hypercom-
plex fiber bundle. In this work, I aim to answer a question about how nature selects one preferred vacuum 
among degenerate physical vacua, called vacuum selection problem. In the end, I found presence of the 
impenetrable domain wall that prohibits phase transition between the two vacua. To be specific, I found that 
in this theory, one particular vacuum between two degenerate physical vacua for Higgs-like scalar potential 
can be dynamically chosen with priority due to intrinsic even parity of both a scalar field and its vacuum 
under a Z2 symmetry, even though its scalar potential is given to be Z2-symmetric under both odd- and 
even-parity transformations of the scalar field. This means that the vacuum selection problem can be re-
solved in this gauge theory. I suggest that this work may be a gateway to addressing the theoretical origin 
of the true physical vacuum that nature takes.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
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1. Introduction

It is enigmatic how nature selects one specific vacuum with priority among physical vacua 
of scalar potential. In Brout-Englert-Higgs (BEH) mechanism [1], after choosing the unitary 
gauge, Higgs scalar potential has two degenerate physical vacua. It is then required to choose 
a particular vacuum orientation between positive and negative directions of the Higgs field. In 
the end, the Higgs vacuum is determined merely by our choice during the spontaneous symme-
try breaking. Accordingly, there is no any physical justification of such choice between the two 
physical vacua. Moreover, this situation equally arises for any theories considering spontaneous 
symmetry breaking, like supersymmetric and superstring theories. In this respect, I cast an open 
question: How does nature make selection of one particular vacuum with priority among ob-
tainable vacua? I shall call this issue vacuum selection problem. Throughout this paper, I aim to 
answer this.

In the meantime, development of algebraic structures in mathematics has brought physicists 
many insights to find the laws of nature. We know that the real algebra appears everywhere in 
physics. The complex algebra has incredibly broadened our perspective on microscopic nature 
by enabling us to do quantum mechanics. The grassmann algebra enables us to describe fermion 
with spinor, which is the key ingredient of supersymmetric theories. In addition, various trials 
that utilize quaternionic [2] and split-complex or hyperbolic algebras [3] for physics have been 
studied in the recent decades. As interesting results recently discovered, it has been proposed that 
the three generations of the standard model (SM) may be realized by the algebra “C ⊗ O” of 
complex and octonionic numbers [4]. Moreover, it has been suggested that the algebra “R ⊗C⊗
H⊗O” including real, complex, quaternionic, and octonionic ones may be treated as a gateway 
to explaining some features of the SM like symmetry breaking [5] and one generation of SM 
Weyl representations [6]. In Ref. [7], the author seeks out reformulation of the SM by taking 
advantage of algebraic structure. Conclusively, these stories of using algebraic structures imply 
that what physical information we can excavate depends on what mathematical language we use 
for physical reasoning. In this sense, it is worthwhile to research new mathematical notion and its 
possible application to physics because there is no guarantee that the conventional approaches for 
physics would always be successful in clarifying physical principles in nature. What is the next? I 
note a so-called hypercomplex number, which was studied by Anthony Harkin and Joseph Harkin 
in 2004 [8]. To the best of my knowledge, I have never seen any application of the hypercomplex 
number to physics. In this paper, I take the first step of such application by considering the gauge 
principle [9] in Sec. 3.

What is the hypercomplex number? First of all, to better understand its nature, let us go over 
three familiar types of number. It is common that for a variable x in R, it is not possible to find 
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a consistent solution to the equation x2 = −1 that belongs to the set of real numbers R. The 
imaginary unit i such that i2 = −1 is thus introduced to solve the equation, extending the set of 
real numbers R into a set of the so-called complex numbers C. Next, consider an equation x2 = 1
where the solution is given by x = ±1 when x ∈ R. Here there is another example when x /∈ R, 
which is the hyperbolic (or split-complex) number whose imaginary unit is given by j such that 
j2 = 1. The last case is Study (or Grassmann) number λ such that λ2 = 0, which also defines its 
own independent plane.

Looking the previous numbers, one may ask a question. Can there exist each complex-like 
field Cp whose defining imaginary unit is given by ip such that i2

p = p for each real number 
p? If so, we are able to have infinitely-many complex-like fields since cardinality of real field 
R is infinite. Motivated by the above question, the hypercomplex number has been established 
by the authors of Ref. [8], where they have found its algebra and geometry in a mathematically 
rigorous manner. In this work, I raise another questions about the hypercomplex algebra: Can we 
weave such independent vector spaces consisting of hypercomplex algebras into a fiber bundle 
by introducing appropriate structure group like the usual case of tangent bundle? What kind 
of gauge theory can we obtain from such fiber bundle? What type of dynamics can the theory 
describe? Throughout this paper, I intend to answer the first two of the above questions in Sec. 3, 
and the last in Sec. 4. In addition, I would like to point out that the idea of an (octonionic) 
imaginary unit that varies from point to point on a manifold was proposed in Ref. [10]. It would 
thus be interesting to study how to fit the idea of Ref [10] with the fiber-bundle scheme that this 
paper dealing with the imaginary unit varying over a smooth manifold proposes for the first time. 
This paper is organized as follows. In Sec. 2, I briefly introduce a definition of hypercomplex 
algebra, and its properties found in Ref. [8]. In Sec. 3, I present how to comprise a fiber bundle 
of the hypercomplex algebras, and how to build gauge theory on the fiber bundle. In Sec. 4, 
I study scalar field dynamics that the gauge theory predicts, and utilize this for resolving the 
vacuum selection problem mentioned above.

2. Hypercomplex algebra

In this section, I give a brief review of the hypercomplex number introduced in Ref. [8]. The 
hypercomplex number can be considered as a generalization of the complex number in C. The 
idea of hypercomplex number starts with a nontrivial solution of the following algebraic equation

x2 = p ∈ R, (2.1)

where x is a variable. Two trivial solutions to Eq. (2.1) can be obtained if x ∈ R for positive 
values of p, and x ∈ C for negative values of p. By the way, someone may cast a question about 
whether there exist independent spaces spanned by each of the solutions x’s which do not belong 
to either R or C anymore. In Ref. [8], the authors confirm that such spaces can be constructed, 
which is called hypercomplex planes. They define the new planes in the way

Cp ≡ { x + ipy | x, y ∈R, i2
p = p }, (2.2)

whose possible operation is given by a conjugate operation � such that

i�p ≡ −ip. (2.3)

The conjugate of a hypercomplex number z is then given by

z� = x − ipy. (2.4)
3
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For two hypercomplex numbers z1 ≡ x1 + ipy1 and z2 ≡ x2 + ipy2, the multiplication is defined 
by

z1z2 = (x1 + ipy1)(x2 + ipy2) = x1x2 + ip(y1x2 + x1y2) + i2
py1y2

= (x1x2 + py1y2) + ip(y1x2 + x1y2). (2.5)

In hypercomplex algebras, the corresponding norm is defined in the way

‖z‖p ≡
√

z�
pzp =

√
(x − ipy)(x + ipy) =

√
|x2 − py2|. (2.6)

In addition, the authors of Ref. [8] also found that a relevant trigonometry can be given as follows:

cosp(θ) ≡

⎧⎪⎨
⎪⎩

cos(θ
√|p|) p < 0

1 p = 0

cosh(θ
√

p) p > 0

, sinp(θ) ≡

⎧⎪⎪⎨
⎪⎪⎩

1√|p| sin(θ
√|p|) p < 0

θ p = 0
1√
p

sinh(θ
√

p) p > 0

,

tanp(θ) ≡ sinp(θ)

cosp(θ)
. (2.7)

This leads to the following relation for the hypercomplex algebras and geometry, which is anal-
ogous to the usual Euler-formula (eiθ = cos θ + i sin θ )

eipθ = cosp(θ) + ipsinp(θ). (2.8)

Using this, it is possible to rewrite the hypercomplex number z in terms of analogous radial and 
angular coordinates (rp, θ) as follows

z = x + ipy = rpeipθ , rp = ‖z‖p. (2.9)

3. Gauge theory on fiber bundle of hypercomplex algebras

In this section, following the convention of Ref. [11], I begin with a concise review on a 
nontrivial U(1) complex line bundle on which the conventional U(1) gauge theory like elec-
trodynamics is defined. Next, I propose a so-called local hypercomplex algebra which is the 
hypercomplex algebra whose imaginary unit depends on coordinates of the base manifold M . 
Then, by adopting this local hypercomplex algebra as a fiber, I show how to weave the fibers that 
are identified with local hypercomplex algebras into a proper fiber bundle through appropriate 
structure group, providing a novel gauge theory on the bundle.

3.1. Brief review on non-trivial U(1) complex line bundle

A local section s of a complex line bundle L 
π→ M whose fiber at x ∈ U ⊂ M , i.e. Fx , is 

isomorphic to a trivial product of a singleton {x} ⊂ U and one-dimensional complex field C, i.e. 
Fx ≈ {x} ×C:

s(x) = z(x)e(x) ∈ L, (3.1)

where z(x) = a(x) + ib(x) ∈ C for real numbers a, b ∈ R and the imaginary unit i such that 
i2 = −1, and e(x) is a basis of the local section s(x).

Equivalently, such complex line bundle can be represented in terms of two real line bundles. 
We observe that the local section can be rewritten as
4
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s(x) = z(x)e(x) = a(x)e(x) + b(x)ie(x) ≡ a(x)eR(x) + b(x)eI (x), (3.2)

where we define (eR(x) = e(x), eI (x) = ie(x)), which is the basis of the bundle L 
π→ M whose 

fiber at x ∈ U ⊂ M is now identified with Fx ≈ {x} ×R2.
The connection or covariant exterior derivative ∇ of the complex line bundle L 

π→ M is 
defined by a map

∇ : �0(M,L) −→ �1(M,L) (3.3)

where a space of k-forms with values in L is defined by �k(M, L) ≡ C∞(M, L ⊗ ∧kT ∗M) for 
any integer k ∈ N . Then, in general, we find the covariant exterior derivative of a local section 
s(x), which is given by

∇s(x) = ∇(z(x)e(x)) = dz(x) ⊗ e(x) + z(x)∇e(x), (3.4)

where dz(x) = ∂μz(x)dxμ. If e(x) is given by the local basis of the line bundle whose structure 
group is nontrivial, its covariant exterior derivative is given by

∇e(x) = iA(x)e(x) ∈ �1(M,Fx), (3.5)

where we introduce imaginary unit i since we assume Hermitian metric for giving a real scalar 
value, and one form A(x) = Aμdxμ with values in R in which Aμ is called gauge field. More-
over, if e(x) = 1 ∈ Fx , then we have

∇1 = iA(x) ⊗ 1 ∈ �1(M,Fx). (3.6)

We thus obtain the covariant exterior derivative of a local section s(x) on the line bundle in the 
way

∇s(x) =
[
dz(x) + iA(x)z(x)

]
e(x) =

[(
∂μz(x) + iAμ(x)z(x)

)
dxμ

]
e(x)

≡
[
Dμz(x)dxμ

]
e(x) ≡

[
Dz(x)

]
e(x) ∈ �1(M,Fx), (3.7)

where Dμ is the covariant derivative.

3.2. Local hypercomplex algebras as trivial hypercomplex line bundle

Local hypercomplex algebras. Let us start with a hypercomplex algebra Cp for some p, which 
was given by

Cp ≡ { z = a + ipb | ∀a, b ∈R, i2
p = p ∈R }. (3.8)

Now I propose an idea that the parameter p is not a constant but a smooth function over some 
manifold M . We may then imagine that for x ∈ M , and a function p : M →R

Cp(x) ≡ { z = a + ip(x)b | ∀a, b ∈R, ∀x ∈ M : i2
p = p(x) ∈R }. (3.9)

At first glance, one may question how we can think of a derivative of the local generalized-
complex imaginary unit ip(x) with respect to the continuous variable x ∈ M . We can answer this 
by recognizing the local unit as a basis of vector space and taking advantage of fiber bundle 
structure. First, we should be careful about what the local imaginary unit ip defines. Each unit at 
a different point over the manifold spans its own independent vector space. This implies that it 
is very similar to the case of “tangent bundle.” Here, we face the problem about how to compare 
5
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two vectors from different tangent spaces arises, which subsequently gives rise to the issue of 
proper differentiation. We know that the issue can easily be washed out through the concept 
of connection and covariant derivative from fiber bundle structure. In this respect, we set up a 
strategy for constructing a fiber bundle using the hypercomplex algebra.

I propose to comprise a trivial fiber bundle as a straightforward starting point. We consider a 
fiber bundle V

π→ M whose total, base spaces, and projection map are given by a vector space 
V , a smooth manifold M , and a surjective map π respectively. The fiber at some point x ∈ M

is then defined by Vx ≡ π−1{x}. The element of the fiber space Vx is now given by a section 
s(x) = si(x)ei(x) ∈ Vx where si(x), ei(x) are components and basis of the section. The structure 
group G of the fiber bundle will be chosen as our flavor.

Since we are interested in making a trivial fiber bundle, the corresponding structure group 
should be a trivial group G = {e} whose members are given solely by the identity element “e.” 
Then, let us begin with a product space M × R2 for some manifold M and real field R, so that 
the typical fiber space is given by F = R2. Suppose that there exists an isomorphism h from the 
product space to some vector space V defined by

h : M ×R2 −→ V (3.10)

(x, a, b) �→ v = h(x, a, b) ∈ Vx ⊂ V, (3.11)

where x ∈ M , a, b ∈ R, and v ∈ V . Eventually, we notice the equivalence s1 = a, s2 = b. Now 
we assume that the basis vectors are defined by

e1(x) = 1, e2(x) = ip(x) ∈ Vx ⊂ V, (3.12)

such that

e1(x)2 = e1(x) = 1 ∈ Vx, (3.13)

e1(x)e2(x) = e2(x)e1(x) = e2(x) = ip(x) ∈ Vx, (3.14)

e2(x)2 = i2
p(x) = p(x) · 1 ∈ Vx. (3.15)

As a result, we identify the following

h(x, a, b) = v = s(x) = a(x) · 1 + b(x) · ip(x) ∈ Vx, (3.16)

and that our trivial vector bundle is specified as (V ∼= M × R2 π→ M, G = {e}). Again, our 
structure group here is a trivial group G = {e}, meaning that we are able to have global sections 
over the base manifold and no gauge transformations of the relevant gauge field.

Next, one may question about the connection ∇ of the trivial fiber bundle. Before going into 
the main story about it, I present here a summary about connection, covariant (exterior) deriva-
tive, and curvature. The connection ∇ of a fiber bundle L 

π→ M is endowed as a map

∇ : �0(M,L) −→ �1(M,L) (3.17)

and the corresponding covariant exterior derivative d∇ is defined as

d∇ : �k(M,L) −→ �k+1(M,L) (3.18)

where a space of k-forms with values in L is defined by �k(M, L) ≡ C∞(M, L ⊗ ∧kT ∗M) for 
any integer k ∈ N , and d∇ = ∇ when k = 0. The operator obeys the same Leibniz rule of an
exterior derivative d given by
6
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)

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη, (3.19)

d∇(ω ∧ η) = d∇ω ∧ η + (−1)kω ∧ d∇η, (3.20)

where ω ∈ �k(M, L) and η ∈ �l(M, L) for any k, l ∈N . The interesting fact about the covariant 
exterior derivative is that for any section s ∈ �0(M, L) = 
(M, L) and two tangent vectors 
X, Y ∈ T M , we have

(d2∇s)(X,Y ) = R(X,Y )s (3.21)

where R is the Lie-algebra-valued curvature two-form.
Getting back to the story of the trivial vector bundle, we can consider a connection structure 

as follows. Specifically, from the algebra (3.13), we find that

∇e1(x)2 = 2e1(x)∇e1(x) = ∇e1(x) =⇒ (2e1(x) − 1)∇e1(x) = 0 =⇒ ∇e1(x) = ∇1 = 0.(3.22

From the algebra (3.15), we observe that

∇e2(x)2 = 2e2(x)∇e2(x) = ∇p(x) = dp(x) · 1 + p(x)∇1 = dp(x) · 1

=⇒ 2ip(x)∇ip(x) = dp(x) · 1

=⇒ 2p(x)∇ip(x) = dp(x)ip(x)

=⇒ ∇ip(x) = dp(x)

2p(x)
ip(x) ∈ Vx (3.23)

Changing some notations to

Fx = π−1({x}) = Vx ≡ Cp(x), F = R2

V =
⋃
x∈M

{x} ×R2 =
⋃
x∈M

Vx =
⋃
x∈M

Cp(x) ≡ Cp(M)
∼= M ×R2, (3.24)

we summarize the following: a trivial vector bundle (Cp(M)
∼= M × R2 π→ M, G = {e}) such 

that

s(x) = a(x) · 1 + b(x) · ip(x) ∈Cp(x) = Cp(M)|x
∇e1(x) = ∇1 = 0, ∇e2(x) = ∇ip(x) = dp(x)

2p(x)
ip(x) ∈Cp(x) = Cp(M)|x, (3.25)

which gives rise to

∇s(x) = [da(x) · 1 + a(x)∇1] + [db(x) · ip(x) + b(x)∇ip(x)]
= da(x) · 1 + ip(x)

[
db(x) + b(x)

dp(x)

2p(x)

]
. (3.26)

It turns out that the trivial vector bundle Cp(M) is itself a local algebra, defining a local hyper-
complex field which can be considered as a new kind of “Field” in the mathematical sense.

Duality between complex and hypercomplex algebras. For p(x) ≡ −f (x) for f (x) > 0 ∈ R, 
we have i−f (x) such that i2

−f (x) = −f (x). Now we introduce a particular combination

î−f (x) ≡ i−f (x)√
f (x)

such that î2
−f (x) = −1 ∈ Cp(x)=−f (x). (3.27)

Interestingly, this combination satisfies an interesting property, which is
7
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∇ î−f (x) = d
( 1√

f (x)

)
i−f + 1√

f (x)
∇i−f = − df (x)

2f (x)
√

f (x)
i−f + df (x)

2f (x)

1√
f (x)

i−f

= 0, (3.28)

which means that î−f (x) is covariantly constant. Notice that if f (x) ≤ 0, we are not able to pos-
sess such a good combination which can be covariantly constant on the fiber bundle. In fact, this 
implies that we are able to treat î−f as an analogue of the imaginary unit i of the complex alge-
bra. I speculate that the complex and hypercomplex algebras can be dual to each other through 
the following isomorphism

i ←→ î−f (x). (3.29)

However, it should be noticed that they are not exactly the same to each other, but spanning 
individual spaces. Considering such duality, one may define analogue of Pauli matrices, say 
σ̂1, σ̂2, σ̂3, over the hypercomplex algebras in the way that

σ̂1 =
(

0 1
1 0

)
, σ̂2 =

(
0 −î−f

î−f 0

)
, σ̂3 =

(
1 0
0 −1

)
, (3.30)

which are also covariantly constant. With this analogue, we are able to handle spinor algebras for 
fermion by replacing the imaginary unit i of the conventional Clifford algebras with the special 
hypercomplex imaginary unit ̂i−f . Again, the two distinct units are not identical since they define 
different mathematical spaces. Furthermore, it is easy to check that for the combination î−f (x)

and some real function �, we are able to have the following formula

eî−f (x)� = cos(�) + î−f (x) sin(�). (3.31)

Essential condition. The condition given by

∀x ∈ M : f (x) > 0 ∈R (3.32)

is the most important requirement in this gauge theory. This enables us to take advantage of the 
duality, and define the Dirac delta function in the space C−f (x)

δ(x − α) ≡ 1

2π

∞∫
−∞

dpeî−f (x)p(x−α), (3.33)

which is one-dimensional case, and the plane wave solutions of the Klein-Gordon equation of 
motion for scalar field, i.e. ∇μ∇μ + m2 = 0,

ϕ(x) ≡
∫

d4k

(2π)4 [a(�k)eî−f (x)k·x + a�(�k)e−î−f (x)k·x], (3.34)

where a, a� should be considered as the ladder operators. Again, notice that the duality and re-
sults Eqs. (3.27), (3.33), (3.31), and (3.34) are valid only if f (x) is positive-definite and nowhere 
vanishing over the base manifold x ∈ M . Furthermore, in Sec. 4, we will see that only under this 
condition, kinetic terms of some field degrees of freedom can possess right sign; that is, they can 
be ghost-free.

On the contrary, what would happen if f (x) = −|f (x)| < 0? This negative function leads us 
to define another covariantly-constant unit î|f (x)| ≡ i|f (x)|/

√|f (x)| where i2
|f (x)| = |f (x)| in a 

consistent way, giving î2 = 1. In this case, as analogy of the case when f (x) > 0, we may 
|f (x)|

8
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find that the unit î|f (x)| has another type of duality that î|f (x)| ↔ j where j is defined by the 
hyperbolic unit such that j2 = 1. In particular, the Euler-like formula corresponding to the new 
unit now consists of hyperbolic functions, i.e. eî|f (x)|� = cosh(�) + î|f (x)| sinh(�). Here we note 
that unlike the positive function case f (x) > 0, it is not able for us to obtain the (periodic) plane 
wave solutions (3.34) within the hypercomplex algebra of the unit î|f (x)| because transforming 
between trigonometric and hyperbolic functions requires the imaginary unit that is equivalent to 
i such that i2 = −1 as in the case of the duality (3.29); for example, cosh ix = cosx for some 
variable x and the imaginary unit i in the complex algebra. This means that such unavailability 
of the periodic functions in the algebra made of the negative function f (x) < 0 cannot reproduce 
the usual dynamics of field theory. After all, this failure justifies necessity of the condition (3.32).

3.3. Gauge theory from non-trivial hypercomplex line bundle

We are now in a position to develop non-trivial vector bundles whose structure group is not 
trivial.

Principal G-bundle. First of all, we explore a proper principal G-bundle that can be associated 
with the fiber bundle of hypercomplex algebras. Let P and πP be a total space and a projection 
map, respectively. Then, we define a principal G-bundle

P
πP−→ M, (3.35)

whose fiber at x ∈ M , i.e. Px :

Px ≡ G(x) = {g(x) = eip(x)T θ(x) ∈Cp(x)| θ(x) ∈R}, (3.36)

where T ∈R is a generator of the gauge group with respect to the gauge parameter θ(x). Notice 
that over the local hypercomplex algebra Cp(M), we are able to define an independent Lie group, 
i.e. Px = G(x), at each point over the base manifold M . Then, we finally obtain the principal 
G-bundle:

G(M) ≡
⋃
x∈M

G(x). (3.37)

Associated G-bundle. Next, we find a fiber bundle structure necessary to construct the relevant 

associated G-bundle. First, let us define a non-trivial hypercomplex frame bundle E
π ′→ M whose 

fiber at x ∈ M is given by Ex = π ′−1({x}) = R ⊗Cp(x) = {v|v = ce(x)} for some c(x) ∈ R. Its 
basis vector e(x) ∈ Ex is one-dimensional on the hypercomplex space and can transform under a 
non-trivial structure group g(x) ∈ G(x) ⊂ G(M). Next, taking this as a structure group, we build 
a non-trivial tensor-product bundle as hypercomplex line bundle defined by

L ≡ Cp(M) ⊗ E
π⊗π ′→ M (3.38)

whose fiber at x ∈ M is given by Lx = (π ⊗ π ′)−1({x}) = Cp(x) ⊗ Ex . The element of the fiber 
at x ∈ M is given by a local section s(x) of L (or so-called “hypercomplex-valued scalar field”) 
as follows

s(x) = a(x)(1 ⊗ e(x)) + b(x)(ip(x) ⊗ e(x)) = (a(x) + b(x)ip(x))e(x) ∈ Lx

= Cp(x) ⊗ Ex. (3.39)
9
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Gauge covariance. Allowing (gauge) connection ∇ to the non-trivial bundle L as well, we 
are able to find its action onto the local section s(x). This implies that the connection of 
the basis e(x) ∈ Ex accompanies a gauge connection one-form A(x) (or gauge field Aμ, i.e. 
A(x) ≡ T Aμ(x)dxμ ∈ T ∗M), which has something to do with gauge redundancy. As an ana-
logue of U(1) group, we may define the covariant exterior derivative of the local basis in the 
way

∇e(x) = A(x)ip(x)e(x) ∈ �1(M,Lx). (3.40)

I point out that the local connection one-from (or gauge field) A(x) = T Aμdxμ must be uniquely 
characterized by a choice of the smooth function p(x) because this determines the nature of the 
fiber bundle as well as gauge transformations of hypercomplex-valued local section or scalar field 
and the gauge connection one-form (or gauge field). That is, if such smooth function is different, 
then the corresponding gauge field must be distinct.

The covariant exterior derivative of a local section or the scalar field is then given by

∇s(x) = ∇(z(x)e(x)) = ∇z(x)e(x) + z(x)∇e(x)

= [∇z(x) + ip(x)A(x)z(x)]e(x) ≡ [Dz(x)]e(x) (3.41)

where we define the minimal coupling (i.e. covariant derivative)

D ≡ ∇ + ip(x)A(x) =⇒ dxμDμ ≡ dxμ∇μ + ip(x)T Aμ(x)dxμ

=⇒ Dμ = ∇μ + ip(x)T Aμ, (3.42)

which sends a hypercomplex number in Cp(x) to a hypercomplex one-form, or equivalently we 
get

∇s(x) = ∇
(
a(x)e(x) + b(x)ip(x)e(x)

)
= da(x)e(x) + a(x)∇e(x) + db(x)ip(x)e(x) + b(x)(∇ip(x))e(x)

+b(x)ip(x)(∇e(x))

= da(x)e(x) + a(x)A(x)ip(x)e(x) + db(x)ip(x)e(x)

+b(x)(d ln
√|p(x)|ip(x))e(x) + b(x)ip(x)(A(x)ip(x)e(x))

=
(
da(x) + b(x)p(x)A(x)

)
e(x)

+
(
db(x) + a(x)A(x) + b(x)d ln

√|p(x)|
)
ip(x)e(x). (3.43)

Gauge transformations. When taking transformation of the basis e(x) on the same fiber in the 
way

e(x) −→ e′(x) = g(x)e(x), (3.44)

we observe that its connection result should also change in the way

∇e′(x) = A′(x)ip(x)e
′(x), (3.45)

where A′, e′ are gauge-transformed. In fact, we can read gauge transformation of the gauge field 
by solving the above equation. We see that the left-hand side of this equation gives
10
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∇e′(x) = ∇(g(x)e(x)) = ∇g(x) · e(x) + g(x) · ∇e(x)

= g(x)∇(ip(x)θ(x))e(x) + g(x)∇e(x)

= g(x)
(
∇ip(x)θ(x)e(x) + ip(x)dθ(x)e(x) + ∇e(x)

)

= g(x)
(dp(x)

2p(x)
ip(x)θ(x)e(x) + ip(x)dθ(x)e(x) + A(x)ip(x)e(x)

)

= g(x)
(dp(x)

2p(x)
θ(x) + dθ(x) + A(x)

)
ip(x)e(x), (3.46)

while its right-hand side is given by

∇e′(x) = A′(x)ip(x)e
′(x) = A′(x)ip(x)g(x)e(x). (3.47)

By comparing these two, we observe that the gauge transformation of the gauge connection one-
form is found to be

A′(x) = A(x) + dθ(x) + (d ln
√|p(x)|)θ(x). (3.48)

Equivalently, the gauge transformation of the gauge field is thus given by

A′
μ(x) = Aμ(x) + ∂μθ(x) + (∂μ ln

√|p(x)|)θ(x). (3.49)

The current form of this transformation looks very different from the conventional one in the 
U(1) gauge theory like electrodynamics.

Curvature and field strength. Let us compute the curvature two-from. Using the curvature 
identity (3.21), we find

d2∇e(x) = d∇(A(x)ip(x)e(x)) = dA(x)ip(x)e(x) − A(x) ∧ ∇(ip(x)e(x))

= dA(x)ip(x)e(x) − A(x) ∧
(
∇ip(x)e(x) + ip(x)∇e(x)

)

= dA(x)ip(x)e(x) − A(x) ∧
(
d ln

√|p(x)|ip(x)e(x) + i2
p(x)A(x)e(x)

)

= dA(x)ip(x)e(x) − A(x) ∧
(
d ln

√|p(x)|ip(x)e(x) + p(x)A(x)e(x)
)

=
(

dA(x) − A(x) ∧ d ln
√|p(x)|

)
ip(x)e(x) = R(x)e(x)

=⇒ R(x) =
(

dA(x) − A(x) ∧ d ln
√|p(x)|

)
ip(x) ≡ F(x)ip(x), (3.50)

where we used A(x) ∧ A(x) = A(μAν)dx[μ ∧ dxν] = 0 and i2
p(x) = p(x), and define a field 

strength two-form

F(x) ≡ dA(x) − A(x) ∧ d ln
√|p(x)| = 1

2!Fμνdxμ ∧ dxν, (3.51)

where

Fμν ≡ ∂μAν − ∂νAμ − (Aμ∂ν ln
√|p| − Aν∂μ ln

√|p|). (3.52)

Notice that this two-form is gauge invariant. Using Eqs. (3.50) and (3.52), we are able to construct 
a gauge-invariant kinetic action of the gauge field as follows
11
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L = − 1

4g2 R�
μνR

μν = p

4g2 FμνF
μν

= p

4g2

∣∣∣∣∂μAν − ∂νAμ − (Aμ∂ν ln
√|p| − Aν∂μ ln

√|p|)
∣∣∣∣
2

(3.53)

where g is a gauge coupling constant, and the mass term of the gauge field is absent because it is 
not gauge invariant. Of course, it is possible to include such mass term once taking Stueckelberg 
trick [12]. We observe that p must be negative-definite for the gauge field to be ghost-free. Hence, 
if we define p(x) ≡ −f (x) for some real function f (x) > 0 ∈R, the action is rewritten as

L = − f

4g2 FμνF
μν = − f

4g2

∣∣∣∣∂μAν − ∂νAμ − (Aμ∂ν ln
√

f − Aν∂μ ln
√

f )

∣∣∣∣
2

. (3.54)

The gauge transformation of the field strength is given by

F ′ = dA′ − A′ ∧ d ln
√|p|

= dA + d2θ + d2 ln
√|p|θ − d ln

√|p| ∧ dθ − (A + dθ + (d ln
√|p|)θ) ∧ d ln

√|p|
= dA + 0 + 0 − d ln

√|p| ∧ dθ − A ∧ d ln
√|p| − dθ ∧ d ln

√|p| + 0

= F − d ln
√|p| ∧ dθ + d ln

√|p| ∧ dθ = F. (3.55)

Furthermore, we obtain the Bianchi identity from the equation d∇(Rs) = 0 on any section s ∈ L. 
Taking s = e(x) which is the basis vector of a local section, we see that

d∇(Re) = d∇(F (x)ip(x)e(x)) = dF(x)ip(x)e(x) + F(x) ∧ ∇(ip(x)e(x))

= dF(x)ip(x)e(x) + F(x) ∧
(
∇ip(x)e(x) + ip(x)∇e(x)

)

= dF(x)ip(x)e(x) + F(x) ∧
(
d ln

√|p(x)|ip(x)e(x) + i2
p(x)A(x)e(x)

)

= dF(x)ip(x)e(x) + F(x) ∧
(
d ln

√|p(x)|ip(x)e(x) + p(x)A(x)e(x)
)
. (3.56)

The second term of d∇Re = 0 reads

F(x) ∧
(
d ln

√|p(x)|ip(x)e(x) + p(x)A(x)e(x)
)

=
(
dA(x) − A(x) ∧ d ln

√|p(x)|
)

∧
(
d ln

√|p(x)|ip(x)e(x) + p(x)A(x)e(x)
)

= dA(x) ∧ d ln
√|p(x)|ip(x)e(x) + dA(x) ∧ A(x)p(x)e(x)

= dA(x) ∧ d ln
√|p(x)|ip(x)e(x), (3.57)

where we used d(A ∧ A) = dA ∧ A − A ∧ dA = 2dA ∧ A = 0 since A ∧ A = 0. Therefore, we 
obtain the Bianchi identity that vanishes as follows

d∇(Re) =
(
dF(x) + dA(x) ∧ d ln

√|p(x)|
)
ip(x)e(x) = d2A(x)ip(x)e(x) = 0 (3.58)

due to dF(x) = d2A(x) −dA(x) ∧d ln
√|p(x)| from the definition of the field strength two-form 

F(x), and de Rham cohomology for the exterior derivative d2 = 0.

Invariant action coupled to matter. Consider a hypercomplex-valued scalar field of matter

φ ≡ 1√ ρ(x)ei−f (x)σ (x) ∈ C−f (x), (3.59)

2

12
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where ρ, σ ∈ R. Assume that the field is charged under the relevant gauge group G(M) (3.37)
introduced in the previous section, so that

φ(x) −→ φ′ = e−qi−f (x)θ(x)φ(x) =⇒ ρ′(x) = ρ(x), σ ′(x) = σ(x) − qθ(x), (3.60)

where q is a charge of the field σ which non-linearly transforms under the gauge group, and it 
should be noticed that the radial field ρ is gauge invariant.

If we consider f (x) as another scalar field degree of freedom, then we may have the following 
action

S =
∫

d4x

(
Dμφ�Dμφ − f

4g2 FμνF
μν + M2

2
∂μf ∂μf − V (φ�φ,f )

)
, (3.61)

where � is the proper hypercomplex conjugate, Fμν is the field strength tensor given in Eq. (3.51), 
M is a mass scale of the gauge theory (mass dimension of f is zero), and

Dμφ = 1√
2

[
∇μ(ρei−f (x)σ ) + i−f (x)qAμρei−f (x)σ

]

= 1√
2

[
(∂μρ)ei−f (x)σ +ρ(∇μi−f (x) · σ + i−f (x)∂μσ )ei−f (x)σ + i−f (x)qAμρei−f (x)σ

]

= 1√
2
ei−f (x)σ

(
∂μρ + i−f (x)ρ(σ∂μ ln

√
f + ∂μσ + qAμ)

)
. (3.62)

The total lagrangian is given by

L = 1

2
|∂μρ|2 + f

2
ρ2|σ∂μ ln

√
f + ∂μσ + qAμ|2 + M2

2
∂μf ∂μf − V (ρ,f )

− f

4g2

∣∣∣∣∂μAν − ∂νAμ − (Aμ∂ν ln
√

f − Aν∂μ ln
√

f )

∣∣∣∣
2

. (3.63)

If we take the following redefinitions

i−f = √
f î−f , θ = θ̂√

f
, Aμ = Âμ√

f
, σ = σ̂√

f
, f = ϕ

M
(3.64)

for f > 0, then these produce

g(x) = ei−f θ = eî−f θ̂ , φ = ρei−f σ = ρeî−f σ̂ , Â′ = Â + ∂μθ̂, σ̂ ′ = σ̂ − qθ̂ (3.65)

and the gauge-invariant action with respect to the group G(M) defined in Eq. (3.37):

L = 1

2
|∂μρ|2 + 1

2
ρ2|∂μσ̂ + qÂμ|2 − 1

4g2 |∂μÂν − ∂νÂμ|2 + 1

2
∂μϕ∂μϕ − V (ρ,ϕ/M),

(3.66)

which looks very similar to a gauged U(1) action with one scalar degree of freedom. It is also 
easy to see that the number of field degrees of freedom is preserved during such redefinitions. 
Moreover, it is possible to compute the conserved Noether charge and current as usual in this 
gauge theory. Of course, the scalar and vector fields must have the form of Eq. (3.34) for them 
to be propagating with their plane-wave solutions in the framework of the fiber bundle of hy-
percomplex algebras. Last but not least, the scalar field ϕ fully characterizes the whole of the 
physical action (3.66) since without the presence of ϕ, the other terms cannot be established. In 
13
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addition, as a possible future investigation, it would be interesting to study another interpretation 
of the function f (x) in this gauge theory, apart from the interpretation that f (x) is given by 
another scalar field degree of freedom already discussed in this work.

4. Scalar field dynamics: solution to the vacuum selection problem

In this section, we discuss scalar field dynamics of the gauge theory built on the fiber bundle 
whose fibers consist of hypercomplex algebras. First, we have seen that once a particular func-
tion f (x) is chosen, we are able to define a corresponding local hypercomplex imaginary unit 
ip=−f (x) and its spanning space Cp=−f (x), and then weave a set of the hypercomplex-algebra 
fibers over the base manifold into a fiber bundle. On this bundle, we define a hypercomplex-

valued section or scalar field φ = ρei−f σ = ρeî−f σ̂ . If the scalar field φ transforms under the 
gauge group G(M), then the relevant gauge field Aμ (or Âμ in canonically normalized form) cor-
responding to the group should be considered. In particular, it should be noticed that two different 
functions f (x) �= h(x) define two independent hypercomplex imaginary units i−f (x) �= i−h(x). 
That is, the function f (x) completely characterizes the hypercomplex-valued scalar φ and gauge 
fields Aμ, as well as its possible gauge group G(M) (3.37). I shall call a codimension-1 hypersur-
face of the codomain of the function f (x) over the base manifold M as F(unction-space)-brane
throughout this paper for later convenience. In addition, I call the F-brane with a constant value 
f (x) = const. as trivial F-brane, while the F-brane with fluctuating values of the function f (x)

as nontrivial F-brane.

Transmutation from nontrivial to standard F-brane. We may classify gauge theories of con-
ventional U(1) gauge group, like electromagnetism, in the mentioned terminology. Since a field 
charged under such U(1) is given by a local section of the complex U(1)-line bundle over the 
complex algebra C equipped with the imaginary unit i such that i2 = −1, it corresponds to the 
case when f (x) = 1. Hence, we may say that such U(1) theories are alive on a trivial F-brane 
of f (x) = 1. I shall call this special trivial F-brane as standard F-brane since most of the con-
ventional gauge theories (related to the standard model) are built over the complex algebra. To 
be specific, in the gauge theory built on the fiber bundle of hypercomplex algebras, we have a 
crucial condition (3.32) that

f (x) = ϕ(x)/M > 0, (4.1)

where M is a positive constant as a mass scale of the theory. The authority of the condition 
p = −f (x) < 0 is to ensure that the kinetic terms of the relevant field degrees of freedom have 
right sign, i.e. to be ghost-free, which is possible only with p = −f (x) < 0. Keeping this in our 
mind, let us consider the Lagrangian (3.66) and the Higgs-like scalar potential shown in Fig. 2

V (ρ,f = ϕ/M) = α
(

1 − (ϕ/M)2
)2 + V (ρ), (4.2)

where α is a constant. This potential has two degenerate vacua at ϕ = ±M . We now suppose that 
the dynamical field f (x) rolls down to one of the possible ground states with minimal energy. 
Then, at the true minimum, the function f (x) gets frozen at a constant value of f (x) after rolling 
down. This leads to the situation that a nontrivial F-brane with an arbitrary f (x) transmutes into 
a trivial F-brane with f (x) = 1 or equivalently ϕ = +M (called standard F-brane), which is 
depicted in Fig. 1. I shall call this phenomenon transmutation of F-brane.
14
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Fig. 1. Transmutation from nontrivial to standard F-brane.

Fig. 2. The impenetrable domain wall prohibits phase transition between two degenerate vacua.

Vacuum selection with priority and impenetrable domain wall caused by intrinsic even 
parity under a Z2 symmetry. As a key property of the gauge theory built on the fiber bundle, I 
present how one particular vacuum can be selected with priority between two degenerate physical 
vacua through an intrinsic even parity of the scalar field f (x) under a Z2 symmetry. At first 
glance, it seems plausible for the (dimensionless) field f (x) to allow its even and odd parities 
under a Z2 symmetry once its scalar potential is given by the scalar potential like Eq. (4.2) which 
is Z2-symmetric under the sign change of the field, f → −f . However, in fact, any Z2 symmetry 
is intrinsically forbidden in this gauge theory if the field f (x) has odd parity, regardless of the 
Z2 invariance of its scalar potential. This is because from the beginning we have defined the 
hypercomplex imaginary unit ip to be characterized by the condition (3.32) for some positive-
definite function f (x). In other words, such transformation f → −f leads to the worst situation 
that some relevant field degrees of freedom change into ghosts. In this respect, the field f (x)

must be even under a Z2 symmetry, i.e. f → f , which is supported by the condition (3.32). 
Also, it turns out that there exists an impenetrable domain wall at the point f = 0, i.e. ϕ = 0
for the scalar potential as shown in Fig. 2 in that it is impossible for phase transition between 
the two degenerate vacua to take place. Conclusively, in this gauge theory, the field f (x) can be 
permanently frozen without tunneling across the domain wall only at its positive value in which 
the minimum of the scalar potential is located.

Improved spontaneous-symmetry-breaking scenario with no vacuum selection problem.
During the transmutation, a gauge group G(M) in Eq. (3.37) with respect to f (x) also transmutes 
into a usual gauge group U(1) over the complex algebra C with the constant f (x) = 1, i.e.

G(M)|p=−f (x) −→ G(M)|p=−f (x)=−1 = U(1)|on standard F-brane �= U(1)|normal. (4.3)
15
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As for this, I would like to point out that the conventional U(1) gauge theory on the complex 
line bundle (i.e. f (x) = 1 living on the standard F-brane from the beginning) must be distinct 
from the gauge theory of a non-constant f (x) with G(M) (3.37) living on nontrivial F-brane 
that may transmute into the standard F-brane after f (x) is dynamically frozen at its vacuum 
where f (x) = 1 is set. I emphasize that the two cases are completely independent in that the 
latter additionally entails the condition (3.32), while the former does not. Again, this feature is 
a big difference between the newly-constructed here and normal gauge theories. Respecting the 
above argument, the action (3.66) can become such usual U(1) action (but entailing the condition 
(3.32)) only if the scalar field ϕ is frozen at its vacuum expectation value such that ϕ = M

since this transmutes hypercomplex algebra Cp=−f (x) into the complex one Cp=−f (x)=−1 with 
i = √−1 such that i2 = −1. (In this situation, the field ϕ may be a component of some field 
multiplet which is charged under another gauge group to be spontaneously broken later.) The 
resulting action is still gauge-invariant under the U(1) group left after the transmutation. On 
the other hand, as another possibility, if we assume that f (x) = ρ(x), then the corresponding 
Lagrangian is given by

L = 1

2
|∂μρ|2 + 1

2
ρ2|∂μσ̂ + qÂμ|2 − 1

4g2 |∂μÂν − ∂νÂμ|2 − V (ρ), (4.4)

whose field components are specified by the hypercomplex-valued scalar field φ = ρeî−ρ(x)σ̂ . As 
usual, if we consider Higgs-like scalar potential V (ρ) = α(ρ2 − v2)2 for some constants α, v, 
then we are able to perform spontaneous symmetry breaking (SSB) with respect to the gauge 
group G(M) (3.37), but selecting one special vacuum thanks to the condition (3.32). In this 
sense, the gauge theory on the fiber bundle of hypercomplex algebras can be considered better 
than the existing gauge theory with SSB which has the vacuum selection problem. Lastly, I hope 
that this framework studied here would be used as alternative of the conventional gauge theory 
with SSB, and that more physical implications of this framework would be further investigated 
in many aspects not treated here.
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