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Abstract
Dynamical decoupling techniques are a versatile tool for engineering quantum states with tailored
properties. In trapped ions, nested layers of continuous dynamical decoupling (CDD) by means of
radio-frequency field dressing can cancel dominant magnetic and electric shifts and therefore
provide highly prolonged coherence times of electronic states. Exploiting this enhancement for
frequency metrology, quantum simulation or quantum computation, poses the challenge to
combine the decoupling with laser-ion interactions for the quantum control of electronic and
motional states of trapped ions. Ultimately, this will require running quantum gates on qubits
from dressed decoupled states. We provide here a compact representation of nested CDD in
trapped ions, and apply it to electronic S and D states and optical quadrupole transitions. Our
treatment provides all effective transition frequencies and Rabi rates, as well as the effective
selection rules of these transitions. On this basis, we discuss the possibility of combining CDD and
Mølmer–Sørensen gates.

1. Introduction

Since the early work of Hahn on spin echoes in nuclear magnetic resonance (NMR) [1], techniques for
dynamically decoupling a quantum system from its environment to increase its coherence times have become
indispensable tools of quantum technology [2], with applications in quantum simulations, computation,
and metrology. Robust dynamic decoupling methods by applying external pulses have been intensively
developed both in theory [3–17] and in experiment [18–31]. In recent years, continuous dynamical
decoupling (CDD), where control pulses are applied in the form of continuous time periodic fields in the
spirit of Floquet engineering [32], have been proposed and demonstrated [25, 33–61].

The design of long-lived quantum states using CDD has promising perspectives, especially for trapped
ion frequency metrology as proposed and studied in [13, 25, 43]. The statistical uncertainty for a given clock
species can be improved by extending the probe time, which will ultimately be limited by the lifetime of the
excited states [62]. Nevertheless, in practice, it is usually limited by the coherence time of the clock laser [63,
64]. We can also improve the statistical uncertainty by interrogating many atoms simultaneously [65–68].
But increasing the number of ions stored in a Paul trap entails further obstacles to overcome. Depending on
the ion species chosen, inhomogeneous or time-dependent frequency shifts, such as the Zeeman shift, the
Quadrupole shift, or the radio frequency (rf) electric field-induced tensor ac Stark shift [66, 69, 70], pose a
limitation. These effects can contribute to the decoherence of the state or broaden the joint linewidth of the
ions, thus limiting the usable probe time. Several approaches exist to constrain the tensor-like electric field
shifts even without exact knowledge of the electric field gradient. One approach consists in averaging over
different transitions or directions to exploit the different scaling of the shift with the angular momentum
component [69, 71, 72], or by chosing a magnetic field direction along which the tensor shifts have a zero
crossing [73]. Another method dynamically changes the static offset B-field direction within the clock
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interrogation [74] to mimic the magic angle spinning technique of NMR spectroscopy [75]. Elimination of
these shifts can also be achieved by suitable hyperfine or Zeeman averaging using DD [25, 76]. Achieving
robust optical clock transitions protected by CDD has been explored by Aharon et al [13].

In order to exploit these tailored states for quantum metrology, possibly involving entangled states of
many ions, dynamical decoupling has to be combined with laser-ion interaction on optical quadrupole
transitions, which will be the focus of the current work. Following the work of Aharon et al [13] we
reformulate the CDD description to easily treat the laser ion interaction. We begin by recapitulating the
dynamical decoupling principle for a particular spin manifold, which is subject to a Zeeman splitting
controlled by a static dc magnetic field, showing the effective Hamiltonian in the so-called doubly-dressed
basis (DB). Here, modulated external rf magnetic fields are employed to mitigate the amplitude-induced line
shifts [13]. Then, with appropriate CDD parameters, we achieve suppression of Zeeman and quadrupole
shifts in this basis. Next, we consider optical quadrupole transitions between two of these spin manifolds and
characterize the laser-ion interaction needed to drive the above transitions. We will show that there is no
selection rule for transitions in the DB. The only necessary condition will be the proper detuning of the laser.
The suppression of Zeeman and quadrupole shifts will come at the cost of a reduction of the effective Rabi
frequency for these transitions, and therefore, the characterization of these transitions will allow us to choose
an appropriate candidate for a clock transition. We compare our analytical treatment with measurements of
CDD states of a single 40Ca+ ion. Measurements of the energy spectrum between different spin manifolds as
well as their relative optical coupling are in good agreement with the predictions. We will finish by discussing
the application of a Mø lmer–Sø rensen (MS) gate in the doubly dressed basis, discussing its challenges and
calculating a theoretical prediction for the gate time.

The article is organized as follows: in section 2 we reformulate the CDD description showing the
suppression of Zeeman and quadrupole shifts for the appropiate parameters. The characterization of the
optical transitions among two doubly-dressed manifolds through laser interaction, as well as the application
to a trapped 40Ca+ ion is discussed in section 3. In section 4 the experiment is described along with a
comparison of the predicted and measured first stage CDD spectrum. Finally in section 5 we motivate the
application of an MS gate and study the time gate for the case of a trapped 40Ca+ ion.

2. Dynamical decoupling

In this section, we recapitulate the principle of dynamical decoupling for the suppression of Zeeman and
quadrupole shifts by applying radiofrequency magnetic fields [13, 25, 43]. Although we will eventually
consider quadrupole transitions from a spin-Ss manifold of ground states to a spin-Sd manifold of excited
states, it will be useful to first examine how the dressing fields affect a single spin-Smanifold. This will
facilitate the discussion of the physical principle of dynamical decoupling. Moreover, this will separate the
effects associated with the problem of a single manifold from those associated with the cross-coupling of spin
manifolds, which we will consider later.

2.1. DB
We will consider a manifold of total spin S with S= (Sx,Sy,Sz), basis states |M⟩, |M|⩽ S, and quantization
axis along z. If a static magnetic field B along the z-axis is present, the internal states |M⟩ will be shifted by a
value proportional to their spin, due to the linear Zeeman effect. Therefore, the Hamiltonian will have the
expression

Hdc = gµBBSz = ω0Sz, (1)

where g is the gyromagnetic factor, the corresponding Larmor frequency is ω0 = gµBB, with µB being the
Bohr magnetron, and we set h̄= 1. The eigenstates of this Hamiltonian will be referred to as bare states. A
radio-frequency field Brf(t) is applied with a polarisation in the x− y plane, which for the sake of generality
we consider enclosing an angle α with the x-axis. The rf field Brf(t) is assumed to comprise frequency
components at a fundamental frequency ω1 and sideband frequencies ω1 ±ω2, where ω2 < ω1, such that the
Hamiltonian for the rf fields is

Hrf = g(Ω1 cos(ω1t)−Ω2 sin(ω1t)cos(ω2t))×
(
Sx cosα+ Sy sinα

)
, (2)

where Ω1 and Ω2 are set by the amplitudes of the fundamental and sideband components of the rf-magnetic
field, respectively. Therefore, the total Hamiltonian for the spin S in the laboratory frame (LF) is

HLF =Hdc +Hrf. (3)

2



Quantum Sci. Technol. 9 (2024) 015013 V J Martínez-Lahuerta et al

To help characterize the rf or dressing fields, we are going to introduce a series of transformations into
several frames. In this sequence of transformations we will denote a unitary rotation around an axis n about
an angle θ by

Un (θ) = exp(iθnS) , (4)

and use the notation

Rn (θ)A := Un (θ)AU
†
n (θ) , (5)

for the superoperator corresponding to the conjugation of an operator A with Un(θ). Bold symbols denote
three-vectors. To determine the Hamiltonian operator H in a new reference system, we consider the
transformation of the operator H− i ddt in each case so that the time dependence of the transformation is
properly accounted for. This will be useful when dealing with sequences of transformations.

First, we go into a frame rotating around the z-axis at the rf frequency ω1

Rz (ω1t)
[
HLF − i ddt

]
=
(
Rz (ω1t)H

LF
)
−ω1Sz − i

d

dt

=∆1Sz +
gΩ1

2

(
Sx cosα+ Sy sinα

)
+

gΩ2

2
cos(ω2t)

(
Sy cosα− Sx sinα

)
− i

d

dt
. (6)

Here, we have defined the detuning of the rf-field with respect to the Larmor frequency∆1 = ω0 −ω1. We
have also used a rotating wave approximation (RWA) and dropped terms oscillating at 2ω1, assuming
2ω1 ≫ gΩ1/2,∆1. The effective contribution of these counter rotating terms on the bare states is addressed
in appendix C.

In the next step, the Hamiltonian is rewritten in the dressed state basis corresponding to the eigenstates of
the time-independent part of the Hamiltonian on the right-hand side of equation (6), which correspond to
the first line in the right-hand side. We achieve this by a rotation around an axis n1 = (− sinα,cosα,0) and
an angle θ1 ∈ [0,π] defined by cosθ1 =∆1/ω0, where

ω0 =
(
∆2

1 + g2Ω2
1/4
)1/2

. (7)

The Hamiltonian in this first dressed basis is

Rn1 (θ1)Rz (ω1t)
[
HLF − i ddt

]
= ω0Sz +

gΩ2

2
cos(ω2t)

(
Sy cosα− Sx sinα

)
− i

d

dt
. (8)

This Hamiltonian refers to a new time-dependent quantization axis enclosing an angle θ1 with the z-axis.
The relation between the bare basis and the dressed basis and their respective quantization axis and energy
splittings h̄ω0 and h̄ω0 are shown in figure 1. In the regime considered here, these frequencies satisfy the
hierarchy ω0 ≫ ω0.

The next dressing layer consists of the same two types of transformations as the first one. First, the system
is transformed into the rotating frame with frequency ω2 around the new quantization axis, where fast
oscillating terms 2ω2 ≫ gΩ2/4,∆2 are neglected. Then, a transformation is applied in a new basis that
diagonalizes the Hamiltonian, now independent of time. The transformation that achieves this corresponds
to a rotation by an axis n2 = (−cosα,− sinα,0) and the angle θ2 where cosθ2 =∆2/ω0, and

ω0 =
(
∆2

2 + g2Ω2
2/16

)1/2
. (9)

The detuning at the second dressing layer is∆2 = ω0 −ω2. This results in the final, doubly-dressed
Hamiltonian

Rn2 (θ2)Rz (ω2t)Rn1 (θ1)Rz (ω1t)
[
HLF − i ddt

]
=H− i

d

dt
(10)

where the Hamiltonian in the DB is

H= ω0Sz. (11)

The quantization axis of the Hamiltonian in equation (10) is now again rotated at an angle θ2 with respect to
the previous one. In principle, further dressing layers can be added, which will correspond to a similar
sequence of transformations. Applications of n layers of dressing have been discussed by Cai et al [43]. We

3
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Figure 1. Sketch of dynamical decoupling effect on a spin manifold (here S= 3/2). (a) illustrates the quantization axis and (b)
the energy splitting ω1 of bare basis states |m⟩ and the rf drive at Rabi frequencyΩ1 and detuning∆1. (c) shows the quantization
with one layer of dressing, and (d) the effective level scheme of the dressed levels |m⟩ with splitting ω0. (b) and (d) are not to scale
as ω0 ≪ ω0.

note that we will use symbols with single and double overbars (such as ω0 and ω0) to denote quantities in the
singly or doubly dressed frame, respectively.

We emphasize that the dressing procedure involves two RWAs, which are implicit in equation (10), and
are based on 2ωi ≫ gΩi/2i,∆i for i = 1,2. Thus, we have the hierarchy ω0 ≪ ω2 ≪ ω1. Nevertheless, the
terms neglected during the RWA will be accounted for perturbatively using the Magnus expansion in
appendix C. We note that, instead of the perturbative treatment given here, it is also possible to determine
the exact quasi-energy eigenstates of the time-periodic Hamiltonian in the LF in the framework of Floquet
theory. However, since this analysis provides mainly numerical insight, we focus on the analytical
perturbative treatment in this presentation. We checked numerically that this treatment is in excellent
agreement with the dc component of the Floquet states when counter-rotating terms are accounted for in a
Magnus expansion [77].

2.2. Suppression of Zeeman and quadrupole shifts
In this section we briefly discuss how the two layers of dressing help to suppress linear Zeeman and electric
quadrupole shifts. We refer to the original work of Aharon et al [13] for a detailed discussion. Both effects
can be modeled by adding a suitable perturbation VLF(t) to the Hamiltonian in the LF in equation (3). This
term may be time-dependent, but is assumed to fluctuate slowly on the time scale of the dressed states energy

splitting ω
−1
0 . In the DB and in an interaction picture with respect to H, equation (11), such an additional

term will be effectively described by

VDB =Rz

(
ω0t
)
Rn2 (θ2)Rz (ω2t)Rn1 (θ1)Rz (ω1t)V

LF

=:D (ωi,gΩi, t)
[
VLF
]
. (12)

The last (leftmost) rotation around z at frequency ω0 accounts for the interaction picture. The complete
sequence of transformations corresponding to the dynamic decoupling and the change to the interaction
picture will be abbreviated by the superoperatorD(ωi,gΩi, t). The goal of dynamic decoupling is to reduce
VDB by an appropriate choice of the driving parameters, which are the rf frequencies ωi and Rabi frequencies
gΩi with i = 1,2. This general reasoning can now be applied to linear-magnetic and electric-quadrupole
shifts.

Let us first study the shift of the bare states created through magnetic field fluctuations. This shift can be
described by

VLF
δB = gµBδB(t)S, (13)

where δB(t) is the time dependent part of the magnetic field, being the total magnetic field
B(t) = (0,0,B)+ δB(t). Transforming this shift into the DB according to equation (12) gives rise to

VDB
δB =D (ωi,gΩi, t)

[
VLF
δB

]
= cosθ1 cosθ2 gµBδBz (t)Sz. (14)

4
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The derivation of this expression is shown in appendix A. Under the assumption that δB(t) fluctuates slowly
on all relevant time scales, only the component along z, the direction of the dc field, matters. The terms in the
x and y components of δB(t) can be neglected in a RWA after the first rotation around z with frequency ω1.
Equation (14) shows that magnetic field fluctuations can be suppressed and even nulled by choosing the
angle in the first and/or second stage dressing to be θ1(2) = π/2, which is fulfilled by a set of resonant
parameters∆1(2) = 0.

A similar cancelation can be achieved for electric-quadrupole shifts, as has been shown in [13, 25] for a
single layer of dressing. We generalize this treatment here for two layers of dressing. The quadrupole shift is
described by the Hamiltonian

VLF
Q = Tr{QF(t)} , (15)

where Qij =
3
2

(
SiSj + SjSi

)
− S(S+ 1)1 with S(S+ 1) = S2, Fij =

∂Ej
∂xi

and the components of the electric
field Ej. The change to the DB and the interaction picture following equation (12) gives

VDB
Q =D (ωi,gΩi, t)

[
VLF
Q

]
=

1

4

(
1− 3cos2 θ1

)(
1− 3cos2 θ2

)
× 3Fzz (t)

2

[
S(S+ 1)− 3S2z

]
. (16)

Details of the derivation of this expression are given in appendix A. The first line on the right-hand side of
equation (16), whose magnitude is at most one, gives the reduction of the quadrupole shift due to dynamic
decoupling. The last line is just the standard expression for the quadrupole shift of the non-degenerate levels
in the RWA. With the so-called magic angle, cos2 θ1(2) = 1/3, the quadrupole shift can be eliminated in either
the first or the second dressing layer.

In general, with two layers of dressing, it is possible to eliminate both Zeeman and quadrupole shifts by
choosing cosθ1(2) = 0 and cos2 θ2(1) = 1/3. When determining which effect to cancel in the first layer and
which in the second, it is important to consider time scales and shift magnitudes. The first dressing layer
involves a coarse grain of time over a scale of ω−1

1 with a protective energy gap proportional to Ω1, while the
second one averages over ω−1

2 > ω−1
1 at a correspondingly smaller energy gap proportional to Ω2. Therefore,

it will be advantageous to cancel the faster fluctuations with larger magnitude first. For example, in the case
of 40Ca+ discussed in the next section, it is advantageous to suppress magnetic field fluctuations using the
first drive and the quadrupole and other small quasi-static tensor shifts using the second drive.

3. Laser ion interaction

Now, we will apply this formalism to the description to two Zeeman manifolds, and study the
electric-quadrupole transitions between them. We will start by characterizing the laser-ion interaction and
finding the conditions that drive each transition. After that we will apply this formalism to the particular case
of 40Ca+ in order to visualize how this transitions will be spread in the frequency spectrum.

3.1. Quadrupole transitions in DB
We consider an ion with a manifold of ground states (s) and a manifold of excited states (d) that exhibit an
electric-quadrupole allowed, optical transition at frequency ωsd. The spin in the manifolds is Sκ (κ= s, d)
and the angular momentum operators are denoted by Sκ, such that (Sκ)2 = Sκ(Sκ + 1). The Zeeman states
in the two manifolds will be expressed with lower case letters for the ground states, |m⟩, |m|⩽ Ss, and upper
case letters for the excited states, |M⟩, |M|⩽ Sd. A schematic for this transition between the two manifolds
can be seen in figure 2(a) for the case of 40Ca+ .

The dc magnetic field along the laboratory axis z splits the Zeeman states by frequencies ωκ
0 = gκµBB,

where gκ is the gyromagnetic factor of spin manifold Sκ. Both manifolds are subject to the respective
dynamical decoupling rf-dressing fields with angles ακ, rf frequencies ωκ

i , and Rabi frequencies gκΩ
κ
i , for

i = 1,2, as explained in section 2.1. Therefore, the Hamiltonian in the LF is

HLF =Hs
dc +Hs

rf +Hd
dc +Hd

rf, (17)

generalizing equation (3) to the case of two spin manifolds. We note that this neglects an unavoidable
cross-coupling through off-resonant driving of the s manifold by the rf dressing fields of the d manifold, and
vice versa. This effect will be neglected in the following, and is treated in appendix D. In the DB, this
Hamiltonian becomes

H= ω
s
0S

s
z +ω

d
0S

d
z , (18)

5
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Figure 2. Dressed atomic levels and couplings for a singly-dressed system with Ss = 1/2→ Sd = 5/2. (a) illustrates the
quadrupole selection rules among the bare basis states |m⟩ and |M⟩. For the specific case considered here, there are ten possible
transitions. In (b) we consider a particular transition in the dressed basis,M=−1/2↔ m=−1/2. Since the dressed states are a
time dependent superposition of the bare basis states, cf figure 1, this transition can be driven with any one of the 10 underlying

transitions in the bare basis. This is illustrated in (c) which shows the effective Rabi frequenciesΩ
mM
mM, scaled to the Rabi frequency

ΩmM for the bare states, and the effective transition frequency. Colors correspond to those of (a). The values of the parameters
used for the simulation correspond to the first half of Set1 in table 1.

generalizing equation (11). From now on, we will not include the time derivative in the Hamiltonian, since
we will not perform any further time-dependent transformations.

The electric-quadrupole interaction (E2) of the ion with a laser of frequency ωL and vector potential
A(R, t) = A+(R)e−iωLt + c.c. is VE2 =

ieωsd
2

(
rirj∂iAj(R, t)− h.c.

)
, see e.g. [78]. In a frame rotating at the

optical transition frequency ωsd, one obtains, in optical RWA,

VLF
E2 = i

∑
m,M

(
ΩmM|M⟩⟨m|e−i∆Lt − h.c.

)
(19)

where we used an expansion in the LF bare states |m⟩ and |M⟩ of the s and d manifolds, respectively. The
Rabi frequencies are ΩmM = ⟨M|rirj|m⟩∂iA+

j (R)/h̄. The matrix elements ⟨M|rirj|m⟩ imply the quadrupole
selection rules |∆m|= |M−m|⩽ 2, see e.g. figure 2(a). The laser detuning is∆L = ωL −ωsd.

We are now in a position to discuss how the dynamical decoupling affects the quadrupole interaction. To
do so, we need to switch to the DB and an interaction picture with respect to (18), generalizing the procedure
explained in the previous section to two spin manifolds. We denote byDκ =Dκ(ωκ

i ,gκΩ
κ
i , t) the dressing

procedure of the spin manifold κ, whereD is defined in equation (12). The dressing procedure for both spin
manifolds acting on the direct sumHs ⊕Hd of the Hilbert spaces for the s- and the d-manifold is denoted by
Ds ⊕Dd. Applying this to the laser-ion interaction in equation(19) yields

VDB
E2 =Ds ⊕Dd

[
VLF
E2

]
= i
∑
m,M

(∑
m,M

ΩmM⟨M|Ds ⊕Dd [|M⟩⟨m|] |m⟩|M⟩⟨m|e−i∆Lt − h.c.

)

= i
∑
m,M

∑
m,M

∑
m,M

Ω
mM,mM

mM
|M⟩⟨m|exp

(
it∆mM,mM

mM

)
− h.c.. (20)

Here, we expanded the quadrupole interaction in the basis of doubly-dressed states |m⟩ and |M⟩ of the s and
d manifolds, respectively, and introduced the effective Rabi frequency

Ω
mM,mM

mM
=ΩmM × e

−iαd

(
M−M

)
−iπ2

(
M−M

)
dMM

(
θd1
)
d
M M

(
θd2
)

× eiαs(m−m)+iπ2 (m−m)dmm (θ
s
1)dmm (θ

s
2) , (21)

with dmm(θ) the elements of the Wigner d-matrix, whose explicit expression is given in appendix B along
with more details on the last equality. We note that the angles ακ determining the direction of the second

6
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Table 1. Case study of double dressing of a 40Ca+ ion for the S1/2 and D5/2 manifolds. The upper part of the table refers to the variables
in the first layer of dressing and the lower part of the second layer of dressing. The gyromagnetic factors are gs = 2.00225664 [80] and
gd = 1.2003340 [81].

Dressing Parameter
Values Set1 Values Set2
2π units 2π units

gsµbBz 10 MHz 10 MHz
Ωs

1 93 631 Hz 46 805 Hz
1st layer Ωd

1 225 310 Hz 115 600 Hz
ωs
1 9972 789 Hz 10 002 090 Hz

ωd
1 5904 881 Hz 5994 834 Hz

Ωs
2 14 815 Hz —

2nd layer
Ωd

2 13 637 Hz —
ωs
2 72 050 Hz —

ωd
2 160 589 Hz —

dressing fields, cf equation (2), contribute to the Rabi frequencies only in the form of phases. We also
introduced the effective detuning

∆mM,mM

mM
=−∆L +Mω

d
0 +Mωd

2 +Mωd
1 −mω

s
0 −mωs

2 −mωs
1. (22)

In equation (20) no RWA is applied with respect to these detunings.

Thus, to drive am↔M transition in the DB, the laser detuning must be chosen such that∆mM,mM

mM
= 0,

that is

∆L =Mω
d
0 +Mωd

2 +Mωd
1 −mω

s
0 −mωs

2 −mωs
1, (23)

is satisfied for one set of indices (m,M,m,M). These resonance frequencies can be intuitively understood
within the dressed state energy level picture including the photon energy of the rf dressing fields [79]. The

magnitude of the effective Rabi frequency is |ΩmM,mM

mM
|⩽ |ΩmM| since the Wigner d-matrix is unitary, and

therefore, all its elements are smaller than one in magnitude. To make efficient use of the laser power, it will
be advantageous to choose (m,M,m,M) such that the contribution of the Wigner d-matrix elements is as
large as possible. In doing so,m andM have to respect the quadrupole selection rules, but not the pairs

(m,M) and (m,M), since the dressed states are composed of all of the bare states. It is worthwhile noting that
the polarisation and k-vector dependence of the coupling strength is contained in ΩmM, akin to the
Wigner–Eckart theorem. Thus, ΩmM can be maximized independent of the selected dressed-state transition.

3.2. Illustration for 40Ca+

In this section, we will apply the above expressions to the case of the S1/2 to D5/2 transition in a 40Ca+ ion
and compare them to measurements on the decoupled system. Therefore, we will have the total spin of the
manifolds Ss = 1

2 and S
d = 5

2 . The goal is to derive the frequency spectrum and the relative coupling
strengths with the parameters given in set1 of table 1, for each possible transition with a set of indices(
m,M,m,M,m,M

)
.

Before showing the results for two layers of dressing, we first want to gain some insight by explaining just
one particular transition (m,M) in the case of a single layer of dressing, with the parameters given in the first
part of set1 in table 1. We need to translate the equations for the effective Rabi frequency (21) and the

effective detuning (22) for the case of a single dressing. This can be achieved by fixing ωd(s)
2 = 0 and

Ω
d(s)
2 = 0, which implies

Ω
mM
mM =ΩmMe

i(αdM−αsm)+iπ2 (M−m)dMM

(
θd1
)
dmm (θ

s
1) , (24)

and

∆mM
mM

=−∆L +Mω0 +Mωd
1 −mω0 −mωs

1, (25)

where we go to an interaction picture with respect to the Hamiltonian in the first dressed basis (8).
The results are illustrated in figure 2, where figure 2(c) shows the different effective Rabi frequencies for

the ten ways in which a transition in the first dressed basis depicted in figure 2(b) with indices

7
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Figure 3. Normalised Rabi frequencies between dressed states. (a) shows the Rabi frequencies |ΩmM,mM

mM
/ΩmM| in equation (21)

and effective transition frequencies in equation (23) for all possible transitions from the doubly-dressed ground state |m⟩=−1/2

to any one of the doubly-dressed excited state |M⟩. Each color represents a different selection rule for∆M=M−m for a pair of
bare states (m,M), as shown in the inset of (a). Panels (b) and (c) are zoom-ins on the shaded regions in (a) and (b), respectively.
The values of the parameters used for the simulation correspond to Set1 in table 1.

(m,M) = (−1/2,−1/2) can be achieved through transitions in the bare basis for the appropriate laser
detunings. The colors refer to the different possible selection rules shown in figure 2(a).

Each singly-dressed ground state is composed of two bare states from each of which five transitions lead
to the bare excited states that each of the six singly-dressed excited states are composed of. Therefore, 5× 2
transitions are possible from a fixed singly-dressed ground to a singly-dressed excited state (see figure 2(c))
or 10× 2× 6 overall transitions between all singly-dressed ground (two) and excited (six) states. In turn,
each doubly-dressed ground state is composed of two singly-dressed ground states, each connected via
10× 6 transitions to a single doubly-dressed excited state composed of six singly-dressed excited states),
resulting in 10× 6× 2 transitions between two selected doubly-dressed states, 10× 12× 6 between a single
doubly-dressed ground state |m⟩ and all excited states or an overall of 10× 12× 12 transitions between all
doubly-dressed states. For the transitions with an initial state |m⟩= | − 1/2⟩, figure 3(a) depicts the effective
Rabi frequencies relative to the Rabi frequencies of the transitions in the bare basis, i.e. |Ω̄mM,mM

mM
/ΩmM|. This

ratio is plotted against the laser detuning, that shows for which values the transitions are resonant. The
shaded area corresponds to the region defined by the pair (m,M) = (−0.5,−1.5), shown in more detail in
figure 3(b). Similarly, figure 3(c) shows the tuple (m,M,m,M) = (−0.5,−1.5,−0.5,−2.5), where we can see
the transition with higher effective Rabi frequency. Here, we can also observe that there are no selection rules

for∆M. Noticeably, the relative Rabi frequencies have different weights. Efficient use of laser power can be
achieved by choosing a transition with high effective Rabi frequency and, ideally, a small effective Rabi
frequency of the nearest neighboring transitions. As we can see, such an optimization becomes simply a
matter of engineering after the characterization of the transitions. The transitions with an initial state
|m⟩= |1/2⟩ are not shown for clarity in understanding the spectra of the possible transitions. All these
transitions would happen at a shifted frequency−ω

s
0 and with weights changing accordingly with

equation (21). Furthermore, state preparation is possible in order to assure that only the |m⟩= | − 1/2⟩ is
populated as initial state.

4. Experiment with 40Ca+

40Ca+ is a widely used species, e.g. in the fields of quantum information [82–86], quantum simulation
[87–89] and optical ion clocks [81, 90–93]. The narrow S1/2 to D5/2 transition in combination with a
favourable level sheme for advanced laser cooling techniques [94–97] and efficient state readout makes it an
ideal testbed for the implementation of the introduced CDD scheme. In addition, the negative static

8
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Figure 4. (a) CAD image of the CDD coil setup. RF magnetic field coils (right) for dressing the 2S1/2 and
2D5/2 are mounted at a

distance of dc < 50mm to the Paul trap (centre). The aspheric lens (left) for imaging of the ion crystals has a distance of
da = 36.6mm to the trap centre. (b) Electronic schematic of the CDD drive.

differential polarizability of the transition allows for canncellation of trap drive induced second-oder
Doppler shift with the 2nd-order Stark shift [91]. Especially ion clocks based on large three-dimensional ion
crystals will benefit from this feature due to their unavoidable excess micromotion accross the crystal.

First, we give an overview of the used experimental setup and highlight relevant key figures for the CDD
spectroscopy. Next, the hardware for generating of CDD rf-field fields is shown. Finally, the experiments for
verification of the predictions are presented together with their results.

4.1. Setup
A single 40Ca+ ion is trapped in a segmented Paul trap [67, 98] with secular frequencies of
(ωz,ωx,ωy) = 2π × (1.2,1.6,1.8)MHz obtained with ΩRF = 2π× 33MHz trap drive frequency. All lasers
needed for cooling, detection and state preparation are locked to a wave-meter [99] with typical stability of
δν < 1MHz [98]. The amplified extended cavity diode laser [100] at 729 nm addressing the 2S1/2 ↔ 2D5/2

transition is pre-stabilised via the Pound–Drever–Hall technique [101] to an optical reference cavity.
Additionally, the light is transfer-locked [102] to a highly stable laser, which is locked to a cryogenic silicium
cavity [103]. Even without correction of inter-branch comb-noise [104], as well as a few metres of
unstabilized fibre path length, a differential frequency stability of ∆νL

νL
< 10−16 against the reference at a few

seconds is reached. The individual beams are switched and frequency steered by acousto-optic modulators
controlled by a pulse sequencer [105, 106]. For minimizing photon scattering and light shifts during probing
of the clock transition, mechanical shutters in all relevant beam paths are used. Three pairs of orthogonal
magnetic field coils generate a static magnetic field of 357µT aligned with the axial trap direction resulting in
a 10.0000(4)MHz splitting of the two 2S1/2 Zeeman components. The B-field is determined by probing two
Zeeman levels with resolution of δνL < 100Hz. The resolution limit is caused by mains line-synchronous
magnetic field fluctuations.

4.2. RF Coil Setup
A resonant tank-circuit, with a radiating coil placed in an inverted viewport just outside the vacuum
chamber, produces the rf magnet-field needed for the CDD scheme. They consist of two separate
LCR-circuits with tunable capacitors to match the resonance frequency of the Zeeman manifolds (see
figure 4(b)). The current for each coil is supplied via an inductively coupled, impedance-matched primary
coil which is driven by an amplifier [107] A two-channel arbitrary voltage generator [108] acts as the signal
source. A pulse sequencer-controlled rf-switch ensures synchronization of the rf pulses with the remaining
sequence.

The quality factor QS(D) = 14(30) of the coils is chosen as a compromise between large B-field amplitude
and corresponding Rabi frequency for high Zeeman shift suppression (compare equation (14)) and minimal
signal distortion by the coil’s transfer function. The resonance frequency ω0(T) =

1√
L(T)C(T)

is temperature

dependent. Therefore, the coil temperature increases by up to 10K during operation depending on the
applied rf power and the duty cycle of the rf-pulses within the experimental sequence. The circuit design
includes a temperature-controlled base plate for the electronic components to avoid theses
temperature-induced amplitude drifts. For passive temperature stability, the inductive part of the circuit is a
copper coil held by an open, mesh-like 3D printed polylactide-part. This minimizes heat build-up during
longer sequences. The holders are placed on translation stages and positioned in close proximity to the ion(s)
inside an inverted viewport (see figure 4(a)).
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Figure 5. Comparison between experimental and theoretical coupling strengths and resonance frequencies for singly-dressed
40Ca+ . (a) Relative optical coupling strength of two 1st-stage ensembles with θS(D) = π/2. Pulse length spectroscopy was used to
determine the optical coupling strength of each transition. The relative coupling strength of the 729 nm beam with respect to the
associated Zeeman transition is plotted against the frequency offset from the zero B-field transition frequency. (b) Residuals for
them=− 1

2
,M=− 3

2
ensemble. The measured transitions values (orange) and the calculated (dark green) are compared. For

the calculated uncertainty region, a fractional driving strength uncertainty of ∆Ωi

Ωi
= 4× 10−4 and B-field uncertainty of

∆B0 = 60 nT is assumed. For the measured data, only the fitting uncertainty was taken into account. The values of the
parameters used in the experiment and for the theoretical comparison correspond to set2 of table 1.

4.3. Experimental sequence
First, the 40Ca+ -ion is Doppler-cooled close to the cooling limit of T< 1mK. The secular modes are then
cooled to a mean motional phonon number of n≲ 0.2 by electromagnetically-induced-transparency cooling
[95, 96, 109] to reduce the second-order Doppler shift. After state preparation into the 2S1/2,m=−1/2 level
by optical pumping with an axial σ− polarised 397 nm beam, the CDD sequence starts.

A frequency and amplitude ramp is applied, realizing a rapid adiabatic passage [110], to avoid populating
nearby dressed states by abrupt switching of the S-drive-coils. By choosing the sweep direction, the
population is transferred to them=− 1

2 orm= 1
2 dressed states with success probability of P> 98%. After

this initial switch-on sequence, the S & D rf-drives are applied continuously together with a spectroscopy
729 nm pulse.

The dressed states resonances are addressed by their frequency detuning from the field-free S1/2 → D5/2

transition by the 729 nm laser. If the optical coupling is much weaker than the rf-coupling (Ωm,M ≪ ωs,d),
the dressed system’s Eigenstates are quasi-static with respect to the laser interaction. We have performed
scans across the dressed state resonances to determine their frequency and on-resonance Rabi flopping to
determine their coupling strength (compare appendix D).

For the prediction of the transition energies and coupling strengths of the dressed system adequate
knowledge of the experimental parameters is crucial. The frequencies ωi of the driving fields can be chosen
with high precision, but the coupling strengths Ωi must be determined experimentally via the splitting of the
dressed states ω̃i

0. Therefore, resonance frequencies of four CDD transitions with opposingm andM are
measured. With knowledge of these parameters the resonance frequencies and relative optical couplings of all
12 1st-stage transitions per Zeeman-level can be determined (see equations (25) and (24)). In figure 5 the
comparison of the measured and calculated optical coupling strengths for transitions from them=− 1

2
mainfold to theM=− 5

2 andM=− 3
2 manifolds are compared. The Rabi frequencies of the CDD states are

normalized to the underlying bare Zeeman transition. The theoretical predictions are in good agreement
with the measured transition frequencies and relative optical coupling strengths. Deviations arise from
calibration imperfections and thermally induced drive strength fluctuations in combination with a drifting
offset magnetic field. Equation (24) predicts scaling of each CDDmanifold with the underlying bare Zeeman
transition. This was qualitatively confirmed by using different beam propagation directions. Especially, strict
vanishing of dressed states together with an underlying bare Zeeman transitions with vanishing optical
coupling (e.g. |∆M| ̸= 1 for axial interrogation) was also confirmed.

5. MS gates

We proceed to discuss the feasibility of executing a quantum gate on qubits defined by dressed states. Optical
clocks based on entangled particles can provide a stability gain with the ion number N over the standard
quantum limit σy ∝ 1/

√
N→ 1/N, the so-called Heisenberg limit [62, 111, 112]. Therefore, suitably

entangled states pose a promising way towards fast averaging ion clocks, even with moderate ion number
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[113]. For performing e.g. an MS gate [114], this requires to drive sideband transitions off-resonantly in a
way which is compatible with the dressing procedure explained in the previous sections.

We consider first a monochromatic driving field tuned close to one of the sideband transitions. In first
order Lamb–Dicke expansion, the laser-ion interaction in the LF bare basis is [78]

VLF
E2 = i

∑
m,M

{
ΩmM|M⟩⟨m|e−i∆Lt

(
1+ iη̄

(
âe−iνt + â†eiνt

))
− h.c.

}
. (26)

Here η̄ is the effective Lamb–Dicke parameter, for which we assume η̄ ≪ 1, and â and â† are
creation/annhilation operators referring to one of the normal motional modes of the crystal. The laser
detuning from the carrier transition in the bare basis is∆L.

As an example, we consider the case where the detuning is chosen close to the red sideband of one of the

transitions in the doubly dressed basis characterized by the set of quantum numbers (m,M,m,M,m,M).
This means, the detuning∆L satisfies

∆mM,mM

mM
+ ν = δ, (27)

where∆mM,mM

mM
is given in equation (22), and δ is the detuning from the sideband transition (aka MS

detuning). In a RWA with respect to all other terms, the Hamiltonian for a red sideband (rsb) transition
becomes

VDB
rsb ≈− η̄Ω|M⟩⟨m|âe−iδt + h.c., (28)

where Ω= Ω̄mM,mM

mM
, as given in equation (21). Given that ω

d
0 will be the smallest frequency scale in the comb

of frequencies induced by the dressing fields, the closest neighbouring transitions will be∆mM,mM

mM±1
, which will

be separated by ω
d
0. We therefore require δ ≪ ω

d
0 and |Ω| ≪ |ωd

0| in applying the RWA. For the blue sideband
(bsb) one has instead

VDB
bsb ≈− η̄Ω|M⟩⟨m|â†e−iδt + h.c., (29)

with∆mM,mM

mM
− ν = δ. For driving a MS gate, we require |Ω| ≪ |δ|. Thus, the MS detuning, the effective

sideband Rabi frequency and the smallest frequency split in the double-dressed basis must therefore satisfy a

hierarchy of coupling strengths Ω≪ δ ≪ ω
d
0.

For a bi-chromatic field driving the red and the blue sideband transitions at the same time on a crystal of
ions, the time evolution operator can be expressed in a Magnus expansion [115]

U(t) = e
∑

j σ
( j)
x (αj(t)a

†−α⋆(t)a)e−i
∑

j,n σ
( j)
x σ(n)

x Φ(t), (30)

with the time-dependent displacement and the geometric phase

α(t) =
Ω

δ

(
e−iδt − 1

)
, Φ(t) =

Ω2

δ

[
t− 1

δ
sin(δt)

]
, (31)

respectively. Here we used the Pauli operator σx = |M⟩⟨m|+ |m⟩⟨M| and write σ( j)
x for the operator referring

to the jth ion (j = 1, . . . ,N). For simplicity, we assumed that the sideband Rabi frequency is the same for all
particles. In order to decouple the mode of motion in the end of the gate at time T, we require δT= 2nπ for
n ∈N. For achieving a maximally entangling gate, we need TΩ2/δ = 2πK for K the number of loops
executed in phase space.

Picking up the concrete example treated in the previous section, we can estimate the gate parameters. In
view of Ω≪ δ ≪ ω0, we assume 3Ωs = δ = ω0/3. Assuming n= K= 1, we estimate a gate duration

T= 2π
δ

Ω2
= 2π

9

δ
= 2π

27

ω0
≈ 3.375ms. (32)

While this will not be a competitive gate for quantum computing applications, it may well be sufficient for
applications in ion clocks. For ion clocks the gate time has to be compared with the interrogation time which
can be on the order of seconds. The extra time of the gate will add to the dark time of the interrogation
scheme. We note that some of the conditions imposed on the parameters can be relaxed by exploiting the
structure of the comb of frequencies induced by the dressing procedure.
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6. Conclusions

In this article we developed a compact formalism to describe nested layers of CDD by rf dressing fields of
ground and excited state Zeeman manifolds. We showed that two layers of dressing can be used to cancel
linear Zeeman shifts and electric-quadrupole shifts, and established criteria for which shift to cancel at what
layer of dressing. Our main result concerns the description of quadrupole laser-ion interaction in the basis of
doubly-dressed states. We characterized the comb of transition frequencies induced by the dressing and
expressed the effective Rabi and the transitions frequencies in terms of a set of quantum numbers, which
allowed us also to identify the relevant selection rules for these transitions. We addressed the RWAs and the
cross-field effect by treating them in an approximate manner using a Magnus expansion, and showed that
both can be effectively interpreted as a shift of the Zeeman splitting for the Zeeman manifolds. With this
correction, theoretical predictions are in excellent agreement with experimental data for the quadrupole
transitions S1/2 → D5/2 in

40Ca+ . We used our insights to estimate the feasibility of executing MS-gates on
the level of the DB, showing gate times on the order of milliseconds, which is in principle sufficient for use in
ion clocks. Faster gates are possible with only one layer of dressing, at the expense of becoming more sensitive
to either Zeeman or electric-quadrupole shifts. Gates can be further optimized by exploiting the selection
rules and the specific structure of the comb of frequencies induced by the dressing.
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Appendix A. Magnetic field fluctuations and Quadrupole shift in the interaction picture

To calculate the energy shift of the bare states created through magnetic field fluctuations, equation (13), in
the interaction picture, the changes of the spin vectors for the different transformations must be taken into
account.

In a RWA one hasRz(ωt)S= Szez, therefore, applying the rotation and going to an interaction picture
for one layer with a general direction of rotation n= cosφex + sinφey, we obtain

Rz (ωt)Rn (θ)Sz = cosθSz +
i

2
sinθ

(
eit(ω+φ)S+ − e−it(ω+φ)S−

)
≃ cosθSz. (A1)

The RWA drops all the terms oscillating at frequency ω+φ. This can be applied for the two dressing layers,
recovering the result of equation (14).

The quadrupole operator, defined by Qij =
3
2

(
SiSj + SjSi

)
− S(S+ 1)1, becomes in a RWA

Rz (ωt)Q≃ 3

2

S2x + S2y 0 0
0 S2x + S2y 0
0 0 2S2z

− S(S+ 1)1

=
S(S+ 1)− 3S2z

2

1 0 0
0 1 0
0 0 −2

 . (A2)
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The latter expression is useful for evaluating the quadrupole shift. This is further simplified when using the
Laplace equation Fxx + Fyy + Fzz = 0 in the quadrupole shift Hamiltonian

Rz (ωt)V
LF
Q = TrRz (ωt) [Q]F

≃ 3Fzz
2

(
3S2z − S(S+ 1)

)
. (A3)

Thus, in the first layer of dressing one has to evaluate

Rz (ωt)Rn (θ)S
2
z =

[
cosθSz +

i

2
sinθ

(
eit(ω+φ)S+ − e−it(ω+φ)S−

)]2
≃ cos2 θS2z +

sin2 θ

4
(S+S− + S−S+)

=
sin2 θ

2
S(S+ 1)− 1− 3cos2 θ

2
S2z (A4)

Iterating this expression another time yields equation (16).

Appendix B. Effective Rabi frequency in the doubled dressed basis

For evaluating the laser-ion interaction in the dressed basis the expression

⟨M|Ds ⊗Dd [|M⟩⟨m|] |m⟩= Ud

MM
(t)
(
U s
mm

(t)
)∗

(B1)

is used, with

Ud

MM
(t) = ⟨M|Uz

(
ω
d
0t
)
Und2

(
θd2
)
Uz
(
ωd
2 t
)
Und1

(
θd1
)
Uz
(
ωd
1 t
)
|M⟩ (B2)

and equivalently for U s
mm

(t) with d↔ s andM,M↔m,m. As an example we will evaluate the matrix
elements for the d-states.

⟨M|Uz
(
ω0t
)
Un2 (θ2)Uz (ω2t)Un1 (θ1)Uz (ω1t) |M⟩=

∑
M

⟨M|Un2 (θ2) |M⟩⟨M|Un1 (θ1) |M⟩

× e
i
(
Mω0+Mω2+Mω1

)
t
, (B3)

where we used the expansion of the identity 1=
∑

M |M⟩⟨M|. Finally, the remaining matrix elements of the
unitary matrices corresponding to the rotations of the quantization axis are

⟨M|Un1 (θ1) |M⟩= ⟨M|eiθ1(− sinαSx+cosαSy)|M⟩
= ⟨M|e−iαSzeiθ1SyeiαSz |M⟩

= e−iα(M−M)dS
MM

(θ1) , (B4)

and

⟨M|Un2 (θ2) |M⟩= e
−i(α−π/2)

(
M−M

)
dS
MM

(θ2) . (B5)

Here, the Wigner d-matrix is used, which is defined in [117] as

dS
MM

(θ) = ⟨SM|e−iθSy |SM⟩=
√(

S+M
)
!
(
S−M

)
! (S+M)! (S−M)!

×
∑
k

(−1)k cos
(
θ
2

)2S+M−M−2k [− sin
(
θ
2

)]M−M+2k

(S+M− k)!k!
(
M−M+ k

)
!
(
S−M− k

)
!
. (B6)
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The sum is over all k that do not make negative any factorial in the denominator. We also use that
dS
MM

(−θ) = dS
MM

(θ).

Appendix C. Counter rotating terms or Bloch-Siegart effect

Now, the previously neglected effect of the counter rotating terms in the first RWA (6) is investigated. We
consider the full Hamiltonian

Hco =
g

4

(
Ω1

(
ei(2ω1t−α)S+ + e−i(2ω1t−α)S−

)
− Ω2

i
cos(ω2t)

(
ei(2ω1t−α)S+ − e−i(2ω1t−α)S−

))
. (C1)

We will treat this term as a correction to the detuning, thus in a rotating frame with respect to Hdet =∆1Sz
this is

HRF
co =Rz (∆1t) [Hco] = c(t)S+ + c∗ (t)S−, (C2)

where

c(t) =
g

4

(
Ω1 −

Ω2

i
cos(ω2t)

)
ei((ω0+ω1)t−αd). (C3)

Therefore, HRF
co will contain only terms oscillating fast at time scales ω0 +ω1 and at sideband frequencies ω2

of these. The effect of these off-resonant driving terms, averaged over a time scale T≫ (ω0 +ω1)
−1, can be

described by an effective Hamiltonian

Heff
co =− i

2T

ˆ T

0
dt1

ˆ t1

0
dt2
[
HRF

co (t1) ,H
RF
co (t2)

]
=− i

T

ˆ T

0
dt1

ˆ t1

0
dt2 (c(t1) c

∗ (t2)− c.c.)Sz

≃ ω0
g2

8

(Ω1)
2
+(Ω2)

2

ω0 (ω0 +ω1)
Sz. (C4)

Further corrections are of higher order in Ωi/|ω0 +ω1| ≪ 1. The form of the effective Hamiltonian (first
line) corresponds to the first non-vanishing term in the Magnus expansion of the time evolution operator
corresponding to the Hamiltonian (C2). Therefore, the counter rotating terms can be accounted for by
suitably shifted bare frequencies that absorb the contributions of Heff

co .

Appendix D. Cross-field effect

The non-resonant rf dressing fields of the d (s) spin manifold affect the s (d) manifold. Here, only the former
case is covered. The corresponding Hamiltonian on the s manifold is

Hd→s = gs
(
Ωd

1cos
(
ωd
1 t
)
−Ωd

2sin
(
ωd
1 t
)
cos
(
ωd
2 t
))(

Ssx cosαd + Ssy sinαd

)
. (D1)

In a rotating frame with respect to the dc Hamiltonian Hs
dc = ωs

0S
s
z, we obtain

HRF
d→s =Rz (ω

s
0t) [Hd→s] = c(t)S+ + c∗ (t)S−, (D2)

where

c(t) =
gs
2

(
Ωd

1cos
(
ωd
1 t
)
−Ωd

2sin
(
ωd
1 t
)
cos
(
ωd
2 t
))

ei(ω
s
0t−αd). (D3)

Thus, HRF
d→s will contain only terms oscillating fast at time scales ωs

0 ±ωd
1 and at sideband frequencies ω

d
2 of

these. The effect of these off-resonant driving terms, averaged over a time scale T≫
(
ωs
0 ±ωd

1

)−1
, can be

described by an effective Hamiltonian
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Heff
d→s =− i

2T

ˆ T

0
dt1

ˆ t1

0
dt2
[
HRF

d→s (t1) ,H
RF
d→s (t2)

]
=− i

T

ˆ T

0
dt1

ˆ t1

0
dt2 (c(t1) c

∗ (t2)− c.c.)Ssz

≃ ωs
0
g2s
4

(
Ωd

1

)2
+
(
Ωd

2

)2
(ωs

0)
2 −
(
ωd
1

)2 Ssz. (D4)

Corrections to this are of higher order in Ωd
i /|ωs

0 ±ωd
1 | ≪ 1. The form of the effective Hamiltonian (first

line) corresponds to the first non-vanishing term in the Magnus expansion of the time evolution operator
corresponding to the Hamiltonian (D2). The same result holds for the effect on the other manifold with
s↔ d. Thus, the cross-driving can be accounted for by suitably shifted bare frequencies absorbing the
contributions of Heff

d(s)→s(d).

Appendix E. Experimental data recording

After the calibration of the rf-drive amplitudes (compare 4.3), the acquisition of the individual datapoints for
figure 5 was performed. Therefore, two different scans were used for each datapoint (compare figure 6).

For the first scan, the laser frequency was varied around the predicted CDD transition to extract the
transition frequency with high resolution. For the next scan the center frequency was fixed and the pulse
duration varied.

A sinosoidal fit of the Rabi flopping signal is used to extract the optical coupling strength. This procedure
was repeated for all transitions. The resolution of the individual scans was chosen as a compromise between
sufficient low uncertainty and data acquisition speed. The latter is important in order to minimize the
uncertainties of drifting static B-field and coupling strength over the course of a complete series of
measurements. The acquired data is summarized in table E1.
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Figure 6. Example measurements for the determination of one transition frequency and coupling strength data point pair. The
excitation data (blue) was fitted (orange) to extract: (a) the center frequency of one CDD transition using a laser detuning scan.
(b) The coupling strength of the same transition using pulse time spectroscopy. For better frequency resolution, the frequency
scan was taken with less optical power, thus higher resolution.

Table E1. Data used for figure 5.

m M m M ∆L,calc (MHz) ∆L,exp (MHz)
Ω

m,M
m̄,M̄

Ωm,M
(calc) Ωm,M

m̄,M̄
(kHz)

−0.5 −1.5 0.5 −2.5 −4.18 903 −4.18 906 0.27 493 0.46 923
−0.5 −1.5 −0.5 −2.5 −4.14 213 −4.14 214 0.28 640 0.45 828
−0.5 −1.5 0.5 −1.5 −4.11 965 −4.11 970 0.36 708 0.62 568
−0.5 −1.5 −0.5 −1.5 −4.07 275 −4.07 281 0.38 239 0.62 326
−0.5 −1.5 0.5 −0.5 −4.05 027 −4.05 028 0.17 087 0.29 412
−0.5 −1.5 −0.5 −0.5 −4.00 337 −4.00 337 0.17 799 0.29 951
−0.5 −1.5 0.5 0.5 −3.98 089 −3.98 091 0.17 538 0.27 588
−0.5 −1.5 −0.5 0.5 −3.93 399 −3.93 401 0.18 270 0.26 195
−0.5 −1.5 0.5 1.5 −3.91 151 −3.91 156 0.36 743 0.61 065
−0.5 −1.5 −0.5 1.5 −3.86 461 −3.86 458 0.38 276 0.61 313
−0.5 −1.5 0.5 2.5 −3.84 213 −3.84 216 0.27 255 0.45 904
−0.5 −1.5 −0.5 2.5 −3.79 523 −3.79 526 0.28 392 0.45 519
−0.5 −2.5 0.5 −2.5 −10.18 386 −10.18 395 0.12 331 0.23 861
−0.5 −2.5 −0.5 −2.5 −10.13 697 −10.13 702 0.12 845 0.22 617
−0.5 −2.5 0.5 −1.5 −10.11 448 −10.11 448 0.27 493 0.52 114
−0.5 −2.5 −0.5 −1.5 −10.06 759 −10.06 771 0.28 640 0.52 519
−0.5 −2.5 0.5 −0.5 −10.04 510 −10.04 488 0.38 769 0.81 061
−0.5 −2.5 −0.5 −0.5 −9.99 821 −9.99 805 0.40 385 0.77 476
−0.5 −2.5 0.5 0.5 −9.97 572 −9.97 573 0.38 657 0.78 431
−0.5 −2.5 −0.5 0.5 −9.92 883 −9.92 877 0.40 269 0.77 869
−0.5 −2.5 0.5 1.5 −9.90 634 −9.90 644 0.27 255 0.54 841
−0.5 −2.5 −0.5 1.5 −9.85 945 −9.85 939 0.28 392 0.55 880
−0.5 −2.5 0.5 2.5 −9.83 696 −9.83 703 0.12 154 0.24 665
−0.5 −2.5 −0.5 2.5 −9.79 007 −9.79 012 0.12 661 0.24 661
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