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ABSTRACT: Accurate parameter estimation is a challenging task that demands realistic 
models and algorithms to obtain the parameter’s probability distributions. The Bayesian theorem 
in conjunction with sampling methods proved to be invaluable here since it allows for the formu
lation of the problem in a probabilistic framework. This opens up the possibilities of using prior 
information and knowledge about parameter distributions as well as the natural incorporation of 
aleatory and epistemic uncertainties. Traditionally, Markov Chain Monte Carlo (MCMC) 
methods are used to approximate the posterior distribution of samples given some data. However, 
these methods usually need a large amount of samples and therefore a large amount of model 
evaluations. Recent advances in transport theory and its application in the context of Bayesian 
model updating (BMU) make it possible to approximate the posterior distribution analytically 
and hence eliminate the need for sampling methods. This paves the way for the usage in real-time 
applications and for fast parameter estimation. We investigate here the application of transport 
maps to a simple analytical model as well as a structural dynamics model. The performance is 
compared to an MCMC approach to assess the accuracy and efficiency of transport maps. 
A discussion about requirements for the implementation of transport maps as well as details on 
the implementation are also given.

1 INTRODUCTION

Model parameter estimation is a daily task in many engineering disciplines. In SHM it proved to 
be very useful to track the changes in a system during its lifetime, thus making it possible to evalu
ate occurring damage or degradation of components in the system. In applications with uncertain
ties and stochastic parameters the model updating is usually done by using the Bayesian theorem; 
however depending on the system at hand the posterior density can not be calculated analytically. 
For the exploration of the posterior distribution then algorithms based on Markov Chain Monte 
Carlo (MCMC) are used, since these approaches do not require knowledge about the posterior 
topology. However, a downside of MCMC is that the convergence can not easily be assessed and 
sometimes many samples are needed in order to fully reach an adequate result. Some MCMC 
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algorithms also suffer from burn-in. Recently there have been advances in optimal transport 
theory (Villani 2009) which were applied in the Bayesian updating context (Parno and Marzouk 
2018; Spantini et al. 2018). This opens up the possibility of circumventing some of the issues of 
MCMC methods, since transport maps provide a means of formulating an analytical relationship 
between some chosen, easy to evaluate reference distribution and the posterior distribution. Inte
grals can thus be evaluated on the reference distribution and then be transported to the posterior. 
In addition, sampling from the posterior becomes a simple evaluation of the map. The problem of 
finding this map is solved by optimization. Previous works have implemented transport map (TM) 
approximation in various use-cases, using synergies of this approach with model order reduction 
techniques to speed up the process (Rubio et al. 2019a,b).

In the following chapters the advantages and disadvantages of the TM approach when compared 
to an MCMC estimation are investigated. For this purpose we use two academic examples, one 
exponential function with two parameters and one structural model with three degrees of freedom.

2 PARAMETER ESTIMATION

2.1  Bayesian model updating

Let θ 2 R d be a d-dimensional random variable with probability p(θ) describing uncertain 
parameters of a model M θð Þ. Given measured data D the probability of observing θ in M θð Þ
under the condition of can D be calculated using Bayes’ theorem (Beck et al. 1998)

where the likelihood p(D |θ) describes the probability of observing the data under the assumption of 
θ and is usually modeled as a stochastic distance between M θð Þ and D. One key difficulty in 
Bayesian model updating (BMU) is the irregular and unknown shape of p(θ|D) and the fact that it 
can only be evaluated point-wise. Therefore, MCMC methods are employed to explore the prob
ability space (Beck and Au 2002). The obtained posterior distribution p(θ|D) is an expression for 
the updated probability for θ constrained by the observation of D. p(D) is constant for any given 
set of model and data so Eq. (1) is also used in the non-normalized form

This poses no issue for MCMC methods since the posterior’s shape is not affected.
The MCMC algorithm used in this paper is the Transitional MCMC (TMCMC) method 

(Ching and Chen 2007). The main idea is to introduce an exponent αj 2 0; 1½ � to the likelihood

and increasing αj with each level j starting from α1 = 0, which is equal to sampling from the 
prior density. For αj = 1 Eq. (3) becomes Eq. (2). Values for αj for the intermediate levels are 
chosen based on the variance of the drawn samples. After drawing samples from the prior 
density, the Adaptive Metropolis-Hastings algorithm is used to draw samples for the next 
level until αj = 1 is reached. The main motivation behind TMCMC is to avoid the problem of 
sampling from difficult target PDFs but sampling from a series of PDFs that converge to the 
target PDF and that are easier to sample (Ching and Chen 2007).

2.2  Transport maps

A transport map M is a deterministic coupling between a reference density ρ and the target 
density π
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where the target density in the case of BMU is the posterior distribution. The reference density 
can be chosen freely by the analyst. Common choices are standard normal or standard uni
form distributions (Spantini et al. 2018). Any integrals on the target density can thus be calcu
lated on the reference density by use of the map M. Moreover, samples from the target density 
Y can be drawn by drawing samples X from the reference density and then evaluating the map 
M. This makes it possible to find an analytical formulation for the posterior density in BMU, 
which is usually difficult or impossible. The task now becomes to find the map M. A map can 
be any invertible function M : R d ! R d , e.g. polynomials or even neural networks (Parno and 
Marzouk 2018). Using the notation M# for the push-forward operation the mismatch of the 
approximation π ≈ M#ρ can be expressed with the Kullback-Leibler (KL) divergence

where the invertibility of the map is used in Eq. (5). With a as map parameters Eq. (6) 
becomes

Due to optimality and uniqueness properties, maps M were proposed to be monotonic, 
lower-triangular and constructed from components

where f: R d ! R and g: R d ! Rþ so that the resulting map has the structure

A good approximation of the posterior density results in a small KL divergence, so that Eq. 
(7) can be transformed into a minimization problem. Note that ρ(x) does not depend on the 
map parameters and instead of the full posterior π = p(θ|D) the non-normalized form

can be used. Furthermore, since M consists of analytical functions, the involved integrals can 
easily be computed by suitable quadrature rules (i.e. Gauss, Monte Carlo etc.). The final mini
mization problem to obtain the needed map parameters a is then

where wq,i and θq,i are weights and integration points for the quadrature rule.
For computations, the framework MParT was used (MParT Development Team 2022). As 

a basis for the functions f in (8) Hermite polynomials with a selectable degree were chosen. 
Higher order maps usually are better able to approximate the target function, however since 
more parameters need to be optimized their computation is also more costly. The maximum 
map order n can be chosen adaptively, since maps can be combined in the form
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where the subscript denotes the map order and each Mi is of the form (9). If the accuracy of 
M after calculation of the i-th component is deemed too low, another component of order 
i+1 can be computed.

2.2.1 Laplace approximation
As a first approximation a map to a Gaussian with mean θ0 and covariance �0 can be calcu
lated by use of Laplace approximation. θ0 and �0 are found by solving the optimization 
problem

which corresponds to finding the mode of the posterior. �0 corresponds to finding the Hes
sian H at θ0, the final Laplace map thus becomes (Rubio et al. 2019a)

The Laplace approximation can be used to regularize the problem when combined with (12) 
to give the final form of M

Figure 1.  Plot of c over t for the analytical exponential model. Blue dots are noisy measurements, red 
and black lines are outputs of samples taken from TM and TMCMC approaches respectively.

Table 1. Number of model, gradient and hessian evaluations for 
TMCMC and both cases of TM approximations.

Model evaluations

TMCMC 45000
TM 1st order 12636

2nd order 20900
3rd order 12500
Total 46036
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3 EXAMPLES

3.1  Analytical exponential model

As a simple example we show the application of transport maps to an analytical problem of 
the form

with prior distributions A;B � N 0; 1ð Þ; ζ � N 0; σ2
M

� �
, where ζ is a zero-mean Gaussian noise 

with variance σ2
M . The model was taken from (Parno and Marzouk 2018). The parameters to 

estimate are thus A and B. Data is taken from evaluating Eq. (16) at times t = {1,2,3,4,5} with 
parameters A = 0.4 and B = 0.2. Letting cM be the vector of measurements, θ = [A, B]T and 
σM = 0.1 the problem to solve for obtaining the log-posterior becomes

Note that for the optimization procedure in Eq. (11) the gradient raDKL is needed, which 
by applying the chain rule ultimately also needs rθM θð Þ. Since this problem is analytical the 
derivatives are readily available, however special care needs to be taken in situations where 
this is not the case.

Figure 2.  Marginal posteriors for updating results of TMCMC and TM approximations for the analyt
ical exponential system. Figure a) shows a first order map approximation, b) shows a subsequent 
approximation with a third order map.
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Figure 1 shows a result plot with indicated measurements and results taken from sam
ples from transport maps and TMCMC. For TMCMC 5000 samples were taken per 
level, for the TM approach a MC-integration with 100 samples was used to calculate 
parameters of subsequent maps up to order 3. The results of the posterior approxima
tion with first, second and third order TM are shown in Figure 2, together with samples 
taken from TMCMC and the true posterior function. In addition, Table 1 shows the 
number of model calls for TMCMC and for the calculation of each order of TM, 
together with the total amount of model calls for all three calculated maps. These results 
show that the first order map is only able to capture the mean of the posterior and 
some of its correlation structure, whereas second and third order map are able to make 
a better approximation. Since a first order map defines a linear relationship between the 
reference Gaussian and the target density the result can also only be a Gaussian. The 
computational cost of TM and TMCMC is comparable, however no care was taken to 
optimize the numerical integration scheme in the TM approach. The results show how
ever some bias in the TMCMC samples which is a common occurrence since the conver
gence of MCMC methods can not be assessed easily.

Figure 3.  3-DOF system with three masses m1, m2 and m3 connected by four springs.

Figure 4.  Marginal posterior results for posterior estimation of 3-DOF-system with TMCMC and 5th 
order TM approach.
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Note that after calculation of the map coefficients, a fully analytical expression is obtained 
which allows for cheap drawing of new samples if needed. Doing the same with MCMC 
methods would require further model evaluations.

3.2  3-DOF-SYSTEM

For the second example we chose a three degree of freedom system with four springs (see 
Figure 3) with m1 = 100 kg, m2 = 200 kg and m3 = 300 kg. k1, k2, and k3 are uncertain with 
a prior distribution of k1;2;3 � U 100; 3500ð ÞN

m. As data we chose the three natural frequencies 
that can handily be calculated from the system’s equations with parameters k1 ¼ 1500 N

m, 
k2 ¼ 750 N

m, and k4 ¼ 1000 N
m. For regularization purposes k1 – k3 are transformed to standard 

normal space using the inverse CDF method (Devroye 1986)

where θi are the random variables to be updated and Φ is the CDF of the standard normal 
distribution. With ωm as the vector of measured natural frequencies the posterior becomes

where M θð Þ is the model to calculate the natural frequencies ω from the system’s matrices.
Note that for the optimization the expression ∂M θð Þ=∂θ is needed and the system matrices 

depend on k, such that

where ϕ(θ) is the PDF of the standard normal distribution.
Results of the updating procedures can be seen in Figure 4. For the TM approach a Gauss- 

Hermite integration of order five was chosen this time and the maximum order of the map 
was also five. For TMCMC again 5000 samples were used per level.

The target posterior in this example is more complex and shows almost a bi-modal distribu
tion which is more difficult for the TM approach to approximate since higher order maps are 
needed. The mean and general covariance structure however are nicely approximated. Because 
of the more complicated shape of the posterior it was found that the TM approximation 
needed more model evaluations than the TMCMC approach. However the TMCMC samples 
also again show some bias.

4 CONCLUSION

In this contribution the transport map approach for estimation of the posterior in Bayesian 
parameter estimation was compared to standard MCMC. Both methods were used on noisy 
data from an analytical exponential model and a model of natural frequencies of a 3-DOF 
dynamical system. The TM estimation shows great promise in circumventing some of the 
problems arising in MCMC sampling, however the implementation and tuning of the param
eters in the TM approach require more care. Especially the need to use optimization methods 
for finding the maps is prohibitive of their use if the problem at hand is too complex and not 
analytical. While the latter is not generally the case in engineering applications there exist 
a wide variety of model order reduction methods to replace the original system with 
a surrogate model that uses analytical functions. In these cases transport maps show great 
promise since the model becomes differentiable. The result of the transport map approxima
tion is a fully analytic expression of the posterior distribution, allowing for integration and 
resampling in an efficient way, which is one of the main advantages over MCMC-based 
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methods. Furthermore, since the KL-divergence is used to optimize the map parameters the 
convergence between approximation and true posterior is directly evaluated. In MCMC 
methods the mismatch between approximation and posterior is not quantified which can lead 
to bias in the drawn samples. Moreover, sequential updating which was not covered here, is 
naturally possible in the transport map approach by combining multiple maps. Issues with 
optimization convergence that arise due to the complicated shape of the posterior distribution 
could be reduced this way, since the change in the approximated posteriors is smaller in the 
sequential setting when compared to using all data points at once. The usage of transport 
maps for sequential updating is also interesting for on-line parameter estimation when com
bined with model-order reduction methods.
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