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Abstract
Let X be a K3 surface which doubly covers an Enriques surface S. If n ∈ N is an odd number,
then the Hilbert scheme of n-points X [n] admits a natural quotient S[n]. This quotient is an
Enriques manifold in the sense of Oguiso and Schröer. In this paper we construct slope stable
sheaves on S[n] and study some of their properties.
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In 1896 Federigo Enriques gave examples of smooth projective surfaces with irregularity
q = 0 and geometric genus pg = 0 which are not rational. Therefore these surfaces were
counterexamples to a conjecture byMaxNoether, which stated that surfaceswith q = pg = 0
are rational. Nowadays such a surface is called an Enriques surface.

The canonical bundle ωS of an Enriques surface S has order two in the Picard group of
S. The induced double cover turns out to be a K3 surface (a two dimensional hyperkähler
manifold), hence it is the universal cover of S. On the other hand, every K3 surface X which
admits a fixed point free involution doubly covers an Enriques surface S.

Mimicking this correspondenceOguiso andSchröer defined higher dimensional analogues
of Enriques surfaces, the so called Enriques manifolds in [1]. To be precise a connected
complex manifold that is not simply connected and whose universal cover is a hyperkäler
manifold is called an Enriques manifold.

The following class of examples is of interest to us in this work: take an odd natural number
n ∈ N and an Enriques surface S. We have the induced K3 surface X with a fixed point free
involution ι such that S = X/ι. Since n is odd we get an induced fixed point free involution
ι[n] on the Hilbert scheme of n-points X [n]. The quotient of X [n] by the involution ι[n] is an
Enriques manifold S[n] of dimension 2n. We have an étale Galois cover ρ : X [n] → S[n].

In this article we construct and study stable sheaves on Enriques manifolds of type S[n].
The main idea is to start with slope stable sheaves on X [n] and check if they descend to
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S[n]. Known examples of stable sheaves on X [n] are given by the tautological bundles E [n]
associated to slope stable locally free sheaves E on X .

For example, we prove that E [n] descends to S[n] if and only if E descends to S. If E [n]
descends we have E [n] ∼= ρ∗F[n] for some locally free sheaf F[n] on S[n]. We then show
that it is possible to find an ample divisor D ∈ Amp(S[n]) such that F[n] is slope stable with
respect to D. Finally using results from Kim [2] and Yoshioka [3], we are able to prove that,
given certain conditions are satisfied, we have in fact a morphism

(−)[n] : MS,d(v, L) → MS[n],D(v[n]), F �→ F[n]
between a moduli spaces of stable sheaves on S and moduli space of stable sheaves on S[n].
This morphism identifies the former moduli space as a smooth connected component in the
latter.

This paper consists of four sections. In Sect. 1 we generalize some results concerning
tautological bundles onHilbert schemes of points. Section2 contains results about the descent
of tautological sheaves from X [n] to S[n]. We compute certain Ext-spaces in Sect. 3. In the
final Sect. 4 we study the stability of sheaves on Enriques manilfolds of type S[n].

1 Stability of tautological sheaves on Hilbert schemes of points

Let X be a smooth projective surface. The Hilbert scheme X [n] := Hilbn(X) classifies length
n subschemes in X , that is

X [n] = {[Z ] | Z ⊂ X , dim(Z) = 0 and dim(H0(Z ,OZ )) = n
}
.

In fact X [n] is smooth itself and has dimension 2n, see [4, Theorem 2.4]. Moreover X [n] is a
fine moduli space for the classification of length n subschemes and comes with the universal
length n subscheme

Z =
{
(x, [Z ]) ∈ X × X [n] | x ∈ supp(Z)

}
⊂ X × X [n].

The universal subscheme Z comes with two projections p : Z → X [n] and q : Z → X .
Note that the morphism p is finite and flat of degree n.

To any locally free sheaf E of rank r on X one can associate the so called tautological
vector bundle E [n] on X [n] via

E [n] := p∗q∗E .

As p is finite and flat of degree n the sheaf E [n] is indeed locally free and has rank nr . The
fiber at [Z ] ∈ X [n] can be computed to be

E [n] ⊗ O[Z ] ∼= H0(Z , E|Z ).

Remark 1.1 Note that the definition of E [n] makes sense for E a coherent sheaf on X or even
a complex E ∈ Db(X) in the derived category of X , see [5, Definition 2.4].

In [6, Theorem 1.4, Theorem 4.9] Stapleton proves that if h ∈ Amp(X) is an ample
divisor on X and E � OX is a slope stable (with respect to h) locally free sheaf, then there is
H ∈ Amp(X [n]) such that the associated tautological bundle E [n] is slope stable with respect
to H on X [n].

In fact Stapleton’s result remains true, if we drop the locally free condition and allow for
torsion free sheaves, see for example [7, Proposition 2.4] for a first step toward the following
observation:
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Lemma 1.2 Assume E is torsion free and slope stable with respect to h ∈ Amp(X) such
that its double dual satisfies E∗∗ 	= OX , then the associated tautological sheaf E [n] is slope
stable with respect to some H ∈ Amp(X [n]).

Proof Since X is a smooth projective surface and E is torsion free we can canonically embed
E into its double dual. This gives an exact sequence

0 E E∗∗ Q 0. (1)

Here E∗∗ is locally free and also slope stable with respect to h. Furthermore Q has support
of codimension two.

By [8, Corollary 6] the functor (−)[n] : Coh(X) → Coh(X [n]) is exact. So we get an
exact sequence on X [n]

0 E [n] (E∗∗)[n] Q[n] 0.

By our assumptions (E∗∗)[n] is slope stable with respect to some H ∈ Amp(X [n]). But Q[n]
has support of codimension two in X [n] so that E [n] is isomorphic to (E∗∗)[n] in codimension
one and thus must be also be slope stable with respect to H . 
�

The previous lemma shows that for every slope stable E with E∗∗
� OX there is H ∈

Amp(X [n]) such that the tautological sheaf E [n] is slope stable with respect to H . Since E
belongs to some moduli space MX ,h(r , c1, c2), one may ask how H varies if E varies in its
moduli. We can answer this question in the case that all sheaves classified byMX ,h(r , c1, c2)
are locally free.

Proposition 1.3 If (r , c1, c2) 	= (1, 0, 0) is chosen such that for every [E] ∈ MX ,h(r , c1, c2)
the sheaf E is slope stable and locally free, then there is H ∈ Amp(X [n]) such that E [n] is
slope stable with respect to H for all [E] ∈ MX ,h(r , c1, c2).

Proof By a result of Stapleton, see [6, Theorem 1.4], we know that for [E] ∈ MX ,h(r , c1, c2)
the locally free sheaf E [n] is slope stable with respect to the induced nef divisor hn ∈
NS(X [n]). It is also well known that the Hilbert - Chow morphism HC : X [n] → X (n) is
semi-small and that q : Z → X is flat, see [9, Theorem 2.1].

The proof is now exactly the same as for tautological bundles on the generalized Kummer
variety Kumn(A) associated to an abelian surface A, see [10, Proposition 2.9]. 
�
Remark 1.4 The condition that all sheaves inMX ,h(r , c1, c2) are slope stable can be achieved
(for example) in the following two different ways: the first is by a special choice of the
numerical invariants, see [11, Lemma 1.2.14]. The second way is by choosing a special
ample class h, see [11, Theorem 4.C.3].

To find amoduli space such that all sheaves are locally free, one can do the following: if the
tuple (r , c1) is fixed, then by Bogomolov’s inequality the second Chern class is bounded from
below, see [11, Theorem 3.4.1]. Choose the minimal c2, then every sheaf in MX ,h(r , c1, c2)
is locally free. Indeed, if such an E is not locally free, then E∗∗ is locally free, stable with
respect to h and has the same tuple (r , c1), but it has smaller c2 by exact sequence (1) as
c2(Q) < 0, contradicting minimality. See also [11, Remark 6.1.9] for a similar argument.

Now let X be a K3 surface. Denote the Mukai vectors of E and E [n] by v respectively
v[n] ∈ H∗(X [n], Q). If E [n] is slope stable, then it belongs to the moduli spaceMX [n],H (v[n])
of semistable sheaves on X [n] with Mukai vector v[n]. In fact we can generalize [7, Corollary
4.6] to get the following
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Theorem 1.5 If v 	= v(OX ) is a Mukai vector such that for every [E] ∈ MX ,h(v) the sheaf
E is slope stable, locally free and hi (X , E) = 0 for i = 1, 2, then the functor (−)[n] induces
a morphism

(−)[n] : MX ,h(v) → MX [n],H (v[n]), [E] �→ [E [n]]
which identifiesMX ,h(v) with a smooth connected component of MX [n],H (v[n]).

Proof First note that the map [E] �→ [E [n]] is indeed a regular morphism, see for example
[12, Proposition 2.1]. Furthermore this morphism is injective on closed points, which follows
immediately from [13, Theorem 1.1] (see also [9, Theorem 1.2] for a generalization).

By [5, Corollary 4.2 (11)] we find

Ext1X [n](E
[n], F [n]) ∼= Ext1X (E, F)

since h0(X , E∨) = h2(X , E) = 0 as well as h1(X , E∨) = h1(X , E) = 0. For E = F this
isomorphisms translates to

dim(T[E [n]]MX [n],H (v[n])) = dim(T[E]MX ,h(v)).

These two facts imply that we can identify MX ,h(v) with a smooth connected component in
MX [n],H (v[n]). 
�

2 Descent of tautological sheaves to Enriquesmanifolds

Let G be a finite group. Consider an étale Galois cover ϕ : Y → Z with Galois group G,
that is there is a free G-action on Y such that Z = Y/G and ϕ is the quotient map. In this
situation there is an equivalence between the categories Coh(Z) of coherent sheaves on Z
and CohG(Y ) of G-equivariant coherent sheaves on Y given by the functors

ϕ∗ : Coh(Z) → CohG(Y ), E �→ ϕ∗E and

ϕG∗ : CohG(Y ) → Coh(Z), F �→ (ϕ∗(F))G

We say that a coherent sheaf E on Y descends to Z if E is in the image of ϕ∗, that is there is
a coherent sheaf F on Z together with an isomorphism E ∼= ϕ∗(F).

A coherent sheaf E on X is said to be G-invariant, if there are isomorphisms E ∼= g∗E
for every g ∈ G. A G-equivariant coherent sheaf is G-invariant, but the converse is not true.
For our purposes the following will suffice, see [14, Lemma 1]:

Proposition 2.1 Assume that G is a cyclic group and E is a simple G-invariant coherent
sheaf on Y , then E descends to Z.

Remark 2.2 Recall that if (X , ι) is a pair consisting of a K3 surface and a fixed point free
involution, then G = 〈ι〉 ∼= Z/2Z acts freely on X and the quotient S is an Enriques surface.
The morphism π : X → S is an étale Z/2Z-Galois cover.

On the other hand if S is an Enriques surface, then its canonical bundle ωS is 2-torsion.
One can consider the induced canonical cover φ : S̃ := Spec(OS ⊕ωS) → S. The morphism
φ is an étale Z/2Z-Galois cover and S̃ is a K3 surface with fixed point free involution, the
covering involution of φ. Furthermore φ∗OS̃

∼= OS ⊕ ωS .

In [1] Oguiso and Schröer generalized the notion of an Enriques surface to that of an
Enriques manifold by mimicking the above constructions:
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Definition 2.3 A manifold Y is called an Enriques manifold if it is a connected complex
manifold that is not simply connected and whose universal cover is a hyperkähler manifold.

Remark 2.4 In [15] the authors also gave a definition of higher dimensional Enriques varieties,
which slightly differs from the one of Enriques manifolds in [1].

Remark 2.5 An Enriques manifold is of even dimension, say dim(Y ) = 2n. The fundamental
group π1(Y ) is finite of order d with d | n + 1. This number d is called the index of Y . In
addition Y is projective and the canonical bundle ωY has finite order d and generates the
torsion group of Pic(Y ), see [1, Sect. 2].

We will work with the following class of Enriques manifolds, see [1, Proposition 4.1]:

Example 2.6 Let (X , ι) be a pair consisting of a K3 surface together with a fixed point free
involution ι on X . Then X covers the Enriques surface S = X/ι. If n ∈ N is odd, then
(X , ι) induces the pair (X [n], ι[n]) of the Hilbert scheme of n-points on X and the induced
fixed point free involution ι[n] on X [n]. Thus G = 〈

ι[n]〉 ∼= Z/2Z acts freely on X [n] and the
quotient S[n] is an Enriques manifold with index d = 2 coming with an étale Z/2Z-cover
ρ : X [n] → S[n].

We want to study the descent of sheaves from X to S respectively from X [n] to S[n]. To
do this we need the following lemma:

Lemma 2.7 There is an isomorphism of functors from Coh(X) to Coh(X [n]):

(ι[n])∗
(
(−)[n]) ∼= (ι∗(−))[n].

Proof Recall that (−)[n] = FMOZ (−) can be written as the Fourier—Mukai transform with
kernel the structure sheaf of universal family Z in X × X [n], see for example [9, Sect. 2.3].
Define a group isomorphism

μ : 〈ι〉 →
〈
ι[n]〉 , ι �→ ι[n]

and note that this is a so-called c-isomorphism, see [16, Definitions 3.1 and 3.3]. By the
definition of the universal family we see that there is an isomorphism

(ι × μ(ι))∗OZ = (ι × ι[n])∗OZ ∼= OZ .

Thus OZ is μ-invariant, see [16, Definition 3.4], which implies

(ι[n])∗
(
FMOZ (−)

) ∼= FMOZ (ι∗(−))

by [16, Lemma 3.6 (iii)]. 
�
We can now prove the main result of this section:

Theorem 2.8 Assume (X , ι) is a K3 surface together with a fixed point free involution and
let n ∈ N be an odd number. If a torsion free sheaf E on X is simple, then the associated
tautological sheaf E [n] on X [n] descends to S[n] if and only if E descends to S.

Proof First we note that if E is simple then E [n] is also simple. Indeed by [5, Corollary 4.2
(11)] there is an isomorphism

EndX [n](E [n]) ∼= EndX (E) ⊕ H0(X , E∗) ⊗ H0(X , E).
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Since E is simple the second summand must vanish, since otherwise E would have an
endomorphism, which has image of rank one and thus is no homothety.

Proposition 2.1 shows

E [n] decends to S[n] ⇔ (ι[n])∗E [n] ∼= E [n].

By Lemma 2.7 we get

(ι[n])∗E [n] ∼= E [n] ⇔ (ι∗E)[n] ∼= E [n].

But [9, Theorem 1.2] shows

(ι∗E)[n] ∼= E [n] ⇔ ι∗E ∼= E .

Thus E [n] descends to S[n] if and only if E descends to S. 
�
The theorem shows that given a simple ι-invariant torsion free sheaf E on X then there is

F ∈ Coh(S) and G ∈ Coh(S[n]) such that

E ∼= π∗F as well as E [n] ∼= ρ∗G.

In fact, there is a close relationship between the sheaves F and G: as OZ is μ-invariant on
X × X [n], the structure sheafOZ is naturally μ-linearizable on Z, hence so isOZ as a sheaf
on X × X [n].

Therefore by [16, Proposition 4.2] the functor (−)[n] descends to a functor

(−)[n] : Db(S) → Db(S[n])

together with a commutative diagram

Db(S) Db
ι (X) Db(X)

Db(S[n]) Db
ι[n](X

[n]) Db(X [n])

π∗
∼=

(−)[n]

π∗

For

(−)
[n]
Z/2Z (−)[n]

ρ∗
∼=

ρ∗
For

(2)

Here For is the functor forgetting the linearizations.
That is if we start with a simple sheaf E on X , which descends to S i.e. E ∼= π∗F , then

E [n] descends to S[n] with E [n] ∼= ρ∗F[n].

Remark 2.9 AsOZ has two choices of a μ-linearization (differing by the non-trivial charac-
ter), there are actually two choices of the descent (−)[n] : Db(S) → Db(S[n]) (differing by
tensor product by ωS[n] ).

We end this section by giving a more explicit description of (−)[n] similar to (−)[n]. For
this recall that by [12, 2.4] we have

(−)[n] = FMOZ (−) = pX [n] ∗(p∗
X (−)),

where pX : Z → X and pX [n] : Z → X [n] are the projections.
The group G = Z/2Z acts freely on X via ι with quotient S, freely on X [n] via ι[n] with

quotient S[n] and thus also freely on X × X [n] via ι × ι[n]. As the universal family Z ↪→
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X × X [n] is G-invariant, we get a closed subvarietyZ/G ↪→ (X × X [n])/G. Furthermore the
projections pX and pX [n] are G-equivariant. By [17, Lemma 2.3.3] we get cartesian squares

X Z X [n]

S Z/G S[n]
π

pX pX [n]

α ρ

pS pS[n]
(3)

Theorem 2.10 The functor (−)[n] : Db(S) → Db(S[n]) has the following description:

(−)[n] = pS[n]∗(p∗
S(−)).

Proof From diagram (2) we see that ρ∗((−)[n]) = (π∗(−))[n]. Since ρ∗(ρ∗(−))G = id we
find

(−)[n] = ρ∗((π∗(−))[n])G = ρ∗(pX [n] ∗(p∗
X (π∗(−))))G

= pS[n]∗(α∗(α∗(p∗
S(−))))G = pS[n]∗(α∗(α∗(p∗

S(−)))G)

= pS[n]∗(p∗
S(−)).

Here we used the commutativity of diagram (3), the fact that G acts trivially on Z/G and
S[n] hence by [5, Equation (5)] we have (−)G pS[n]∗ = pS[n]∗(−)G and the G-equivariant
projection formula. 
�

3 Computation of certain extension spaces

In [18, Theorem 3.17] Krug gave explicit formulas for homological invariants of tautological
objects in Db(X [n]) in terms of those in Db(X), for example for E, F ∈ Db(X) there is an
isomorphism of graded vector spaces:

Ext∗X [n](E
[n], F [n]) ∼=Ext∗X (E, F) ⊗ Sn−1H∗(X ,OX )

⊕ Ext∗X (E,OX ) ⊗ Ext∗X (OX , F) ⊗ Sn−2H∗(X ,OX ).

See also [5, Sect. 4] for a considerably simplified proof of this formula.
In this section we want to find homological invariants of sheaves of the form G[n] on

S[n] in terms of the sheaf G on S. It is certainly possible to find a general formula similar
to Krug’s result, but to keep formulas and proofs short and readable and since it is enough
for our purposes, we will restrict our attention to Hom- and Ext1- spaces as well as sheaves
without higher cohomology. We will use the notations and results from [5].

We start by studying howKrug’s result behaves with respect to the group actions byZ/2Z

on X [n] via ι[n] and on X via ι. We will denote the various versions of the group G = Z/2Z

in the following by their nontrivial element, that is by ι or ι[n] etc.

Lemma 3.1 Assume (X , ι) is a K3 surface together with a fixed point free involution. For
ι-equivariant coherent sheaves E, F ∈ Cohι(X) there is an isomorphism of graded vector
spaces:

(
Ext∗X [n](E

[n], F [n])
)ι[n] ∼= (

Ext∗X (E, F) ⊗ Sn−1H∗(X ,OX )
)ι

⊕ (
Ext∗X (E,OX ) ⊗ Ext∗X (OX , F) ⊗ Sn−2H∗(X ,OX )

)ι
.
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Proof Note that on the right hand side of the formula we take invariants with respect to
the actions induced by the linearizations of E , F and OX . On the left hand side we take
invariants with respect to the induced linearizations on E [n] and F [n]. The existence of the
induced linearizations follows from the right-hand side of diagram (2).

By [5, Theorem 3.6] there is an isomorphism of functors

(−)[n] ∼= 
 ◦ C, (1)

where C : Coh(X) → CohSn (X
n) is the exact functor with

C(E) := IndSn
Sn−1

pr∗1E ∼=
n⊕

i=1

pr∗i E .

Furthermore 
 : Db
Sn

(Xn) → Db(X [n]) is the Fourier - Mukai transform with kernel the
structure sheaf of the isospectral Hilbert scheme I n X . Here the isosprectral Hilbert scheme
is the reduced fiber product I n X := (X [n] ×Sn X Xn)red of the quotient map ν : Xn → Sn X
to the symmetric power and the Hilbert - Chow morphism μ : X [n] → Sn X . This Fourier -
Mukai transform is an equivalence, see [5, Proposition 2.8] and satisfies

(
ι[n])∗ ◦ 
 = 
 ◦ (

ι×n)∗
(2)

see for example [16, Sect. 5.6]. Here ι×n is the induced involution on Xn .
We have the following chain of isomorphisms:

(
Ext∗X [n](E

[n], F [n])
)ι[n] ∼= (

Ext∗X [n](
(C(E)),
(C(F)))
)ι[n]

∼=
(
Ext∗Xn ,Sn

(C(E),C(F))
)ι×n

∼=
(
Ext∗Xn ,Sn−1

(pr∗1E, pr∗1F)
)ι×n

⊕
(
Ext∗Xn ,Sn−2

(pr∗1E, pr∗2F)
)ι×n

Here the first isomorphism is (1). The second isomorphism uses that 
 is an equivalence and
(2). The last isomorphism can be extracted from [5, Proposition 4.1].

We look at the first summand, the second working similarly. First note that

pr∗1E = E � OX � · · · � OX .

Applying the Künneth formula shows

Ext∗Xn ,Sn−1
(pr∗1E, pr∗1F) = Ext∗Xn ,Sn−1

(E � OX � · · · � OX , F � OX � · · · � OX )

∼= (
Ext∗X (E, F) ⊗ H∗(X ,OX )⊗n−1)Sn−1

But the group Z/2Z acts on sheaves of the form pr∗1E by definition of ι×n as
(
ι×n)∗

pr∗1E = ι∗E � ι∗OX � · · · � ι∗OX

that is simply by the pullback via ι on each factor in the box product. Since the action of
Z/2Z via ι×n and the Sn action commute we finally see that:

(
Ext∗Xn ,Sn−1

(pr∗1E, pr∗1F)
)ι×n ∼= (

Ext∗X (E, F) ⊗ Sn−1H∗(X ,OX )
)ι

. �


�
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Theorem 3.2 Let (X , ι) be a K3 surface together with a fixed point free involution and let
n ∈ N be an odd number. If G, H ∈ Coh(S) are such that π∗G and π∗H have no higher
cohomology (here S = X/ι is the associated Enriques surface), then

HomS[n](G[n], H[n]) ∼= HomS(G, H) and Ext1S[n](G[n], H[n]) ∼= Ext1S(G, H).

Proof Define E := π∗G and F := π∗H . It follows from diagram (2) that E [n] ∼= ρ∗G[n]
and F [n] ∼= ρ∗H[n]. We therefore have an isomorphism

Ext∗S[n](G[n], H[n]) ∼= (
Ext∗X [n](ρ

∗G[n], ρ∗H[n])
)ι[n] ∼=

(
Ext∗X [n](E

[n], F [n])
)ι[n]

.

By Lemma 3.1 the last space is isomorphic to
(
Ext∗X (E, F) ⊗ Sn−1H∗(X ,OX )

)ι ⊕ (
Ext∗X (E,OX ) ⊗ H∗(X , F) ⊗ Sn−2H∗(X ,OX )

)ι
.(3)

We begin investigating the first summand. The natural Z/2-linearization of OX induces
an Z/2-linearization on π∗OX ∼= OS ⊕ ωS given by the generator of Z/2 acting by +1
on OS and by −1 on ωS , see for example [19, Remarks on p.72]. Hence ι acts as +1 on
H0(X ,OX ) ∼= H0(S,OS) and by −1 on H2(X ,OX ) ∼= H2(S, ωS). Furthermore, by the
adjunction between π∗ and π∗ together with the projection formula, we get a splitting

Ext∗X (E, F) ∼= Ext∗S(G, H) ⊕ Ext∗S(G, H ⊗ ωS).

where ι acts as +1 on the first summand and by −1 on the second summand.
Thus writing H∗(X ,OX ) = C[t]/(t2) with deg(t) = 2 we get

Sn−1H∗(X ,OX ) = C[t]/(tn), deg(t) = 2

and ι acts as +1 on the constants and as −1 on t .
We can now compute the invariants and find

(
Ext∗S(G, H) ⊗ C[t]/(tn))ι = Ext∗S(G, H) ⊗ C[t2]/(tn), deg(t) = 2

as well as
(
Ext∗S(G, H ⊗ ωS) ⊗ C[t]/(tn))ι = Ext∗S(G, H ⊗ ωS) ⊗ tC[t2]/(tn), deg(t) = 2.

Looking at the components in degree zero and one sees
((
Ext∗X (E, F) ⊗ Sn−1H∗(X ,OX )

)ι
)

0
∼= HomS(G, H) as well as

((
Ext∗X (E, F) ⊗ Sn−1H∗(X ,OX )

)ι
)

1
∼= Ext1S(G, H).

Next we study the second summand in (3): since E and F have no higher cohomology
we have

Ext∗X (E,OX ) ⊗ H∗(X , F) ∼= Ext2X (E,OX ) ⊗ H0(X , F)

which already lives in degree two. As we also have

Sn−2H∗(X ,OX ) = C[t]/(tn−1), deg(t) = 2,

we see that the second summand in (3) can possibly have nontrivial components starting in
degrees at least two. Especially for k ∈ {0, 1} we find

((
Ext∗X (E,OX ) ⊗ H∗(X , E) ⊗ Sn−2H∗(X ,OX )

)ι
)

k
= 0.
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Therefore we must have the desired isomorphisms

HomS[n](G[n], H[n]) ∼= HomS(G, H) and Ext1S[n](G[n], H[n]) ∼= Ext1S(G, H). �


�

4 Stable sheaves on Enriquesmanifolds

In this section we want to study the slope stability of sheaves of the form F[n] on S[n]. For this
we first recall the following fact: let ϕ : Y → Z be an étale Galois cover with finite Galois
groupG then there is the following relationship between slopes with respect to h ∈ Amp(Z):

μϕ∗h(ϕ
∗F) = |G| μh(F). (4)

Using this fact we can prove the following lemma:

Lemma 4.1 Let E be a torsion free coherent sheaf on Y , slope stable with respect to ϕ∗h for
some h ∈ Amp(Z). If E descends to Z, that is E ∼= ϕ∗F, then F is slope stable with respect
to h.

Proof Let H ⊂ F be a subsheaf of F . Then ϕ∗H is a subsheaf of ϕ∗F ∼= E . Since E is
slope stable with respect to ϕ∗h we have

μϕ∗h(ϕ
∗H) < μϕ∗h(E) = μϕ∗h(ϕ

∗F)

which by (4) implies

μh(H) < μh(F).

Hence F is slope stable with respect to h. 
�
For the rest of this section we let (X , ι) be a K3 surface together with a fixed point free

involution ι. We denote the associated Enriques surface by S.
To prove the main theorem in this section we need the following isomorphism:

NS(X [n]) ∼= NS(X)n ⊕ Zδ.

Remark 4.2 The summand NS(X)n is constructed as follows: take d ∈ NS(X) and consider
the element

Dn :=
n∑

i=1

pr∗i d ∈ NS(Xn).

This element isSn-invariant and thus descends to the symmetric product Sn X by [20, Lemma
6.1]. More exactly, there is an element Dn ∈ NS(Sn X) such that ν∗Dn = Dn for the quotient
map ν : Xn → Sn X . Then we define dn := μ∗Dn , where μ : X [n] → Sn X is the Hilbert -
Chow morphism.

By [21, Sect. 3] the involution ι[n] acts on NS(X)n via:
(
ι[n])∗

(dn) = (
ι∗d

)
n . (5)

We are now ready to prove the main result of this section:
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Theorem 4.3 Assume E ∈ Coh(X) satisfies E∗∗
� OX , is torsion free and slope stable with

respect to h = π∗d for some d ∈ Amp(S). If E descends to S, that is E ∼= π∗F for some
F ∈ Coh(S), then the induced torsion free sheaf F[n] is slope stable with respect to some
ample divisor D on S[n].

Proof By the results of Stapleton in [6] and in Sect. 1 we know that for a given slope stable
torsion free sheaf E on X with E∗∗ 	= OX , the associated tautological sheaf E [n] is slope
stable on X [n].

By Theorem 2.8 the sheaf E [n] descends to S[n] if and only if E descends to S. In this
case E [n] ∼= ρ∗F[n]. Now by Theorem 4.1 the sheaf F[n] is slope stable with respect to some
D ∈ Amp(S[n]) if E [n] is slope stable with respect to H ∈ Amp(X [n]) of the form H = ρ∗D
for some D ∈ Amp(S[n]).

To see that we find such a D ∈ Amp(S[n]), we note that the divisor H is described quite
explicitly in [6, Proposition 4.8]: it is of the form

H = hn + εA

for an arbitrary ample divisor A on X [n] and ε sufficiently small. We choose A of the form
A = ρ∗C for some C ∈ Amp(S[n]). By (5) we also have

(
ι[n])∗

(hn) = (ι∗h)n = (
ι∗π∗d

)
n = (

π∗d
)
n = hn

which implies that we must have that hn = ρ∗B for some divisor B on S[n]. Putting both
facts together shows

H = ρ∗D for D = B + εC .

It remains to see that D is ample. But since ρ is finite and surjective D is ample if and only
if ρ∗D = H is ample, see [22, Proposition I.4.4]. 
�

In the rest of this section we want to study the moduli spaces containing the slope stable
sheaves F on S and F[n] on S[n]. For this we let v ∈ H∗

alg(S, Z) be a Mukai vector on S, that

is v = ch(F)
√
td(S) for some F ∈ Coh(S). Here

H∗
alg(S, Z) = H0(S, Z) ⊕ Num(S) ⊕ 1

2
ZξS .

where ξS denotes the fundamental class of S.
We begin with the following result:

Theorem 4.4 Let F be a torsion free coherent sheaf with F � F ⊗ ωS. If F is slope stable
with respect to d ∈ Amp(S), F∗∗

� OS and F∗∗
� ωS, then F[n] is a slope stable torsion

free coherent sheaf on S[n].

Proof The assumptions imply that F is simple and that HomS(F, F ⊗ ωS) = 0. Hence
E := π∗F is is simple due to the formula

HomX (E, E) ∼= HomS(F, F) ⊕ HomS(F, F ⊗ ωS).

By [11, Lemma 3.2.3], the sheaf E is polystable with respect to h = π∗d . Being simple and
polystable, E is stable.

Since E∗∗
� OX the sheaf E [n] is slope stable with respect to some H ∈ Amp(X [n]) and

descends to S[n] via E [n] ∼= ρ∗F[n]. Now Theorem 4.3 implies that F[n] is slope stable with
respect to some D ∈ Amp(S[n]) satisfying ρ∗D = H . 
�
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Remark 4.5 Every torsion free coherent sheaf F of odd rank satisfies the condition F �

F ⊗ ωS .

Assume from now on, that S is an unnodal Enriques surface, that is S contains no smooth
rational curves (that is no (−2)-curves). Note that in the moduli space of Enriques surfaces,
a very general element will be unnodal by [23, Corollary 5.7].

Denote the moduli space of slope semistable sheaves (with respect to d ∈ Amp(S)) with
Mukai vector v on S by MS,d(v). Assume that v is primitive and chosen such that every
slope semistable sheaf is slope stable and the rank of v is odd. Then for a generic choice of
d ∈ Amp(S) the moduli space MS,d(v) is smooth of dimension v2 + 1 and MS,d(v) 	= ∅ if
and only if v2 ≥ −1, see [3, Proposition 4.2, Theorem 4.6 (i)].

Furthermore in this situation there is a decomposition

MS,d(v) = MS,d(v, L1)
∐

MS,d(v, L2) (6)

where MS,d(v, Li ) contains those [E] ∈ MS,d(v) with det(E) = Li where L2 = L1 ⊗ ωS ,
that is c1 = c1(L1) = c1(L2) ∈ Num(S). By [3, Theorem 4.6.(ii)] for a general choice of
d ∈ Amp(S) the moduli space MS,d(v, L) is irreducible, that is a smooth projective variety.

We also assume that the Mukai vector is chosen such that for all [F] ∈ MS,d(v, L) the
sheaf F is locally free on S and does not have higher cohomology. Denote the Mukai vector
of the associated sheaf F[n] on S[n] by v[n]. If F[n] is slope stable with respect to some
D ∈ Amp(S[n]), denote its moduli space by MS[n],D(v[n]).

Proposition 4.6 If v 	= v(OS) = v(ωS) then there is a class D ∈ Amp(S[n]) such that F[n]
is slope stable with respect to D for all [F] ∈ MS,d(v, L).

Proof Since all sheaves classified byMS,d(v, L) are locally free on S, so are all the E = π∗F
on X . Proposition 1.3 shows that there is one H ∈ Amp(X [n]) such that all E [n] are slope
stable with respect to H since E � OX . But then by the construction of D ∈ Amp(S[n])with
H = ρ∗D in Theorem 4.3, it follows that there is one such desired D. 
�

We have the following corollary:

Corollary 4.7 If v 	= v(OS) = v(ωS), then functor (−)[n] induces a morphism

(−)[n] : MS,d(v, L) → MS[n],D(v[n]), [F] �→ [F[n]]
which identifiesMS,d(v, L) with a smooth connected component of MS[n],D(v[n]).

Proof We use the explicit description (−)[n] = pS[n]∗(p∗
S(−)) given by Theorem 2.10. Since

pX and pX [n] are flat we know by faithfully flat descent for π resp. ρ that the induced
projections pS and pS[n] are flat. Similarly since pX [n] is a finite morphism so is pS[n] .

Using these facts together with Theorem 4.4 and Proposition 4.6 shows that Krug’s argu-
ment in the proof of [12, Proposition 2.1] also works in this case. Hence [F] �→ [F[n]] is a
regular morphism.

Similar to Theorem 1.5 it follows from Theorem 3.2 that (−)[n] is injective on closed
points as HomS[n](F[n],G[n]) ∼= HomS(F,G). By Theorem 3.2 we also have

dim(Ext1S[n](F[n], F[n])) = dim(Ext1S(F, F)).

Both facts together imply that (−)[n] identifies MS,d(v, L) with a smooth connected compo-
nent of MS[n],D(v[n]). 
�
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Remark 4.8 There is a decomposition

MS[n],D(v[n]) = MS[n],D(v[n],L1)
∐

MS[n],D(v[n],L2)

analogous to (6) and, depending on the choice of (−)[n] (see Remark 2.9), MS,d(v, L) is
mapped to a component of MS[n],D(v[n],L1) or a component of MS[n],D(v[n],L2).

Denote the Mukai vector of E = π∗F on X by w, that is w = π∗v. In the rest of this
section we want to study the fixed loci of ι∗ in MX ,h(w) and

(
ι[n])∗

inMX [n],H (w[n]). In our
situation we have a well defined morphism

π∗ : MS,d(v) → MX ,h(w), F �→ π∗F

which has image in Fix(ι∗). More exactly the image of π∗ is the fixed locus of ι∗ and the
morphism restricts to an étale 2:1-morphism

π∗ : MS,d(v) → Fix(ι∗).

Furthermore Fix(ι∗) is a Lagrangian subscheme in MX ,h(w), see for example [2, Theorem
(1)] or [24, Theorem 2.3 (c)].

As themorphismπ∗ : MS,d(v) → Fix(ι∗) is an étale 2:1-morphism, the decomposition (6)
shows that π∗ induces an isomorphism MS,d(v, L) ∼= Fix(ι∗). As MS,d(v, L) is irreducible,
so is Fix(ι∗).

Theorem 4.9 The fixed locus Fix(ι∗) is a smooth projective variety. The morphism (−)[n] in
Theorem 1.5 restricts to a morphism

(−)[n] : Fix(ι∗) → Fix(
(
ι[n])∗

)

which identifies Fix(ι∗) with a smooth connected component of Fix(
(
ι[n])∗

).

Proof The fixed locus Fix(ι∗) is smooth and projective since MX ,h(w) is smooth and pro-
jective. Since it is also irreducible, it is a smooth projective variety.

By Lemma 2.7 the morphism (−)[n] restricts to a morphism between the fixed loci. Since
(−)[n] is injective on closed points, so is its restriction to Fix(ι∗).

To identify Fix(ι∗) as a smooth connected component it is therefore enough to prove

dim
(
T[E]Fix(ι∗)

) = dim
(
T[E [n]]Fix(

(
ι[n])∗

)
)

But a general fact says that the tangent space of the fixed locus satisfies

Ty
(
YG

) ∼= (TyY )G ,

see for example [25, Proposition 3.2]. As we have E ∼= π∗F for some sheaf F on S, this
shows

T[E]Fix(ι∗) ∼= (
T[E]MX ,h(w)

)ι ∼= (
Ext1X (E, E)

)ι ∼= Ext1S(F, F).

A similar computation shows

T[E [n]]Fix(
(
ι[n])∗

) ∼=
(
Ext1X [n](E

[n], E [n])
)ι[n] ∼= Ext1S[n](F[n], F[n]) ∼= Ext1S(F, F)

by Theorem 3.2 since E [n] ∼= ρ∗F[n]. 
�
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Corollary 4.10 The diagram (2) induces the commutative diagram:

Fix(ι∗) Fix(
(
ι[n])∗

)

MS,d(v, L) MS[n],D(v[n])

(−)[n]

(−)[n]

π∗ ρ∗ .
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