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Abstract 
This paper presents a novel topology for gridshells symmetric to the principal stress directions. This 
diagonal layout (D-Net) allows to distribute forces evenly across neighbouring members and create 
equilibrium states for compression- (or tension-) only gridshells, through its orthotropic behaviour. We 
derive a formula for the D-Net directions and present a computational workflow to calculate their paths 
on NURBS surfaces under given loads and supports. The workflow is conducted using isogeometric 
analysis (IGA) that continuously evaluates the stress field over the smooth geometry. In this initial 
investigation, we focus on rotational surfaces for compression-only and mixed (compression and 
tension) gridshells. The results are verified with a series of archetypical design shapes and Finite 
Element analysis. We compare the structural behaviour of three gridshells, equilateral, principal-stress 
and D-Net, evaluating the holistic load-bearing behaviour under four load-cases. Finally, we discuss the 
practical challenges for D-Net design and its potential for architecture. The research gives a holistic 
assessment of theory, design and structural behaviour, and opens the doors to a novel topology for 
gridshell design, that naturally follows the flow of forces. 

Keywords: Gridshells, Isogeometric Analysis, Topology Optimization, Force Equilibrium, Principal Stress 
Directions 

1. Introduction 
It is widely accepted in the architectural, engineering and the applied-geometry community that the 
principal stress (PS) vector fields encode the optimal topology for gridshells (Michell 1904; Mitchell 
2013; Tam and Mueller 2015). Such trajectories indicate the path of maximum/minimum in-plane 
stresses (tension and compression) and vanishing shear stress. A quadrilateral gird structure designed 
along these vector fields will be at equilibrium, i.e. its quads won’t tend to skew (Michalatos and Kaijima 
2014; Pellis and Pottmann 2018).  

When used for gridshell construction, we can expect efficient use of material along the shortest path of 
loads to the supports, and almost no stress of the diagonal bracing (for the particular load case). The 
paths of principal stress have inspired architectural design from the ribbed plates of the Gatti Wool Mill 
1951 (following the principal bending moments), to the gridshell designs of Brinebath in Bad Dürrheim 
1987 or the CIAB Pavilion 2013 (approximating the principal stress trajectories) (Figure 1).  
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Figure 1: Architectural designs using the Principal Stress Directions.  
A: The concrete ribbed floor slabs of Gatti Wool Mill, 1951, by Pier Luigi Nervi following the principal bending moments.  
B: The hanging timber gridshell of the Solemar Brinebath in Bad Duerrheim, 1987.  
C: The multi-layered system of steel pipes of the CIAB Pavilion, Beijing, 2013 by Zaha Hadid Architects. 
 
There are, however, constructive disadvantages to a PS layout. An orientation of structural elements 
along the maximal and minimal stress leads to a heterogeneous distribution of stress, in which the 
member taking the maximal compression is prone to buckling, while the secondary direction is not 
utilized to its full potential. This is usually resolved by creating a hierarchy of members (Figure 1, B). 

Many gridshells profit from a homogenous layout with standardized profiles, not only for its aesthetic 
value of omitting a hierarchy of elements but also for consideration of the fabrication and construction 
process: In the case of the strained timber gridshells of Frei Otto (Figure 3, A) it was of utter importance, 
that all members were equally elastic to be bent into their funicular shapes (Happold and Liddell 1975). 
This posed the question of alternative gridshell topologies, which allow for a homogenous distribution 
of stress in neighbouring members. 

 

 
Figure 2: Hanging-chain models of the Institute for Lightweight Structures (IL).  
A: An equilateral grid under self-weight, will find an equilibrium shape. Diagonally oriented meshes exhibit a gradual 
elongation towards the supports. B: This behaviour was used to visualize the proportion of meridian and ring stresses (Hennicke 
1974). C/D: The analytical model of Pantheon in Rome (Rainer Barthel). 

https://www.zaha-hadid.com/
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Frei Otto and his team systematically investigated funicular equilateral grids, using physical (and digital) 
hanging chain models to find their equilibrium shape and topology (Figure 2, A). These experiments 
created a world of design solutions (Hennicke 1974). The IL team also discovered a particular effect to 
analyse domes and shells that is taking advantage of the kinematic behaviour of diamond quads, acting 
as a local mechanism and naturally taking on the equilibrium shape of forces applied to their four nodes. 
Inserting a diamond mesh (diagonal to the principal stress directions) at each node of a regular grid (B) 
beautifully visualize the ratio of meridian and ring forces. For a semi-sphere, such as the analytical 
model of the Pantheon (C, D), the diamonds show the gradual decrease of ring forces from the pol 
upwards. Above 52°, all diamond meshes are closed. 

We are interested in the design potential of this particular effect. We propose a novel gridshell topology 
of diagonal nets (D-Nets) that follow a path symmetric to the principal stress directions. Such a topology 
does not only distribute stress evenly across neighbouring members, its orthotropic behaviour allows 
for equilibrium states for compression/tension-only structures with minimal need for bracing. Additional 
D-Nets visualize the ratio of forces and create a natural flow of members towards the supports. 

 

Figure 3: Gridshells that display a gradual incline of diagonal members, naturally adjusting to the stress caused by dead-load. 
A: The experimental timber gridshell in Essen by Frei Otto 1976. B:  King’s Cross Station Extension in London, 2013. C: 
Asymptotic Canopy, Intergroup Hotel in Ingolstadt, 2020 (Schling and Schikore 2020). 

In this paper, we first recapitulate the fundamentals of stress distribution on smooth shells using Mohr’s 
circle. We highlight its relevance for the design and construction of quadrilateral gridshells, and 
introduce the concept of orthotropic behaviour of quads. We then deduce a simple formula to calculate 
the direction of principal-symmetric, diagonal nets, and introduce a novel analytic method, using IGA 
to iteratively find the diagonal equilibrium paths for D-Nets based on the local direction and ratio of 
principal stresses. This method allows the architect to design a shell first (by specifying surface, loads 
and supports), and then generate a diagonal network that visualizes the flow and ratio of forces.  

We verify our new method through modelling and assessing a series of rotational surfaces. We 
specifically compare the structural behaviour of three gridshell domes, on equilateral, one principal-
stress, and one D-Net, under varying loads, and evaluate their load-path and eigenforms. Finally, we 
give an outlook of the challenges and potentials of D-Net design. 

2. Fundamentals 
Our research combines two fundamental principles: the orthotropic kinematic behaviour of quads, and 
the principal stresses trajectories, illustrated by Mohr’s Circle. We are particularly interested in the 
relationship of principal stress to a diagonal quad layout and its potential to alternative equilibrium 
states. 
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2.1 Orthotropic kinematic behaviour of quads 
A quad itself is kinematic, considering it is hinged at the nodes and able to transmit tension and 
compression. It is statically undetermined and creates a local kinematic mechanism with orthotropic 
behaviour (Figure 4, B1): If a rhombus is compressed in the vertical direction, it will naturally expand 
in the horizontal direction, and vice versa. The relationship of the vertical and horizontal forces are 
dependent on the particular proportion angle of the diamond. We take advantage of this behaviour, by 
aligning a diamond-grid symmetric to the principal stress trajectories, so that principal stress 1 and 2 are 
at equilibrium at any node. 

2.2 Mohr’s circle 
The principal stress trajectories display the natural flow of forces through any structural element, such 
as a continuous shell, for a particular load and support scenario. They are always perpendicular to each 
other, indicating the direction and value of the maximum and minimum stress at any point on this 
surface. Mohr’s circle offers a graphical representation of stress components based on the two principal 
trajectories (Figure 5, A). The two principal stress 𝑛𝑛1 and 𝑛𝑛2 are plotted along a horizontal axis σ, and 
thus define a circle C with centre P at their midpoint. This circle graphically provides all other stresses 
σ and shear stresses τ based on their deviation angle µ from the first principal trajectory 𝑛𝑛1. The 
maximum shear occurs at 𝜇𝜇 = 45° (located at the highest and lowest points on the circle, 2𝜇𝜇 = 90°). 
The shear stress vanishes at the PS-directions, 𝜇𝜇 = 0°. 

The PS directions can be applied to the structural layout of gridshells, considering a homogeneous self-
weight across the shell. In theory, if all members are aligned with the principal stress trajectories, the 
grid will not suffer distortion and remain stable with minimal bracing.  

In practice, loads are variable and so are the principal stresses. Any gridshell requires a minimum 
amount of bracing against asymmetric loads like wind or snow. Nonetheless, minimizing the shear stress 
in a gridshell allows the designer to use fewer bracing elements of minimal thickness, but also 
significantly reduces the stress in the remaining grid, as loads are not carried back and forth through the 
structure. 

3. Methods 
In the following section, we first deduce a formula for D-Net trajectories. We then present an 
analytical method using IGA, to compute the principal stress on a previously defined surface and 
iteratively draw the D-Net paths based on our formula. (A simple funicular method of form-finding 
rotational diagonal hanging nets was omitted from this paper to meet the 12 page maximum). 

3.1 Formula for D-Net trajectories 
To find the trajectories of D-Nets, we use a rectangular portion of the continuous shell of size x × y that 
is aligned with the principle stress directions. We overlay this portion with one mesh of a respective 
quadrilateral grid (Figure 4) and assume that this grid is subject to the same surface loads, but 
concentrated in its nodes. From this diagram we deduce two1 orientations for an equilibrium state:  

A: The grid is aligned with the principal stress trajectories. The resultant forces are simple. The 
vertical member force FA will carry the full load N1 [kN], which is the resultant of the membrane force 
n1 [kN/m]  of the respective element width x. FB will behave just the same, carrying the full-length y of 
n2, resulting in a force equal to N2. As long as its orientation remains aligned to the principal stress 
directions, this setup is always at equilibrium, independently of the format (ratio of height to width) of 
each mesh, nor of the sign of n1 and n2.  

                                                      
1 Our investigations suggest that we can determine a state of equilibrium for any arbitrary alignment of the mesh 
towards the PC direction. This general case will be subject of a separate publication. 
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Figure 4: Orthotropic behaviour of a quadrilateral grid with point or surface loads. The grid is (A) aligned with the principal 
stress directions or (B) symmetric to the principal stress direction. For B an equilibrium can only be reached if  N1 and N2 are 
of the same sign. We show the case for point loads (B1) and surface loads (B2) to illustrate the effect of surface area (x and y). 

B: The edges are symmetric to the principal stress trajectories.  In this case, there is only one angle 
𝜇𝜇 that results in an equilibrium configuration. That is if the inclination of grid members corresponds to 
the ratio of principal stress-forces N1 and N2. 

For a point loads (B1) this can simply be determined trigonometrically showing the relationship 

 𝐹𝐹𝐴𝐴 =  �𝑁𝑁12 + 𝑁𝑁22  (1) 

 tan(𝜇𝜇)  =  𝑁𝑁2 𝑁𝑁1⁄ . (2) 

Solving for µ results in:  𝜇𝜇 =  arctan(𝑁𝑁2 𝑁𝑁1⁄ ) (3) 

  For surface loads (B2), N1 and N2 are dependent on x and y, and are substituted: 

 𝑁𝑁1  =  𝑥𝑥 𝑛𝑛1             and                 𝑁𝑁2  =  𝑦𝑦 𝑛𝑛2 (4) 

Therefore 𝐹𝐹𝐴𝐴 =  �(𝑥𝑥𝑛𝑛1)2 + (𝑦𝑦𝑛𝑛2)2 (5) 

And tan(𝜇𝜇)  =  cot(𝜇𝜇)(𝑛𝑛2 𝑛𝑛1⁄ ) (6) 

 tan(𝜇𝜇)2  =  (𝑛𝑛2 𝑛𝑛1⁄ ) (7) 

 𝜇𝜇 =  arctan ��𝑛𝑛2 𝑛𝑛1⁄ � (8) 

Given the principal stress values, we can deduce 𝜇𝜇 at any location and find the appropriate direction of 
a diagonal, principal symmetric path which will form an equilibrium layout, a D-Net. This setup is only 
possible for compression/tension-only shells, on which n1 and n2 are of the same sign, as there cannot 
be a negative square root in equation 8. This value for 𝜇𝜇 can be determined graphically on Mohr’s circle 
of stress (Figure 5, B): By drawing the tangent line onto the circle from the origin, we find the ratio of 
equation (8). This is only possible if the circle is either left or right of the 𝜏𝜏-axis, in other words, if n1 
and n2 are both positive, or both negative. This correlation was found through the study of (Lisle and 
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Robinson 1995), who have shown a similar graphic derivation of the Gaussian curvature on a respective 
Mohr’s circle of curvature.  

 

       
Figure 5: Mohr’s circle:  
A) Standard depiction displaying the relationship of stresses σ and τ in respect to the deviation µ to principal stress 
trajectories. The maximum shear occurs at 𝜇𝜇 = 45°.  
B) The D-Net directions of principal symmetric equilibrium can be determined graphically using Mohr’s circle. By drawing 
the tangent from the origin of the system, we find 2µ on the circle.  

3.2 D-Net Pathfinder using IGA 
Our objective is to create an efficient digital workflow to draw the path of D-Nets on any design surface. 
The method is accurate enough to offer significant effects on structural performance. We use 
isogeometric analysis (Kiendl 2011), to allow for a continuous analysis at any point on the surface.  

We use Kiwi!3D (Bauer and Längst 2019) for Rhinoceros 3D and Grasshopper, to implement the IGA 
on a given NURBS surface. We specify thickness, material properties and supports, and run a linear 
structural analysis that provides us with a displacement field. Kiwi!3D provides us with the principal 
stresses and directions at certain evaluation points. To trace the D-Net paths, we must be able to calculate 
the principal stresses at arbitrary points on the surface efficiently. Therefore we compute them directly 
from the deformations. 

Given the undeformed and deformed shell geometry, we can calculate the stresses at any point on the 
surface. Therefore we compute the basis vectors 𝐴𝐴1,𝐴𝐴2 in the undeformed and 𝑎𝑎1,𝑎𝑎2 in the deformed 
configuration. The components of the stress tensor for the linear case are given by 

S = �
𝑆𝑆1
𝑆𝑆2
𝑆𝑆12

� = D ⋅ T ⋅ �
𝑎𝑎1 ⋅ 𝐴𝐴1 − 𝐴𝐴1 ⋅ 𝐴𝐴1
𝑎𝑎2 ⋅ 𝐴𝐴2 − 𝐴𝐴2 ⋅ 𝐴𝐴2

1
2� (𝑎𝑎1 ⋅ 𝐴𝐴2 + 𝑎𝑎2 ⋅ 𝐴𝐴1)− 𝐴𝐴1 ⋅ 𝐴𝐴2

�. 

𝑆𝑆1 is the normal stress in the direction of the first surface parameter, 𝑆𝑆2 the normal stress orthogonal to 
it and 𝑆𝑆12 the shear stress. T is the transformation matrix from the curvilinear to the Cartesian coordinate 
system of the surface. D is the stiffness of the material (Oberbichler et al. 2021). Since we are only 
interested in the direction and the ratio of the principal stresses, the identity matrix can be used for 
simplification. 

The principal stresses 𝑛𝑛1, 𝑛𝑛2 and the corresponding directions 𝑑𝑑1, 𝑑𝑑2 are given by the eigenvalues and 
eigenvectors of the stress tensor. This way we can compute the stresses at any point on the surface and 
use this information to trace a specific stress path. 

Pathfinder. The pathfinder is integrated with the Plugin, Bowerbird (Oberbichler 2019). It is initiated 
through a starting point as UV coordinate on the surface and uses formula 8 to calculate the deviation 
angle 𝜇𝜇 in respect to the principal stress directions. By iteratively walking along the directions and 
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calculating a new 𝜇𝜇 at every step, we can draw an almost smooth D-path on any shell surface. The 
algorithm uses the Runge-Kutta method to average out inaccuracies due to step size (Schling et al. 2017).  

Negative stress ratio. If the ratio 𝑛𝑛1 𝑛𝑛2⁄  becomes negative, in other words, the two principal stresses 
are of opposite signs, the D-Net path naturally converges with the principal stress direction. This means, 
the D-path is diagonal and principal-symmetric in regions of pure compression, and parallel, principal-
aligned in regions of compression and tension. In the latter, additional horizontal members have to be 
integrated at regular intervals to account for the horizontal stress 𝑛𝑛2 and complete the quadrilateral 
network. 

 
Figure 6: Computational workflow to generate D-Nets on rotational surfaces: A) We use isogeometric analysis (IGA,  Kiwi3D!) 
to calculate the undeformed and deformed surface of the Shell and calculate the principal stress trajectories at any point. B) 
Our pathfinder (Bowerbird) iteratively draws a D-Curve along the surface, calculating the deviation angle at every step based 
on the principal stress vectors. C) We generate a discrete radial network with additional rings in areas of negative stress ratio. 

Simplifications. Some practical simplifications are implemented to allow for an efficient workflow 
compatible with funicular form-finding and structural analysis: 

- For rotational surfaces, each network is modelled with a ring at the top pole to avoid an 
infinitely dense layout. The loads are based on the complete self-weight of the shell and are 
distributed to the ring to closely resemble the load condition that originated the path.  

- The IGA uses generic loads and properties, such as a poison ratio of zero, to find the accurate 
deformation behaviour, but not the factual numeric deflection of the shell. We are analysing 
the stress field of a deformed surface. Nonetheless, our pathfinder is executed on the un-
deformed geometry. 

- The smooth D-Net path is modelled as discrete polyline from node to node, to allow for 
verification of forces in our latter FE-Analysis without considering bending moments within 
the grid members.  

4. Results and Comparison 
To test the method, we first qualitatively evaluate the layout of rotational D-Nets and then compare the 
load-bearing behaviour of a D-Net Dome with other topologies using FE-Analysis. We conclude with 
an outlook on the design process. 

4.1 Layout and Forces 
We begin by modelling archetypical, rotational surfaces whose stress distributions are well known: a 
dome, a paraboloid, a cone, a cylinder and a hyperboloid (Figure 7). This allows us to assess typical 
effects and verify qualitatively if the layout shows the structural behaviour of meridian and ring forces.  

Typically, D-Nets create a gradual shift of inclination towards the supports, where meridian compression 
exceeds ring compression. This effect is especially visible in the inclined cylinder (D) and at the 
paraboloid (B), which create low ring forces, and less pronounced at the cone (C) and hyperboloid (E), 
which create high compression at all heights.  
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Just like the analytical model of the Pantheon (Figure 2, C,D), the semi-spherical dome shows a 
transition from compression to tension ring at approx. 52° from the pole. Here the diagonal layout 
naturally transitions into the meridian direction and is replaced by a PC-layout, with additional 
horizontal rings. As expected, the opposite behaviour is exhibited by the hyperboloid, which displays 
tension on the upper three rings that are leaning outward. The typical diagonal layout appears once the 
ring stress becomes negative (compression). 

 
Figure 7: Examples of rotational D-Nets at equilibrium displaying the proportion of meridian and ring forces: A semi-spherical 
layout (A) is only possible above 52°, the paraboloid (B), cone (C) and inclined cylinder (D) offer complete D-Nets of pure 
compression. The Hyperboloid (E) exhibits tension rings along the top, thus pushing the D-Net to the lower half. 

4.2 Structural Comparison 
As a next step, we systematically compare three grid-typologies (Figure 8): A) Equilateral, B) PS-
aligned and C) D-Net, to gain insight into their structural characteristics. A numerical simulation is 
performed to first evaluate the distribution of normal forces for four load-cases, and then conduct a 
modal analysis and derive tendencies of deformation. 

 
Figure 8: Spherical Gridhshells: A) Equilateral grid based on the Gridshell in Neckarsulm, B) PS- aligned network based on 
the Schwedler-Cupola, C) D-Net – Gridshell created for a similar spherical Surface with a uniform surface load. We show here 
a rendering of the possible interior. 

As base surface, we choose a shallow spherical dome of radius 8 m, base diameter 12 m and height 2.9 
m (within the 52° compression zone). 

The equilateral network (A) is based on the swimming pool of Neckarsulm. The distance between the 
grid members is set to 0.7 m, resulting in a raster of approx. 20 x 20 meshes. The PS-network (B) is 
based on the Schwedler Cupola and divided into 24 meridian curves and 7 rings. The D-net topology 
(C) corresponds to a vertical uniform surface load and is modelled, with 24 base points resulting in 48 
diagonal curves and 15 rings.  
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The networks are modelled discretely and each section is represented by a pin-jointed beam to exclude 
any bending and shear forces. We apply steel profiles, diagonal bracing, and ring supports to all 
networks. The section area of the profiles is constant within each grid structure but adjusted, to equalize 
the total mass of each gridshell (𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2300 𝑘𝑘𝑘𝑘 ;  𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 6.0 – 8.7 cm2). The bracing is 
modelled using steel cables (tension only, Diameter = 10 mm). The Schwedler-Cupola and D-Net 
Structure have a bending stiff oculus of 1.75m diameter at the pole. 

To simulate a realistic structural scenario, we define the following four load cases:  

• G1: self-weight of the structural members (in the sum equal for all structures) 
• G2: self-weight of cladding (surface load - 0.5 kN/m2)  
• W: Wind acting normal to the surface. These loads vary in each quarter from 0.4 kN/m2 

(downwind, pressure) to 0.8 kN/m2 (transverse, suction) 
• G+W: Load combination of all three scenarios (G1 + G2 + W, without safety factors) 

TRA. We use the TRA*-value (inspired by the concept of force-path IL23) to quantify the load-
transportation as the sum of normal forces through the structure. A low TRA*-value indicates an 
efficient load transfer. 

𝑇𝑇𝑇𝑇𝐴𝐴∗ = ∫ 𝑁𝑁 𝑑𝑑𝑑𝑑𝐶𝐶   

The value is particularly suitable for this comparison because it is independent of grid density and 
excludes bending and shear forces, which are not relevant here. For each topology and load-case, we 
compute the TRA* and separate it into main structure and bracing (Figure 9, B).  Together with the 
load-paths analysis (Figure 9 A) (showing the compressive and tensile forces in each member), we can 
make meaningful observations on the load-bearing behaviour: 

The equilateral grid (Neckarsulm) is dependent on its bracing in any load scenario. Grid-elements that 
are aligned with the PS directions (meridian curves) tend to attract loads. This is especially visible in 
load cases G1 and G2 close to the supports. This network shows the highest 𝑇𝑇𝑇𝑇𝐴𝐴∗ value for load-case 
G+W, clearly exceeding both The Schwedler-Cupola and the D-Net. 

As expected, the Schwedler dome, generally shows very low TRA* values, as structural members are 
aligned with the principal stress directions (for G1 and G2) and efficiently transfer loads into the 
supports. As a result, the meridian family of beams is stressed significantly higher than the latitudinal 
members (ring-direction). The bracing of the Schwedler-dome is only activated when asymmetric loads 
are acting (W). In this case the (𝑇𝑇𝑇𝑇𝐴𝐴∗) is higher than both equilateral and D-Net. 

The D-net was generated for a uniform surface load. This load-case (G2) validates our hypothesis: No 
bracing members are activated, allowing for a comparatively low load transportation value 𝑇𝑇𝑇𝑇𝐴𝐴∗. Loads 
are distributed symmetrically among structural members (for G1 and G2) leading to a homogeneous 
distribution of forces and lower local maxima when compared to the Schwedler system. For any 
deviation from a homogeneous surface load, the bracing is activated. This is also visible for self-weight 
only (G1), where the accumulation of structural members at the pole, lead to high tensile ring stress in 
the lower three rings. The D-Net structure performs especially well under wind load, where the diagonal 
layout offers efficient bracing.  
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Figure 9: Results of the network-comparison: a) Normal forces, b) Load-path summation  
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Finally, we compute the first eigenmodes for all three structures based on self-weight and cladding (G1 
+ G2) (Figure 10). In general, all modes decisively involve a significant elongation (or fallout) of 
bracing, which allow a kinematic movement of the primary grid members. This mechanical behaviour 
is related to the ratio of stiffness (soft bracing and stiff grid) of our systems. 

 
Figure 10: 1st Eigenmode and Eigenfrequencies of the equilateral network (A), the PS-aligned network (B) and the D-net (C). 

The first eigenmode of the equilateral grid (A) creates a set of four hills and valleys aligned with the 
bracing direction (diagonal). This model shows the highest frequency compared to the other structures, 
implying a high stiffness. The PS-aligned structure (Schwedler dome) has an asymmetric first global 
eigenmode, with a distinct tilt of the upper ring. The D-Net deforms rotationally symmetric. The main 
deformation occurs in the lower area, where the rhombi show an acute angle and the bracing becomes 
ineffective. The D-Net how the lowest stiffness with a frequency of 11.7 Hz. 

4.3 Design process 
The design process, from NURBS surface to architectural grid, is not straightforward. The D-Net paths, 
their smoothness and regularity, are highly dependent on the load-bearing behaviour of the continuous 
shell. So far we have taken advantage of the rotational symmetry, as here a single D-Net path can be 
rotated and mirrored to generate a homogenous grid. On a freeform surface, the modelling process is 
more complex and must include preliminary pathfinding and post-rationalization, to include 
singularities and regions of positive stress ratio.  

5. Conclusion 
This paper presents a novel method to design equilibrium gridshells (D-Nets) symmetric to the principal 
stress trajectories, on any design surface. We introduce a mathematical formula for an orthotropic 
equilibrium of diagonal quads and implement it within a digital pathfinder on smooth NURBS surfaces 
using isogeometric analysis. The results are verified qualitatively along several rotational surfaces and 
quantitatively by comparing spherical gridshells of equilateral-,  PS- and  D-Net layout. The results 
display the potential of this novel topology, to visualize the meridian and ring forces, distribute forces 
equally across neighbouring members and create equilibrium states for a homogenous surface load, with 
minimal stress in the grid bracing. 

We intend to intensify this research by implementing the digital workflow and methodology for freeform 
surfaces. We see great potential for the design and construction of elastic gridshells, with standardized 
structural elements. We further aim to develop appropriate design and construction solutions that reflect 
the governing load scenario. It is our goal to additionally propose D-Net solutions in regions of negative 
stress ratios, looking at both theoretical derivation and architectural construction.  

Finally, we are also looking at discrete models in analogy to so-called S-nets (Schling et al. 2018) using 
the Airy stress surface to optimize quadrilateral meshes (Pellis and Pottmann 2018).  
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