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Optical beam splitters are essential for classical and quan-
tum photonic on-chip systems. In integrated optical technol-
ogy, a beam splitter can be implemented as a beam coupler
with two input and two output ports. The output phases are
constrained by the conservation of energy. In lossless beam
splitters, the phase shift between the output fields is π and
zero for excitation from the first and second input ports,
respectively. Therefore, for excitation from both inputs, the
phase between the output fields, defined as beam splitter
phase (BSP), is π. The BSP leads to several phenomena, such
as the quantum interference between two photons, known
as the Hong–Ou–Mandel effect. By introducing losses, BSP
values different than π become theoretically possible, but
the design of 2× 2 beam couplers with an arbitrary phase is
elusive in integrated optics. Inspired by the growing inter-
est on fundamental limits in electromagnetics and inverse
design, here we explore the theoretical limits of symmet-
rical integrated beam splitters with an arbitrary BSP via
adjoint-based topology optimization. Optimized 2D designs
accounting for fabrication constraints are obtained for sev-
eral combinations of loss and phase within the theoretical
design space. Interestingly, the algorithm does not converge
for objectives outside of the theoretical limits. Designs of
beam splitters with arbitrary phase may find use in inte-
grated optics for quantum information processing.
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Introduction. Beam splitters are used to divide an input quan-
tum state of single photons, atoms, or other quantum particles
into numerous paths, which can then be recombined to produce
interference patterns and create projection measurements to
study various non-classical phenomena, like quantum entangle-
ment. Interference between two or more photons is administered
for quantum sensing [1] and metrology devices [2] and quantum
information protocols, such as quantum teleportation, quantum

key distribution, and quantum computation [3,4]. Specifically,
linear optics quantum computation employs beam splitters
along with phase shifters and photodetectors for the interac-
tion between two photons via the Hong–Ou–Mandel (HOM)
effect [5]. The phases at the output ports of a beam splitter affect
the quantum interference between two photons. Conventional
symmetrical beam splitters are lossless; the two output fields
receive a relative phase flip for insertion at the first input and
no relative phase flip for insertion at the second input. Hence,
for both operation modes, the phase between the output fields,
here referred to as the beam splitter phase (BSP), always plays
out to be π. In frequency domain quantum interference, a HOM
dip was observed when the BSP is π and a HOM peak appeared
for BSP of 0 [6], which has no equivalence in conventional
designs. In general, a specific phase adjustment is not possible
in lossless beam splitters, and losses are required to enable phase
adjustment within theoretical limits.

In integrated optical technology, beam splitters are imple-
mented as 2 × 2 beam couplers (in this Letter, we treat beam
splitter and beam coupler as synonyms), and have been used
in integrated quantum logic gates, quantum information pro-
cessing, and quantum computing [7]. However, integrated beam
couplers with arbitrary phases are challenging to engineer with
direct design techniques since only a few degrees of freedom
for design are explored. Topology optimization is a powerful
inverse design technique that minimizes or maximizes a target
objective by (re-)distributing a given material in a design area
[8]. Topology optimization can produce non-intuitive designs by
addressing each pixel of the design space based on an efficient
calculation of the gradient via the adjoint method [9]. Hence, it
can provide integrated devices with the desired functionalities
while maintaining a smaller footprint. In the realm of integrated
optics, this method has been employed to design vortex beam
emitters [10], single-photon sources [11], (de-)multiplexers
[12,13], nonlinear optical components [14,15], high-power sig-
nal routers [16], mode and polarization splitters/converters [17],
optical analog computing [18], and multi-layer grating couplers
[19], also with the possibility of including foundry fabrication
contraints [20,21]. Nevertheless, the use of this method in the
field of integrated quantum technologies is in its nascent stage,
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Fig. 1. (a) Schematic of a 2 × 2 integrated beam coupler and (b)
phase range of the BSP (i.e., ∆α) for varying transmittances a2 and
b2 [Eq. (3)].

with works on miniaturized optical quantum gates [22] and
material platforms for quantum technologies [23].

In this Letter, we exploit topology optimization to inverse
design symmetrical beam couplers with arbitrary loss–phase
settings. While optimization for arbitrary phase was reported in
1 × 2 beam splitters [24], inverse design targeting arbitrary BSP
in symmetrical 2 × 2 beam couplers is to date unreported. We
demonstrate such designs for several combinations of loss–phase
parameters within the theoretical limits while also satisfying
typical fabrication constraints. There is a growing interest on
physical limits in electromagnetism [25] and computational
bounds for photonics inverse design [26]. In this context, lossy
beam couplers with controllable phase are of broad interest [27]
as they may expand the functionalities of integrated devices for
quantum information processing and photonic quantum gates.

Fundamental limits of a beam splitter. The general scheme
for a two-port integrated beam splitter in a linear implementa-
tion is shown in Fig. 1(a), where E1 and E2 are the electric fields
associated with the beams at the input ports I1 and I2, respec-
tively. Likewise, E′

1 and E′
2 are the electric fields associated with

the beams at the output ports O1 and O2, respectively. The beam
splitter matrix for this implementation is[︃

E′
1

E′
2

]︃
=

[︃
a1 b2eiθ2

b1eiθ1 a2

]︃ [︃
E1

E2

]︃
, (1)

where a1 and b1 (a2 and b2) are the amplitudes of the transmission
coefficients at the output ports for I1 (I2) port operation, and θ1

(θ2) is the phase shift between the transmission coefficients at
the output ports for I1 (I2) port operation. Notice that a1 and b1

(a2 and b2) are real numbers and the phase information is entirely
carried by θ1 (θ2). For a general solution to this set of equations,
the beam splitter matrix does not need to be unitary, i.e., energy
preserving. In a linear system, the output energy can never be
greater than the input energy. Hence, simplifying Eq. (1) gives

us the inequality|︁|︁a1E1 + b2eiθ2 E2

|︁|︁2 + |︁|︁a2E2 + b1eiθ1 E1

|︁|︁2 ≤ |E1 |
2
+ |E2 |

2 . (2)

Here, the BSP can be defined as α = θ1 + θ2. The condition
of identical fields for photons gives |E1 | = |E2 | = |E |, and the
symmetry of the two input operations yields θ1 = θ2, as well as
a1 = a2 = a and b1 = b2 = b. Therefore, Eq. (2) becomes|︁|︁|︁cos

α

2

|︁|︁|︁ ≤ (︁
1 − a2 − b2)︁

2ab
. (3)

This means that the BSP α can assume values in the interval
[π − ∆α/2, π + ∆α/2], where the phase range ∆α depends on a2

and b2, i.e., the losses in the system. This inequality relation is
plotted in Fig. 1(b) for different values of a2 and b2, where the
strength of the color represents the value of ∆α.

The BSP α affects the quantum interference between two
photons. Conventional lossless beam couplers do not allow the
variation of α, because no loss signifies a2 + b2 = 1, which leads
to a BSP α = π [see Fig. 1(b)]. Hence, it becomes necessary to
introduce losses to achieve arbitrary phase values in agreement
with Eq. (3). In general, both balanced (i.e., a = b) and unbal-
anced (i.e., a ≠ b) beam couplers can be designed with precise
phase adjustment. Nevertheless, for many quantum applications,
the output ports need to be equiprobable (a = b); see dotted gray
line in Fig. 1(b). Hence, the focus of this research is on balanced
symmetrical lossy beam splitters. The loss–phase relation for
these beam couplers can be derived from Eq. (3) as|︁|︁|︁cos

α

2

|︁|︁|︁ ≤ 2d2

1 − 2d2 , (4)

where d2 = (1 − 2a2)/2 is the intensity loss in each path for
a symmetrical beam splitter. For d2 = 0, we have ∆α = 0. By
increasing d2, the range of permitted phase values ∆α increases,
reaching the maximum value ∆α = 2π for d2 = 0.25.

Inverse design method. In order to simulate, design, and
optimize an integrated beam splitter with arbitrary phase based
on the theoretical limits in Eq. (4), we employed the open-
source software package Meep [28]. This solver implements the
finite-difference time-domain (FDTD) method [29] and includes
a hybrid time/frequency domain adjoint solver [30] where the
gradients are calculated via automatic differentiation through
the open-source package Autograd [31]. We performed the 2D
inverse design of 2 × 2 beam couplers made of Si (n = 3.4) and
embedded in SiO2 (n = 1.44). The operating wavelength is 1.55
µm. The design domain was optimized to achieve devices with
a small footprint, resulting in a design area of 3 × 1.6 µm2. The
space step of the FDTD simulation, which coincides with the
pixel size of the optimization, is 25 nm. The waveguide ports on
the two sides of the beam coupler have 300 nm thickness and are
300 nm apart (edge-to-edge). The fundamental mode is injected
at each input port. Field monitors are used at the output ports to
perform a mode decomposition, such that the objective function
always acts on the fundamental mode.

The optimization algorithm is illustrated in Fig. S1 (Sup-
plement 1) as a flow chart. A design variable ρi called
density is associated with each pixel in the design domain
and must be optimized. The density ρi assigns a permittiv-
ity εopt to each pixel between the dielectric permittivities of
Si (εSi) and SiO2 (εSiO2 ) based on the linear mapping scheme
εopt(ρi) = εSiO2 + ρi

(︁
εSi − εSiO2

)︁
. The optimization starts with all

pixels in the design domain being assigned ρi = 0.5. At each
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iteration, two FDTD simulations (forward and adjoint) are per-
formed to evaluate the gradient of the objective with respect
to the design variables ρi, and the gradient is then used to
update the design variables following operations of filtering and
projection [32]. The optimization includes a binarization hyper-
parameter increased each time an optimization cycle converged
to a solution. This was used to gradually reduce any intermediate
permittivity values in the design domain and achieve a binary
physical design with permittivity values of only Si and SiO2,
i.e., ρi = 1 or ρi = 0, respectively. Additionally, the optimiza-
tion routine establishes symmetry conditions and accounts for
manufacturability constraints. The manufacturability constraints
for this work represents a nonlinear conic filter with minimum
feature size of 100 nm, which is a typical feature size achievable
by modern manufacturing techniques.

This work incorporates multiple objective functions, i.e., out-
put loss per path (d2) and BSP (α), via an epigraph formulation of
the optimization process. These target functions and their combi-
nation need to be automatic differentiable. This necessitated the
formulation of a weighted phase function (fBSP), which was then
combined with the intensity objective (fint). The multi-objective

Fig. 2. Optimization results for beam couplers with arbitrary
phase: achieved BSP (α) for increasing loss in each port (d2).

Fig. 3. Selection of the three topology optimized designs (A, B, and C from Fig. 2) and electric field distributions for excitation from port
I1 or I2.

optimization problem can be formulated as

min
ρi ,E1 ,E2

epi (fint + fBSP) , (5)

where

fd2 =
|︁|︁0.5 − d2 − a2

1

|︁|︁ + |︁|︁0.5 − d2 − b2
1

|︁|︁ + |︁|︁0.5 − d2 − a2
2

|︁|︁ + |︁|︁0.5 − d2 − b2
2

|︁|︁
and

fBSP ≡ |α/2 − θ1 | + |α/2 − θ2 | (mod 2π)

subject to

∇ × ∇ × E1 − ω
2µεopt(ρi)E1 = −iωµJ1

∇ × ∇ × E2 − ω
2µεopt(ρi)E2 = −iωµJ2,

where E1 (E2) is the complex electric field, J1 (J2) is the current
source density, a2

1 and b2
1 (a2

2 and b2
2) are the transmittances, and

θ1 (θ2) is the output phase difference associated with input port
I1 (I2) excitation, respectively. Here the magnetic permeability
µ and frequency ω are constant.

Results and discussion. Symmetrical beam splitters were
optimized for several loss–phase combinations, and the results
of the optimization are summarized in Fig. 2, where red crosses
and blue dots show the design targets and performance of opti-
mized designs, respectively. The analytical limits in Eq. (4)
are represented as dotted gray lines in Fig. 2, which visually
show the increase of ∆α for increasing losses with a funnel-like
shape. Convergence is achieved for values of loss and phase
within the theoretical limits, while for design targets outside
such limits, the optimizations fail to converge. In a few cases,
blue dots and red crosses do not overlap, thus showing a devi-
ation of the performance of the optimized design from the target
response, which is here quantified through the mean of lin-
ear deviation MLD(d2,α) = Σ

√︂
(d2

opt − d2
tar)

2 + (αopt − αtar)
2/N,

where the sum is performed over the number of designs N. For
increasing losses (see three regions defined for convenience in
Fig. 2), the MLD decreases, being 1.16%, 0.53%, and 0.34%, in
the low loss, medium loss, and high loss regions, respectively.

Three optimized designs A, B, and C are selected for each
region in Fig. 2 and discussed in detail in Fig. 3. The first
structure (Design A) was obtained in the region of low loss and
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low phase tunability, i.e., loss d2 = 5% at each port with BSP
α = 0.952π. The second structure (Design B) falls in the medium
loss range, with a loss d2 = 12.5% at each port and a BSP α =
0.894π. The last structure (Design C) was optimized in the
high loss regime where large phase tunability can be achieved,
i.e., loss d2 = 30% at each port with BSP α = 2π. In Fig. 3,
we also show the distribution of the out-of-plane electric field
component (real part) at the wavelength of 1.55 µm for excitation
from ports 1 and 2. We observe the higher scattering losses in
Design C, along with the lower total fields at the output ports. We
note that the phase front at the output port looks distorted, but
the optimization was performed targeting the fundamental mode
of interest. The designs reported in Fig. 2 are made available as
binary files in Dataset 1, Ref. [33]. These binary files can be
reintroduced into Meep and the device performances validated
via FDTD simulations.

Although we used 2D inverse design as a proof of principle,
in practice 3D designs are needed. For further validation, our 2D
designs were analyzed with 3D FDTD simulations by extrud-
ing the design in the third dimension with a finite thickness. As
expected, the deviation between 2D and 3D simulations in terms
of total losses decreases for increasing thickness of the device.
However, the splitting ratio as a function of thickness cannot be
predicted and deviation from the desired case can be significant.
Hence, in order to bring such concept to an experimental sce-
nario, 3D optimization is required, with the associated increase
of computational cost and optimization time. The provided 2D
designs could be used as an initial guess for 3D optimization.

We have demonstrated that beam splitters with arbitrary phase
can be designed via topology optimization within the theoretical
limits. Any design target outside of the analytical limit (in the
forbidden region) did not converge to the objectives. Although
we have focused on balanced symmetrical beam splitters, this
design method can be extended to unbalanced symmetrical beam
splitters, e.g., a = 2b or any other ratio based on specific applica-
tions. As the Hong–Ou–Mandel effect depends on the phase α,
we believe novel functionalities can emerge for different phase
values, and we hope the proposed non-intuitive designs with
arbitrary phase will motivate novel experiments in quantum
information processing.
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