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Title : Theoretical study of quantum gas experiments in an Earth-orbiting research laboratory
Keywords : Bose-Einstein condensate, quantum-degenerate mixtures, microgravity
Abstract :Oneof themajor goals of fundamen-tal physics is to unify general relativity, whichdescribes macroscopic phenomena driven bythe influence of gravity, with quantum mecha-nics, which focuses on effects at microscopicscales. Ensembles of cold atoms, as massivequantum objects, lie at the crossroads of boththeories and appear as a test object of choice.They can be used to test theories that postulatea violation of Einstein’s Equivalence Principles,in particular a violation of the Universality ofFree Fall (UFF).

Recent proposals suggest usingmixtures ofBose-Einstein condensates (BEC) as sources forprecision atom interferometry to perform UFF.These have the potential to match the preci-sion of the best tests with classical test massesperformed during the MICROSCOPE mission,andmay even provide better results in the longterm. The realization of experiments in micro-gravity, where atoms can float for long per-iods of time, allows longer interrogation times,thus increasing the performance of matter-wave sensors. To optimize the implementationof UFF tests, one needs exquisite control of theatoms due to stringent requirements on the er-ror budget. In this work, we focus on the designof the input state with control over the positionand velocity of the atom clouds, as well as theirsize evolution.
The experiments studied here are desi-gned with atom chip setups that manipulateatoms with magnetic traps. Most of the ap-plications presented are experiments perfor-med in the NASA Cold Atom Laboratory (CAL)aboard the International Space Station as partof the Consortium for Ultracold Atoms in Space(CUAS). This multi-user BECmachine allows themanipulation of single species BEC at its ins-tallation as well as dual species mixtures afterupgrades. Following this chronology, we firststudy the dynamics of single species BEC andthen extend the work to themanipulation of aninteracting mixture of two BECs. The first step

after calibrating the chip model is to design afast and robust transport protocol to move theatoms away from the atom chip. We presentand use a Shortcut-To-Adiabaticity (STA) proto-col, based on reverse engineering, to transportthe BEC andmeet the requirements of positioncontrol at the sub-µm level and velocity controlat the hundreds of µm/s level. The free expan-sion of the atom cloud with its inherent ato-mic density drop makes signal detection diffi-cult. By analogy with light, it is possible to colli-mate the atom cloud with atomic lenses usingthe Delta-Kick Collimation (DKC) technique. Ap-plication to CAL resulted in expansion energiesin the tens of pK level. To simulate the imagingprocess and to support the data analysis, theo-retical models are presented that take into ac-count the resolution effects of the camera andthe frame transformations associated with theorientation of the camera or the orientation ofthe trapping potential with respect to the atomchip.
Space allows the operation of Bose-Einsteincondensate mixtures under miscibility condi-tions not possible on the ground. The coloca-tion of the trap center for the different speciesin microgravity can lead to different topologiesof the trap ground state. Moreover, the inter-action energy between the species, which is al-most negligible in the ground state, plays a si-gnificant role in the dynamics of the mixtureduring its transport. However, the simulationof the dynamics of interacting dual-species BECmixtures is computationally challenging, parti-cularly due to the long expansion times. In thiswork, scaling techniques to overcome these li-mitations are presented and illustrated in thecase of space experiments in CAL and aboardsounding rockets. Such scaled-grid approachesmake it possible to simulate long transportswith free expansion times on the order of se-conds, whichwould not be feasible with a fixed-grid approach on reasonable time scales, not tomention the problems of memory usage.
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Titre : Étude théorique d’expériences de gaz quantiques dans un laboratoire en orbite terrestre
Mots clés : Condenstat de Bose-Einstein, mélanges dégénérés quantiques, microgravité
Résumé : Un des principaux objectifs de laphysique fondamentale est d’unifier la relati-vité générale, qui décrit les phénomènes ma-croscopiques régis par l’influence de la gravité,à la mécanique quantique, qui se concentresur les effets à l’échelle microscopique. Les en-sembles d’atomes froids, en tant qu’objetsmas-sifs quantiques, se trouvent au croisement deces deux théories et paraissent comme des su-jets de tests idéaux. Ils peuvent être utiliséspour tester des théories qui postulent une vio-lation des principes d’équivalence d’Einstein eten particulier une violation de l’universalité dela chute libre (UFF).

Des propositions récentes suggèrent d’uti-liser des mélanges de condensats de Bose-Einstein (BEC) comme sources d’interféro-mètres atomiques de précision pour implé-menter des tests UFF. Ces expériences ontle potentiel d’atteindre et même de dépasserla précision des meilleurs tests réalisés avecdes masses classiques durant la mission MI-CROSCOPE. L’exécution d’expériences en mi-crogravité permet des temps d’interrogationplus longs, améliorant par conséquent les per-formances des capteurs à ondes de matière.Pour optimiser l’implémentation des tests UFF,il est nécessaire d’avoir un contrôle parfait desatomes dû aux exigences strictes sur le budgetd’erreurs. Dans ce travail, nous nous concen-trons sur la conception d’états d’entrée avecun contrôle en position et vitesse des nuagesd’atomes, ainsi que leurs évolutions en taille.
Les expériences étudiées ici sont conçuesavec des montages avec puce atomique quimanipulent les atomes à l’aide de pièges ma-gnétiques. La plupart des applications présen-tées sont des expériences réalisées dans leCold Atom Laboratory (CAL) de la NASA à bordde la Station Spatiale Internationale dans lecadre du Consortium for Ultracold Atoms inSpace. Cette machine à BEC multi-utilisateurpermet la manipulation de BEC simple-espèceà son installation ainsi que celle demélanges de

BEC double-espèces après des améliorations.En suivant cette chronologie, nous étudionsd’abord la dynamique de BEC simple-espècepuis étendons ce travail à la manipulation d’unmélange de deux BECs en interaction. La pre-mière étape après la calibration du modèle àpuce est de concevoir un transport rapide etrobuste pour éloigner les atomes de la puce.Nous présentons et utilisons un protocole deraccourci à l’adiabaticité sur la base de rétro-ingénierie, pour transporter le BEC et atteindreles exigences sur le contrôle de la position etvitesse finale. L’expansion libre du nuage ato-mique avec la chute inhérente de densité rendla détection du signal difficile. Par analogie avecla lumière, il est possible de collimater le nuageatomique avec une lentille atomique à l’aide dela technique de Delta-Kick Collimation. Les ap-plications à CAL ont abouti à des énergies d’ex-pansion de l’ordre de la dizaine de pK. Pour si-muler le processus d’imagerie et soutenir l’ana-lyse de données, des modèles théoriques quiprennent en compte les effets de résolution dela caméra et les changements de repères asso-ciés à l’orientation de la caméra ou l’orientationdu potentiel de piégeage par rapport à la puceatomique sont présentés.
L’espace permet la manipulation de mé-langes de condensats de Bose-Einstein sousdes conditions de miscibilité impossibles à ob-tenir au sol. La colocation des centres despièges pour les différentes espèces en micro-gravité peutmener à des topologies différentesde l’état fondamental du piège. De plus, l’éner-gie d’interaction entre les espèces peut jouerun rôle significatif dans la dynamique du mé-lange lors de son transport. Cependant, la si-mulation de la dynamique de mélanges de BECdouble-espèces en interaction est un défi surle plan des ressources informatiques, surtoutà cause des longues durées d’expansion. Dansce travail, des méthodes de mise à l’échellepour dépasser ces limitations sont présentéeset illustrées dans des cas d’expériences dansl’espace dans CAL et à bord de fusées-sondes.
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Titel : Theoretische Untersuchung von Quantengasexperimenten in einem Forschungslabor inder Erdumlaufbaum
Schlagwörter : Bose-Einstein Kondensate, quantentartete Mischungen, Mikrogravitation
Zusammenfassung : Eines der wichtigstenZiele der Grundlagenphysik ist die Vereinheitli-chung der allgemeinen Relativitätstheorie, diemakroskopische Phänomene unter dem Ein-fluss der Schwerkraft beschreibt, mit der Quan-tenmechanik, die sich auf mikroskopische Ef-fekte konzentriert. AlsmassiveQuantenobjektescheinen kalte Atome prädestinierte Testob-jekte an der Schnittstelle beider Theorien zusein. So können atomare Ensembles benutztwerden, um die Universalität des freien Falls(UFF) zu testen und somit Theorien zu über-prüfen, die eine Verletzung des Einstein’schenÄquivalenzprinzips postulieren.

Es gibt aktuell Vorschläge, Mischungen ausBose-Einstein Kondensaten (BEC) als Quellenfür präzise Atominterferometrie-Tests zu ver-wenden. Diese haben das Potenzial, mit derPräzision der besten Testsmit klassischen Test-massen im Rahmen der MICROSCOPE-Missiongleichzuziehen, und könnten langfristig sogarbessere Ergebnisse liefern. Die Realisierung de-rartiger Experimente in Mikrogravitation vers-pricht längere Abfragezeiten und erhöht damitdie Performance der Materiewellensensoren.Zur Optimierung dieser UFF-Tests ist aufgrundder strengen Anforderungen an die Fehlerbud-gets eine präzise Kontrolle der Atome erfor-derlich. In dieser Arbeit konzentrieren wir unsauf die Präparation des initialen Zustands mit-tels der Kontrolle über die Position und Gesch-windigkeit der Atomwolken sowie deren Expan-sionsverhalten.
Die in dieser Arbeit untersuchten Experi-mente nutzen Atomchips, die die Atomemittelsmagnetischer Fallenmanipulieren. DiemeistenVersuche wurden im NASA Cold Atom Labora-tory an Bord der Internationalen Raumstationals Teil des Consortium for Ultracold Atoms inSpace durchgeführt. Die sich dort befindlicheMulti-User-BEC-Maschine erlaubt die Manipu-lation von Bose-Einstein Kondensaten (BEC) ei-ner atomaren Spezies sowie nach Verbesserun-gen auch die Kontrolle von Mischungen auszwei Spezies. Dieser Chronologie folgend un-tersuchen wir zuerst die Dynamik von Einzel-

BECs und dann dieManipulation einerwechsel-wirkenden Mischung aus zwei BECs.
Im Anschluss an die Kalibrierung des Chip-modells besteht der erste Schritt darin, einschnelles und robustes Protokoll zu entwer-fen, um das atomare BEC vom Atomchip wegzu transportieren. Um dabei die Anforderun-gen an die Positionskontrolle und die Gesch-windigkeitskontrolle zu erfüllen, stellen wir einauf Reverse-Engineering basierendes Shortcut-To-Adiabaticity (STA)-Protokoll vor. Die freie Ex-pansion der Atomwolke mit ihrem inhärentenDichteabfall erschwert die Signaldetektion. Mit-tels der Delta-Kick-Kollimationstechnik ist esmöglich, die Atomwolkemit atomaren Linsen inAnalogie zu Lichtwellen zu kollimieren. DerenAnwendung im CAL-Experiment führte zu Ex-pansionsenergien im zweistelligen pK-Bereich.Zur Simulation des Abbildungsprozesses undzur Unterstützung der experimentellen Date-nanalyse stellen wir theoretische Modelle vor,die sowohl die Auflösungseffekte und Ausrich-tung der Kamera, als auch die Ausrichtung desFallenpotenzials in Bezug auf den Atomchip inder Bildtransformation berücksichtigen.
Schwerelosigkeit ermöglicht spezielle Ei-genschaften für Mischungen aus Bose-EinsteinKondensaten, die unter Gravitation nicht reali-sierbar sind. Die räumliche Übereinstimmungdes Fallenzentrums für die verschiedenen ato-maren Spezies in Mikrogravitation kann bei-spielsweise zu unterschiedlichen Topologiendes Fallengrundzustands führen. Außerdemspielt die Wechselwirkungsenergie zwischenden Spezies, die im Grundzustand nahezu ver-nachlässigbar ist, eine wichtige Rolle für dieDynamik der Mischung während des Trans-ports. Die Simulation der Dynamik von wech-selwirkenden BEC-Mischungen mit zwei Spe-zies ist mit großem numerischen Rechenauf-wand verbunden, insbesondere aufgrund derlangen Expansionszeiten. In dieser Arbeit wer-den Skalierungstechniken vorgestellt, um dieseEinschränkungen zu überwinden. Ihre Anwen-dung wird anhand vonWeltraumexperimentenin CAL und an Bord von Höhenforschungsrake-ten erläutert.
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Cha
pte

r 1 Introduction

Space is a very special environment which offers a variety of experimental conditions that are
difficult to reproduce on Earth, such as extreme low scale energies or vanishing values of gravity.
It can be considered as the best playground for microgravity experiments, where objects can float
for long periods of time. It motivates countless technological developments to better understand the
universe by studying the fundamental laws of physics.

The Universality of Free Fall (UFF) is one of the fundamental principles that has been tested in
space, and each realization of its tests is making use of different capabilities provided by the environ-
ment. For example, the lunar atmosphere is similar to a vacuum chamber and was used during the
Apollo-15 mission in 1971 to perform the Galileo experiment by dropping a hammer and a feather at
the same time. The video recording of the drop shows that the two objects fall simultaneously. Ano-
ther example is the MICROSCOPE mission on board an Earth-orbiting satellite, which realised tests of
the UFF with different masses between 2016 and 2018. Taking advantage of the low-vibration envi-
ronment, it measured the relative acceleration of the objects with state-of-the-art precision.

Ultra-cold atomic ensembles are a prime choice for sources in quantum sensing experiments. By
sending them into space, we can study them for longer periods of time, increasing the precision of
these sensors. This makes them ideal candidates for future UFF tests, where instead of measuring
their acceleration directly by dropping them, we obtain it by measuring phase shifts in atom interfe-
rometry experiments.

In precision experiments, the initial state plays a crucial role. Indeed, the knowledge of the initial
conditions, as well as of all the parameters that play a role during the experiment, makes it possible
to retrace its history, to interpret the results, and to minimize errors. In this work, we focus on the
preparation of the source for precision atom interferometry experiments by controlling the position,
velocity and size dynamics of Bose-Einstein condensates.

1.1 . Interferometry and applications to fundamental physics
Interferometry is a measurement technique based on the interference phenomenon resulting

from the superposition of two waves. An interferometer typically involves a coherent source that is
1



a b

Figure 1.1 – Mach-Zehnder Interferometry with Cold Atoms. Panel a : Realisation of the experimentwith a Bose-Einstein condensate source split and recombined with laser light beam-splitters by theQUANTUS collaboration in Germany. Panel b : Mach-Zehnder type atom interferometer sequenceunder the influence of gravity (figure taken from [9]).

split and then recombined. The waves involved take different paths and accumulate a phase diffe-
rence that can be measured from the resulting interference fringes, from which we can extract infor-
mation about the system. It can be used to reveal the quantumproperties of an object. An emblematic
experiment is Young’s double-slit experiment, which demonstrated the wave nature of light. In 1927,
Davisson and Germer published their work on experiments showing the diffraction pattern of elec-
trons by a crystal of nickel metal [1, 2]. This adaptation of Young’s double-slit experiment revealed the
wave nature of electrons, confirming its wave-particle duality, and led to the attribution of the Nobel
prize to Louis de Broglie in 1929 [3].

The first interferometers used light sources as they are easy to set up and manipulate. There are
various configurations such as Fresnel mirrors, Fabry-Pérot interferometers, Michelson interferome-
ters,Mach-Zehnder interferometers or Sagnac interferometers. The applications are also very diverse,
ranging from industry, where it can be used for surface quality control, to fundamental physics. The
Michelson and Morley interferometry experiments of 1887 [4], which had concluded on the constant
speed of light, had a major impact in fundamental physics, being one of the elements that led to the
theory of general relativity. Modern applications in fundamental physics using laser are dedicated
to measuring phenomena with increased precision, such as LIGO for the detection of gravitational
waves [5].

The wave-particle duality of quantum objects is not limited to light, and other objects can be used
as sources for interferometry, such as atoms or ions. As with light, there are various types of matter-
wave interferometers. However, as these quantum objects have mass, they are subject to the gravi-
tational force. The first observation of a phase shift induced by gravity was made in a neutron interfe-
rometer, in the work of Colella, Overhauser and Werner published in 1975 [6]. Later the experiment
was reproduced with different atomic species, for example with sodium atom interferometers [7], or
with rubidium atom interferometers [8].

These gravimetry experiments use a Mach-Zehnder configuration, as shown in Figure 1.1. This
2



Figure 1.2 – Schematic description of the atomic Bose-Einstein condensation process. At high tempe-ratures (panel a) atoms behave like particles and their dynamics can be described by kinetic theory.At low temperatures (panel b) atoms start to behave like waves and can be described by wave packetswhose spatial extent is of the order of the de Broglie wavelength λdB of Eq. (1.2). At the critical tem-perature T = TC (panel c), the wave packets start to overlap and form a macroscopic quantum state.At zero temperature (panel d) the atoms form a coherent ensemble, the Bose-Einstein Condensate.Figure adapted from [15].

setup, which spatially splits the wave packets before recombining them, is very versatile. These atom
interferometers use laser light to change the internal states and themomentumof the atoms, creating
mirrors and beam splitters. As shown in the panel b of Figure 1.1, the atom clouds are separated,
reflected and recombined by (π/2;π;π/2) Raman or Bragg pulse sequences, which are separated by
a duration Ti. The calculation of the gravitational phase shift can be realised using Feynman path
integrals [10]. This phase shift ϕ is given by

ϕ = keff g T
2
i (1.1)

where keff is the effective wave vector of the laser pulses, which is proportional to the momentum
difference gained during the splitting, g is the gravitational acceleration, and Ti is the time between
each interferometer pulse, also called the interrogation time.

To optimise the contrast of the fringes, it is important to ensure that the matter-wave source is
coherent and that it has a long lifetime. Bose-Einstein Condensates (BEC) are therefore good candi-
dates. BECs were first theorised in 1924 [11] by Satyendra Nath Bose and Albert Einstein, and the
first experimental realisations in 1995 are the fruit of several experimental and theoretical develop-
ments as well as technical innovations [12–15]. It was rewarded by the attribution of the Nobel Prize
in Physics in 2001.

The formation of a BEC by cooling a dilute atom gas can be summarized in a few steps as shown
in Figure 1.2 [15]. At high temperatures, the atoms can be described as particles moving around at a
certain velocity using kinetic theory. As the system temperature decreases, the atoms begin to exhi-
bit wave-like behaviour, and can be described by wave packets of spacial extent of the order of the
thermal de Broglie wavelength

λdB =

√
2πℏ2

mkBT
. (1.2)
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In this expression ℏ is the reduced Planck constant and kB the Boltzmann constant. The de Broglie wa-
velength thus depends on the atommassm, and it increases when the temperature of the ensemble
T decreases. At a certain critical temperature T = TC , the average distance between the atoms is of
the same order as the de Broglie wavelength, and their associated wave packets begin to overlap. At
the same time, as the temperature decreases, the atoms start populating the lowest energy quantum
state. Under such conditions, the atoms undergo a quantum mechanical phase transition and form
a coherent macroscopic state, the Bose-Einstein condensate.

BEC sources are now a common choice in atom interferometry for high precision gravimetricmea-
surements [16–18]. One application is to test the Universality of Free Fall (UFF), which postulates that
two objects of different mass or composition experience the same acceleration when subjected to
the same gravitational field. In the theory of general relativity [19], it corresponds to theWeak Equiva-
lence Principle (WEP), which is the equivalence between the inertial mass and the gravitational mass.
This principle, together with Local Lorentz Invariance (LLI) and Local Position Invariance (LPI), form
Einstein’s Equivalence Principles (EEP). These principles are a cornerstone of general relativity, but
some theories attempting to unify general relativity and quantum mechanics predict a violation of
these principles at some particular scale [20, 21]. To test the UFF, one can compare the acceleration
of two test masses in free fall. For this we use the Eötvös coefficient η, defined by

η = |a1 − a2|
(a1 + a2)/2 (1.3)

where a1 and a2 are the accelerations of the two masses.
Tests of the UFF using classical test masses have been performed on Earth and in space [22]. One

example is the torsion-balance experiment [23–25], which considers two objects of different compo-
sition connected by a rod or placed on a tray and suspended in a horizontal orientation by a fine wire.
Themeasurement of the torque induced during the torsion yieldsmeasurements of the Eötvös coeffi-
cient at the level of 2×10−13 [26–28]. Another example is the Lunar Laser Ranging experiments, which
use laser telemetry to measure the distance between the Earth and the Moon [29, 30]. The measure-
ment of the Eötvös coefficient in these experiments is also on the order of 10−13 [31, 32]. The state-
of-the-art measurement of the UFF test with classical test masses was conducted during the MICRO-
SCOPEmission [33, 34]. This experimentmeasured the force required to keep twomasses of different
compositions (titanium and platinum alloys) in equilibrium on a quasi-circular trajectory around the
Earth. The use of an orbiting satellite has removed many sources of systematic error from the mea-
surement. The final data analysis shows the measurement of η = [1.5 ± 2.3(stat) ± 1.5(syst)] × 10−15.
By quadratically combining the stochastic error (i.e., the statistical error) and the systematic errors,
there is no EEP violation at the level of [σ2

stat + σ2
syst]

1
2 = 2.7 × 10−15 [34].

Using cold atoms for UFF tests imposes many constraints on the experimental setup [35]. It is
necessary to perform simultaneous interferometry experiments with the two atomic sources so that
they are subjected to the same conditions during the experiment. This requires exquisite control of
the interactions between the two components, as well as different sources of error. The state-of-
the-art measurements were performed with cold atom clouds of 85Rb and 87Rb in a 10 m fountain,
resulting in a measurement of η = 1.6 ± 1.8(stat) ± 3.4(syst) × 10−12 [36]. This shows that quantum
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Figure 1.3 – Different platforms for experiments in microgravity. From left to right : Zero-g plane (cre-dits ESA), Bremen ZARM drop tower (credits ZARM), MAIUS-1 sounding rocket (credits DLR), Interna-tional Space Station (credits NASA), HiTech building of the University of Hannover with the Einsteinelevator highlighted (credits LUH).

tests of the weak equivalence principle are consistent with the observation of no violation at the level
of 10−12. This also demonstrates the potential of cold atom sources, more specifically in our case the
potential of BECs, to provide results with uncertainties of a similar order of magnitude to classical
tests, and which may improve further in the longer term. For instance, the STE-QUEST proposal for
experiments aboard an Earth-orbiting satellite [17] aims to reach a precision of 10−17 in an UFF test
using dual-species interferometry with 87Rb and 41K condensates.

1.2 .Microgravity, an ideal environment for cold atom experiments
The resolution of the accelerationmeasurement with atom interferometry is related to that of the

measured phase of Eq. (1.1) according to
δg

g
= δϕ

ϕ
. (1.4)

Therefore, it is desirable to maximize the value of the measured phase. Since ϕ = keff g T
2
i , the firstsolution is to increase the momentum transferred by the lasers in the beam-splitting phase. This

requires high laser powers in specific experimental setups. It is the strategy adopted in the Large
Momentum Transfer (LMT) interferometers [37–39] that can be applied to inertial sensing and gravi-
tational wave detection.

The second solution is to increase the interrogation time Ti. In the case of the 10m fountain of
Ref. [36], the total interrogation time is 2Ti = 1.91 s. Using a longer baseline is technically complex
and restricts the location of the setup. There are plans to use long baselines from 10m up to 100m in
the Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS) project in the USA [5] and even
up to 1 km in the Atom Interferometric Observatory and Network (AION) project in the UK [40].

Microgravity appears as the best answer to increase the interrogation time, since in microgra-
vity atoms float for extended times. Several microgravity platforms are currently in use, as shown
in Figure 1.3. These platforms make it possible to study certain physical phenomena on time scales
that are not accessible in the presence of the gravitational sag. This is the case, for example, with the
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creation of perfect BEC bubbles or BEC mixtures that share a co-localized magnetic trap centre [41].
On Earth, this is achieved by dropping the entire experimental setup in free fall, so that the frame
associated with the setup is in microgravity. It can be done, for example, in a zero-g plane executing
parabolic flights, which is the case of the ICE experiment [42]. Another example is to build a structure
high enough to provide adequate free fall time, which is the purpose of a drop tower. The ZARM drop
tower has a drop height of 110m, providing 4.7 s of free fall for experiments, which can be extended
to 9 s in a catapult mode at a rate of 3 drops per day. The QUANTUS collaboration is one of the users
of this tower [43–46]. To achieve higher repetition rates, other structures have been built, such as
the Einstein elevator from the Hannover Institute of Technology (HITec) at the Leibniz University of
Hannover, Germany [47].

Microgravity can also be achieved by launching the experimental setup directly into space [48].
The MAIUS collaboration launched its experiment on the MAIUS-1 sounding rocket in 2017. This ro-
cket provided 6 minutes of microgravity, enough time to carry out 110 experiments, including the
first realization of a BEC in space [49] and the first interferometry experiments in space [50]. The In-
ternational Space Station (ISS) has been hosting orbiting experiments with the Cold Atom Laboratory
(CAL) since 2018 [51–53]. In the near future, the STE-QUEST project also plans to conduct cold atom
experiments with UFF tests on board Earth-orbiting satellites [17, 54].

Each platform has its own advantages and disadvantages that must be considered. In practical
terms, it can be, for example, the ease or difficulty of accessing the setup to make adjustments or
replace various parts when necessary. The repetition rate and the vibration levels can also be limi-
ting factors. However, most of the setups share the same issue of weight and volume constraints,
especially when the experiments have to be launched into space. This has led to the development of
compact setups using atom chips to trap and manipulate the atoms in many projects such as QUAN-
TUS, MAIUS or CAL mentioned above.

1.3 . The Cold Atom Laboratory, one of the coolest spots in the Universe
The Cold Atom Laboratory (CAL) is a NASA multi-user facility launched to the International Space

Station (ISS) on May 21, 2018. It is installed on the US Destiny Module and it is operated on ground
by the Jet Propulsion Laboratory (JPL) in Pasadena, California, USA. The project website [55] provides
information and news to the scientific community and to the general public. One of the objectives pre-
sented to the general public is to become the coolest spot in the universe by producing and manipu-
lating BECs. This machine enables various types of cold atom experiments for the different consortia
involved in the project (more details can be found in the introduction of Chapter 3). Figure 1.4 illus-
trates the fruitful cooperation between astronauts and JPL ground crews during the installation and
upgrades of the machine. It was an opportunity to test new communication tools developed to facili-
tate the work of astronauts, with for example the test of augmented reality (AR) headsets during the
upgrade of themachine shown in Figure 1.4d. On a daily basis, the machine is fully remote-controlled
by the JPL operator team on ground. Regular meetings between the research teams and the operator
team determine the experiments to be realized.
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b

c d
Figure 1.4 – The Cold Atom Laboratory aboard the ISS. Panel a : CAL in the US module Destiny. Panelb and c : Astronaut Christina Koch welcoming the SM3 module aboard the ISS during the week ofDecember 9, 2019, and installing it in January 2020. Panel d : Astronaut Megan McArthur using aug-mented reality headsets to upgrade the SM3 module in July 2021. (Credits ESA and NASA).

The first module installed on CAL was the Science Module 2 (SM2), which was launched in May
2018. It produced the first in-orbit BECs in July 2018 [51] and was operational for scientific investi-
gations in October 2018. This module was able to implement experiments with 87Rb BECs. The SM2
module was later replaced by the SM3 module, which was launched in December 2019 and installed
in January 2020. This new module enables the realisation of atom interferometry. In July 2020, the
SM3module was upgraded to enable dual species experiments with the possibility of condensing 39K
and 41K atoms.

This manuscript presents results investigated by the Consortium for Ultra-cold Atoms in Space
(CUAS), led by Nick Bigelow from the University of Rochester, New York in the USA. The consortium
proposal, developed in 2016, included several types of experiments : the implementation of a space
atom laser, the control of quantum gases and mixtures, and atom interferometry. As part of the
consortium, my main contribution was the simulation of the dynamics of single species BECs and
dual-species BEC mixtures to control the evolution of their size and position. This work also involved
data analysis of the images obtained from the experiments.
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1.4 .Quantum engineering and simulations at the service of experiments

Experiments require careful preparation with a detailed sequence plan, especially in cases where
the number of measurements that can be realized is limited, as in the case of the MAIUS-1 mission,
where the total available experiment duration is only 6minutes [49]. To achieve the best performance
during the experimental campaigns, very robust models of the system and a well defined experimen-
tal strategy are required. Theoretical simulations provide insight into the dynamics of the cold atoms,
and data analysis from the experiments allows to gauge the models. In this context, exchanges bet-
ween experience and theory are not only fruitful, they are absolutely necessary. In our case, the si-
mulations are based on an atom chip model for the magnetic traps induced by the different current
drivers of the setup, and we need their characteristics such as the orientation of the trap eigenaxes,
the position of the trap minimum, and the trapping frequencies.

Once the model is calibrated, the scientific investigation can start. In the case of an atom interfe-
rometry experiment, there are several steps to consider : source preparation, wave packet splitting,
recombination and detection. During my Ph.D. project, I focused on the first steps, which are the dis-
placement of the BEC to bring it to the expected position of the beam-splitting laser beam, and on the
collimation of the BEC size expansion. Most of the simulations that I performed were dedicated to ap-
plications on the CALmachine. User time on the CALmachine is shared among the different consortia,
and the number of experiments that can be realized is limited, fluctuating between 100 and 200 runs
per week, depending on the active period. This has an impact on the number of parameters scanned,
for example to design a complete transport sequence.

In atom chip experiments, the final evaporation trap of the BEC is very close to the atom chip.
Since the atom cloud is very dense, in-situ imaging is not possible. In addition, during its expansion,
atoms can collide with the atom chip, and the wires on the chip structure can heat up the atom cloud,
reducing its lifetime. Therefore, almost all experiments start with a transport to move the BEC away
from the chip. Moreover, constraints on the system, which will be discussed later in the text, impose
a non-adiabatic transport. To simulate the dynamics of the BEC during the sequence, we can lean
on textbooks and a large scientific literature (e.g. [56–58]). However, there are no generic experimen-
tal sequences designed to engineer the optimal transport adapted to the situation. The methods to
transport a BEC in experiments have been extensively studied in atom optics after the first experi-
mental realizations, and have evolved with the technical advances as shown in Ref. [59], which shows
the evolution of the use of wires from atom guides to the creation of a BEC with an atom chip. Me-
thods used to transport atoms or ions can also be applied to BECs, such as the use of optical tweezers
[60] or moving lattices [61]. With atom chips, we can directly transport the atoms by moving the mi-
nimum of the trapping potential by modulating the currents in the different structures involved in
the setup. In my work, I considered the Shortcut-to-Adiabaticity method using reverse-engineering to
implement the transport sequence [62, 63].

8



1.5 . Thesis outline
The guiding objective of my Ph.D. project is the engineering of an optimal BEC source for a dual

species atom interferometry experiment in space. Most of the simulations performedwere dedicated
to the CAL experiments in the frame of the CUAS consortium. The upgrades of themachine from 87Rb
condensate experiments to dual mixtures of 41K and 87Rb condensates, led to the development of a
new simulation method allowing the treatment of multi-species mixture dynamics. This simulation
method was also applied to dual-species mixture experiments from the MAIUS collaboration.

Chapter 2 presents different simulation tools to study single species BEC experiments in the case
of an atom chip setup. It defines some ingredients for the gauging process of the model, for example
to extract information about the centre of mass evolution or the trapping frequency. It then presents
methods used to control the position and size evolution of the BEC. It also presents some aspects of
the imaging process that need to be considered in order to reconcile the simulation results with the
experimental data.

Chapter 3 corresponds to applications of the different models presented in the previous chapter
to experiments in microgravity realized with the Cold Atom Laboratory on board the International
Space Station. It follows the investigations of the CUAS consortium with the SM2 module in order to
implement a fast and controlled transport of a BEC, as well as the control of the size evolution of the
BEC after such a transport.

Chapter 4 is dedicated to the study of interacting BEC mixtures. It consists of two main parts : The
first one presents the simulationmodels and a grid scalingmethod developed for an efficient descrip-
tion of the dynamics of BEC mixtures, and The second part shows the numerical and experimental
applications to BECmixtures of K and Rb atoms. These applications include results from experiments
performed with the CAL SM3 module.

Chapter 5 concludesmy work with a summary of the different chapters and presents some future
prospects.

Finally, I would like to point out that the work presented in this thesis has resulted in contributions
to the following peer-reviewed journal articles 1 :

— Ref. [52] : Naceur Gaaloul, Matthias Meister, Robin Corgier, Annie Pichery, Patrick Boegel,
Waldemar Herr, Holger Ahlers, Eric Charron, Jason R. Williams, Robert J. Thompson, Wolfgang
P. Schleich, Ernst M. Rasel, and Nicholas P. Bigelow, “A space-based quantum gas laboratory
at picokelvin energy scales”, Nature Communications, 13, 7889 (2022).

— Ref. [64] : Annie Pichery, Matthias Meister, Baptist Piest, Jonas Böhm, Ernst Maria Rasel, Eric
Charron, and Naceur Gaaloul, “Efficient numerical description of the dynamics of interacting
multispecies quantum gases”, AVS Quantum Science 5, 044401 (2023).

1. Some results concerning the simulations and data analysis are developed in more details in Chapters 3and 4, as indicated in the introduction of each chapter.
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— Ref. [53] : Ethan R. Elliott, David C. Aveline, Nicholas P. Bigelow, Patrick Boegel, Sofia Botsi, Eric
Charron, José P. D’Incao, Peter Engels, Timothé Estrampes, Naceur Gaaloul, James R. Kellogg,
James M. Kohel, Norman E. Lay, Nathan Lundblad, Matthias Meister, Maren E. Mossman, Ga-
briel Müller, Holger Müller, Kamal Oudrhiri, Leah E. Phillips, Annie Pichery, Ernst M. Rasel,
Charles A. Sackett, Matteo Sbroscia, Wolfgang P. Schleich, Robert J. Thompson, and Jason R.
Williams, “Quantum Gas Mixtures and Dual-Species Atom Interferometry in Space”, Nature,623, 502-508 (2023).

— Ref. [65] : Jason R. Williams, Charles A. Sackett, Holger Ahlers, David C. Aveline, Patrick Boegel,
Sofia Botsi, Eric Charron, Ethan R. Elliott, Naceur Gaaloul, Enno Giese, Waldemar Herr, James
M. Kohel, Matthias Meister, Gabriel Müller, Holger Müller, Kamal Oudrhiri, Leah Phillips, AnniePichery, Ernst M. Rasel, Albert Roura, Matteo Sbroscia, Wolfgang P. Schleich, Christian Schnei-
der, Christian Schubert, Bejoy Sen, Robert J. Thompson, and Nicholas P. Bigelow, “Interfero-
metry of Atomic Matter-Waves in a Cold Atom Lab onboard the International Space Station”,
arXiv:2402.14685 (2024).
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r 2 Manipulation of BEC with anatom chip
2.1 . Introduction
Since the experimental realisation of the first Bose-Einstein Condensates (BEC) [12, 13], there has

been a wealth of applications in theoretical and experimental studies. In our work, we focus on their
use in quantum metrology, exploiting the coherence properties of BECs for atom interferometry ex-
periments performed on ground and in space.

Many types of theoretical work can be done around cold atom experiments. For example, it can be
the modeling of an experimental sequence to check its feasibility and to evaluate the physical quan-
tities whose measurement is of interest. It can also be a kind of detective work, trying to trace the
process leading to the measured data. For this purpose, a constant exchange with experimentalists
is essential, since the comparison with experimental results allows to refine the models and to better
understand the system under study. In this context, one of the main objectives of my thesis was to
obtain a good agreement between the simulation results and their experimental realisation, thus al-
lowing us to better understand and control the dynamics of these atomic ensembles, while validating
the different theoretical approaches we had chosen.

Chapter outline
In this chapter, I present the theoretical tools that I developed and used during my thesis to de-

sign experimental sequences, to simulate them, and to analyse the experimental results. First, a brief
overview of atom chip experiments is given in Section 2.2 with the modeling of the trapping potential
used to manipulate the atoms. The next section 2.3 introduces the Shortcut-to-Adiabaticity (STA) me-
thod, which allows a fast and controlled transport of a BEC. Section 2.4 focuses on the study of the
centre-of-mass motion of the BEC and on its use for characterising the system. Section 2.5 introduces
the Delta-Kick Collimation (DKC) method, that I use to control the size evolution of the BEC during its
free expansion. The following section 2.6 presents a scaling method that is useful for simulating the
size evolution of the atom clouds during their dynamics. Finally, the sections 2.7 and 2.8 deal with
some aspects of the BEC imaging process and analysis, such as the orientation of the camera or the
rotation of the trapping potential.
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Figure 2.1 – Atom chips, the wire structure is painted with gold. On the left, the atom chip used inthe MAIUS-1 experiment. On the right, artist’s view of the CAL setup, with the atom chip on top, themagnetic coils on the side, and the laser beams that can be used for imaging, among other things.Credits to the DLR and NASA.

2.2 . Experimental setup : atom chip and magnetic trap
We are interested in the part dedicated to the manipulation of the atoms when they are cooled

to the condensed stage, and the first step is to understand the role of the main components of the
setup on the experiments. The experimental setup on which we base our simulations works with a
magnetic trap featuring atom chips [66]. The atom chip is a micro-fabricated, integrated device that
allows the design of small and compact setups that can be embedded in mobile devices where the
volume and the weight are limited. It is even more the case for applications to space experiments in
rockets, such as the MAIUS-1 experiment [49], or CAL on board of the ISS [51]. Another advantage of
using atom chips is the high flux of atoms that can be achieved, with creations of ensembles of 105

atoms in the span of a second [8].
The manipulation of the atoms in the system relies mainly on two main elements : the atom chip

and the Helmholtz coils. The atom chip is a structure with many wires, as it can be seen on the left
side of Figure 2.1. These wires carry currents inducing magnetic fields that can be calculated using
the Biot-Savart law

B(r) = µ0
4π

∫
C

Idl × r′

|r′|3
(2.1)

where dl is a vector along the path C whose magnitude is the length of the differential element of
the wire in the direction of conventional current. r′ = r − l is the full displacement vector from the
wire element dl at point l to the point at which the field is being computed (r), and µ0 is the magnetic
constant.

The magnetic field induced by the chip currents can be combined with the quasi-linear magnetic
field produced by the coils Bbias, that can be referred to as the bias field. This creates a magnetic
potential, and its minimum can be used to trap neutral atoms, as shown for example in the artist’s
view of the CAL SM2 atom chamber on the right side of Figure 2.1 for instance. In the weak field
approximation and in the absence of gravity, the trapping potential that is experienced by an atom
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can be expressed as
V (x, y, z, t) = mF gF µB B(x, y, z, t) (2.2)

where µB is the Bohr magneton, gF is the Landé factor, mF is the azimuthal quantum number and
B(x, y, z, t) is the total magnetic field.

Depending on the geometry of the wires used on the atom chip, we can obtain different trapping
potentials. One of the configurations is the Z-shape chip configuration, where it takes a wire tracing a
Z-shape on the chip [67]. It is the one used for the application to STA transport, and the experiments
realized with the first module of CAL, SM2. It is chosen because of the cigar-shaped trap that it can
create.

Using the CAD design of the chip and information on the experimental setup, we can model the
different wires of the chip and the coils used during the experiment. By plugging this information
into a code solving the Biot-Savart law in a software such as Mathematica, we can get an overview of
the trap configurations that can be achieved during the experiments. Usually, the potential created
is fitted by a harmonic potential centered on the trap minimum. Defining the centre of the trap as
(xt, yt, zt), the potential is expressed as

V (x, y, z, t) = 1
2m

[
ω2

x(t)(x− xt)2 + ω2
y(t)(y − yt)2 + ω2

z(t)(z − zt)2
] (2.3)

where ωα = 2πfα for α = x, y, z with fx,fy and fz the trap frequencies. x, y, z are the eigenaxes of thetrap and can be rotated with respect to the axes of the chip.
The result of the trapping potential simulation depends on the presence or absence of gravity,

since the real trap is not a perfect parabolic trap. In the presence of gravity, the trapping potential is
distorted, and if we fit a harmonic potential to the trap bottom, the frequency changes compared to
the case without gravity, and the eigenaxes of the trap can experience a rotation that can be more or
less important in a case-by-case situation.

The trap characteristics, such as the position of the minimum and the trapping frequencies, can
then be used to simulate the dynamics of the atom cloud. However, some approximations have to
be made to simplify the calculations, such as how to account for the form of the wires, the width and
position of the coils. It is necessary to compare these values with experimental data, hence a calibra-
tion phase is required. This calibration is also very important to simulate experimental protocols that
cannot be performed directly in the laboratory, e.g. planning for experiments to be realized during a
rocket launch.

2.3 . STA : control of the final position and velocity of the BEC
The idea is to achieve a fast, precise and controlled transport of a BEC. Constraints such as the

initial position, final position and duration are linked to the experimental requirements. In our case,
we want to study the expansion of a cloud and perform operations leading to interferometry from a
configuration where the BEC is at rest in the initial trap. This requires a fast transport during which
the BEC will be excited. There are many methods to perform a shortcut to adiabaticity (STA) protocol
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depending on the object tomove from a single atom to a cloud of atoms condensed in a BEC [68]. The
method we use is the reverse engineering method that was studied by Robin Corgier during his PhD
thesis [62, 63]. This work assumes a 1D transport with a Z-wire chip trap. It uses the same formulas
and calculation process as in these works, and more details on some demonstrations can be found
in the references above.

In the harmonic potential approximation and in the absence of gravity, the trajectory of the centre
of mass of the atom cloud za can be described by Newton’s equation (see section 2.4 for more details)

z̈a(t) + ω2
z(t)(za(t) − zt(t)) = 0 (2.4)

with zt the position of the trap centre, and ωz(t) the time-dependent angular frequency of the trap.
This equation links the atom trajectory to the trap trajectory.

2.3.1 .Polynomial approach for the atoms trajectory
Using the constraints on the trajectory of the atoms, such as the initial position, velocity and acce-

leration, as well as the final ones, we can design an ideal trajectory for the atom cloud. We consider a
transport along the z direction of the cloud. za(t) describes the trajectory of the atom cloud we want
to obtain. Here we want to transport atoms that are initially at rest to a final trap where the atoms
should also be at rest. The boundary conditions at initial and final time are

za(0) = zi, ża(0) = 0, z̈a(0) = 0 (2.5)
za(tf ) = zf , ża(tf ) = 0, z̈a(tf ) = 0 (2.6)

where zi and zf are the initial and final positions of the cloud, respectively. Using our knowledge of
the system, we can create the trap evolution that gives us this trajectory as a solution to Newton’s
equations. Since we can experimentally tune the currents so that the traps are at rest at both ends of
the transports, we have similar boundary conditions on the trap trajectory zt(t)

zt(0) = zi, żt(0) = 0, z̈t(0) = 0 (2.7)
zt(tf ) = zf , żt(tf ) = 0, z̈t(tf ) = 0 (2.8)

By taking into account these boundary conditions on the trap trajectory with Newton’s equation 2.4,
we obtain new constraints on the 3rd and 4th derivatives of the atom trajectory with respect to time.

z(3)
a (0) = 0, z(4)

a (0) = 0 (2.9)
and

z(3)
a (tf ) = 0, z(4)

a (tf ) = 0 (2.10)
This gives us a total of 10 constraints to satisfy. Using Lagrange’s theorem on polynomials, there
is a unique polynomial of degree 9 that satisfies these conditions. Solving the equations with this
polynomial and its derivative, we find the coefficients for the atom trajectory

zpoly(t) = zi + (zf − zi)

126
(
t

tf

)5

− 420
(
t

tf

)6

+ 540
(
t

tf

)7

− 315
(
t

tf

)8

+ 70
(
t

tf

)9
 (2.11)
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This polynomial form for the atom trajectory is convenient to get a first impression of the calculations
and to learn the techniques of this reverse engineering STA protocol. It is also a way to systematically
find a function that satisfies all the boundary conditions, thanks to the properties of polynomials.

In Figure 2.2 we see an application to a transport from zi = 0.453 mm to zf = 1.654 mm in
tf = 75 ms. The blue curve corresponds to the polynomial anzatz from equation 2.11. However, the
polynomial function lacks flexibility, and it is not easy to modulate it to account for other criteria of
atom transport, such as controlling the offset to the trap minimum.

2.3.2 .Flexible approach with sinusoidal functions
After finding the polynomial function that satisfies the boundary conditions, it is possible to think

about other categories of functions that have similar properties for the 1st and 2nd derivatives like
the sinusoidal functions. Another ansatz is presented in [63]. It is the one that will be used in our
numerical and experimental applications. It is based on the observation that the transport requires an
acceleration followed by a deceleration of the atom cloud. This suggests the use of a function whose
acceleration has a sinusoidal shape with the possible introduction of some chirping parameters

za(t) = zi +
(
zf − zi

12π

) [
6ν − 8 sin(ν) + sin(2ν)

] (2.12)
where

ν = ν(t) = 2π
(

1 + a(t/tf ) + b(t/tf )2

1 + a+ b

)
t

tf
(2.13)

The parameters a and b are control parameters that can be adjusted to optimise the transport. We
see in Figure 2.2 that for (a, b) = (0, 0), this ramp, which corresponds to the dashed red line, has a
shape close to that of the polynomial ramp in blue. Optimizing to minimize the offset from the trap
minimum throughout the transport results in the optimized parameters (a, b) = (−1.37, 0.78). This
optimized ramp is shown in green in Figure 2.2.

2.3.3 .Design of the trap evolution by reverse engineering
In some cases, we can analytically reverse-engineer the trap trajectory that provides the atom

trajectory [62]. This is the case when we can write the dependence of the trap frequencies on the trap
position with, for instance, simple Padé functions, which are quotients of polynomial functions

ω2
z(zt) = α+ βzt

1 + γzt + ζz2
t

(2.14)
By inserting this expression into Newton’s equation of motion 2.4 with the chosen ramp for za(t), we
can indeed easily calculate zt(t). Finally, by reversing the calculation of our chip model, we can obtain
the evolution of the experimental currents that will implement this trap evolution.

These calculations assume that the trap is harmonic throughout the whole dynamics. This is an
approximation that is sometimes difficult to hold when studying the transport in practice, especially
if the atoms move away from the centre of the trap during the dynamics. The anharmonicity of the
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Figure 2.2 – Different atom trajectories satisfying the conditions for a STA transport for a duration of
tf = 75 ms, from zi = 0.453 mm to zf = 1.654 mm. The blue curve corresponds to the polynomialansatz. The dashed red curve corresponds to the sinusoidal ansatz with (a, b) = (0, 0). The greencurve corresponds to the same flexible ansatz, but for a different, optimized couple of parameters
(a, b) = (−1.37, 0.78).
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trap can be described by taking a third order term from the Taylor expansion of the potential around
the trap minimum

Va(x, y, z, t) = V (x, y, z, t) + 1
3mω

2
z(t)(z − zt)3

L3(t) (2.15)
where V (x, y, z, t) is the harmonic potential seen in equation 2.3, andL3(t) is the characteristic length
associated with the 3rd order anharmonic term. For typical chip geometries as reported in [8], the
cubic term is by far the largest correction term to the harmonic order.

We can visualize the influence of this third-order correction by inserting the new expression for
the potential into Newton’s equation of motion. For the transport along z that we are considering, the
new equation of motion reads

z̈a(t) + ω2
z(t)(za(t) − zt(t))

(
1 + za(t) − zt(t)

L3(t)

)
= 0 (2.16)

To limit the effects of the anharmonic component on the dynamics, the following criterion must be
met [62]

χ(t) =
∣∣∣∣za(t) − zt(t)

L3(t)

∣∣∣∣ ≪ 1, ∀t (2.17)
In Figure 2.3 we see that for the polynomial trajectory and for the sinusoidal ramp with (a, b) =

(0, 0) the offset is more than 30 µmnear the end of the transport. For the particular, optimized choice
(a, b) = (−1.37, 0.78), this offset is minimized and is less than 13.6 µm along the trajectory. We can
see in Figure 2.2 that by choosing this particular set of parameters, the aspect of the ramp is very
different. The shape of the atoms velocity ża and acceleration z̈a also shows a different strategy for
the transport : the atoms are initially launched faster thanks to the higher andmore constraining trap
frequency in the beginning, and then the deceleration occurs earlier to allow the trap to "catch up"
with the atoms earlier in order to minimize the offset in the remaining part of the transport. Another
way to minimize the offset would be to choose a longer transportation time, and therefore a more
adiabatic transport, but this transportation time would then have to be significantly lengthened to
achieve similar results in terms of maximum offset.

Once the trap trajectory is determined as a function of the experimental parameters, it is neces-
sary to take into account the constraints on the parameter variations imposed by the experimenta-
lists. For example, the limit on the step size and on the number of steps for the ramp. These are limits
imposed by the software and the hardware of the experimental setup. We will see more about the
study of the robustness of the STA ramp in the next chapter, where wewill apply this 1D STA transport
to the CAL machine in space.

2.4 . Study of the center of mass (COM) motion with Newton’s equation of motion
The BEC is a quantum object that can be modeled by a 3D wavefunction ϕ(x, y, z). In the frame of

the mean-field theory, its dynamics is described by the Gross-Pitaevskii equation [56]. In this section
we will focus on the spatial dynamics of the wavefunction. By definition, the position of the quantum
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Figure 2.3 – Offset between the atom trajectory and the trap trajectory, using the same ramps andcolor codes as for Figure 2.2. The green curve is optimized to minimize the offset over the ramp.
object is calculated using the probability density associated with the wavefunction. For example, to
get the average position ⟨x⟩ along the x direction we use

⟨x⟩ =
∫

x

∫
y

∫
z
x |ϕ(x, y, z)|2 dx dy dz (2.18)

This method requires knowledge of the full wavefunction at all times, in case we want to follow the
displacement of the BEC during the dynamics. This requires a lot of computational resources, either
in terms of computational memory for the data storage, or in terms of computation time. The Gross-
Pitaevskii equation can also be referred to as a non-linear Schrödinger equation, since the equation
includes the kinetic energy and potential energy terms as in the Schrödinger equation, along with an
additional term which is the interacting term Ng |ϕ(x, y, z)|2 ϕ(x, y, z), which is cubic with respect to
the wavefunction.

Schrödinger : iℏ ∂tϕ(x, y, z) =
[
− ℏ2

2m∆ + V (x, y, z)
]
ϕ(x, y, z) (2.19)

Gross-Pitaevskii : iℏ ∂tϕ(x, y, z) =
[
− ℏ2

2m∆ + V (x, y, z) +Ng|ϕ(x, y, z)|2
]
ϕ(x, y, z) (2.20)

Due to the similarity between the Gross-Pitaevskii equation and the Schrödinger equation, many stu-
dies have been conducted to show that similar numerical methods can be used to solve both equa-
tions. These studies have been largely successful, such as in [69–71].
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Here we first want to use the same approach as in the case of single particles to study the tra-
jectory of the object without going through the solution of the equations describing the dynamics of
the wavefunction. For an atom in a harmonic potential, the dynamics is found by solving the Schrö-
dinger equation. In this case, the Ehrenfest theorem [72] shows that the centre of mass dynamics
is described, as in classical mechanics, by the solution of Newton’s equation of motion. This greatly
simplifies the study, since solving this simple second-order differential equation is much easier. Now
we want to extend this approach to the GPE by adding the nonlinear term. This term depends only
on the probability density of the wavefunction, which is symmetric with respect to the center of mass
of the system in a harmonic well. As a result, the interactions (repulsive in our case) will simply tend
to broaden the wave function, without changing the position of the center of mass. In the harmonic
approximation we can therefore still apply the Ehrenfest theorem to the BEC to describe the spatial
dynamics of the center of mass. This is one of the main reasons why we can use the reverse enginee-
ring method to design the ramp that will move the BEC along the desired trajectory. Now we will see
applications of this equation of motion such as measuring trap frequencies, or modeling of the final
position and velocity of a cloud at the end of a transport.

2.4.1 .Characterisation of an atom trap
In this part, we will see how to extract the frequency and position of a trap from a sloshing ex-

periment where the BEC is imaged after a fixed time-of-flight (TOF). We will also calculate the in-trap
oscillation amplitude from the signal.

Let us consider the trajectory along the z direction of a BEC oscillating in a trap centered at z0 withfrequency ωz . We note zin(t) the trajectory in the trap and zT OF (t) the trajectory observed on the
camera after a short free expansion time tT OF . The trajectory in the trap is found by solving Newton’sequation for a harmonic oscillator.

zin(t) = Ain sin(ωzt+ ϕin) + z0 (2.21)
with Ain the in-trap oscillation amplitude and ϕin the phase of the signal. It is of course also possibleto express this oscillation with a cosine function by changing the definition of the initial phase ϕin.

We assume that the atoms expand freely and that the expansion time is short, so that the motion
of the cloud is defined only by the release velocity. Thus, similar to a first-order Taylor expansion, we
find the expression of the trajectory measured by the camera using

zT OF (tr + tT OF ) = zin(tr) + żin(tr) tT OF (2.22)
= Ain [sin(ωztr + ϕin) + ωztT OF cos(ωztr + ϕin)] + z0 (2.23)

It corresponds to the uniform linear motion after the release at t = tr from the trap followed by
the free expansion of tT OF . We can see from the expression of zT OF that it has the same period
Tz = 2π/ωz as the in-trap motion zin. Therefore, the frequency ωz can be determined by measuring
zT OF . Note that we can also fit the in-trap amplitude Ain and the position of the trap minimum z0from the measurement of zT OF .
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2.4.2 .Tools to study the robustness of a transport
Let us consider the case of a transport experiment realised in orbit, such as an STA transport.

We assume that the atoms are initially oscillating in the initial trap, and we fix the initial time t = 0
of the transport after a fixed initial holding time thold,i. The initial conditions of the atoms trajectory
zat(t; thold,i) are

zat(0; thold,i) = Ai cos(ωz(0)thold,i + ϕi) (2.24)
and

żat(0; thold,i) = −Aiωz(0) sin(ωz(0)thold,i + ϕi) (2.25)
for the equation of motion

z̈at + ω2
z(t) [zat(t; thold,i) − ztrap(t)] = 0 (2.26)

At the end of the transport, we can define the release velocity of the atoms żat(tf ; thold,i), whichis the velocity of the atoms when we switch off the trap at t = tf . In the case where the experiment
continues with the holding of the BEC in the final trap of frequency ωz(tf ), we can deduce the final
oscillation amplitude Af (thold,i) from the motion of a particle in a harmonic trap. This amplitude is
easily obtained from the position and velocity of the centre of mass of the condensate at the end of
the transport by the following formula

Af (thold,i) =
√

[żat(tf ; thold,i)/ωz(tf )]2 + [zat(tf ; thold,i) − ztrap(tf )]2 (2.27)
Experimentally, we want to control the final position of the cloud so that it is as close as possible to

the final trapminimum.We also want to keep its velocity as low as possible, so that the centre ofmass
motion can be controlledwhen releasing the cloud. This is whywe try tominimize the amplitude of the
oscillation Af (thold,i) by choosing the optimal initial holding time thold,i. The transport is consideredrobust if the final amplitude remains below a threshold of the order of microns for a small offset from
the initial position, expressed here as a function of the holding time in the initial trap.

2.5 . DKC : control of the expansion
During the free expansion of a BEC, its size can grow very quickly, and since the total atom density

is conserved, the cloud becomes more and more dilute. This leads to a loss of contrast in the imaging
process after a certain time of flight, resulting in very poor signal to noise ratio in the data. The growing
size of a BEC is also a limiting factor for performing experiments on the cloud after its creation, such as
atom interferometry. The laser beams interacting with the cold ensemble have a finite size, and if the
cloud is too large, the interaction between light and atoms across the cloud is not the same, and the
defects over thewavefront introduce errors. Similar to the collimation of a light beamat the beginning
of an optics experiment, we want to control the size of the atom clouds by lensing the atoms with an
atom lens. The idea introduced in the paper from Hubert Ammann and Nelson Christensen [58], is
to use of a short pulse of a potential to narrow the momentum distribution of the atom cloud. To
the term "Delta Kick Cooling" introduced in the paper, we will prefer the term "Delta Kick Collimation"
(DKC) due to the fact that we do not consider temperatures as defined in thermodynamics in the BEC.
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At first sight, we can use an analogy to classical mechanics with atoms in a harmonic oscillator.
During the dynamics of atoms in a trap, the total energy of the system is conserved. The potential
energy oscillates in phase with themotion of the atoms, and the kinetic energy oscillates out of phase.
By turning off the trapping potential when the potential energy ismaximal, we obtain a free expansion
of the ensemble with a low kinetic energy.

In practice, after a short free expansion of the atom cloud, we turn on the trapping potential for
a very short time. This short pulse corresponds to the "delta kick", and is of the order of milliseconds
when the trapping frequency is of the order of tens of Hertz. This duration depends on the expansion
time before the application of the delta-kick. In the seminal paper on the DKC method, the pulse
duration can be found when the following condition κcl ≈ 1 is satisfied, where

κcl =
√

2π∆tlens ω
2 texp (2.28)

with ∆tlens the duration of the kick, texp the duration of the free expansion before the kick, and ω the
angular frequency of the trap. Observing the expression of κcl, we can see that the parameters are
all related, and for a fixed trapping frequency, the pulse duration to apply shortens as the expansion
before the pulse gets longer.

For a BEC in ballistic expansion, i.e. for a long time of flight when the size of the condensate evolves
linearly, we can estimate the optimal lens duration ∆tα to control the size evolution in the direction
α = x, y or z using a very simplified model. When the BEC is trapped again during the DKC process,
different collective excitation modes can coexist with various frequencies [56, 73]. Suppose that we
can express the size oscillation Rα(t) of the BEC in the direction α as the solution of a harmonic
oscillator of frequency qωα, with q a real factor depending on the excitation mode. Then

Rα(t) = Rα(texp) cos (qωα(t− texp)) + Ṙα(texp)
qωα

sin (qωα(t− texp)) , (2.29)
and

Ṙα(t) = −Rα(texp)qωα sin (qωα(t− texp)) + Ṙα(texp) sin (qωα(t− texp)) . (2.30)
The lens time duration ∆tα is chosen so that the size derivative is zero. By using the size velocity fromEq. (2.30) we obtain

∆tα = 1
qωα

arctan
(

Ṙα(texp)
Rα(texp)qωα

)
. (2.31)

We can therefore obtain a reasonable initial estimate of the lens duration from the expression
∆tα ∼ 1

ωα

(
Ṙα(texp)
Rα(texp)ωα

)
, (2.32)

which can then be refined by scanning the values of ∆tα around that value.
The upper graph from Figure 2.4 shows qualitatively the effect of the same lens duration over a

cloudwith different initial trap frequencies and dynamics, as well as different frequencies for the lens.
The lens duration ∆tlens is too short for the red curve with only a small reduction of the expansion
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rate of the cloud in this direction. On the other hand,∆tlens is too long for the blue curve with an over-focusing of the cloud, followed by a "rebound" in the size evolution due to atomic interactions, which
are repulsive and more important when the cloud is dense. For the longer time, the cloud expansion
is faster than before the lensing process, which is analogous to a diverging lens in optics. Finally the
lens is optimized for the green curve that is well collimated. This shows that if we are not in a spherical
symmetry, it is difficult to control the expansion of the BEC in all the directions, and sometimes the
optimization of one direction has to be done at the expense of the others. One way to overcome this
limitation is to control the initial release from the trap, and to introduce a second DKC to act as a
telescope.
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Figure 2.4 – Principle of DKC, effect of the lensing time on the expansion and visualisation in phasespace. In the upper part, we observe the effect of the same lensing time on an expansionwith differentfrequencies. The lensing time is collimating for the green curve, too short for the red curve, and toolong for the blue curve that shows overfocusing. In the lower part we see the representation of thewavefunction in the phase space domain at different times during the lensing.
The lower part of Figure 2.4 shows the effect of DKC on a BEC in phase space. Initially, the trapped

BEC is represented by a disk in phase space. Then, after a long enough free expansion stage, the
momentum of the cloud remains constant, stretching the disk into an ellipse. The trapping potential
during the DKC corresponds to a rotation of the ellipse in phase space, and the switch-off time is
optimal when the momentum width of the cloud ∆p is minimized. With this small momentum width,
the kinetic energy of the cloud is reduced, and the cloud expands slower after this process. The size
of the condensate at the end of an ideal kick will never be perfectly constant due to the presence of
the remaining atomic interaction energy in the BEC. However, a good control of this expansion can
allow the observation of the cloud after seconds of expansion in some special cases [45].
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To quantify the expansion rate of the condensate at the end of the DKC, we define the 3D expan-
sion temperature by analogy to the definition of the temperature in the Maxwell-Boltzmann statistics

3
2kBT = m

2

[(
d∆x
dt

)2
+
(
d∆y
dt

)2
+
(
d∆x
dt

)2] (2.33)
where kB is the Boltzmann constant. We can also define a 1D temperature for each direction as

1
2kBTα = m

2

(
d∆α
dt

)2 (2.34)
where α ∈ {x, y, z}.

2.6 . Scaling equations and GPE simulations
In themean-field approach, the dynamics of a Bose-Einstein Condensate is described by the time-

dependent Gross-Pitaevskii equation (GPE) [56]. The equation shown below assumes that the wave
function ψ(r, t) representing the condensate is normalised to 1

iℏ ∂tψ(r, t) =
[
− ℏ2

2m∇2 + V (r, t) +Ng |ψ(r, t)|2
]
ψ(r, t) (2.35)

Herem is the mass of an atom, V (r, t) corresponds to the external potential, N is the atom number
in the cloud, ℏ = h/2π is the reduced Planck constant and the interaction term g is related to the
s-wave scattering length a of the species considered by

g = 4πℏ2a

m
(2.36)

At equilibrium, it is possible to write a time-independent version of the Gross-Pitaevskii equation,
which can also be derived using the Lagrange equation[

− ℏ2

2m∇2 + V (r, 0) +Ng |ψ(r, 0)|2
]
ψ(r, 0) = µψ(r, 0) (2.37)

where µ is a Lagrangian multiplier corresponding to the chemical potential of the system.
In the case where the atom number is sufficiently large, i.e. N usually of the order of at least 105,

it is possible to neglect the kinetic energy of the cloud compared to the other terms of the GPE. This
is called the Thomas-Fermi (TF) approximation. Under this approximation, the atomic density can be
written as

ρ(r, 0) = N |ψT F (r, 0)|2 =


µ− V (r, 0)

g
if V (r, 0) ⩽ µ

0 otherwise
(2.38)

The chemical potential µ is determined by the normalisation of the wavefunction.∫∫∫
ρ(r, 0) dr = N (2.39)
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In the case of an external harmonic potential, this normalisation yields

µ = ℏω̃(0)
2

15Na

√
mω̃(0)

ℏ

2/5

(2.40)

where ω̃(0) = (ωx(0)ωy(0)ωz(0))1/3 is the geometric mean of the three trapping frequencies. In this
Thomas-Fermi approximation, the probability density has the shape of an ellipsoid in 3D space, and
we can define the size or radius of the wavefunction in all directions α ∈ {x, y, z} by

Rα(0) = aosc

(15Na
aosc

)1/5 ω̃(0)
ωα(0) (2.41)

where aosc =
√
ℏ/(mω̃(0)) is the characteristic quantum mechanical length scale of the 3D harmonic

oscillator.
The Gross-Pitaevskii equation (GPE) can be used to get the size evolution of the atomic clouds to

see how the density evolves. This is useful to find out if the cloud is small enough when interacting
with a laser beam during an interferometry sequence, or if we have a high enough atomic density to
keep the cloud visible. However, this can require numerical calculations that can be long and tedious,
sometimes memory intensive [69, 71, 74]. A simpler model is welcome to obtain fast results. In our
case, we use a set of scaling equations [57, 75]. These equations rely on a few constraints on the
system : having a harmonic trap and having enough atoms so that the Thomas-Fermi approximation
holds. In this scaling approach, we make the analogy between the Bose-Einstein condensate and an
ellipsoidal balloon that inflates or deflates during the dynamics. We define scaling functions λα(t) in
each direction α ∈ {x, y, z} such that

Rα(t) = λα(t)Rα(0) (2.42)
These scaling functions are the solutions of coupled second-order differential equations

λ̈α + ω2
α(t)λα = ω2

α(0)
λαλxλyλz

(2.43)
that can be solved numerically with different methods such as the Verlet algorithm.

This method provides a good description of the size dynamics of a condensate and is used to anti-
cipate the behaviour of a condensate when designing sequences for diverse experiments on ground
or in space. When the atom number gets too low, we can underestimate the size of the condensate
with this method. We then have to fully solve the Gross-Pitaevskii equation to describe the dynamics
more accurately. The scaling equations can be used in this case to have a suitable, adapted grid at all
times by performing an appropriate frame transformation, whichmakes Gross-Pitaevskii calculations
muchmore efficient, as shown for exemple in the references [74, 76]. This scaled grid method is used
in our codes and it will be described in more detail in Chapter 4.

We have seen that with the Thomas-Fermi approximation and with the scaling equations we can
define the radius of the BEC to measure its typical size evolution. Using the parabolic shape of the

24



wave function, we can show that there is a scaling relation between the radiusRα(t) and the standard
deviation ∆α(t) in each direction [62]. For α ∈ {x, y, z} we have

Rα(t) =
√

7 ∆α(t) (2.44)
where

(∆α)2 = ⟨α2⟩ − ⟨α⟩2 (2.45)
This last relation is used when we numerically evaluate the widths ∆x(t), ∆y(t) and ∆z(t) from the
solution of the Gross-Pitaevskii equation.

2.7 . Rotations and frame changes
Expression of the rotation matrix

When modeling the system to solve its dynamics, we are sometimes confronted with the fact
that the eigenaxes of the trap are not the same as the laboratory frame. In the case of a magnetic
trap created by the combination of the magnetic fields induced by a chip and by magnetic coils, this
laboratory frame is where we define the position of these elements. We must also take into account
the fact that the system is imaged in a camera frame, which can also be rotated with respect to this
laboratory frame. In this case, we need to know how to measure the size of the cloud on the camera
and how to compare the experimental data with the simulation, knowing that the calculations are
simpler using the eigenaxes of the trap.

In this section we will introduce rotation matrices, which are unitary matrices in the case of ortho-
normal frames, used to go from one frame to another. For a BEC with Thomas-Fermi approximation,
we can consider that the BEC is an ellipsoid and we need to get its size from its projection on the
camera. A way to handle the plane projections mathematically is described in the reference [77].

In the simulations, we consider the trapping potential for the atom clouds in the laboratory frame,
which can also be called the "chip frame". Due to the geometry of the system, the eigenaxes of the
trap are rotatedwith respect to the axes of the laboratory frame. The first step is to define the rotation
matrix that goes from the trap frame to the laboratory frame. We note {x,y, z} the unitary vectors
of the coordinates in the trap frame and {X,Y ,Z} the unitary vectors of the coordinates in the
laboratory frame. In addition, let P chip

trap be the rotation matrix that makes the transformation from
the chip frame to the trap frame such thatxy

z

 = P chip
trap

XY
Z

 (2.46)

We nowwant to reconstruct the rotationmatrix using the notation of [77] and to obtain the values
of the rotation angles θ, ϕ, ψ defined in Figure 2.5, knowing that the simulations will give us the 3
quantities θx, θy and θz defined by

x.X = cos(θx), y.Y = cos(θy), z.Z = cos(θz) (2.47)
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axis, and z and x′ correspond to the new orthogonal axes in the (Zx′′) plane. Panel d shows the finalrotation of angle ψ around the z axis with x and y as the new orthogonal axes in the x′y′′ plane.
For this, we consider the rotationmatrix with the angles θ, ϕ andψ defined by the successive rotations
from Figure 2.5

P chip
trap =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ


 cosϕ sinϕ 0

− sinϕ cosϕ 0
0 0 1

 (2.48)
This leads to

P chip
trap =

 cos θ cosϕ cosψ − sinϕ sinψ cos θ sinϕ cosψ + cosϕ sinψ − sin θ cosψ
− cos θ cosϕ sinψ − sinϕ cosψ − cos θ sinϕ sinψ + cosϕ cosψ sin θ sinψ

sin θ cosϕ sin θ sinϕ cos θ

 (2.49)
Identifying the diagonal terms of this matrix with the results of the scalar products from equation
2.47 we obtain

cos θx = cos θ cosϕ cosψ − sinϕ sinψ (2.50a)
cos θy = − cos θ sinϕ sinψ + cosϕ cosψ (2.50b)
cos θz = cos θ (2.50c)

Our goal is now to find expressions for the angles ϕ and ψ as a function of θx, θy and θz in the caseof a non-trivial rotation where
cos2(θz) ̸= 1 (2.51)
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Replacing cos θ with cos θz in Eq. (2.50) we get
cos θx = cos θz cosϕ cosψ − sinϕ sinψ (2.52a)
cos θy = − cos θz sinϕ sinψ + cosϕ cosψ (2.52b)

and this leads to
cosϕ cosψ = cos θy − cos θz cos θx

1 − cos2 θz
≡ A (2.53a)

sinϕ sinψ = cos θx − cos θz cos θy

cos2 θz − 1 ≡ B (2.53b)
Using the notations A and B to refer to the various expressions on the right side of the previous
Eq. (2.53) and some trigonometry formulas, we finally obtain the following expressions used for the
determination of the angles ϕ and ψ

cos(ϕ− ψ) = A+B (2.54a)
cos(ϕ+ ψ) = A−B (2.54b)

Because of the parity of the cosine function, to determine the sign of the angles θ, ϕ, and ψ it is
necessary to check these results against the expression of a rotation matrix whose angles are known
to have the correct sign. As shown in Figure 2.5, when cos(θ) = ±1 the frame transformation consists
in a simple rotation around the z axis. In the special case where cos(θ) = −1, the axes are also re-
versed. As an example, let us consider the simple case where θx = θy = ϕ and θz = 0. In that case
cos θ = +1. The rotation matrix is then simplified to

P chip
trap =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 (2.55)

Note that inmost cases, it is sufficient to consider this matrix, since we can neglect angles of the order
of degrees in the experiments.

In the following numerical example, which is used for applications to themixture experiments per-
formed in the presence of gravity studied in Section 4.6, we have (θx, θy, θz) = (4.1640, 4.8630, 2.5196)
degrees, and wewant to find the expressions of the angles (θ, ϕ, ψ) that correspond to the expression
of the matrix

P chip
trap =

 0.997 −0.073 0.001
0.072 0.0996 0.043

−0.004 −0.004 0.993

 (2.56)
Using trigonometry, we find thatwemustmake the following choices, withA andB defined in Eq. (2.53)

θ = −θz (2.57a)
ϕ = [ arccos(A+B) − arccos(A−B) ] / 2 (2.57b)
ψ = [ arccos(A−B) − arccos(A+B) ] / 2 (2.57c)
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We can see that the numerical value of the rotation matrix P chip
trap is very close to the identity matrix.

Therefore, except for simulations that require a higher accuracy in the calculations, we often simplify
the simulation process by neglecting the rotation of the trap and, at the same time, the rotation of
the BEC in the chip frame.

Once we have determined the transformation matrix from the chip frame to the trap frame, we
can proceed to calculate the dynamics of the BEC. Experimentally, however, we sometimes have to
consider an additional frame transformation due to the imaging setup. In the experiments we have
studied, we know the camera position with respect to the atom chip, e.g. the sensor is orthogonal to
the chip. As shown in Figure 2.6, the third axis of the camera frame (which is by definition orthogonal
to the sensor plane) is along the imaging beam.

Figure 2.6 – Definition of the camera frame with respect to the atom chip frame. The imaging beamis orthogonal to the camera plane (OXCYC).
Similar to the definition in Eq. (2.46), this new frame transformation can be written as followsxy

z

 = P cam
chip

XC

YC

ZC

 (2.58)

where (XC , YC , ZC) are the coordinates in the camera frame. We obtain

P cam
chip =

0 − sinα − cosα
0 cosα − sinα
1 0 0

 (2.59)

with the angle α defined in Figure 2.6. The numerical value of the α angle is fixed by the experimental
setup. Now, using these transformations, we will connect the size of the atom cloud on the camera
to the theoretical size of the cloud calculated in another frame.

Expression of the size of an atom cloud after a frame transformation
The previous section explained how to define the rotation matrices that allow the transition from

the chip frame or the trap frame in which the calculations are performed, to the camera frame where
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the images are captured. Now we will show how, once we have the expression of the rotation matrix,
we can express the wavefunction width in the new frame.

The geology article [77] describes in detail how to obtain the width of the projection of an ellipsoid
on a 2D plane. This recipe can be used to obtain the radius of a BEC cloud on a camera when we use
the Thomas-Fermi approximation to describe a BEC in a harmonic trap. A step-by-step calculation
using this method is described in Appendix A.

Using integrations and variance properties, we can express the width a bit more easily and get
the same final expressions. For a general calculation, let us consider the following transformationXC

YC

ZC

 = P chip
cam

xy
z

 =

P11 P12 P13
P21 P22 P23
P31 P32 P33


xy
z

 (2.60)

We want to express σ2
X = ⟨X2

C⟩ − ⟨XC⟩2 and σ2
Y = ⟨Y 2

C⟩ − ⟨YC⟩2 as a function of σx, σy and σz . To dothis, we first calculate
⟨X2

C⟩ = ⟨(P11x+ P12y + P13z)2⟩ (2.61a)
= P 2

11⟨x2⟩ + P 2
12⟨y2⟩ + P 2

13⟨z2⟩ + 2(P11P12⟨xy⟩ + P11P13⟨xz⟩ + P12P13⟨yz⟩) (2.61b)
⟨XC⟩2 = ⟨P11x+ P12y + P13z⟩2 (2.61c)

= P 2
11⟨x⟩2 + P 2

12⟨y⟩2 + P 2
13⟨z⟩2 + 2(P11P12⟨x⟩⟨y⟩ + P11P13⟨x⟩⟨z⟩ + P12P13⟨y⟩⟨z⟩)(2.61d)

As (x, y, z) is a Cartesian frame, the variables are independent from each other and thus the cova-
riance is null

⟨xy⟩ = ⟨x⟩⟨y⟩, ⟨xz⟩ = ⟨x⟩⟨z⟩, ⟨yz⟩ = ⟨y⟩⟨z⟩ (2.62)
Therefore

σ2
X = P 2

11σ
2
x + P 2

12σ
2
y + P 2

13σ
2
z (2.63)

In a similar way, we obtain
σ2

Y = P 2
21σ

2
x + P 2

22σ
2
y + P 2

23σ
2
z (2.64)

2.8 . Imaging process and camera considerations
Almost every experiment in which atom clouds are manipulated has an imaging sequence so that

measurements can be made. Atom clouds, which can sometimes be a few tens of microns in size, are
imaged by optical systems, including lenses and a sensor. Even in cases where optics are considered
as perfect or not limited by aberrations, one has to consider optical effects due to diffraction [78].
These effects are measured experimentally during calibration phases using test targets. An example
presenting the setup of the MAIUS experiment can be found in [79]. Works on optical design and
sensor theory introduce the Optical Transfer Function (OTF) of optical systems. Using Fourier op-
tics relationships from the object to the image, the Optical Transfer Function provides the physical
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Figure 2.7 – Free expansion of a cloud after an experimental sequence performed in microgravitywith the CAL apparatus. The raw simulation results are plotted in blue. The correction applied with
σcam = 42 µmmakes the theoretical data match to the experimental points.

equations used to define the optical system [80, 81]. These equations take the form of the convolu-
tion of a function representing the signal to be observed with a function representing the effects of
the system. A detailed description of the optical effects of the camera on the imaging of the atom
cloud is beyond the scope of our work, but it is not possible to neglect these effects when analysing
the experimental images. We drastically simplify this approach by modeling the images on the ca-
mera Dcam(x, y) by convolution of the computed probability density integrated in the camera plane
D(x, y) =

∫
|ψ(x, y, z)|2dz with a 2D Gaussian of width σcor

Dcam(x, y) =
∫∫

D(x′, y′)G(x− x′, y − y′) dx′dy′ (2.65)
where

G(x, y) = 1
2πσ2

corr

exp
(

−x2 + y2

2σ2
corr

)
(2.66)

The width of the Gaussian is measured experimentally, for example, when checking the Rayleigh cri-
terion. A typical value of σcorr that is used in σcor ∼ 10 − 20 µm, which is confirmed empirically by
comparing results of simulations and experiments. An illustration of this can be found in the compa-
rison with experimental data of BEC mixtures in Chapter 4.

There is another way to account for the resolution effects of the camera whenmeasuring the size
of a cloud. In Figure 2.7, which shows the evolution of the size of a BEC during its free expansion in
microgravity, we see that the measured radius of the BEC, represented by the red dots, is larger than
what is simulated by the theory, plotted as the blue curve, especially at the beginning of the expansion
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when the cloud is small. The size threshold is determined by the optical resolution of the camera. We
introduce a heuristic correction for the size evolution of the cloud

Rcorr =
√
R2 + σ2

cam (2.67)
where σcam is adjusted to the signal as a free parameter, by comparing the distance between the
simulation and the data point. In Figure 2.7, the applied correction is σcam = 42 µm. We can see that
the corrected expansion, plotted in red, matches the variation of the data points.

In 1D, the convolution of two Gaussian functions is also a Gaussian, whose variance is the sum of
the original variances. Furthermore, we have seen in section 2.6 that the BEC radius is related to its
width by a factor of √

7. We can see that the results between the two different approximations of the
resolution effects of the imaging process can be linked to each other by the relation σcam ∼

√
7σcorr.

2.9 . Conclusion
This chapter can be seen as a toolbox containing the main theoretical elements that I had to

use or develop during the course of my thesis in order to study the dynamics of single-species BECs
and to analyze the results of experimental measurements carried out on these systems. The next
chapter will show how they can be applied to certain experiments carried out in-orbit. This chapter
has shown that a good knowledge of the characteristics of the experimental setup can provide useful
insights for the development of theoretical models. In particular, knowing which parameters can be
varied experimentally gives a hint as to which physical quantities should be includedwhen developing
simulation models, such as the current intensity in the atom chip drivers and coils that create the
magnetic potential used to trap the cold atoms. We have seen that the trajectory of a BEC can be
easily simulated by solving Newton’s equation of motion. Solving this equation, we can deduce, by
studying the evolution of the centre of mass of the BEC, the characteristics of the trap, such as its
position and frequency.

Regarding the size dynamics of the BEC, we have an alternative to the resolution of the Gross-
Pitaevskii equation used in the mean-field approach, with scaling equations. The scaling equations
presented in Section 2.6 provide a quick result to the simulations, that describes very well the size
evolution for a number of atoms large enough to successfully apply the Thomas-Fermi approxima-
tion. It can be used, for example, with the DKC method to find the optimal lensing time that leads to
collimation of the BEC during a free expansion stage. Since the analysis of the experiment is done
by fitting the fluorescence images of the atom cloud captured by the camera sensors, we have also
seen in this chapter how to extract the size of the cloud from the fit, and how to define the rotation
matrices that allow us to account for frame transformations in the case of rotations.

To implement the transport of a BEC that is required in some experiments, we presented a pro-
tocol for a Shortcut-to-Adiabaticity (STA) transport in the case of a transport in 1D. For a transport in
more dimensions, this analytical method is limited, which leads to the necessity of defining another
type of ansatz that takes into account the dependence of the coordinates between each other. A so-
lution would be to refine the trajectory by trial and error, using methods such as the Optimal Control
Theory (OCT) [82].
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Cha
pte

r 3 Quantum State Engineeringof a BEC in an Earth-orbitinglaboratory
3.1 . Introducing the Cold Atom Laboratory
In order to achieve the precision required for tests of Einstein’s equivalence principle with atom

interferometry, a list of requirements has been developed in addition to the study of different sources
of uncertainty [17, 54]. Amicrogravity environment such as space is highly desirable for quantum sen-
sing experiments because atom clouds can then float for extended times of several seconds. It makes
possible longer interferometry times thus boosting the precision of these sensors. The interferometry
experiments considered use laser beams to perform the splitting, reflecting, and recombining steps.
To avoid diffraction effects by the atom chip on the beam [50], it is placed at a certain distance from
the chip and at the same time away from the BEC evaporation trap. In order to get the atom cloud
to interact fully with the atom beam, one has thus to develop an experimental sequence aimed at
displacing the atom cloud and controlling its size evolution.

The Cold Atom Laboratory (CAL) is a NASA-funded BEC machine on board of the International
Space Station (ISS). It is amulti-user facility operated by the Jet Propulsion Laboratory (JPL) in Pasadena
(CA, USA). It was launched on May 21st 2018, and is operational since June 2018. The Science Module
2 (SM2) is the first CAL science module to be sent on board of the International Space Station (ISS).
This machine enables many research applications of the different consortia involved in the project,
such as the study of quantum bubbles [83–86], space atom lasers [87–89], few-body physics [90],
quantum reflection frommaterial surfaces [91] or entangled state preparation [92, 93]. The details of
the experimental setup of the machine which was designed to manipulate BECs of 87Rb can be found
in Ref. [51], which reports on the creation of the first BEC in an Earth-orbiting laboratory.

The work conducted during my Ph.D. project was in the frame of the Consortium for Ultracold
Atoms in Space (CUAS) led by Nick Bigelow (University of Rochester, New York). It is a US-German
collaboration proposing CAL experiments. The aim of the consortium is to control and manipulate
quantum gases in space, to implement precision atom interferometry experiments. A first objective
was to implement a precise and controlled transport of the BEC, with a control of the position to the
µm level, and a control of the velocity to a µm/s level. The second objective was to implement delta-
kick collimation to reduce the expansion of the cold ensemble and allow the observation of long free
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expansions.
Chapter outline

This chapter develops the results of the CUAS consortium paper [52] in which I participated in
the data analysis with other members of the consortium and performed the simulation of the BEC
dynamics. The section 3.2 describes the process of gauging the chip model associated with the ex-
periment. It is followed by Section 3.3, which is dedicated to the elaboration of a controlled ramp to
move the BEC in its evaporation trap away from the atom chip, with the help of the STA method, and
to its characterisation after experimental realisation. This is an application of the scheme proposed in
the previous chapter (see Section 2.3). Section 3.4 shows the design of an atomic lens using the DKC
method introduced in the previous chapter, in order to control the size expansion of the BEC after its
transport. The realisation of an optimal DKC resulted in a lower expansion energy of the order of the
tens of pK and in an increased time of flight after which the atoms could be observed on the camera.

3.2 . Chip gauging and first experiments from the CUAS consortium with CAL
Following the installation of the Cold Atom Laboratory (CAL) with the SM2 module on the ISS,

began a commissioning phase for NASA’s Jet Propulsion Laboratory (JPL). The consortium then started
the first experiments with CAL.

The first step was to design a trapping configuration for the atoms, as the possible magnetic field
distributions produced by the different structures of the chips and by the magnetic coils are very
diverse. Our choice was fixed on a Z-shape trap configuration, combined with two Helmoltz coils
aligned on the y-direction, as shown on the left side of figure 3.1a. The properties of the trap were
first studied using the chip model presented in the previous chapter, section 2.2. According to this
model, the Z-shape configuration allows the production of cigar-shaped traps with ωx < ωy ≈ ωz ,which can be shifted along the z-axis by keeping the chip current Ichip constant while varying the coilcurrent Icoil.

The principle of the experiments realised with CAL is presented in the figure 3.1. The panel a
describes the transport away from the chip along the z-direction of a BEC from a tight trap where the
cloud is oscillating to a weaker trap within a total time tramp. As the atoms are oscillating during thold,iin the initial trap or thold,f in the final trap, the atoms are displaced by∆zi or∆zf from the centre of the
trap. The experiments realised are divided in twomain categories : holding or sloshing experiments to
study the in-trap dynamics (see fig 3.1b and c), and free expansion releases for the release dynamics
(see fig. 3.1d). For the holding experiments, the atoms are imaged after a fixed expansion time tT OFas the clouds are too dense and the signal would be limited by the diffraction for in-situ imaging.
This expansion time gives more margin for the fluorescence imaging process as there is a minimum
response time for this process. It also amplifies the oscillations of the cloud, making the fits more
accurate. The length of the expansion time depends also on the trap studied. The initial trap shown
in the panel b is imaged after the short TOF tT OF = 4 ms as the trap is very close to the chip surface,
and if the expansion time is too long, there is a risk of having the atoms hitting the chip as the cloud
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Figure 3.1 – Experiments for the characterization of a BEC in orbit. (a) Description of the transportprocess in the z-direction orthogonal to the chip, and definition of the chip coordinate system. Thebottom figures show examples of data measured experimentally with the study of the centre of massmotion in the z-direction. To study the in-trap dynamics, we use sloshing experiments where theholding time in the trap is varied, (b) thold,i for the initial trap and (c) thold,f for the final trap. Then theatoms are imaged at a fixed time of flight tT OF . The periodicity of the signal is used for the frequencycalibration of the model, and the amplitude of the signal can be used to judge the performances ofa transport. The release dynamics is obtained by scanning the free expansion time tT OF after therelease (d). The centre of mass parabolic motion in (d) shows the effects of the release velocity fromthe transport combined to those of the residual magnetic fields. The green shaded areas show the1σ-confidence bounds of the fits and the error bars reflect the single-shot detection noise.

expands quickly. The final trap after transport is further away from the chip, enabling a longer TOF of
tT OF = 20 ms.

The camera observes the projection of the atom cloud on the (Oxz) plane, but here we aremainly
showing the results along the z-direction where the transport happens.

The results of the experiments are analysed and used differently depending on the information
we need. For the calibration stage we focus on the holding experiments. The average position and
the period of the signal are used to extract the position of the trap minimum and its frequency. The
result is then plotted on a graph and compared to the current model as shown for instance in the
figure 3.2. Once the trap characteristics are known, we use the holding experiments in specific traps
to get more information on the design of the transport. The oscillations in the initial trap used for
the transport (see fig 3.1b) are due to the transfer of the condensed BEC from the facility trap to a
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simplified trap determined by only two currents from the Z-shape chip trap and the bias coils. The
presence of these oscillations imposes a choice on the initial holding time to minimize the effect of
the offset to the trap minimum, and must be taken into account since it affects the robustness of the
transport. The oscillations in the trap at the end of the transport (see fig 3.1c) give information on the
final velocity of the atoms, and are used to evaluate the performance of the transport. The release
dynamics experiments (see figure 3.1d) are a more direct method to obtain the release velocity of
the atoms at the end of the transport. It can be observed that the trajectory does not follow a linear
uniformmotion as expected in microgravity, because residual magnetic field gradients accelerate the
atoms during the free expansion.

During the calibration, we focused on different values of the coil current, from the initial trap
after the formation of the BEC, to the further range of displacement of the cloud, for decreasing
values of the current. The choice of a simple trap configuration, such as the one used here, makes
the calibration more efficient by reducing the number of parameters to be tested. It is also important
because the number of experiments that can be realised by the consortium is limited. Moreover,
having the coil current as the only variable parameter simplifies the model.
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Figure 3.2 – Experimental gauging of the chip model : Plots of the trap minimum positions (blue, leftvertical scale) and frequencies (red, right vertical scale) along the x-axis (a) and along the z-axis (b) asa function of the current Icoil in the Helmoltz bias coils. The aim is to calibrate themodel such that thetheoretical curves match the experimental points. The error bars correspond to the 1σ-confidencebounds of the measurements.
It is usually necessary to introduce simplifications when modeling a real system. For example, the

chipmodel assumes square wires with smooth edges and perfect regular coils. In addition, themicro-
gravity environment of the Cold Atom Laboratory can introduce effects that cannot be anticipated by
simply setting the variable associated with the gravitational acceleration to 0. The gauging campaign
realised by studying the BEC behaviour in the traps created for different values of coil current Icoil,while the other settings are not modified, allowed to adapt the model and improve its accuracy. The
aim is to calibrate the model so that for the given intensity value Icoil, we obtain the same position
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or frequency that is measured. This may involve modifying the intensity value in the model with a
scaling factor to get the effective current in the application of the Biot-Savart law. Figure 3.2 shows
the results of this gauging campaign, where we observe a very good agreement between the results
predicted by the final model and the experimental data. The next section presents the use of these
results to achieve the objectives set by the consortium.

On figure 3.2b, we see that the variations of the frequency ωz and of the trap position ztrap arestrictly monotonous as a function of the coil current. This enables the definition of a function ωz(ztrap)
that will be used for the design of a STA ramp as seen in section 2.3. After calibrating the chip model,
which takes into account all the currents in the chip and in the coil, we further simplify it by using a
Padé approximant function [94] to express the trap characteristics as a function of the coil current
Icoil only. A Padé function R(x) is a rational function of the form

R(x) =

m∑
j=0

aj x
j

1 +
n∑

k=1
bk xk

(3.1)

wherem and n are two integers chosen to minimize the fitting error.
Once the trap parameters are defined as a function of this master parameter Icoil, the designedramp can be generated by this variable. Then the time variation of this current can be put into tables

by the operators at JPL for execution.

3.3 . STA and robustness
3.3.1 .STA ramp design

Once we have a calibrated model of the experiment, we can look at the properties of the trap that
can be used. The blue curves in figure 3.2, combined with the chip model for the evolution of the trap
minimum ytrap in the direction orthogonal to the camera, show that as the bias coil current decreases,
the trap moves away from the chip only in the z-direction. The starting point of the experiments is
the trap indicated by the dashed line labeled as “I” in figure 3.2, with Icoil = 1.5A. This trap “I” is
267µm away from the atom chip. Its angular frequencies are (ωx, ωy, ωz) = 2π · (29.3, 922, 926) Hz.
The information from themodel is complemented by a scan of the holding time thold,i shown in figure3.1b. The in-trap cloud oscillation amplitude in the z-direction is of 0.22±0.05 µm, which corresponds
to a maximum in-trap velocity of 1.3 ± 0.3mm.s−1.

The first experiment we want to implement is the shortcut to adiabaticity (STA) transport, as pre-
sented in the previous chapter (see section 2.3). The motivation of the transport is to manipulate and
control the position and final velocity of the atomic cloud at the µm and µm/s level [52]. This control
on the position is necessary to have a cloud that does not move toomuch so that we can apply pulses
for interferometry. The transport should also be robust, since experimentally the cloud is initially not
perfectly in the ground state of the trap and can oscillate slightly.
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To do this, we designed ramps to two different final trap configurations, Trap A and Trap B. The
position and frequency evolution to realize both transports are shown in figure 3.3.

The transport to Trap A takes place over a distance of 0.42 mm, for a duration of 100 ms. The final
trap frequencies are (ωx, ωy, ωz) = 2π(fx, fy, fz) = 2π·(25.2, 109, 110)Hz. This is an ideal configuration
for matter-wave lensing experiments, i.e. DKC experiments, because the quasi-cylindrical symmetry
allows the control of 2 dimensions at the same time.

The transport to Trap B goes to a further distance of 0.93 mm in 150 ms. This longer distance
highlights the advantages of the STAmethod and helps to explore a region further away from the chip.
The trapping frequencies of Trap B are weaker, and lose the cylindrical symmetry, with (ωx, ωy, ωz) =
2π · (14.4, 35.1, 26.9) Hz. This shallow trap can be used in space because there is no gravitational pull
to make the atoms fall like on Earth.
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The STA ramp design with the reverse engineering method is done by using the equation with the
sum of sine functions as in equation 2.12, with the variable parameters (a, b) from equation 2.13.

Once the trap trajectory is found, it is converted into a current variation table for the execution
by the operators of the CAL machine at JPL. The execution tables are tables in which each column
contains the current to be applied to the different elements of the machine (chip wires, coil, etc.),
as well as the intensity of the laser used and the state of the cameras, for example. Each line of the
table gives the timing of the operation, and in our case a certain number of lines are dedicated to the
variation of the coil current Icoil per linear steps. The time step is limited by the machine, since the
possible current variation cannot be too fast. The main constraint on the sequence is the number of
steps dedicated to the transport due to memory issues. Indeed, the total number of lines possible in
an experimental sequence is limited. This is why the ramp to Trap A has only 40 steps, whereas the
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ramp to Trap B has 80 steps. The limited number of steps of the current ramps leads to a deviation
of the real trajectory of the atoms compared to the theoretical prediction, so that at the end of the
transport the atoms do not arrive at rest in the final trap.

Another source of fluctuations and errors in the ramp design is linked to fluctuations in the ex-
perimental setup and to imperfect knowledge of all the parameters present. Small fluctuations of
currents in some wires can induce variations of magnetic fields, and these small errors can ultima-
tely change the frequency and position of the magnetic traps. It is important to estimate the effect of
these errors and control their sources, as small differences in conditions can make the ramp fail its
purpose. However, we consider that the main source of error, after the discrete nature of the current
variation, is the small oscillation of the BEC in the initial trap. A timing error in the sequence, which
corresponds to the instant that defines t = 0, is translated into a small offset of the initial position of
the cloud, with ztrap(t = 0) ̸= zi. If the error on the final position or velocity of the BEC at the end of
the transport is less than what can be experimentally distinguished or tolerated by the error budget,
the ramp and its parameters are considered as robust.

The figure 3.4 shows different theoretical ramps obtained by using different values of (a, b) for
the transport to Trap B. In the panel a we see the different ramps of the coil current Icoil(t) thatvary with the parameter that we seek to optimize : the blue curve corresponds to the case where
the current variation is the smoothest and the closest to a linear variation. The red curve attempts
to minimize the effect of the trap anharmonicity, which is represented by the L3 term (see equation
2.15). The yellow curve is the optimal trajectory for our case, as it minimizes the offset to the trap
center, and minimizes the residual oscillation in the trap in case of fluctuations in the initial trap. In
order to quantify the effect of the anharmonic correction, we define the term P3(t) as a function of
L3(t) in the expression of the effective potential with the anharmonic correction

Vα(za, t) = 1
2mω

2
z(t)(za(t) − zt(t))(1 + P3(t)) (3.2)

where
P3(t) = 2

3
|za − zt|
L3(t) . (3.3)

The evolution of this quantity P3(t) is shown in panel b. It shows, in percentage, the effect of the
third-order anharmonic correction in the expression of the potential by calculating the percentage of
the cubic term on the total potential explored by the centre of mass of the BEC during the transport.
The higher P3(t), the further the BEC explores the anharmonicities of the trap, which can induce
perturbations in the condensate dynamics. On this panel, the red curve is the one that minimizes it.
The optimised yellow curve shows a good compromise, with amaximum around 2%, compared to the
blue curve which peaks around 4%. Panels c and d show the robustness of the STA ramps by showing
the consequence of an offset of the initial position at the beginning of the ramp on the final position
and velocity of the cloud. A small initial shift at the beginning of the transport can lead to a big shift
in position and velocity at the end if the ramp is not robust enough. The final position of the cloud is
controlled at a precision of less than 4 µm, which is comparable to the size of a camera pixel. The final
velocity variation is on average less than 0.5mm.s−1, and we see that the yellow curve, corresponding
to the optimal STA ramp chosen, is the most robust to the perturbations in the initial trap.
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The black curve in figure 3.4 corresponds to a sigmoid and serves as a control ramp. It is a common

test function that can be used experimentally because of its simple S-shape. The coil current sigmoid
Isig(t) is defined from the initial I0 = Icoil(0) and final If = Icoil(tf ) intensities by

Isig(t) = I0 +
[
s(t) − s(0)
s(tf ) − s(0)

]
(If − I0) (3.4)

where
s(t) =

[
1 + e

−2π
(

t
tf

− 1
2

)]−1

. (3.5)
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We can see that this sigmoid current ramp does not fulfill the requirements for the transport, since
the atoms are displaced 60 µmaway from the target position zf at final time, and the residual velocity
of the order of 10 mm.s−1 is also too high. By playing around with the parameters of the sigmoid, it
may be possible to get a better transport, but it is not as systematic as using the reverse engineering
method used in our STA approach.

3.3.2 .STA ramp experimental characterization
After designing a robust STA transport for the BEC, we get to the experimental realisation. This is

needed to characterise the transport and confirm the simulation results. We first want to check the
final position of the atoms at the end of the transport. In-situ imaging of the cloud is not very precise
because the atomic cloud is too dense to extract its size on the camera, and the precision is limited to
the time at which the images are taken. We prefer a more reliable measurement based on the study
of the oscillation amplitude in the final trap.

For this first set of experiments, different holding times in the initial trap thold,i were considered.Then, for each initial condition, the holding time in the final trap thold,f was scanned and an image of
the BEC was taken after a fixed time of flight (TOF), typically 20 ms. The centre of mass information
in the z-direction is then plotted in a graph like the one in panel c of figure 3.1. The oscillation of
the atoms is then fitted by a sinusoid, and knowing the value of the TOF, we can deduce the in-trap
oscillation amplitude (see section 2.4). The results of this experiment are shown in figure 3.5, where
we see that the maximum in-trap oscillation amplitude is lower for Trap A than for Trap B. This can
be explained by the fact that Trap A is more confining than Trap B in the z-direction.

The theoretical curves (solid lines) in figure 3.5 correspond to an ab-initio simulation of the se-
quence, and are an application of the analytical considerations from the previous chapter in section
2.4. The initial position zat(0; thold,i) is a sinusoid in thold,i defined by

zat(0; thold,i) = Ai cos(ωz,i thold,i + ϕi) (3.6)
where Ai = 0.22 ± 0.05 µm is determined from the experimental fit, ωz,i = 2π · 926 Hz, and ϕi is aphase adjusted such that the residual oscillation amplitude curve is in phase with the experimental
data. Using the initial position of the atoms as a boundary condition of Newton’s equation of motion,
we obtain the amplitude of the oscillation in the final trap. We consider the error in the oscillation
measurement in the initial trap as the main source of uncertainty. The shaded area on the theoreti-
cal plot are the results of the simulations using the maximum and minimum values of the oscillation
amplitude in the initial trap, which are given by the confidence bounds on the experimental measu-
rement. Due to the periodicity of the initial conditions of the experiment, we observe that the in-trap
oscillation amplitude at the end of the transport share the same period, and are just shifted in phase.

We finally see a good agreement between the data and the simulations, especially for the trans-
port to Trap A. The measured oscillation amplitudes are of the order of 1 µm and lower, and the
minimum value is 0.068 ± 0.072 µm for thold,i = 2.4 ms. The simulations for the transport to Trap B
slightly overestimate the oscillation amplitude, but it shows that in the worst case the cloud oscillates
in the final trap with an amplitude of about 2.5 µm. The minimum oscillation amplitude measured in
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Trap B at the end of the transport is 0.40 ± 0.15 µm for thold,i = 2.2 ms. This shows that it is possible
to control the position of the BEC at the end of the transport better than the 1 micron level required
for precision interferometry tests [95].

After checking the robustness of the STA ramps in terms of control of the final position, we study
the release velocity from the final trap as a function of the initial holding time. Numerically, it is ob-
tained by calculating the final velocity of the atom cloud at the end of the transport żat(tf ; thold,i).Experimentally, the COM of the atom cloud follows a parabola during its free expansion at the end
of the transport, and we extract the release velocity from the fitted parabola. As an example, we see
the data and the corresponding fit from such an experiment in the panel d of figure 3.1.

Figure 3.6 shows the result of the measurement of the release velocity at the end of the STA as
a function of the holding time in the initial trap thold,i, where the atoms initially oscillate. The error
bars are larger due to the statistical noise, and to the limited extent for the time of flight over which
the atomic cloud signal can bemeasured. The theoretical curves are the results from the simulations,
and the shaded area correspond to the behaviour of the atoms when we take the extreme amplitude

42



values from the initial oscillation of the cloud. Both curves have the same period as the initial trap,
and a different phase.
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Figure 3.6 – Release velocity from the final trap after the STA transport to Trap A (blue) and Trap B(red) as a function of the initial hold time thold,i. The solid lines show the results of the theoreticalmodel. The horizontal dashed lines (yellow for Trap A, purple for Trap B) show the offset applied tothe theory curves to match the experimental data. This velocity offset is a trap-dependent systematicshift of ∆vA = −0.98 ± 0.15 mm.s−1 and ∆vB = +0.062 ± 0.045 mm.s−1 and is caused by the finiteswitch-off of the trap. The error bar for the experimental points and the shaded areas show the 1σ-confidence bounds of the fits and the model respectively.
In an ideal world, the simulations predict that the release velocity will follow a sinusoid centered

at 0. To match the experimental results, the curves were shifted by ∆vA = −0.98 ± 0.15 mm.s−1 for
Trap A and ∆vB = +0.062 ± 0.045 mm.s−1 for Trap B. These trap-dependent shifts are represented
respectively by the yellow and the purple dashed lines in figure 3.6, and are caused by the finite switch-
off time of the trap. This kick is more important for Trap A because the distance to the atom chip is
closer than for Trap B. The error bar for the experimental points is smaller around the inflection points
of the theoretical curves, around the average release velocity. For Trap B, the minimum uncertainty is
of 0.117 mm.s−1 for thold,i = 2.8 ms. These curves show that it is possible to tune the release velocity
at the end of the transport in a range between -1.5 mm.s−1 and 0.5 mm.s−1.

For the next sequence of experiments where we aim to control the expansion of the cloud, we
focus on the sequence to Trap A, that leads to a cylindrical trap.
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is solely caused by the switch-off of the final trap. b Centre of mass evolution along the z-directionduring the free expansion after thold,f = 24 ms in the final trap associated to the green data point inthe main figure. The error bars and shaded areas correspond to the 1σ confidence bound on the fitsand the model, respectively.

Figure 3.7 shows the long-term stability of the BEC release with CAL. The data were taken over two
main experimental campaigns fromMay 2019 andOctober 2019. The sequence starts with an optimal
hold time of thold,i = 2.4 ms, which leads to a minimum oscillation amplitude of the atom cloud in
the final trap. In these campaigns, we scan the holding time in the final trap and measure the release
velocity from the trap from the centre of mass evolution during the free expansion. The processing is
the same as for the study of the release velocity at the end of the transport as a function of the initial
holding time from figure 3.6. We can see from figure 3.7 that there is a good agreement of the May
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and October data with the theoretical model. This shows the robustness of this model with respect to
the conditions of the ISS, whose average altitude increased by 7 km between the two campaigns due
to regular orbit adjustments. We also observe the effects of the final trap switch-off, i.e. a kick from
the chip, with the velocity offset ∆vA = −0.63 ± 0.07 mm.s−1, represented by the yellow dashed line.
The green data point on the main graph at thold,f = 24 ms corresponds to the optimal configuration
we will use for the next part of the atomic lensing sequence.

The panel b from Figure 3.7 shows the centre of mass evolution in the z-direction after release
from the trap for the case thold,f = 24 ms. Fitting the data by a parabola, which is plotted with a solid
green line, gives us the value of the minimum release velocity vz = −0.146 ± 0.286 mm.s−1. This
low release velocity gives the atom cloud a wider range of time of flight before which we can trap
it in a potential centred at zf and "catch" it again near the trap minimum. The combination of the
effective velocity from the release and the residual magnetic gradients in the setup results in a small
displacement of the BEC of only 0.2 ± 5.9 µm within the first 20 ms of free expansion. This provides
an ideal setup for a delta-kick collimation.

3.4 . DKC, control of size expansion
3.4.1 .Preparation of the experimental sequence

We continue this transport sequence with a holding for a control of the release, that we will com-
plete with a small free expansion followed by a DKC, and ending with a final free expansion for the
imaging. For the realisation of the lensing sequence, we need to fix a few parameters, such as the
frequency used for the lensing, the duration of the free expansion before the lensing, and the dura-
tion of the lensing. All of these parameters are chosen after simulating the sequence using the chip
model and the knowledge of the experiment obtained from the sequences performed on board of
the ISS. The first simulations use the Thomas-Fermi approximation and the scaling equations from
the paper of Castin and Dum [57], because they are fast to implement and make it easy to scan the
various parameters. Once we have a first idea on these parameters, we can simulate the sequence
with more accuracy.

The lensing sequence is performed using Trap A, which is cylindrical, because it allows to control
the size of the BEC in the y- and z-directions at the same time. We note that, according to equation
2.32, the trapping frequencies of Trap A (ωx, ωy, ωz) = 2π(fx, fy, fz) = 2π · (25.2, 109, 110) Hz are
too high to give a reasonable lens duration that can be performed in the experiment. The magnetic
potential in the setup is related to the currents in the different wires by the law of Biot and Savart.
In the harmonic approximation around the trap centre, it can be shown that there is a quadratic law
relating these intensities to the trap frequencies. According to this model, we divided all currents
(from the chip and the bias coil) by the same number, here 16, and get a trapping potential sharing
the same position, and frequencies divided by the square root of the scaling factor, here 4.

The choice of this trap, that we will call the DKC trap, sets boundary conditions on the duration of
the free expansion texp before the lensing, since we need to capture the atoms near the trap centre.
The results of the sloshing experiment in Trap A shown in figure 3.7b show us that we can consider
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the first 20 ms of the free expansion. In addition, a longer expansion time is problematic because
the cloud size evolves rapidly, and a large cloud before the DKC will continue to grow after the DKC.
For the lowest bound of texp, it should be long enough not to be in the hydrodynamic regime of the
BEC size evolution. However, since the lensing time decreases with the expansion time texp (as seenin equation 2.32), we prefer to set this expansion time near its upper bound. After simulations in the
case of 15 ms and 20 ms of expansion, we decide to set texp = 20 ms.

The last parameter to fix is the lens duration tlens. It is found by simulating the sequence with a
software such as Mathematica and keeping it as a free parameter. Since the calculations have to be
done in a short time, we use the scaling approach for the size dynamics and we scan the possible lens
durations using the "Manipulate" function of Mathematica. According to this simplified model, the
optimal lens time is tlens = 1.6 ms. Finally, we simulate the whole sequence and solve the dynamics
determined by the Gross-Pitaevskii equation to confirm that we have a reduction in the expansion
rate of the BEC in the y- and z-directions as expected.
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Figure 3.8 – Simulation of the BEC size evolution for a sequence controlling the size expansion ofthe BEC with CAL using an atom lens. The sequence is divided into different phases, separated by adashed line : the STA transport to Trap A, followed by a holding in the final trap, a short free expansion,the DKC and the final free expansion.
Figure 3.8 shows the evolution of the BEC radii given by the GPE for the sequence using the opti-

mized parameters we found. This sequence is a bit simplified compared to the one realised with CAL
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and is decomposed in the following steps :
— t = 0 ms the ground state is calculated in the initial trap using the imaginary time propagation

algorithm.
— For 0 ≤ t ≤ tf , transport dynamics using the STA ramp, which moves the atoms to Trap A. The

end of the transport is materialised by the first vertical dashed line.
— During thold,f = 24 ms, the trap frequencies are constant and keep the values from Trap A.

This phase, which is ended by the second vertical dashed line, is necessary in the experiment
to control the atoms velocity during the release of the atoms due to the effect of the chip
currents and of the residual magnetic fields in the setup.

— For texp = 20 ms, free expansion of the BEC until the lensing starts.
— For tlens = 1.6 ms, the DKC trap is switched on. Since it is very short, it is represented by a

simple vertical dashed line in the figure.
— Final free expansion of the cloud. The time of flight ends with the imaging sequence in the

experiments.
For the simulation, the choice of the atom number in the BEC plays a minor role, since it appears
to be of little influence. In the case of the Thomas-Fermi approximation, we have R ∝ N1/5, which
corresponds to a small scaling factor that is global to the whole size dynamics and that is not affecting
the timing of all the steps of the sequence.

3.4.2 .Experimental results and analysis
Now that we have found the optimal sequence for the control of the BEC, we can proceed to

execute it and analyze the experimental data. When the sequence written above is sent to the JPL for
the creation of the execution table, we add at the beginning an initial holding time of thold,i = 2.4 ms
to compensate for the fact that we do not start with a condensate in its ground state in the initial trap.
To get a better overview of the effect of the DKC in microgravity, we scan different lensing durations.
This helps to check if there are other phenomena that need to be considered in the simulations. We
will study the results of the following DKC pulse durations : 1.4 ms, 1.6 ms, 1.7 ms, and 1.8 ms, which
were also presented in our paper and its supplementary material [52].

Figure 3.9 provides a lot of information. First, we can see from the free expansion without DKC
(in red) and the expansion after DKC (in green) that the lensing trap accomplished its mission. Each
plot shows a different behaviour of the lensed atoms, showing the effect of the pulse duration. The
expansion rate of the lensed cloud is smaller, and it extended the TOF after which the atom cloud was
observed from tT OF ≈ 105 ms for the free expansion, to tT OF ≈ 300 ms for the 1.8 ms lens.

The fit of the atomic clouds observed on the camera is challenging due to different experimental
constraints. This is highlighted by the choice of different shades of green for the DKC data, as well
as the representation of some data points by empty circles. For the light green empty circles we ob-
serve split clouds. The BEC is in a magnetically sensitive statemF = 2, and after applying the lensing
potential, the BEC is split into two individual clouds in the mF = 1 and mF = 2 hyperfine sublevels
by non-adiabatic spin-flip transitions due to magnetic field switching, similar to what was observed
by another CAL consortium in the article [96]. The splitting occured in the x-direction and the majo-
rity of the atoms remained in the mF = 2 state and were fitted to obtain the data from the empty
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circles. Moreover, this splitting only affected the atomic lens experiment, but not the pure free ex-
pansion experiment. This affects the clouds mainly for tT OF ≤ 100 ms and makes the fitting of nearly
overlapping clouds challenging, especially for the fitting of the size Rx in the x-direction. For the longexpansion times, the decrease of the contrast and the lower signal-to-noise ratio make the detection
of the cloud difficult. The minimum density that can be detected experimentally is estimated to be
2 ·1011 atoms/m2, and using our simulation models, the data points where the density falls below this
threshold are represented by dark green empty circles. The cutoff time depends on the lens duration
due to the lensing effect, and increases from 120 ms to 190 ms as the lensing time increases. The
most reliable points in medium time-of-flights are represented by the full dark green circles and are
used to fit a linear expansion curve.

For greater consistency between the plots, all the data points for the size evolution are renorma-
lized to the same number of atoms. Since the fit uses the definition of the Thomas-Fermi radius, this
renormalization is done using the relation R ∝ N1/5. In all the plots, we considerN = 2, 000 conden-
sed atoms. This is also the number of atoms used for the simulations solving the Gross-Pitaevskii
equation. This number is close to experimental realizations, where about 2,000 to 4,000 atoms are
condensed, with a BEC fraction of 10 to 25%. For information, during the calibration measurements,
the BEC fraction was less than 10% and the number of condensed atoms reached a maximum of
12,000.

We observe that the size of the cloud measured in the z-direction is limited to about 45 µm, crea-
ting a kind of plateau effect for some expansions. This experimental limitation does not allow to accu-
rately measure the short time behaviour of the BEC, since its initial size is of the order ofRz ∼ 10µm.
Therefore, we introduced a correction factor σcam = 42 µm to account for the effects of the camera
optics on the resolution, as seen in the previous chapter and in Figure 2.7. This correction factor was
found by calibrating the simulation model to match free expansion curves where the overall atom
density is sufficient for reliable measurements of the BEC size.

We observe on the DKC data (Fig. 3.9) that the measured size of the atom cloud is systematically
larger thanwhat is expected by the simulationwith the theoretical lens time,which is the lower dashed
line. This means that the effective lens is weaker than expected. There are several reasons for this,
such as the finite switching time and the response time of the current drivers. A realistic simulation of
this would be to describe the rise and fall of the currents with exponential decay functions for which
the characteristic time depends on the nature of the object (coil or chip wire). However, this would
require both better knowledge of the machine and calibration experiments, which cannot be done
due to limited user time on the device. In addition, this knowledge is not crucial for the understan-
ding of the experiment. There are also some analytical problems in the chip model when simulating
the exponential decay of the currents, since the frequencies diverge to infinity as the trap minimum
approaches the chip. The solution we chose for the DKC simulation was to simulate the lensing using
a potential with constant frequencies, i.e. keeping the current values constant, but for a shorter ef-
fective time. We simulated the sequence and gradually reduced the lens time from tlens − 0.1 ms
to tlens − 0.5 ms. We then compared the average standard deviation between the theoretical curve
and the data points (taking into account the resolution correction). Finally we find that the optimal
reduced lens time is tlens − 0.4 ms, as shown by the upper dashed-dotted lines on the graphs.
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To quantify the difference in expansion between the different sequences, we compare the slopes
of the expansion curves at long time-of-flights where we reach a linear expansion regime. For ea-
sier comparisons, we convert these slopes to pK temperatures by analogy with the definition of the
thermodynamic energy. We also change the equation (2.34) to the following definition

kBT

2 = m

2

(
dR

dt

1√
7

)2 (3.7)
where the factor √

7 relates the Thomas-Fermi radius to the standard deviation of the cloud [62, 97].
We see that experimentally the 1D expansion slows down as the DKC time increases. We can also
notice that for the theoretical curve of the 1.8ms lens, the expansion temperature increases again.
This is due to an overfocusing effect of the lens. In the best case, the expansion temperature goes
from 3, 596+213

−216 pK for the free expansion to 52+10
−9 pK for the 1.8 ms lens. This 70-fold reduction in

expansion energy nearly triples the observation time of the BEC on the camera.

3.5 . Conclusion
This chapter has presented experiments in a modular, multi-user quantum gas laboratory, de-

monstrating cold atom applications in space. Compared to ground-based experiments, there are
more constraints to consider, such as the inability to make hardware changes to the module, re-
mote operations and limitations on the sequences that can be run depending on the capabilities of
the software interface, as well as delays in data retrieval. However, regular exchanges between the
teams and JPL scientists helped overcome these challenges. Regular feedback from the simulations
guided the choice of parameters for the implementation of the experiments. The first campaigns on
the CAL machine were dedicated to the development of the chip model and resulted in well gauged
chip traps. This gauging was essential for the development of the following experimental campaigns
as well as for the data analysis and simulations. Consequently, there was a very good agreement
between the simulations and the experimental results on all data plots presented.

Taking advantage of the microgravity environment, we could engineer transports of BECs to traps
with frequencies as low as tens of Hertz, which cannot be implemented on Earth due to the gravita-
tional force pulling down the atoms. With the STAmethod, it was possible to implement the transport
of a BEC at a velocity of 6mm/s over a distance roughly 1,000 times its size. The precision with which
this was done allowed us to fully achieve our objectives, with a control of the final position of the BEC
achieved to within 70nm. By playing with the holding time in the final trap, we have shown that it is
possible to tune the release velocity at the level of 100µm/s. The DKC was also successful in reducing
the expansion energy to about 50pK. This enabled the observation of the atom cloud after a longer
time of flight, almost tripling it compared to the direct observation at the end of a transport in the
case of the 1.8ms lens. It also demonstrated the possibility to observe freely expanding gases on time
scales inaccessible to ground experiments.

We can conclude that the objectives of the consortium were satisfied at the end of the campaigns
with CAL. It also proved the robustness of the implemented method with a stability of the results
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observed over months and millions of km of operation on a 90-minute orbit of the ISS. In order to
perform state-of-the-art measurements testing the universality of free fall with dual-species atom
interferometry [33], the control on the initial state would require the positioning uncertainty to be
no greater than 1µm and the expansion energy to be in the order of a few tens of pK. These two
stringent requirements have been met by the quantum state engineering achieved here with single-
species condensates of Rb. It demonstrates the feasibility of fundamental physics missions in space
that could be conducted in future satellite tests of Einstein’s equivalence principle with the STE-QUEST
project [17, 98] aiming for a precision of the measurements at the 10−17 level in the Eötvös ratio.

Low atomnumbers in the systemmade the data analysis challenging in some cases due to the low
signal-to-noise ratio. We expect a major improvement with the next generation CAL machine and the
envisioned BECCAL payloads [41] on the ISS. By increasing the atom numbers to 105 instead of 104 in
the BEC, the measured signal strength would increase greatly, allowing better measurements. Soft-
ware upgrades with more flexible current controllers would enable even smoother transport ramps
(using ramps of a few hundred discrete steps instead of the 80 used here) for a better control of the
transport. Finally, dedicated studies with atoms in the magnetically insensitive Zeeman states will al-
low for an undisturbed free expansion of the floating atoms. These technical improvements could
already make it possible to access positioning accuracies at the nm level and observation times of
several seconds, compatible with the most ambitious quantum technology applications in space [48].

The experiments presented in this chapter ended with the replacement of the new CAL science
module SM3 on the ISS in January 2020. The lessons learnt from the machine concerning its opera-
tion and the data analysis were very rich. They gave us a blueprint of the different steps to follow for
characterising the experimental setup and gauging the chip models. The next step is then to explore
the new capabilities provided by the SM3 module, such as atom interferometry and dual-species ex-
periments with the addition of K atoms to the system.
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Cha
pte

r 4 Study of dual species BEC mix-ture and its applications
4.1 . Introduction
The study of cold atom mixtures is very rich and has inspired many theoretical [97, 99–107] and

experimental research [108–116].Mixturesmay consist of two (ormore) components, which canbe in-
ternal states of a single species Bose-Einstein condensate [101], two isotopes of a single species [112],
or two different species [102, 103, 115]. In recent years, interest in binary mixtures has spread from
theoretical studies to applications in diverse domains like metrology, with, for example, their use in
high-precision atomic interferometry experiments. Proposals of realisations of Einstein’s Equivalence
Principle [17, 18, 54, 95] suggest the use of dual-species BEC mixtures to implement simultaneous in-
terferometry experiments in order to benefit from the precision brought by these quantum objects.

In our work, we consider mixtures of 41K and 87Rb as they are used in the microgravity projects
MAIUS-2 and CAL. The choice of these species is mainly due to experimental feasibility [97, 108–110],
with for instance advantages brought by the existence of interspecies Feshbach resonances at low va-
lues of magnetic fields. The MAIUS-2 team plans to send a sounding rocket into space to create BEC
mixtures and to realise dual-species atom interferometry [79]. During ground tests of the payload,
experiments with BEC mixtures were realised and some detection images could be used for com-
parison with our models. The Science Module 3 (SM3) of CAL, which is operational on board of the
ISS since 2020, offers the possibility to perform dual species experiments. One objective of the CUAS
consortium is to study the dynamics of a mixture of K and Rb in order to control it for future dual
species interferometry experiments. These two projects share common features such as the use of
atom chips for magnetic traps to manipulate the atoms, and imaging systems placed with the sensor
plane orthogonal to the chip. Regarding the trap geometry, both have a quasi-cylindrical configura-
tion with cigar-shaped traps. This allows the use of similar theoretical approaches for the simulation
of the experimental sequences and for the comparison with experimental results.

As for theoretical studies, researchers have started by considering the Thomas-Fermi approach
and by applying methods similar to single-species calculations [97]. Many calculations have focused
on homonuclear mixtures or binary mixtures that are composed of two internal states of the same
atomic species or two isotopes of the same species (e.g 85Rb and 87Rb) , whichmake it possible to sim-
plify certain analytical expressions, the main variable parameter then being the interaction between
the two species, given that the masses are the same. Some calculations simplify the potential term
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further by considering the same trapping frequencies for both species [99]. From both an analytical
and numerical point of view, it is also easier to start with spherical symmetry, since with spherical co-
ordinates calculations are then reduced to a single dimension [99, 103]. However, due to the absence
of such a symmetry in our problem, our calculations are best performed using a generic 3D Cartesian
coordinate system, which makes analytical calculations too complex to implement. Therefore, in our
problem the ground state of the system is calculated numerically using the imaginary time propaga-
tionmethod [70, 117] solving the time-independent coupled Gross-Pitaevskii equations for the binary
mixture. In addition, problems with the study of displacements and fast condensate expansion are
also expected with BEC mixtures, since the additional interaction between the two species makes the
choice of the computational grid more complex. Indeed, the evolution of the two-species condensate
can be described with the help of a scaling approach only under very specific conditions [63, 97]. The
numerical method presented in this chapter takes a different approach. First, an affine transforma-
tion of the grid allows it to be translated over time, following a specific displacement associated with
the centre of mass of one of the species. Next, the coordinates are scaled to account for any expan-
sion or contraction of the dual-species condensate during the dynamics. This is an extension of the
change of variables previously introduced in Sections 2.4 and 2.6 for the single-species case.

Depending on the interaction strength between two species in a BEC mixture, it is possible to
classify these mixtures in two different categories : miscible or immiscible [56]. In miscible cases, the
atomic densities can overlap and respect the geometry of the trap in the ground state. On the other
hand, an immiscible mixture does not allow overlap, and the spatial distribution of the condensate
is strongly affected, usually breaking the geometry of the trap. In microgravity, the different distri-
butions can be even more diverse with a co-located trap centre for both species compared to the
presence of gravity, where the trap minima are shifted due to the gravitational sag. In simulations,
these different cases can be studied by numerically tuning parameters such as the trap characteris-
tics, atom numbers or interaction strengths. Experimentally, it is possible to tune the inter-species
scattering length to have different interactive behaviours for the mixtures with the help of Feshbach
resonances [113]. For short-term applications to space experiments, we are limited to the triplet scat-
tering length, which makes the mixture of K and Rb non-miscible.
Chapter outline

This chapter is divided into two main parts, which contain some results and discussions already
presented in Refs. [64] and [53], of which I am co-author.

The first part of this chapter presents the theoretical tools I developed to treat the dynamics of a
BEC mixture for the transport or expansion of the system. After defining the notations I will use and
the reference frame for the calculations (Section 4.2), I introduce the grid transformations (Section
4.3). Finally, in Section 4.4, I will present some issues that arise when simulating the ground state of a
dual-species mixture in microgravity.

The second part of this chapter presents numerical applications of the theoretical approach as
well as applications to experiments on ground and in microgravity. In the first application (Section
4.5), which is only numerical, I implement a transport of the mixture confined in an atom chip trap
for a shift of the trap minimum over a distance of about 20 µm in 10 ms, followed by a holding period
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of 20 ms in the final trap. The second application (Section 4.6) aims to simulate the free expansion
of a BEC mixture on ground to test the handling of a grid expansion by our codes using the scaled-
grid approach. These applications contrast a fixed-grid approach with our theoretical approach in
order to validate the model. Then I compare the numerical result with experimental measurements
obtained by theMAIUS team [79]. I continue with the study ofmixtures produced in orbit with the CAL
experiment, and end with simulations aimed at preparing future experiments with the same device
(Section 4.7).

4.2 . Presentation of the theoretical model for multi-species interacting mixtures
We consider an ensemble of nsp different Bose-Einstein condensates interacting in a multispecies

mixture. These could correspond to different species as what we will study in later applications where
species 1 is Rubidium-87 and species 2 is Potassium-41. In the literature, we can also have the case of
different isotopes of the same species [111, 112] or different internal states of the same species [118,
119] for dual interacting mixtures. At zero temperature and within the mean-field approximation,
the time evolution of this multispecies mixture of BEC is described by the time-dependent coupled
Gross-Pitaevskii equation

iℏ∂tψj(r, t) =

− ℏ2

2mj
∇2

r + Uj(r, t) +
nsp∑
j′=1

Nj′gjj′ |ψj′(r, t)|2
ψj(r, t) (4.1)

where j and j′ = 1, 2, ..., nsp. As we will use matrix notations for the following calculations, we use
r = (x, y, z)T to denote the position vector in a fixed frame of reference (for example the lab frame)
and T is a standard notation used to indicate the transposition. We use the convention where the
wave function of species j,ψj(r, t), is normalised to 1, andmj corresponds to themass.Nj is the atomnumber in the condensate and Uj corresponds to the external potential of species j. The scatteringamplitudes gjj′ are related to the corresponding s-wave scattering lengths ajj′ by the relation

gjj′ = 2πℏ2ajj′

mjj′
(4.2)

withmjj′ being the reduced mass
mjj′ = mjmj′

mj +mj′
(4.3)

We consider situations where themultispecies condensate is trapped in a general external poten-
tial described by the functions Uj(r, t) that we decompose in the sum of a harmonic and an anhar-
monic part, similarly to the Taylor expansion of a function fitting the potential, with

Uj(r, t) = Vj(r, t) +Wj(r, t), (4.4)
where

Vj(r, t) = 1
2mj (r − rj(t))T Ω2

j (t) (r − rj(t)) (4.5)
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Figure 4.1 – Representation of the condensate (in blue) associated with the species j, centred on thepoint of coordinates rj = (xj , yj , zj)T in the fixed reference frame (x, y, z). The frame (Xj , Yj , Zj)shown in orange is associated with the eigenaxes of the harmonic trap Vj .

In this expression, rj(t) = (xj(t), yj(t), zj(t))T is the position of the trap minimum for species j at
time t in the reference frame. In many cases, the atom cloud and the trap eigenaxes are rotated with
respect to the fixed frame associated generally to the lab frame. It leads to the use of multiple axis
and coordinate systems as showed schematically on Figure 4.1. We assume that at each time t the
harmonic traps Vj(r, t) associated with the different species are characterized by eigenaxes pointing
in the directions Xj(t), Yj(t) and Zj(t). We can define the unitary rotation matrix Mj(t) that allows
to pass from the particular system of eigenaxes (Xj(t), Yj(t), Zj(t)) to the fixed frame of reference
(x, y, z) at time t. We can find examples of such rotation matrices in section 2.7. The 3 × 3 squared
harmonic frequency matricesΩ2

j (t) are then defined in the fixed reference frame (x, y, z) as

Ω2
j (t) = Mj(t)

ω
2
j,XJ

(t) 0 0
0 ω2

j,Yj
(t) 0

0 0 ω2
j,Zj

(t)

Mj(t)T (4.6)

The eigenvalues of Ω2
j (t) thus coincide with the squared instantaneous eigenfrequencies ω2

j,Xj
(t),

ω2
j,Yj

(t) and ω2
j,Zj

(t) of the traps along their principal axes (Xj(t), Yj(t), Zj(t)). In the codes that I
implemented it is important to choose a particular species to define a reference frame for the cal-
culations, so all the equations to be solved are in the same coordinate system to take into account
the coupled interaction terms conveniently. This particular index j = j∗ can, in principle, be chosen
freely. However it is preferable to choose as j∗ the species that would expand the fastest without
inter-species interactions. Empirically, in the case of a mixture of two species, the species indexed by
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j∗ is the one with the largest Thomas-Fermi radius (see Eq. 2.41). In all that follows, we will assume
that for this particular species, the eigenaxes of the trap do not rotate during the dynamics. Thus, the
rotationmatrixMj∗(t)will be simply denoted byMj∗ and will be assumed to be independent of time.
In practice, this approach can be used as long as the rotation of these eigenaxes is sufficiently small
and slow so that the effect of non-inertial forces due to the rotation of the eigenaxes associated to
this reference species j∗ can be neglected. This is the case in most situations, especially when the ro-
tation is slow enough not to induce the appearance of vortices, as shown for instances in references
[74, 120, 121].

In the reference frame associated with the eigenaxes of the species j∗, the matrix of the squared
harmonic frequencies associated with each species j writes

Ω′ 2
j (t) = MT

j∗Ω2
j (t)Mj∗ (4.7)

Thismatrix is symmetric, but not always diagonal. Actually, thematrixΩ′ 2
j (t) is diagonal only if the trap

associated with the species j has the same principal axes as the trap associated with the reference
species j∗. With the help of equations (4.6) and (4.7) we can check thatΩ2

j∗(t) is the diagonal matrix of
the squares of the instantaneous eigenfrequencies ωj∗,Xj∗ (t), ωj∗,Yj∗ (t) and ωj∗,Zj∗ (t), as expected.

4.3 . Grid transformation for efficient numerical simulations
4.3.1 .Shifting the grid

The numerical simulations of the GPE describing the BEC mixture start with the definition of a
grid. We can first study the dynamics of collective mode excitations in a stationary trap using a grid
centered on the trap minimum. Even if we can numerically vary the initial position of the conden-
sate or modulate the frequency of the trap, the range of modeled experiments is limited. Let us now
consider more general experiments where both the position and the frequency of the trap vary. Such
variations induce a displacement of themultispecies condensate, which can be of high amplitudewith
respect to the trap minimum. Mathematically, we can define a moving reference frame that follows
either the trap minimum or the centre of mass of the BEC. However, since the condensate can move
far away from the trapminimumduring a transport, it is better to follow the centre ofmass of the BEC.
The choice of the appropriate grid displacement is crucial for the optimisation of the computations,
since the computational time scales with the grid size. Indeed, the computation time grows at least
as Ngrid log2(Ngrid), where Ngrid = Nx ×Ny ×Nz is the total number of grid points in 3 dimensions.

The frame change is especially important when implementing transport dynamics over distances
significantly larger than the characteristic size of the condensate, as in the recent space atom chipma-
nipulation of a BEC described in the previous chapter and in Ref. [52]. In this context, we transform
the computational grid such that it follows the global displacement dictated by the classical evolu-
tion of the condensate centre of mass of the reference species j = j∗. This approach is a further
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development of techniques used to deal with single BEC dynamics that have been presented in re-
ferences [74, 76, 107, 122] and used in the previous chapter. The change of variable associated with
this transformation is tied to the introduction of the new coordinate

R = r − rcm,j∗(t) (4.8)
where rcm,j∗(t) denotes the classical position of the centre of mass of the condensate associated with
the species j∗ at time t. It is computed by solving Newton’s equation of a classical particle of mass
mj∗ , initially at rest in the case where the dynamics start with a condensate in its ground state, and
subjected to the time-dependent harmonic potential Vj∗(r, t) of Eq. (4.5).

– General approach with the displacement operator
In a general approach aimed at tackling the frame change, we can define the quantum displace-

ment operator in coordinate representation
D̂j(r, t) = exp

(
i
[
kcm,j(t) · r − rcm,j∗(t) · k̂

]) (4.9)
where k̂ = −i∇r = p̂/ℏ and kcm,j(t) = pcm,j(t)/ℏ. The variable pcm,j(t) is homogeneous to a mo-
mentum, and will be determined later. The displacement operator is a unitary operator. It has the
following properties

D̂j(r, t)ϕ(r, t) = exp
[
− i

2 rcm,j∗ · kcm,j

]
exp [ikcm,j · r] ϕ(r − rcm,j∗ , t) (4.10)

and
D̂j(r, t)†f(r, k̂) D̂j(r, t) = f(r + rcm,j∗ , k̂ + kcm,j) (4.11)

for any smooth functions ϕ(r, t) and f(r, k̂).
Using the same steps as in [74], we introduce the unitary transformation of the wavefunction

Ψj(r, t) = ei Sj(t)/ℏ D̂j(r, t) ΨD
j (R, t) (4.12)

where Sj(t) is a global phase term that will be defined later in the calculation. As we insert this ansatz
in the coupled Gross-Pitaevskii equation (4.1) we obtain

iℏ∂tΨD
j (R, t) =

− ℏ2

2mj
∇2 + mj

2 RTΩ′ 2
j (t)R +Wj(r − rcm,j∗, t) +

nsp∑
j′=1

Nj′gjj′ |ΨD
j′ (R, t)|2

+
(
pcm,j

mj
− drcm,j∗

dt

)
p̂ +

(
mj(rcm,j∗ − rj)TΩ′ 2

j (t) +
dpT

cm,j

dt

)
R

+ dSj

dt
+ dpcm,j

dt
.rcm,j∗ − 1

2
d

dt

(
rcm,j∗.pcm,j

)
+

pT
cm,jpcm,j

2mj

+ mj

2 (rcm,j∗ − rj)TΩ′ 2
j (t)(rcm,j∗ − rj)

]
ΨD

j (R, t) . (4.13)
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To cancel out the term depending on p̂, we define
pcm,j(t) = mj ṙcm,j∗ , ∀j . (4.14)

This dependence in j∗, the reference species, is due to the fact that we follow this particular species. In
the particular case of the reference species, it corresponds to thedefinition of the classicalmomentum
of that species pcm,j∗(t) = mj∗ṙcm,j∗ . We can also get the expression of Newton’s equation of motion
since in this case

ṗcm,j∗(t) = −mj∗ Ω′ 2
j∗(t) [rcm,j∗(t) − rj∗(t)] . (4.15)

The scalar terms in Eq. (4.13) can also be canceled by choosing an adapted global phase term Sj(t)
which satisfies

dSj

dt
= −dpcm,j

dt
.rcm,j∗ + 1

2
d

dt
[rcm,j∗.pcm,j ] −

p2
cm,j

2mj
− mj

2 (rcm,j∗ − rj)TΩ′ 2
j (t)(rcm,j∗ − rj) (4.16)

Finally, we consider the terms that are linear inR as a corrective potential term V cor
j (R, t), which

can be reorganized with the help of Eqs. (4.14) and (4.15)
V cor

j (R, t) =
[
mj(rcm,j∗ − rj)TΩ′ 2

j (t) +
dpT

cm,j

dt

]
R (4.17)

=
[
mj(rcm,j∗ − rj)TΩ′ 2

j (t) + mj

mj∗

dpT
cm,j∗

dt

]
R (4.18)

=
[
mj(rcm,j∗ − rj)TΩ′ 2

j (t) − mj

mj∗
mj∗(rcm,j∗(t) − rj∗(t))TΩ′ 2

j∗(t)
]
R (4.19)

= mj

[
(rcm,j∗ − rj)TΩ′ 2

j (t) − (rcm,j∗(t) − rj∗(t))TΩ′ 2
j∗(t)

]
R (4.20)

We also use a new notation for the term associated with the anharmonicities of the potential,
usingW j(R, t) = Wj(r − rcm,j∗, t). Combining all the simplified terms of Eq. (4.13), we finally obtain
the following transformed Gross-Pitaevskii equation

iℏ ∂tΨD
j (R, t) =

[
− ℏ2

2mj
∇2

R + mj

2 RT Ω′ 2
j (t) R+Wj(R, t) + V cor

j (R, t)

+
nsp∑
j′=1

Nj′ gjj′ | ΨD
j′ (R, t)|2

]
ΨD

j (R, t) . (4.21)

The equation (4.21) now depends on an unique coordinate, which is the translated coordinate
R = r − rcm,j∗(t). This allows us to see that the new computational grid follows the global motion of
the centre of mass of the condensate associated with the reference species j∗. We can also see that
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for the particular case of the reference species j∗, the correction term of equation (4.20) disappears,
and consequently for this particular species the equation (4.21) reduces to

iℏ ∂tΨD
j∗(R, t) =

[
− ℏ2

2mj∗
∇2

R+mj∗

2 RTΩ′ 2
j∗(t)R +Wj∗(R, t)

+
nsp∑
j′=1

Nj′ gj∗j′ | ΨD
j′ (R, t)|2

]
ΨD

j∗(R, t) . (4.22)

We can thus consider equation (4.21) as a general equation applicable to any species, whether or
not it is the reference species, for the displacement operation being performed.

– Particular approach using Cartesian coordinates
The matrix notation and the displacement operator are very compact and versatile, since we can

use their properties to write simpler equations. However, the displacement operator can be a bit
difficult to handle when you need to use commutators with the momentum operator p̂. In the spe-
cial case where the trap potential for each species is oriented along the same principal axis as the
reference species, we can use a different approach to transform the GPE. This approach considers
the use of Cartesian coordinates and the coordinate system transformation {r, t} → {R, τ} where
R = r − rcm,j∗ withR = (X,Y, Z) and t = τ . But first we need to redefine the differential operators
using the chain rule

∂

∂X
= ∂

∂x
,

∂

∂Y
= ∂

∂y
,

∂

∂Z
= ∂

∂z
(4.23)

and
∂

∂t
= ∂

∂τ
− ẋcm,j∗

∂

∂X
− ẏcm,j∗

∂

∂Y
− żcm,j∗

∂

∂Z
. (4.24)

The ansatz of the wavefunction to be introduced in the GPE is then
ψj(r, t) = exp

[
− iκj .R − iφj(τ) + iSj(τ)

]
ψD

j (R, τ) , (4.25)
where κj = (κX,j , κY,j , κZ,j), φj(τ) and Sj(τ) are chosen to simplify the GPE after inserting the ansatz
into Eq. (4.1). We finally obtain

κα,j = −mj

ℏ
α̇cm,j∗(τ) for α ∈ {X,Y, Z}, (4.26)

and
φj(τ) = −mj

2ℏ

∫ τ

0

[
ẋ2

cm,j∗(τ ′) + ẏ2
cm,j∗(τ ′) + ẏ2

cm,j∗(τ ′)
]
dτ ′ . (4.27)

And the second phase term Sj(t) encloses the remaining scalar terms, such that
∂Sj

∂τ
= −mj

2
(
ω2

x,j(xcm,j∗ − xj)2 + ω2
y,j(ycm,j∗ − yj)2 + ω2

z,j(zcm,j∗ − zj)2
)
. (4.28)

This approach finally ends up with the same simplified GPE for the displaced wave function ψD
j (R, τ),

as in equation (4.21).
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4.3.2 .Expanding or compressing the grid
During the dynamics, the size of the condensate can vary a lot and it would be very useful to have

a grid that compresses or expands accordingly during the propagation to save computational time.
This approach is evenmore important when considering a free expansion of the condensate, when its
size scales very fast and the fixed-grid approach cannot keep up with this in terms of memory storage
and computational time. Similar to what was implemented for single species calculations in Refs.
[74, 76, 107, 122] we define a new frame transformation. To define the time-dependent scaling factors
applied to the computational grid, we choose the same reference species as before, corresponding
to the index j = j∗, and we define a new rescaled coordinate ξ satisfying

Λ(t)ξ = R , (4.29)
where

Λ(t) =

λXj∗(t) 0 0
0 λYj∗(t) 0
0 0 λZj∗(t)

 (4.30)
is a diagonal matrix whose elements are three scalar and adimensional time-dependent scaling func-
tions λXj∗ (t), λYj∗ (t) and λZj∗ (t) that we apply to the three coordinates associated with the eigenaxes
of the potential trapping the species number j∗. In principle, any scaling function could be chosen, but
we can be inspired by functions that bring the calculations closer to already known cases. This is why
we have chosen to force the computational grid to compress or expand according to the dynamics
predicted by the so-called "scaling law" approximation developed for a single species in the Thomas-
Fermi regime [57, 75]. In the case of a single species condensate with a large number of atoms, such
that the Thomas-Fermi approximation holds, we can use this scaling approach to describe the 3D size
evolution dynamics of the BEC in a time-dependent harmonic trap. This leads to the coupled diffe-
rential equations (2.43) shown in the previous chapter (see section 2.6), that we will write here in a
matrix form for a diagonal 3 × 3 scaling matrix Λ(t)

ΛT(t)Λ̈(t) + ΛT(t)Ω′ 2
j∗(t)Λ(t) =

Ω′ 2
j∗(0)

det[Λ(t)] , (4.31)
where det[Λ(t)] = λXj∗ (t)λYj∗ (t)λZj∗ (t) is the determinant of the diagonal matrix Λ(t). By fixing at
initial time t = 0 the boundary conditions of the matrix to Λ(0) = 1 and Λ̇(0) = 0, we can get a good
estimate of the evolution of the BEC size in 3D. To take into account the introduction of the scaled
coordinate ξ we now need to transform the wave function associated with each species as

ΨD
j (R, t) =

exp
(

i
ℏ

[
ξTAj(t) ξ − βj(t)

])
√

det[Λ(t)]
ΨS

j (ξ, t) , (4.32)
whereAj(t) and βj(t) will be determined later. This coordinate transformation {R, t} → {ξ, τ}, with
R = Λ(t)ξ and t = τ , requires the definition of the associated differential operators, and using the
chain rule we get∇X = (Λ−1)T ∇ξ and

∂

∂t
= ∂

∂τ
−
(
Λ−1(τ)dΛ(τ)

dτ
ξ

)T

∇ξ . (4.33)
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Finally, the time derivative of ΨD
j (R, t) can be calculated using Jacobi’s formula
d

dτ
det[Λ(τ)] = det[Λ(τ)] Tr

[
Λ−1dΛ

dτ

]
, (4.34)

where Tr [M ] is the trace of the matrix M . Let us now insert the ansatz (4.32) into the transformed
GPE (4.21). This results in

iℏ∂τ ΨS
j (ξ, τ) =

− ℏ2

2mj
∇T

ξΛ
−1(Λ−1)T∇ξ + V cor

j (Λξ, τ) +W j(Λξ, τ) +
nsp∑
j′=1

gjj′Nj′

det[Λ] |Ψj |2
ΨS

j (ξ, τ)

+ iℏ
[
Tr

(
Λ−1

2

(
dΛ

dτ
− 2
mj

(Λ−1)TAj

))
+ i

ℏ
dβj

dτ

]
ΨS

j (ξ, τ)

+ ξT

(
dAj

dτ
− 2AjΛ

−1
(
dΛ

dτ
− 1
mj

(Λ−1)TAj

)
+ mj

2 ΛTΩ′ 2
j (τ)Λ

)
ξ ΨS

j (ξ, τ)

+ iℏ(∇ξΨS
j )T

(
Λ−1dΛ

dτ
− 2
mj

Λ)−1(Λ−1)TAj

)
ξ (4.35)

To simplify the terms from the second and fourth lines of the right-hand side of Eq. (4.35), we choose

Aj(τ) = mj

2 ΛT (τ)dΛ(τ)
dτ

, (4.36)
which implies

dΛ

dτ
− 2
mj

(Λ−1)TAj = 0 . (4.37)
The phase term βj(τ) has less constraints and could be zero. However, similar to the choices made
in single species calculations [74], we define βj(τ) as a function of the chemical potential µj of theground state of species j

βj(τ) =
∫ τ

0

µj

det[Λ(τ ′)]dτ
′ (4.38)

This choice, whichmakes the equation consistent with what we could get when calculating the ground
state of the mixture, leads to

dβj

dτ
= µj

det(Λ(τ)) . (4.39)
Now let us look at the third line of equation (4.35) by defining

Cj(τ) = dAj

dτ
− 2AjΛ

−1
(
dΛ

dτ
− 1
mj

(Λ−1)TAj

)
+ mj

2 ΛTΩ′ 2
j (τ)Λ . (4.40)
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Using the definitions ofAj(τ) and Λ(τ), and the scaling law (4.31), we obtain
Cj(τ) = mj

2
d

dτ

(
ΛT dΛ

dτ

)
− 2mj

2 ΛT dΛ

dτ
Λ−1

(
dΛ

dτ
− 1
mj

(Λ−1)TΛT dΛ

dτ

mj

2

)
+ mj

2 ΛTΩ′ 2
j (τ)Λ

= mj

2

(
dΛT

dτ

dΛ

dτ
+ ΛT d

2Λ

dτ
− 2ΛT dΛ

dτ
Λ−1

(
dΛ

dτ
− 1

2
dΛ

dτ

)
+ ΛTΩ′ 2

j (τ)Λ
)

= mj

2

(
dΛT

dτ

dΛ

dτ
+ ΛT d

2Λ

d2τ
− dΛT

dτ
ΛΛ−1dΛ

dτ
+ ΛTΩ′ 2

j (τ)Λ
)

= mj

2

(
ΛT d

2Λ

d2τ
+ ΛTΩ′ 2

j (τ)Λ
)

= mj

2

(
Ω′ 2

j∗(0)
det[Λ] − ΛTΩj∗(τ)′ 2Λ + ΛTΩ′ 2

j (τ)Λ
)

(4.41)
By combining all these elements, we finally obtain an adapted set of coupled time-dependent Gross-
Pitaevskii equations for all species, which reads
iℏ ∂tΨS

j (ξ, t) =
[

− ℏ2

2mj
∇T

ξ Λ−1 (Λ−1 )T∇ξ + mj

2 ξTΛT
(
Ω′ 2

j (t) − Ω′ 2
j∗(t)

)
Λ ξ + V cor

j (Λ ξ, t)

+Wj(Λ ξ, t) +
mj

2 ξTΩ′ 2
j∗(0) ξ +

∑
j′ Nj′ gjj′ | ΨS

j′(ξ, t)|2 − µj

det[Λ(t)]

]
ΨS

j (ξ, t) , (4.42)
where µj is the chemical potential associated with the species j at time t = 0. We can note that for
the reference species j = j∗, this equation simplifies to
iℏ ∂tΨS

j∗(ξ, t) =
[

− ℏ2

2mj∗
∇T

ξ Λ−1 (Λ−1 )T∇ξ +Wj∗(Λ ξ, t)

+
mj∗

2 ξTΩ′ 2
j∗(0) ξ +

∑
j′ Nj′ gj∗j′ | ΨS

j′(ξ, t)|2 − µj∗

det[Λ(t)]

]
ΨS

j∗(ξ, t) . (4.43)

We now have tools to describe the dynamics of interacting BEC mixtures with the coupled diffe-
rential equations (4.42) and (4.43). These equations are solved numerically using the second-order
split-operator technique [123]. This technique is first used in imaginary time [70, 117] to compute the
ground state of themixture, which is taken as the initial state of the system at t = 0. We then solve the
equations in real time to compute the translation and expansion dynamics of the system [62, 97]. The
chosen time step is equal to one thousandth of the shortest time period associated with the highest
trapping frequency in the system (typically associated to the K atom in our numerical applications).
We can also note that for the reference species j∗ only the interaction terms need to be calculated
at each iteration of the split-operator propagation. The other terms can be defined at the beginning
of the code, after the declaration of the variables, making the computations simpler and more ef-
ficient. The term describing the contribution of the trap anharmonicities Wj(Λξ, t) is the only term
(apart from the corrective potential V cor

j (Λξ, t)) that is not modified except for the change of variable
R = Λξ, since we have no other relation or physical property that can be used to simplify this term. If
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the condensate does not move too far from the center of the trap, the trap anisotropyWj(Λξ, t) can
be neglected, but we chose to include it in all calculations to allow the description of a broader range
of situations.

Although in a multi-species mixture the individual species j are typically trapped in potentials
with different trapping frequencies, leading to unequal expansion dynamics and requiring the com-
putation of additional correction terms such as V cor

j (Λξ, t) at each iteration of the code, the scaling
introduced in the equations (4.42) and (4.43) still absorbs most of the dynamics so that the numerical
solution of the time evolution can be obtainedmuch faster compared to a static grid. Moreover, in the
special case where the trap frequencies are equal for both species in a binary mixture, which could
be realised with dedicated optical traps [107], the equations (4.42) and (4.43) further simplify.

4.4 . The issue of mixture ground state simulations in microgravity
In this section we discuss some of the problems encountered when studying a dual species non-

miscible BEC mixture of 41K and 87Rb in microgravity.
In microgravity, or under certain conditions where we can compensate for the gravitational sag,

the trap minimum for the two species are co-located and the trapping frequencies associated with
the two species are related by their mass ratio. Let us define for j = 1, 2 the trapping potential Vj(r, t)

Vj(r, t) = mj

2 (ωx,j x
2 + ωy,j y

2 + ωz,j z
2) (4.44)

We consider that
ωα,2 =

√
m1
m2

ωα,1 , for α ∈ {x, y, z}. (4.45)
The two species are notmiscible, i.e. their respective scattering lengths verify the following condition 1

a11a22 < a2
12 . (4.46)

As mentioned in the previous section, we calculate the ground state of the binary mixture by
solving the coupled Gross-Pitaevskii equationwith the imaginary time propagationmethod. However,
during the testing of the codes, it was important to compare the results with existing examples from
the literature, in addition to "holding tests", where we verify that the computed state is stationary. For
the analytical studies of the coupledGPE, the calculations start with the Thomas-Fermi approximation,
but the inter-species interaction term makes the resolution of the GPE equation more challenging.
Reducing the system to spherical symmetry simplifies the wave functions, which then become one-
dimensional functions, greatly reducing the complexity of the calculations. These calculations show
for the ground state a phase separation where the 1D atomic density is a symmetric function, with
one species in the center and the other sandwiching it on the outside, creating a "hamburger-like"
configuration [97, 99].

1. Note that this condition is strictly valid for homogeneous gases only [56]. We therefore use it here as asimple approximate guidance.
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4.4.1 .Ground state calculation for various interspecies scattering lengths
The interaction between the two species is experimentally tunable using Feshbach resonances

[111, 113]. This suggested a first set of simulations in which we observe the effect of varying the
interspecies scattering length on the ground state of a mixture of K and Rb in a quasi-cylindrical trap.
The trapping frequencies for the Rubidium cloud are (fx,1, fy,1, fz,1) = (24.8, 378.2, 384.0), and the
mixture is composed of N1 = 2 × 104 atoms of Rb and N2 = 5 × 104 atoms of K. We consider the
mixture in microgravity and vary the scattering length a12 between 0 and 8.747nm, value observed
naturally in the absence of any Feshbach resonance. The ground state is computed iteratively, i.e. we
first find the ground state of themixture with a12 = 0. This ground state is then used as the initial state
for the imaginary time propagation to find the ground state for an increased interspecies scattering
length. Figure 4.2 shows for a limited set of interspecies scattering lengths the probability density Pxintegrated along the y- and z-directions. In this example, x is the weak axis, with fx ≪ fy ≃ fz . It isalong this weak axis direction that the splitting of the mixture happens. On the top row of this Figure
we see mainly two types of configurations, with overlapping distributions with bell-shaped curves in
most of the miscible cases a12 ≤ 3.5 nm, and the "hamburger-like" split distribution with the clouds
of K on both sides of the Rb cloud for a12 ≥ 4 nm. Let us define a12,lim the value for which we get from
a miscible mixture to an immiscible mixture from the definition of Eq. (4.46). In our application for a
mixture of K and Rb, we have

a12,lim =
√
a11a22 =

√
5.237 × 3.204 = 4.10nm (4.47)

On Figure 4.2 and for a12 = 4 nm, where themixture approaches the phase transition, we observe
that the K cloud is split along x, with the Rb cloud in the centre. The change in the structure of the
mixture is more visible in the lower panels of the Figure, where we focus on the values around the
transition from a12 = 3.0 nm to a12 = 4.5 nm. For a12 = 3 nm and a12 = 3.5 nm, both species
have a distribution similar to an inverted parabola centered on the trap minimum. The difference
in shape is small, and can be approached by the Thomas-Fermi distribution that models the ground
state with a12 = 0. Moreover, the variation of the atomic densities is smoother for a12 = 4.0 nm than
for a12 = 4.5 nm, especially in the region where the two species touch each other. For a12 = 4.0 nm
there is an overlap of the atomic densities at the transition between the two species, as both species
are still partially miscible. Finally, the transition between the atomic density distributions becomes
sharper as the interspecies scattering length increases, with nearly vertical boundaries for the highest
interspecies scattering lengths.

Intuitively, and considering Noether’s theorem, the ground state of the system should be symme-
tric, since the trapping potential is symmetric. However, theoretically, the repulsive interaction in the
non-miscible mixture introduces some instability in the solution of the GPE [99]. As a consequence,
we can observe in simulations the convergence of the imaginary time propagation (or other algo-
rithms) leading to states of different geometries, such as an asymmetric configuration where the two
species sit side by side [100, 102, 103, 111, 112]. In somemodels studying the structure of themixture
during the evaporation process, it is possible to obtain different configurations with bubbles of one
species trapped within the other one, leading to alternating peaks of the different species in the plots
of the 1D probability density as in [112, 124]. Some studies classify different phase diagrams, where
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Figure 4.2 – Probability density Px integrated along the y- and z-directions in the ground state of aBEC mixture in microgravity. Top row : Cascade plot of this integrated density profile as a function of
x for a BEC mixture withN2 = 5 × 104 atoms of K (panel a) andN1 = 2 × 104 atoms of Rb (panel b) fordifferent interspecies scattering lengths a12. Bottom row : Plots of the density profile for interspeciesscattering length values at which the phase transition frommiscible (a12 = 3.0, 3.5 nm) to immiscible(a12 = 4.0, 4.5nm) takes place, with the profile of the KBEC in panel c and that of the RbBEC in paneld.The trapping potential is almost cylindrical and the frequencies for the Rb cloud are (fx,1, fy,1, fz,1) =
(24.8, 378.3, 384.0) Hz.

the result depends on the fraction of atoms of each species in the mixture as well as the interspe-
cies scattering length [104, 125]. In the end, these states are often considered as nearly degenerate
metastable states, even if they are stationary in the potential in which we search for the ground state.

4.4.2 .Comparison between two simulations in microgravity
In our codes considering quasi-cylindrical traps, after fixing the number of atoms in the mixture,

we can obtain two types of results, depending on the symmetry of the initial state used in the imagi-
nary time propagation algorithm. We can thus converge two configurations : a symmetric stationary
state where one species is sandwiched between two clouds of the second species, and a pair of asym-
metric stationary states where the two species are side-by-side. For the symmetric state, we start with
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two functions centered on the trap minimum, which is identical for both species. To force the appea-
rance of the asymmetric state, we start with the two initial probability densities shifted side by side.
Actually, for the asymmetric state, we have two mirror states for symmetry reasons.

Here we focus first on two different examples of K and Rb mixtures in a trap in microgravity. The
first example is related to a future sounding rocket mission with MAIUS, and the second has already
been implemented in space with CAL. We want to see how different the two configurations are. Both
traps are implemented with atom chip setups, and we will refer to them as the MAIUS chip trap and
the CAL chip trap. They also have a quasi-cylindrical geometry, where ωx,j ≪ ωy,j ≃ ωzj .

For the CAL chip trap, we consider a mixture of N1 = 1, 400 atoms of Rubidium and N2 = 1, 900
atoms of Potassium and the trapping frequencies characterized for the Rb cloud are (fx,1, fy,1, fz,1) =
(26.0, 922.1, 927.6) Hz. For the MAIUS chip trap we consider a mixture of N1 = 43, 900 atoms of Ru-
bidium and N2 = 14, 400 atoms of Potassium and the trapping frequencies characterized for the Rb
cloud are (fx,1, fy,1, fz,1) = (24.8, 378.3, 384.0)Hz. The trap aspect ratios are different in the two cases,
and are characterized by a more pronounced "cigar-shaped" one-dimensional character for the CAL
configuration. In terms of atom number, there are an order of magnitude more atoms in the MAIUS
configuration, and the dominant species is different in each case. Finally, since there is no Feshbach
resonance present in the setups, the interspecies scattering length is a12 = 8.747 nm.
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Figure 4.3 – Results from the imaginary time propagation for the CAL chip trap in microgravity afterchoosing a symmetric ansatz (top row) or an asymmetric ansatz (bottom row). We have 1,400 Rbatoms and 1,900 K atoms. The first column shows a 3D representation of the mixture with K in redand Rb in blue, and the other columns show the integrated profiles Px, Py and Pz .
Nonetheless, the simulation process is the same for both configuration, andwepresent the results

in Figures 4.3 and 4.4. In each Figure, panels a and e in the first column show a 3D representation of
the BEC mixture, with the Rb BEC in blue and the K BEC in red. The next 3 columns show the average
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atomic densities
Px(x, t) =

∫ +∞

−∞

∫ +∞

−∞
Nj |ψj(r, t)|2dy dz , (4.48a)

Py(y, t) =
∫ +∞

−∞

∫ +∞

−∞
Nj |ψj(r, t)|2dx dz , (4.48b)

and
Pz(z, t) =

∫ +∞

−∞

∫ +∞

−∞
Nj |ψj(r, t)|2dx dy , (4.48c)

for Rb (blue) and K (red) along the three directions x, y and z. The vertical dashed lines correspond
to the position of the trap centre, which is shared by both species since the system is in microgravity.
The first row corresponds to the result obtained with the symmetric ansatz, and all the plots are
symmetric : the vertical line representing the position of the trap centre acts as a symmetry axis.
The second row shows the result obtained with an asymmetric ansatz, and in both Figures the shift
between the species was such that the K cloud is positioned toward the positive x-direction, and the
Rb cloud is positioned toward the negative x-direction. If we take the mirror of this initial ansatz with
respect to the yz-plane, we end up with themirror of this state with the same energy. We can see that
the segregation between the two species exists only along the x-direction, i.e. along the weak axis
direction. Comparing the density plots along the x-direction with those along the other directions
(i.e. the y- and z-directions), we see that this characteristic segregation is visible along x only. The
similarities between the plots of panels c and d with those of panels g and h in Figures 4.3 and 4.4
show that experimentally the orientation of the camera is crucial to discriminate the different possible
states that can exist, and the best orientation is onewhere theweak axis is parallel to one of the sensor
directions.
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Looking at the 3D representation of theBECmixtures in Figures 4.3 and 4.4, we see that the species
with the largest atom number in themixture will be themost prominent in the plot. In the asymmetric
configuration it is also the one that will sit in the trapminimum, as seen for the blue Rb cloud in Figure
4.4e, where there are almost 3 times more Rb atoms than K atoms. The study of the energy per atom
in the mixture will indicate the contribution of each species to the total energy of the mixture.

The imaginary time propagation algorithm used to find the ground state of the mixture in micro-
gravity is designed so that the final converged states have a relative energy variation between two
consecutive time iterations of less than 10−12. We can also verify that this state is stationary by pro-
pagating it in real time for a given holding period. The atomic density along the x-direction shows
an almost vertical transition from one species to the other, similar to a potential wall that prevents
any overlap between the two species, leading to a quasi-perfect segregation. Asmentioned above, the
symmetric state should normally be the ground state, and the two asymmetric states should normally
be stationary states that can be referred to as metastable states of the trap [102].
Table 4.1 – Table comparing the energies per atom for the symmetric and asymmetric configurationsin the CAL andMAIUS chip traps inmicrogravity. Theminimum values are given in blue. For theMAIUS(CAL) chip trap, we have 43,900 (1,400) Rb atoms and 14,400 (1,900) K atoms, respectively.

MAIUS chip trap CAL chip trap
Energy per atom Symmetric (nK) Asymmetric (nK) Symmetric (nK) Asymmetric (nK)
Kinetic Energy Rb 2.23 2.24 6.50 6.88Potential Energy Rb 33.36 35.56 14.96 17.26Interaction Energy Rb-Rb 26.17 24.68 8.03 6.63
Kinetic Energy K 1.83 1.61 15.32 14.49Potential Energy K 17.99 16.15 32.14 29.55Interaction Energy K-K 5.60 6.99 8.25 10.23
Interaction Energy K-Rb 0.25 0.16 0.31 0.19
Total Energy 87.43 87.49 85.50 85.23
Table 4.1 shows the contribution of each species and energy term to the total energy of the states

obtained from the imaginary time propagation for the symmetric and asymmetric configurations for
both chip traps. All energies are converted to nK per atom, which correspond to the energies divided
by the total number of atoms in the system. For each row, we compare the energies between the two
columns corresponding to the symmetric and asymmetric states, and the value in blue corresponds
to the minimum. On the last row of the table we see that the total energy per atom in the symmetric
and asymmetric states are very close, with a difference of |∆EMAIUS | = 0.06 nK/atom, which is 0.07
% of the total energy per atom and |∆ECAL| = 0.27 nK/atom, which is 0.32 % of the total energy
per atom. These energy differences are thus extremely small compared to the total energy in the
mixture. It shows that both states are nearly degenerate in energy. We also observe that the lowest
energy configuration can differ, depending on the system. For the MAIUS chip trap, the symmetric
state has the lowest energy with Etot,MAIUS = 87.43 nK/atom, whereas for the CAL chip trap the
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asymmetric state has the lowest energy withEtot,CAL = 85.23 nK/atom. The second to last row of the
table shows that the asymmetric state achieves the lowest interspecies interaction. This could be due
to the presence of a single "contact surface" between the two species when side by side, compared
to when the Rb cloud is sandwiched between two clouds of K. This also results in a lower intraspecies
interaction for K in the symmetric configuration. Ultimately, the total energy of the symmetric and
asymmetric configurations results in a trade-off between intraspecies and interspecies interactions.

Since the states are almost degenerate in energy, they have a similar probability to appear ex-
perimentally. In addition to that, these states are very sensitive to the environment and all potential
asymmetries of the fields in the system, so they are very fragile. It suggests that it might be difficult
to get the perfect symmetric state experimentally, and it would be even more difficult to predict what
is the state that is produced.

4.5 .Numerical application : BEC dynamics with different scattering lengths

After deriving in the previous sections the scaling equations used to solve the coupled time-
dependent Gross-Pitaevskii equations for BECmixtures, we implemented them in Fortran codes. Our
first objective was to check whether we obtain the same numerical results using a fixed-grid method
and our scaled-grid method. The second one was to numerically observe the effect of a dynamical
sequence on a dual-species mixture in microgravity for different interspecies scattering lengths.

In this application, we assume that the atoms are trapped by the magnetic field produced by a
Z-shape atom chip configuration [59, 62, 66, 67, 126] in the presence of a time-dependent homoge-
neous magnetic field generated by magnetic coils through which a tunable current flows. Here we
implement the transport induced by a linear variation of the coil currents during 10 ms followed by
a holding of 20 ms in the final trap. Since the relative variation of the current during the transport
is small, the trajectory followed by the trap is one-dimensional and linear along the z-direction, and
the evolution of the trapping frequencies over time is also linear. The dynamics is assumed to take
place in microgravity, and the position of the trap centre is therefore the same for potassium and
rubidium. At time t = 0, its initial position is 314.97 µm above the atom chip. The transport consists
of a translation in the z-direction, perpendicular to the chip, moving the centre of the trap to 333.56
µm above the chip. The transport then has a total length of 18.59 µm, to be compared with the initial
width (FWHM) of the atomic density distribution along z of about 2 µm. As in the other applications,
we associate the index j = 1 with rubidium and the index j = 2 with potassium. For rubidium, the
trapping frequencies vary linearly from

ω1,X1(0) = 2π × 24.8Hz (4.49a)
ω1,Y1(0) = 2π × 378.3Hz (4.49b)
ω1,Z1(0) = 2π × 384.0Hz (4.49c)
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to
ω1,X1(tf ) = 2π × 24.9Hz (4.50a)
ω1,Y1(tf ) = 2π × 340.9Hz (4.50b)
ω1,Z1(tf ) = 2π × 346.4Hz (4.50c)

The initial and final trapping frequencies ω2,Σ2 for potassium with Σ ∈ {X,Y, Z} are given by
ω2,Σ2(t) =

(
m1
m2

) 1
2
ω1,Σ1(t) (4.51)

We consider a mixture of 43,900 rubidium atoms with 14,400 potassium atoms, similar to what
can be regularly achievedwith theMAIUS-2 experiment on ground [79]. To explore differentmiscibility
regimes, we consider 3 different cases with the following interspecies scattering length values a12 = 0,
1 and 8.747 nm. In principle, this variation of the scattering length can be realized experimentally using
the Feshbach resonances observed in K-41 and Rb-87 mixtures around 35 G and 79 G using a dipole
trap [113]. The last value a12 = 8.747 nm corresponds to the natural scattering length between K-41
and Rb-87 in the absence of any Feshbach resonance.

The first step in the simulation is to determine the ground state of the mixture confined in the
initial trap using the imaginary time propagation method. We can see in Figure 4.5 that the spatial
distribution of the two species in the ground state is different depending on the value of the inter-
species scattering length a12. The first two columns correspond to two miscible cases associated with
a12 = 0 nm and a12 = 1 nm, respectively. The third column corresponds to the immiscible case
a12 = 8.747 nm calculated with the same trapping parameters and shown in the previous section 4.4.
The first line shows the 3D representation of the atomic density associated with Rb (blue) and K (red).
As seen in the previous section for the a12 = 8.747 nm case, we see that its immiscible nature is clearly
visible in a distinctive hamburger-like structure. On the other hand, we see that the twomiscible cases
show a large spatial overlap of the two condensates. The last three rows in Figure 4.5 show the 1D
integrated atomic densities for Rb (blue) and K (red) along the three directions x, y and z at the initial
time t = 0. The dashed line on all plots indicates the position of the trap minimum and draws a sym-
metry axis. These plots also show that the two miscible cases considered here are very similar, with
a complete overlap of the densities in all directions. Therefore, the introduction of a weak repulsive
interaction between Rb and K (a12 = 1 nm, middle column of Fig. 4.5) has very little impact on the
initial spatial distribution of the atomic densities compared to the non-interacting case (a12 = 0 nm,
left column of Fig. 4.5). Comparing the last two rows of the Figure, we see that the spatial distribu-
tions in y and z for the non-miscible case (panels i and l in Fig. 4.5) are relatively unaffected by the
introduction of a strong repulsion between Rb and K atoms. Indeed, the spatial discrimination is only
observed in the direction of the weak trapping axis, i.e. the x-direction (see panel f in Fig. 4.5).

Figure 4.6 shows the calculated probability densities for K and Rb at the end of the transport and
holding sequence, at time t = tf = 30 ms. The first row shows a 3D representation of the atomic
densities. The next three rows show the averaged probability densities Px, Py and Pz calculated withthe scaled-gridmethod described in section 4.3 (red and blue solid lines for K and Rb, respectively) and
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Table 4.2 – Transport dynamics computation (cpu) time. The calculations were performed in parallelusing 16 cores of an Intel Xeon Gold 6230 processor running at 2.1 GHz. The real calculation time isroughly the displayed values shown in the table divided by the number of cores.
Ground State Calculation Ramp & Holding Dynamics

a12 (nm) Fixed Grid Scaled Grid Fixed Grid Scaled Grid
0 9h 10min 3h 02min 9h 25min 3h 03min1 9h 39min 3h 00min 9h 37min 2h 58min8.747 24h 19min 8h 03min 9h 23min 3h 04min

with a fixed grid (black and green dashed lines for K and Rb, respectively). The probability densities
calculated with these two different methods are perfectly superimposed, demonstrating the validity
of the scaled-grid approach regardless of the chosen interaction regime, i.e., miscible or not. These
results confirm that the two approaches are identical in principle, since they stem from calculations
that aremathematically equivalent. However, they could differ due to numerical errors induced by the
limited precision of the calculations and interpolation to different spatial grid points. A comparison
of the first two columns of Figure 4.6, and in particular of panels d and e, shows that the introduction
of a weak interaction between Rb and K induces significant perturbations during the dynamics in
the spatial density profile in the x-direction corresponding to the weakest trapping axis, whereas the
effect of this small interaction is negligible in the ground state (see panels d and e in Fig. 4.5). We can
conclude that here, the transport acts as a detector of these interspecies interactions, even if they are
relatively weak. Comparing panels j and k, we also see that this weak interspecies interaction induces
a shift of the average position of the two atomic species in the z-direction of the transport as well as
a deformation of the density profile, which is not the case here for the non-interacting mixture.

In order for the calculation to converge, it is necessary to use a larger grid with a larger number of
grid points in the fixed-grid approach than in the scaled-grid approach. The fixed grid must be at least
longer than the total displacement of about 18.6 µmalong the z-direction of the sequence, so that the
wave function can be accurately described at all times. The fixed-grid approach uses (Nx = 256, Ny =
64, Nz = 576) grid points, while the scaled-grid approach uses (Nx = 256, Ny = 64, Nz = 192) grid
points. The total number ofNx ×Ny ×Nz grid points required is thus 3 times larger for the fixed-grid
approach than for the scaled-grid approach. As shown in Table 4.2, this variation in the number of
grid points has a strong impact on the computational time. In fact, the computational time, either for
obtaining the ground state using the imaginary time approach [70, 117] or for calculating the dyna-
mics, is on average 3 times longer with the fixed-grid approach than with the scaled-grid approach.
The ratio of 3 obtained here is due to the necessity of increasing the size of the grid in the z-direction,
i.e. in the direction along which the transport takes place. Here, the transport was designed in such
a way that we limit the range of the displacement so that it is not too large (about 18.6 µm) compa-
red to the initial size of the condensate (about 2 µm FWHM in the z-direction, as shown in panels j,k and l of Fig. 4.5), in order to keep the computational time reasonable for the fixed-grid approach.
However, many experiments in the past have required the realisation of condensate displacements
over distances of the order of a millimeter [45, 49, 52]. Thus, it can be estimated that the calculation
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of transport dynamics in such situations would require the use of 100 or 200 times more grid points
in a fixed-grid calculation than in the scaled-grid approach, making this type of calculation extremely
demanding in terms of memory resources as well as computational time, or even impossible with
standard computing facilities. We can also see that in the case of the immiscible mixture, the calcula-
tion of the ground state takes more time because it requires more iterations to separate the different
geometries of this state (see section 4.4.2 for details).
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Let us now study in more detail the displacement dynamics of the mixture by calculating the
average positions of the two condensates over time, which will be referred to as the "trajectories"
followed by the two atomic clouds, and by calculating the evolution of the average "size" of the two
condensates, which will be defined as the standard deviations of the Rb and K atomic densities. Since
the transport is unidirectional, we only need to focus on the z direction. The average trajectories follo-
wed by the two condensates are defined as ⟨z⟩ = ⟨Ψj |z|Ψj⟩. They are shown in the first row of Figure
4.7 using the same colour coding as in Figure 4.6. In panels a, b and c we see that the fixed-grid and
scaled-grid calculations lead to the same results regardless of the interaction regime considered. In
panels g, h and i, it can be seen that the condensates start to oscillate in the trapping potentials as the
transport unfolds. This is due to the fact that it is too fast to be adiabatic. Furthermore, these oscilla-
tions, which occur at different frequencies for Rb and K, continue into the holding phase. In panel g
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we see that these oscillations are regular, similar to what could be obtained by solving the dynamics
of a harmonic oscillator. However, in the presence of interactions, the collisions between the species
perturb the trajectories followed by the two condensates. Consequently, even if the average positions
of the condensates obey classical laws of motion when the interspecies interaction is suppressed (see
panel d), this is no longer the case in the presence of an interaction (see panel f), even if this inter-
action is relatively weak (see panel e). Finally, panels g, h and i show that the remaining oscillations
observed during the holding phase are characterized by multiple modes that differ as a function of
the interspecies scattering length.

The evolution of the average sizes of the two condensates, defined as the standard deviations of
the Rb and K atomic densities along the x, y and z directions, are shown in Figure 4.8 using the same
colour coding as in Figure 4.6. In this figure we see that the fixed-grid and scaled-grid approaches
also give the same results for the evolution of the sizes, regardless of the interaction regime. During
the transport, the trapping frequency for Rb and K remains almost constant along the x-direction,
while the trapping frequencies along the y- and z-directions decrease by slightly less than 10 %. This
relatively small variation of the trapping frequencies leads to a smooth evolution of the size of the two
atomic clouds in the absence of interspecies interactions (a12 = 0 in the left column of Fig. 4.8). On the
other hand, panels e, f, h and i show that the presence of a non-zero interspecies interaction (a12 = 1
nm in the middle column and a12 = 8.747 nm in the right column) leads to relatively strong collective
excitations of the two condensates in the y- and z-directions, which continue into the holding phase.
Since the change of the trap frequency along the x-direction is negligible, no such perturbation effect
is observed in this particular direction (see panels b and c in fig. 4.8).

4.6 . Application to theMAIUS experiments on ground : Free expansion of a BECmix-ture in the presence of gravity

4.6.1 .Presentation of the experiment and verification of the scaled-grid code
In this application of the multi-species scaled-grid approach, we study the free expansion of a

dual-species BEC mixture of K-41 and Rb-87 in the presence of gravity. After testing the code for a
short expansion time, we will compare the results of the simulation with experimental data taken in
the laboratory by the MAIUS team in Hannover (Germany) [79]. The number of atoms considered is
again 43,900 for Rb and 14,400 for K. We simulate the free expansion of the K-Rb mixture, starting
at t = 0 from the ground state of this dual-species mixture. Due to the gravitational sag, the centres
of the trapping potentials associated with each species are shifted, mainly in the z-direction, which is
the direction in which gravity acts. In addition, the eigenaxes of the traps associated with Rb and K
are rotated very slightly. This rotation is taken into account in the calculations using transformation
matrices as presented in Chapter 2 (see section 2.7). The initial trap uses the same electric current
flowing through the magnetic coils and chip wires as in the example presented earlier in section 4.5,
which discussed the dynamics of transport and holding in microgravity. In the case of Rb, the initial
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Figure 4.9 – Probability density of a dual Rb-K condensate in the presence of gravity. Shown are the3D representations (first column) and the integrated density profiles Px, Py and Pz (second column :along x, third column : along y, fourth column : along z). The first row shows the initial ground state.The second row shows the same density after 5 ms of free expansion. The scattering lengths are
a11 = 5.237 nm, a22 = 3.204 nm and a12 = 8.747 nm. In the first row the centres of the Rb and Ktraps are marked by blue and red vertical dashed lines, respectively. The number of Rb and K atomsis 43,900 and 14,400, respectively. Gravity points in the positive z direction. In the second row, the Rbprobability calculated with the scaled-grid approach and with a fixed grid are shown as solid blue anddashed green lines, respectively. Similarly, the K probability densities calculated with the scaled-gridapproach and with a fixed grid are shown as solid red and dashed black lines, respectively.

trap is positioned at (x1, y1, z1) = (−1.62, 2.23, 332.43) µm and the initial trapping frequencies are
ω1,X1(0) = 2π × 25.3Hz (4.52a)
ω1,Y1(0) = 2π × 345.1Hz (4.52b)
ω1,Z1(0) = 2π × 347.1Hz (4.52c)

For K, the initial trap is positioned around (x2, y2, z2) = (−1.76, 2.24, 331.35) µm, and the initial trap-
ping frequencies are

ω2,X2(0) = 2π × 36.5Hz (4.53a)
ω2,Y2(0) = 2π × 504.1Hz (4.53b)
ω2,Z2(0) = 2π × 509.8Hz (4.53c)

The first row of Figure 4.9 shows the spatial distribution of the dual-species condensate at time
t = 0, to be compared with the distribution shown in the last column of Figure 4.5, which shows
the data for the same trap implementation in a microgravity environment. From this comparison
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we can already conclude that the presence of gravity affects significantly the initial structure of the
condensate. The most notable change is that the symmetry of the hamburger-like structure of the
condensate is broken in the presence of gravity. Due to the segregation along the z-direction, both
species can sit in the trapminimum along the x-direction as seen in panel b, which was not the case in
microgravity. We can see that along the z-direction themaximumdensity of the Rb cloud is at the trap
minimum, while the peak of the K density is slightly shifted due to the repulsive interaction between
the two species.

Since the size of the two-species condensate increases rapidly as it is released from the trap, we
have limited the duration of the time-of-flight to 5 ms so that a fixed-grid calculation remains fea-
sible. The second row of Figure 4.9 shows the spatial distributions of the atom clouds at time t = 5
ms, i.e. at the end of the free expansion. It can be seen that during this time the sizes of the Rb and K
clouds grow by a factor of about 10 in both the y and z directions. On the contrary, the size along the
weak axis x remains almost unchanged. In this second row, we also compare the probability densities
calculated at the end of the expansion with the scaled-grid method (blue and red solid lines for Rb
and K, respectively) with those obtained using a fixed grid (green and black dashed lines for Rb and K,
respectively). The probability densities calculated with bothmethods are in perfect agreement, confir-
ming the validity of the scaled-grid approach in this example, where the atomic expansion dynamics
occurs in the presence of gravity.

As with the transport and holding example discussed in the previous section 4.5, achieving conver-
gence when describing the expansion with a fixed grid requires a larger number of grid points than
with the scaled-grid approach. In fact, in this example, the fixed-grid approach uses (Nx = 64, Ny =
256, Nz = 256) grid points, while the scaled-grid approach uses (Nx = 64, Ny = 64, Nz = 64) grid
points. The total number of Nx × Ny × Nz grid points required is therefore 16 times greater for the
fixed-grid calculation (4,194,304) than for the scaled-grid approach (262,144). As shown in Table 4.3,
this variation in the number of grid points has a strong impact on the computation time, dramatically
favouring the scaled-grid approach in terms of both CPU time and, of course, memory consumption.
It can be seen that the increase in the number of points affects the y and z directions along which the
condensate expansion is most significant. The computational time in this 5 ms expansion, both for
obtaining the ground state and for computing the dynamics, is on average 18 times larger with the
fixed grid thanwith the scaled-grid approach, which is consistent with the ratio of grid sizes. Of course,
this factor of 18 depends on the expansion time, since the size of the condensate increases linearly
with time after the initial acceleration phase. As shown in Table 4.3, for an expansion time of 8 ms,
the computation time in a fixed grid is on average 68 times larger than in the scaled-grid approach.
Actually, this computation requires 64 × 512 × 512 grid points, i.e. 64 times more than with the scaled-
grid approach. On the one hand, the scaled-grid approach is characterized by a computation time that
grows linearly with the free expansion time since the number of grid points does not need to change.
On the other hand, the fixed-grid approach has a grid size that scales with λx(tT OF )λy(tT OF )λz(tT OF ),
the product of the scaling factors of the BEC size in all directions, and the dynamics code has a dura-
tion of the order of O(Nngp log(Nngp)) whereNngp = Nx ×Ny ×Nz . In practice, many free expansion
experiments are performed over durations of tens of milliseconds [45, 49, 52]. A simple extrapola-
tion of the results obtained here gives a gain in computational time of the order of 600 for a free
expansion of 25 ms and of 10,000 for a time of flight of 100 ms. Such calculations quickly become
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Table 4.3 – Computation (cpu) time for the calculation of a dual-species condensate free expansiondynamics in gravity. The calculations were performed parallelizing 16 cores of an Intel Xeon Gold 6230processor running at 2.1 GHz. The real calculation time is roughly the displayed values of the tabledivided by the number of cores.
Ground State Expansion Dynamics

TOF (ms) Fixed Grid Scaled Grid Fixed Grid Scaled Grid
5 11h 06min 31min 55min 3min 40 s8 39h 07min 31min 6h 12min 6min 06 s25 16days∗ 31min 7days∗ 18min 32 s100 266days∗ 31min 432days∗ 78min 31 s1000 N/A 31min N/A 16h 23min

∗ Estimation based on the number of grid points required.
cumbersome in the standard fixed-grid approach, which confirms the importance of developing the
scaled-grid approach presented in this work for an efficient treatment of the expansion dynamics of
multispecies quantummixtures. Reaching the regime of a few seconds of free expansion is alsowithin
reach, since we have seen that the scaled-grid computation time scales linearly with the expansion
time, and would amount to about 16 hours of CPU time, which can be easily reduced by paralleliza-
tion to about one hour of real computation time for 1 s of free expansion using, as in our case, 16
or more cores (see Table 4.3). Using more parallel cores for the calculations would reduce the real
computation time even more.

4.6.2 .Comparison with experimental data
After the validation of our scaled-grid code for dynamics including displacements and free ex-

pansion with and without gravity, we can now compare the results of a BEC mixture simulation with
experimental data. Here we study the results of the free expansion during 25ms of a BECmixture of K
and Rb atoms obtained during a calibration campaign inHannover in preparation for theMAIUS-2 and
MAIUS-3 missions [79]. During these experiments, quantum degenerate mixtures with variable pro-
portions of Rb and K atoms were prepared and several free expansions of themixtures were realized.
Our goal is first to verify the applicability of our computational method by comparing its predictions
with experimental measurements, and second to gain a better understanding of the multi-species
dynamics.

In the first columnof Figure 4.10we see the experimental absorption images of the K (first row, pa-
nel a) and Rb (second row, panel d) clouds after a free expansion of 25 ms. For each image, the bright
red colour corresponds to the highest measured atomic density, and the dark blue regions corres-
pond to low atomic densities. The number of condensed Rb and K atoms, calibrated by experimental
measurements, is 43,900 and 14,400, respectively. Comparing panels a and d we can see that the
experimental image of K shows more background noise than for Rb because there are about 3 times
fewer atoms of K than of Rb. The intensity of the peak of K is therefore lower than for Rb, decreasing
the signal-to-noise ratio. The vertical direction XC of the camera corresponds to the direction z of
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Figure 4.10 – Normalized 2D atomic densities of K (first row) and Rb (second row) after a free expan-sion of 25 ms, starting from the initial trap described by Eqs. (4.52) and (4.53). First column : false-colour absorption images measured by the MAIUS-2 apparatus in a ground-based experiment [79].The direction of gravity, indicated by white arrows, is vertical along the camera axisXC , orthogonal tothe atom chip. The Rb and K images are normalized for better visibility. The fitted atom numbers are43,900 for Rb and 14,400 for K. Second column : Condensate probability densities calculated with thescaled-grid approach in the plane (XC , YC) of the camera. The theoretical images b and e have beentranslated so that the position of the maximum of the K density is the same for the experimental andsimulated signals, and convoluted with a Gaussian of width 15 µm. Third column : Calculated totalprobability densities including thermal atoms (see text for details).

gravity. The horizontal axis YC of the camera is in the (x, y) plane, and makes an angle of 46°with the
x-axis of Figure 4.9. The initial Rb and K frequencies are given by Eqs. (4.52) and (4.53), and the initial
state of the condensed dual-species mixture has already been shown in the first row of Figure 4.9.
The second column of Figure 4.10 shows the projection in the camera plane of the atomic densities
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calculated after 25 ms of free expansion by the numerical solution of the coupled Gross-Pitaevskii
equations (4.1) in the scaled-grid approach, with K in the first row (panel b) and Rb in the second row
(panel e). The grid used in the numerical calculations has been translated so that the position of the
maximum K density is the same for the experimental and simulated data. Comparing the position of
the Rb cloud in panel dwith that in panel e shows a slight shift between the measured and calculated
positions of the Rb cloud. This shift is about 81.6 µm in theXC direction of gravity and about 16.3 µm
in the transverse YC direction. Compared to the distance of about 3 mm covered by the atoms during
the 25ms free fall, this global shift of 83.2 µmbetween experiment and theory is relatively small, since
it represents only 2.7% of the total displacement. This small shift may be due to an initial oscillation
of the atoms before the expansion stage in the experiment, or to an additional kick experienced by
the atoms during the switch-off of the trap-inducing currents, two effects not considered in the simu-
lation. Still, it can be concluded that the comparison between the experimental measurements and
the numerical simulation shows a good qualitative agreement between theory and experiment in the
region of interest of the CCD camera. It should also be noted that an efficient simulation of the 3D
dynamics of the mixture was only possible using the scaled-grid method, with a grid that adapts over
time to the centre-of-mass motion and size expansion of the condensate, as presented in Section 4.3.

Let us perform a more quantitative study to refine this comparison. The size of the image shown
in Figure 4.10 corresponds to the region of interest taken for data analysis. The intensity information
given by each pixel of the camera region was integrated in each direction to obtain the integrated 1D
signals shown as blue solid lines in Figure 4.11. These integrated experimental data are characterized
by bimodal structures, with quasi-Gaussian pedestals corresponding to the presence of a thermal
cloud. The 2D camera recorded data shown in panels a and d of Figure 4.10 for Rb and K have the-
refore been fitted by a fit function constructed as the sum of a 2D Gaussian with an inverted 2D
parabola. The 2D Gaussians associated with Rb and K are used to represent the thermal cloud, and
their integrals are shown as green dash-dotted lines in each subplot of Figure 4.11. For the 2D plots
of the coupled GPE solutions, these images were numerically convoluted to a 2D Gaussian function
with a standard deviation (RMS width) of σ = 15 µm in all directions to mimic the effect of camera
resolution. These convoluted 2D images were then integrated along the two camera axes. The simu-
lated Rb peak was shifted by 81.6 µm in theXC direction and by 16.3 µm in the YC direction to match
its position with the observation from panel d of Figure 4.10. This shift was introduced to account
for the initial velocity difference between the Rb cloud and the K cloud during the expansion, which
is not included in our simulation model. We combine the integration of the convoluted simulation
results, representing the condensed part of atom cloud, with the Gaussian-fit, representing the ther-
mals atom, to get the total simulated atomic density, and plot it as the solid red lines in Figure 4.11.
The comparison between the experimental measurement (solid blue line) and the results of the nu-
merical simulation using the scaled-grid approach (solid red line) shows a very good agreement. The
result of this numerical model taking into account the simulated condensed atoms and the fitted ther-
mal atoms is also shown in the right column of Figure 4.10, which also compares very favorably with
the images taken by the camera (see left column of Figure 4.10). We can conclude that our numerical
approach using the scaled-grid method to solve the coupled GPE enables an efficient and accurate
simulation of the BEC mixtures. We can also observe that the centres of the condensed and thermal
fraction distributions do not coincide, especially for the lighter K species (see Figure 4.11). This non-
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Figure 4.11 – Integrated atomic densities of Rb (first row) and K (second row) in arbitrary units alongthe camera directions XC and YC in the MAIUS experiment on ground after 25 ms of free fall. Inthe first column the integration of the 2D images shown in Figure 4.10 is performed along YC andin the second column the integration is performed along XC . The solid blue line is the experimentalmeasurement and the dashed green line is the Gaussian fit describing the thermal component of theatomic cloud. The solid red line is the adjusted numerical simulation, which includes both the com-puted condensed and the fitted thermal components. The vertical lines correspond to the averageposition of the condensed part of the atomic cloud for the solid red line, and to the centre of thethermal part for the dash-dotted green line. The offsets between the positions of the condensed andthermal parts in the directions (XC , YC) are (+33.54,−0.41) µm for Rb and (−40.93,−5.25) µm for K.

obvious, unexpected effect is due to the repulsion between the dense, interacting, degenerate parts
of the clouds, which causes a shift of the centre of each BEC with respect to its more dilute thermal
counterpart. This shift is thus a signature of the bimodal distributions of interacting mixtures.

To givemore technical details about the simulations, the time step used in the calculations corres-
ponds to one thousandth of the shortest time period associated with the trap of the K atom, which is
lighter than Rb and therefore generally undergoes faster dynamics. This corresponds to a time step of
1.96 µs for a total propagation time of 25 ms. For an alternative visualisation of the time step, this re-
sults in 510 steps of time propagation for eachms of simulated dynamics. It should also be noted that
in this calculation the volume of the computational grid increases from 107µm × 7.84µm × 9.16µm,
or 7.68 × 103 µm3 at the beginning, to 172µm× 617µm× 734µm, or 7.79 × 107 µm3 at the end of the
25ms TOF. The increase in volume therefore corresponds to a factor of about 104, which is extremely
challenging to simulate. This increase is so large that a simulation with a fixed grid would not have
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been feasible, as the required number of grid points is a hard limiting factor (see Table 4.3).
The experimental setup used by the MAIUS collaboration in Hannover has the possibility to rotate

the trapping components, offering the opportunity to study the influence of gravity on different trap-
ping configurations [79] for a mixture of K and Rb. The setup is tilted by an angle α defined between
the direction of the gravity axis and theXC axis of the camera, which is orthogonal to the atom chip.
Due to the gravitational sag, the trapping potential for each condensate is rotated in the chip frame
and redefined for the different values of the α angle, which ranges here from 0◦ to 60◦ by increments
of 15◦. Repeating the same data analysis and simulation process as in the first part of this section, we
compare the experimental data with the results of the simulation (simulated condensed and fitted
thermal atoms) in Figure 4.12. The first and third columns correspond to the experimental data, while
the second and fourth columns are the results of the simulation. For each row of the figure we have
a different orientation of the gravitational acceleration, and the first row is another representation of
the panels a, c, d and f of Figure 4.10. Comparing each pair of images, we can see a good agreement
between the simulation and the experiment for allα angles. Amore quantitative comparison between
the experimental images and the simulation results can be found in Appendix B. It also validates the
chip model and the use of rotation matrices to handle the rotation of the setup.

4.7 . Application to CAL – Scientific Module SM3
4.7.1 .Experimental results

In this section, the simulations follow a similar procedure as in the previous sectionwith theMAIUS
free expansion on ground. However, in CAL, microgravity makes the process a bit more delicate due
to the quasi-degenerate steady states of the initial trap. Here we study the dual-species microgravity
experiments realised by the JPL teamwith the CAL SM3machine in the International Space Station du-
ring the commissioning phase. This corresponds to the calibration and verification of various aspects
of the setup. More details on the experimental setup and procedure can be found in the following
publication [53]. Here we focus on the comparison between the mixture model and the experimental
results presented in that article.

The CAL SM3machine has a similar setup to the previous SM2machine, with the same orientation
of the camera with respect to the atom chip. Let us recall the orientation of the (x, y, z) frame. The
atom chip is in the (xy) plane, and the z-direction is orthogonal to the chip, pointing away from it. The
camera is in the (xz) plane, orthogonal to the chip. Since we do not need the absolute position of the
atomic clouds after the expansion for data analysis, the simulations will redefine the centre of the K
cloud fitted from the camera images as the origin of the frame. For the imaging of the mixture, the
Potassium cloud is first imaged after 12 ms of time-of-flight, and considering the imaging duration,
the Rubidium cloud is observed 2.1 ms later (with a total TOF of 14.1 ms). These different expansion
times are taken into account in the simulation.

A data analysis problem is the low signal-to-noise ratio due to the low atomic densities in the mix-
tures. To improve the quality of data analysis, a Principal Component Analysis (PCA) technique was
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applied to reduce the noise in the image. This technique identifies and enhances the most signifi-
cant structures on the image [127–129]. The data from these images were averaged over the number
of experimental realizations (5 for the mixture case, 3 for the single K BEC case), and a bimodal fit
was applied. The extracted information, such as the number of condensed atoms, the position of the
clouds, or the characteristics of the background thermal cloud, was then used in the simulation. Here
we compare the results of the same experimental sequence, a short decompression of the evapora-
tion trap followed by a short time-of-flight, with a dual-species mixture of K-41 and Rb-87 on one side,
and only K-41 atoms on the other side.

In the dual species mixture, the data measured NRb = 1, 400 condensed atoms of Rubidium and
NK = 1, 900 of Potassium. In the single species experiment with only Potassium atoms, the fits from
the data counted NK = 2, 200 condensed atoms. For the simulation process, we proceeded in the
same way as in the previous section for the MAIUS experiments on ground. We solved the coupled
GPE with the fitted atom number and used the data from the chip simulation to know the temporal
evolution of the trap parameters. After projection to the camera plane, the 2D atom densities are
convoluted to a Gaussian of size σ = 15 µm in both directions.

In microgravity we have the problem of calculating the ground state of the initial trap : we obtain
different density distributions that are almost degenerate in energy. These states are shown in Figure
4.3, Section 4.4. The two species are separated along the weak axis x, and we can have a symmetric
state that is hamburger-like, or an asymmetric state with both species side by side. In addition, we can
get the left-right mirror version of the asymmetric state, since there is no reason to tilt more to one
side than the other, except in the case of experimental fluctuations. In practice, after propagating
these different initial states, we obtain almost identical results in the camera plane. Assuming that
the three configurations are the most likely obtainable states, we averaged the three final densities
to plot the simulation results, as we can see on panels d and e of Figure 4.13. Comparing the simu-
lation results (bottom row of Figure 4.13) with the experimental images (top row), we can see a good
agreement between the two. Since the atomnumber is lower than in the ground experiment from the
previous section, the signal-to-noise ratio decreases and the background noise is more visible. The
small ring around the K atom cloud in panel b is an imaging artifact due in part to the high density at
the centre of the atom cloud.

To obtain a more quantitative comparison between our model and the experimental data, we
integrate the atom densities along the camera directions as done previously. The atom clouds are
not fully condensed and we can fit a bimodal distribution to them. The thermal atoms are accounted
for in our model by fitting a 2D Gaussian to the pedestal of the cloud, and are represented by green
dashed lines in Figure 4.14.We have plotted the simulation results as solid red lines and the integrated
experimental densities as solid blue lines. In all panels we can see a good agreement between the two
curves. Similar to what was observed on the ground (see section 4.6.2), the centre of the condensed
atoms of the interacting mixture is shifted with respect to the centre of the non-condensed thermal
distributions (panels a,b,c and d of Figure 4.14). The position difference, which corresponds to the
distance between the vertical lines on the plots (red for the condensed part and dashed green for the
thermal part), is ∆xK = 23.97 µm and ∆zK = 23.98 µm for the K cloud and ∆xRb = 12.37 µm and
∆zRb = 1.59 µm for the Rb cloud. This shift is more pronounced for the Potassium cloud than for
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Figure 4.13 – Normalized atomic densities of K and Rb in microgravity, imaged after a 12 ms freeexpansion for K and a 14.1 ms free expansion for Rb. The top row corresponds to the analysed ex-perimental data, the bottom row to the simulation results combining the solution of the GPE and thefitted thermal cloud. The theoretical results are interpolated on a grid where the spatial step corres-ponds to the effective pixel size of the camera. On the left side (panels a, b, d and e) we consider anon-miscible BEC mixture of K and Rb with the interspecies scattering length a12 = 8.747 nm. On theright side (panels c and f), we observe a single species K BEC. The Rb and K images are normalized forbetter visibility. The fitted atom numbers for the mixture areN1 = 1, 400 atoms of Rb andN2 = 1, 900atoms of K, and in the case of the single K BEC,N2 = 2, 000. The atom chip is in the (xy) plane, ortho-gonal to the camera plane, on the right hand side of the images.

the Rubidium cloud. When there is only Potassium in the system (see panels e and f), the differences
in the positions of the components of the atomic clouds are negligible, with ∆x′

K = −5.76 µm and
∆z′

K = −0.38 µm. We can therefore attribute the shift between the condensed and non-condensed
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atoms to the effects of the interactions between the two species.
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(23.97, 23.98) µm for K and (12.37, 1.59) µm for Rb. For the single-species K BEC, this offset amountsto (−5.76,−0.38) µm.

4.7.2 .Planning mixture experiments in microgravity
We have seen in the previous section the capabilities of the CAL-SM3 machine to create and ma-

nipulate dual species BEC mixtures of K-41 and Rb-87. A future objective is to observe the ground
state of the mixture in a trap in microgravity. The atoms are condensed in an evaporation trap near
the atom chip. Due to the expansion of the clouds and to some residual magnetic fields that move
the atoms towards the atom chip, it is very difficult to do in-situ imaging or observation after free
expansion from the evaporation trap. So we need to move the atoms away from the chip before ima-
ging. The chip used in this sciencemodule is similar to the one used in SM2, with which we carried out
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several experiments with a single Rb BEC, but its structure is different with the addition of a small win-
dow for the implementation of atom interferometry experiments. This led to the use of more wires
to create the trapping potential used to manipulate the cold atoms. After the commissioning phase
of the machine, different experiments were realised by the consortium, such as atom interferometry
experiments. These experiments were designed for the displacement of a single species Rb BEC, mo-
ving the atoms away from the atom chip. However, this transport is not unidimensional, with a shift
mainly in the y and z directions. In this case, the Shortcut to Adiabaticity (STA) method studied earlier
in this work could not be applied to optimize the ramps.

Experimental constraints limited the choice of transport implementation to a relatively simple
base ramp. The only parameters that could be modified are those related to the time scale, in the
sense that the time step separating two successive values of the current could be stretched or shor-
tened. It was also possible to remove some current values by interrupting the ramp before its end.
Using the scaled-grid approach, we modeled the transport of a mixture of N1 = 10, 000 atoms of
Rb and N2 = 2, 000 atoms of K using this base ramp. For the initial state we used the symmetric
hamburger-like state. The goal is to keep the shape of the initial state, i.e. to have a symmetric state
at the end of the transport. Since this transport is non-adiabatic, the atoms are excited and the shape
of the mixture changes. Looking at the simulation results as a function of time, it appears that by
cutting off the ramp at t = 80 ms, the mixture gets far enough away from the chip while maintaining
its shape. A few ms later the mixture gets distorted with the appearance of many bubbles of K in the
Rb part of the mixture and vice versa.
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Figure 4.15 – Characteristics of themodeled transport for amixture of K and Rb inmicrogravity. Panela : Evolution of the position of the trap minimum during the transport. Panel b : Evolution of the trapfrequencies for the Rb cloud during the transport.
Figure 4.15 shows the evolution of this base ramp shortened to tf = 80 ms. The left panel (a)

shows the evolution of the position of the trap minimum, which will be shared by the two species in
microgravity. The initial position is (x1(0), y1(0), z1(0)) = (−9.4, 992.6, 120.8) µm. The final position is
(x1(tf ), y1(tf ), z1(tf )) = (1.7, 928.6, 371.9) µm. The atoms aremainly shifted in the z-direction by 251.1
µm. There is also a small shift of 11.1 µm in the x-direction and 64.0 µm in the y-direction. Another
thing to note is the non-negligible slope at the end of the evolution (t = tf = 80 ms) mainly along the
z-direction, which could induce amotion of the atoms away from the chip along the z-direction during
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the free expansion of the cloud after the trap is turned off. The right panel (b) of Figure 4.15 shows
the evolution of the trap frequencies seen by the Rubidium cloud during the transport. The evolution
of the atom chip trap is such that the frequencies decrease as the distance to the chip increases. The
initial frequencies are (fx,1(0), fy,1(0), fz,1(0)) = (26.0, 922.1, 927.6) Hz, and the final frequencies are
(fx,1(tf ), fy,1(tf ), fz,1(tf )) = (18.5, 184.7, 187.6) Hz. Since the setup is in microgravity, we can deduce
the frequency evolution seen by the K atom by multiplying the frequencies by√m1/m2. On the plot,the evolution of the frequency along the y-direction fy,1(t) is almost superimposed with that along
the z-direction, showing that the trap can be considered quasi-cylindrical at all times. Consequently,
the initial state will have a shape similar to that shown in the first row of Figure 4.3. Finally, as the trap
decompresses, the size of the mixture is expected to grow.
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Figure 4.16 – Various representations of the atomic densities of a mixture of K and Rb in the (x, z)camera plane orthogonal to the atom chip. Here the atom chip is in the negative z direction, at theleft of the 2D images. Panels a and b show the integrated atomic densities along the camera axis ofthe initial state at t = 0. Panels c to f show the integrated densities in the camera plane and at theend of the 80 ms transport. The vertical dashed line correspond to the position of the trap minimumat initial and final time of the transport. The Rb and K images are normalized for better visibility.
To illustrate the simulation results, the calculated atomic densities in the (xz) camera plane are

plotted in Figure 4.16. The four panels on the left (a, b, c, d) show the integrated densities along each
camera direction for Rb (blue) and K (red). The first row (panels a and b) shows the initial (t = 0)
integrated densities and the second row (panels c and d) show the same integrated densities at final
time (t = tf ). Panels c and d were obtained by integrating the 2D densities from panels e and f along
the x and z axes. Initially, the mixture is centred at the trap minimum, indicated by a vertical dashed
line. We see that at the end of the transport the mixture is shifted with respect to the trap minimum,
as expected from the non-adiabatic nature of the transport. There is also a slight deformation of the
Rb density in panel d, caused by the interactions between the atoms during the transport. However,
the global shape of the mixture is still present with the clouds of K on both sides of the Rb cloud
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as in the initial state shown in panel b. For a better visualisation, panels e and f show the K and Rb
condensates at the end of the transport. The irregularities in the Rb cloud in panel f lead to the dents
in the Rb density in panel d. However, the small size of the variations suggests that they could be
blurred by the camera due to resolution effects.

Theoretically, this 80 ms ramp should allow the mixture to be transported away from the chip in
a way that preserves the structure of the initial state of the evaporation trap. This ramp was sent to
the JPL operators for implementation on the CAL machine. However, the low atomic densities in the
mixture resulted in images with a low signal-to-noise ratio, which made data analysis difficult. After a
short time-of-flight, it was difficult to distinguish condensed atoms from background noise. Overall,
we do not have conclusive experimental results for this transport sequence at this time.

4.8 . Conclusion
In this chapter we presented an efficient method for describing the dynamics of interacting quan-

tummixtures. It is based on an affine transformation of the computational grid with a translation and
rescaling of the coordinate system. We have seen in numerical simulations that the transformed GPE
resulting from the dynamical grid change gives the same results as the simulation of the GPE with
a fixed grid in a much shorter computational time, validating our approach. This perfect agreement
between the different methods has been observed under realistic conditions. We also have a very
good agreement with camera images from experiments on Earth and in space. Comparing the com-
putational times, we see that the use of a scaled-grid approach makes the computation very efficient
and short. The use of small grids makes these simulations adapted to available computing resources,
ranging from personal computers to relatively small clusters. The computation times benefit from the
parallelisation of the computations, and the real computation time is roughly equal to the CPU time
divided by the number of cores assigned to the job. We can imagine that the use of GPU setups can
further accelerate the computation due to the large number of operations that can be parallelised.
The smaller grid size in the computations also makes them less memory intensive, with smaller and
lighter files to deal with for data management. In addition, with a fixed-grid approach, the memory
capacity of the computer is reached much earlier due to the rapid increase in the number of grid
points required to capture the dynamics of the system.

The validity of our method allows its implementation in the context of microgravity and space
experiments, where transports over long distances are realized with traps reaching low frequencies
down to a few Hz and for long free expansion times of seconds, necessary in metrology applications
such as fundamental physics tests [17, 54] or for Earth observation with space quantum gravime-
ters [130]. In the latter cases, our method would take a few hours of computation, while fixed-grid
approaches cannot be implemented on reasonable time scales.

In order to use aminimalmodel adapted to the experimentswe are simulating, someassumptions
have beenmade about the transformations of the mixture, such as no time-dependent rotations. Ro-
tations and other perturbations of the system can introducemore complex dynamics such as vortices
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[74, 120, 121], whose dynamics does not scale linearly. Another aspect is that our model does not in-
clude the behaviour of the non-condensed atoms that form the thermal cloud. It is assumed to be
an independent component of the system, fitted by a Gaussian function. This approach thus relies
on the fact that we neglect the interactions between the condensed and non-condensed atoms and
the losses of condensed atoms during the dynamics. The agreement between the integrated atomic
densities from the camera images and this model validates this hypothesis in the experiments we
have studied.

We have seen that the ground state of a BEC mixture in a harmonic potential is different depen-
ding on the presence of gravity, especially for immiscible mixtures. For these immiscible mixtures in
microgravity, there are different low-energy steady states that are quasi-degenerate. One interpre-
tation of the different geometries is that due to the repulsive interaction between the two species in
the mixtures, the boundaries between two domains act as potential barriers and there is almost no
tunneling of atoms to get from an asymmetric configuration to a symmetric configuration. As a result,
it could be challenging to predict the state obtained experimentally when a mixture is created, since
small perturbations may or may not force such tunneling. Choosing a different ansatz for themixture
before using our imaginary time propagation method to find the ground state of a trap is a good
way to find out if there are other stable configurations of the mixture. Another method presented in
[112] is to develop a model that simulates the evaporation process in the trap in order to create the
BEC mixtures. An alternative to describe the dynamics of the condensed cloud and the thermal cloud
together would be to use the Zaremba–Nikuni–Griffin (ZNG) method that consider the GPE coupled
to a quantum Boltzmann equation [131].

For future experiments in microgravity, a good knowledge of the system is very important. Mix-
tures are sensitive to variations in the trapping potential, and the atomic dynamics is therefore diffi-
cult to predict. The number of atoms and the ratio between species play a role in the structure of the
ground state, which can be characterised by different topologies of the mixture. We hope to gain in
the next future a better understanding of the immiscible mixture state produced in microgravity by
using experimental feedback. Future simulation projects, such as those presented in [97, 107], aim to
implement more optimised transports as well as atomic lensing for experimental applications.
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Cha
pte

r 5 Conclusion

5.1 . Summary
This manuscript presents a theoretical study dedicated to guiding and interpreting quantum gas

experiments in microgravity, and more specifically in an Earth-orbiting laboratory. After analysing
single-species BEC and dual-species BEC mixture experiments, we obtained a good agreement bet-
ween numerical results and experimental data, validating the simulation models I developed during
my research project.

The experiments studied in this manuscript share similar setup designs using atom chips. Chap-
ter 2 serves as a toolbox to support simulations of the dynamics of Bose-Einstein condensates created
with such setups. It provides a context for the data analysis of the experimental measurements rea-
lised with the Cold Atom Laboratory in Chapter 3, and adapts existing methods found for example in
Refs. [56, 63, 76, 122]. My contribution to this toolbox was influenced by the analysis of data from CAL
experiments with the study of BEC absorption images, and by exchanges with colleagues in Orsay and
Hannover working on the interpretation of experiments with atom chips, such as the QUANTUS and
MAIUS projects. The chipmodels give the frequencies of the trapping potential along the directions of
its eigenaxes. In some cases, however, these axes are rotated with respect to the reference frame of
the simulations, which is defined by the orientation of the atom chip. It is also relatively common that
the imaging plane of the camera is rotated with respect to the chip. I derived unitary rotationmatrices
to account for the transformation between the different frames, in order to link the BEC radii fitted
from the integrated data to those calculated in the simulations. Another aspect I addressed is the
resolution effect of the camera, since the optics are not perfect. For short times-of-flight, when the
atom cloud is dense, the observed size of the cloud is limited by a threshold due to the resolution of
the optics. This leads to corrections of the size obtained from the simulations of the dynamics, which
are calibrated by studying the free expansion of the atom clouds.

Chapter 3 developed results of experiments implementedon the SM2module of theCold AtomLa-
boratory for the CUAS consortium. It demonstrated the capabilities of this modular multi-user quan-
tum gas laboratory in space and the strength of the exchange between the teams involved in the
project for the elaboration of the experimental sequences, their implementation, data analysis and
interpretation with simulations. Despite the limited number of experiments dedicated to the valida-
tion of the chip model, the setup was well characterised and enabled an accurate description of the
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dynamics of the atom cloud. Thismodel proved its robustness as the number of atoms fluctuated and
the experimental conditions changed over time, while the ISS orbited at different altitudes during the
months of operation. Using the STA method, we demonstrated that it is possible to implement rapid
transport of a quantum gas over more than half a millimeter with a positioning accuracy of nearly
70 nm, and to have a tunable controlled release with velocities known at the 100 µm/s level. The im-
plementation of the DKC method to control the size evolution of the BEC during its free expansion
reduced the expansion energy to about 50 pK, extending the observation time of the atom cloud in
regimes that are difficult to reproduce on ground. These performances meet the objectives set by
the consortium when its proposal was selected by NASA. It also meets the demanding initial state
requirements for the realization of a dual-species interferometer to test the universality of free fall
with state-of-the-art precision [17]. Achieving such control over the atomic source preparation opens
the path to future applications in other fields such as satellite gravimetry [132], gravitational wave
detection [40, 133, 134] and space quantum communication [135, 136]. It will also lead to increased
sensitivity of atom interferometers, that might be used to design pathfinders for fundamental physics
tests [95] or even to explore dark sector physics and search for dark matter [137].

The analysis of the data from the imaging system helped understanding the concerns of expe-
rimentalists when designing experimental sequences, such as the parameters that can be varied or
the issues of low signal-to-noise ratio. It also highlighted the different steps from the design of an
experimental campaign to the final measurements. From the success of the campaigns with the SM2
science module, we have an understanding of the capabilities of the CAL machine and a blueprint of
the steps to be taken to implement experiments with the new SM3 module that has replaced it.

The main result of Chapter 4 is the development of a simulation method to efficiently describe
the dynamics of interacting mixtures of Bose-Einstein condensates using grid scaling. This method
extends the scaled-grid method used to describe the dynamics of single-species BECs to account for
the corrections introduced by the presence of the other species and the induced interspecies inter-
actions. Fixed-grid numerical simulations are limited in grid size to ensure reasonable computational
times and memory consumption. In our tests, the parameters chosen are representative of cases si-
milar to those described in the previous Chapter 3. The superposition of the results obtainedwith both
methods confirmed the validity of the scaled-grid approach, which was in line with our expectations,
since the analytical demonstration of the frame transformation showed that the two approaches are
mathematically equivalent. Similarly, the successful comparison of the atomic densities obtainedwith
the two methods in the case of the free expansion of a mixture of K and Rb from the MAIUS team
in Hannover validated the scaled-grid model. This model also successfully described the expansion
results for different orientations of the setup using rotation matrices to handle the different frame
transformations. It also demonstrated the critical role of the scaled-grid method in achieving fast and
accurate simulations, here in less than 20 minutes for a 25 ms time-of-flight, compared to a week
for a fixed-grid approach. Moreover, the simulation volume required for a fixed-grid approach would
make it unrealistic to run due to the size of the grid required. Indeed, the rapid expansion of the atom
clouds induces an increase in volume of about 104 with respect to the volume used to describe the
ground state.

The interspecies interactions in a BEC mixture complicate the study of the ground state in micro-
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gravity, where the positions of the trap minima for the different species are colocated. The different
configurations shown in Chapter 4 also raise the influence of design choices in the experimental se-
tup, since for some camera orientations it is not possible to distinguish the consequences of a sym-
metric versus an asymmetric configuration in the ground state. Nevertheless, the application of the
simulation methods to images of mixtures in space obtained with the SM3 module of CAL showed
that information about the global behaviour of the mixture can still be extracted, for example the
centre-of-mass motion of the ensemble.

5.2 .Outlook
NASA’s Cold AtomLaboratory has produced the firstmixtures of BEC in spacewith K andRb atoms.

These mixtures provide an opportunity to test simulation models of mixture dynamics in microgra-
vity. Upgrades of the science module are planned with a future SM3B module, which would provide
better performance in terms of atom numbers and better telemetry to help troubleshoot anomalies.
It will also provide a pathway for later experiments with future replacements of the CAL machine,
such as with the BECCAL project, which would continue research with cold atoms in space [41]. Other
facilities to perform dual-species experiments are also under development, including 41K and 87Rb
dual-species atom interferometry with the MAIUS-B launch in the winter 2023-2024 [138]. The imple-
mentation of more experimental projects that enable the manipulation of mixtures in microgravity
could help to obtain more data to test simulation models. One example is the study of the different
configurations of immiscible mixtures in their ground states, which can be obtained numerically by
considering different initial wave functions when using the imaginary time propagation method.

In this work, we investigated a STA method for single-species BECs based on reverse engineering
of the trap displacement calculated from a desired atom trajectory. For mixture experiments, the
issue of implementing fast and controlled transport is still relevant. Due to the interactions between
the two species in the mixture, the trajectory of each species is different from that expected from
the solution of Newton’s equation of motion. Therefore, the STA method considered here is difficult
to adapt to a BEC mixture. A brute force solution by trial and error or an iterative method using
optimal control theory [82] could help finding a satisfying transport ramp, but such amethod could be
computationally very intensive in terms of time andmemory resources. A long-term solution could be
to study other STA protocols, such as those presented in Ref. [139] and adapt them to BEC mixtures.
In the short term, we would first like to focus on controlling the size dynamics of the mixture by
collimating the atom clouds using a double DKC in a telescope-like configuration [97, 107].

We observed that non-miscible mixtures in a cigar-shaped trap show a separation of the two spe-
cies where, under some ideal conditions, one species sits in the center of the trapping potential while
the other is split on either side along the direction of the weakest trapping frequency. This suggests
that in a trap with spherical geometry, the species on the outside would form a shell around the spe-
cies inside [99]. This property of immiscible mixtures can be used to create and study BEC bubbles
[140, 141]. Since the calculation method presented in this manuscript uses a generic Cartesian coor-
dinate system, it could be interesting to compare the calculation results obtained from a scaled grid
method with other numerical or analytical methods used for these problems in spherical geometry.
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An example of application is the casewhere one tries to control the expansion of shell-shaped BECs by
matter-wave lensing with a DKC, as described in Ref. [142]. A numerical problem would be to observe
the diffraction patterns after the lensing operation, depending on the choice of the initial grid.

The dynamics of the studied dual-speciesmixtures are very different depending on the interaction
strength between the two species. This starts with the formation of the ground state of the mixtures,
where we have shown that there are different low-lying states with almost degenerate energies. De-
pending on the number of atoms of each species in the mixtures, there can be a different configu-
ration that reaches the minimum energy, corresponding to the ground state of the ensemble. The
use of the coupled Gross-Pitaevskii equations is a mean-field approach that attempts to simulate the
collective behaviour of the ensemble. However, focusing on few-body interactions brings a different
perspective to the ensemble. By studying individual phenomena with few-body interactions, one can
indeed try to infer a collective trend in the dynamics of the ensemble. Applications studying the in-
teractions between the two species open up to the study of Feshbach molecules, where two dilute
cold atomic ensembles of different species (usually alkali atoms such as K and Rb or Na and K) are
brought together by tuning Feshbach resonances [143, 144]. In these regimes, two-body and three-
body interactions play an important role, and Bose-Einstein condensate mixtures as low-energy and
low-temperature objects could be used as initial states in such experiments. Since the system might
consist of mixtures of two atom clouds with a condensed part and thermal atoms, one could try to
simulate the dynamics of the condensed atoms separately to study their contribution to the evolution
of the size and position of the system.

Let us conclude this work with some outlook on the realization of the UFF test with dual species
mixtures and atom interferometry. The results obtained in the CAL project to control the position and
size dynamics of a Rb BEC in space, as seen in this work, give us some confidence to achieve similar
results with an independent mixture of K and Rb condensates in microgravity. This scenario of two
non-interacting K and Rb BECs is being extensively studied for UFF tests in an Earth-orbiting satellite
in a mission such as the STE-QUEST project [17, 18, 95, 97]. Simulations show that it would be pos-
sible to achieve test results up to a level of 10−15 in terms of the Eötvös coefficient, on par with the
results from MICROSCOPE [33, 34]. By integrating the interferometric results over numerous realiza-
tions, one would improve these results to a better precision level of about 10−17. In these preliminary
studies, the colocation of the two species in the input state of the atom interferometers is crucial. This
can be achieved with non-interacting mixtures or miscible mixtures in microgravity [97]. However, it
is desirable to minimize the interaction between the two species in order to reduce their contribu-
tion to the phase terms, which are obviously of paramount importance in such measurements. The
ideal case would be to suppress the interaction between the two species, and in the case of miscible,
weakly interacting mixtures, the alternative would be to spatially separate the two atom clouds over
the interferometer paths and keep the initial interaction time short. In my opinion, a challenge in the
latter case would be to control the dynamics of the mixture, since the transport and expansion of
the atom clouds will induce interactions between the two species that can be seen on the imaging
system. These interactions could lead to some stripe patterns that reduce the contrast in the final re-
sults, as seen in the transport shown in Chapter 4, and consequently reduce the signal-to-noise ratio.
Nevertheless, by solving the coupled GPE equations and simulating the experimental scheme in a par-
ticular configuration, one could estimate the contrast loss and assess how to mitigate this problem. It
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would also help to determine whether it is possible to completely neglect the effects of interspecies
interactions in the planned UFF test experiments in order to achieve state-of-the-art results.
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ix A Calculation of the size of aBEC on the camera in theThomas-Fermi approximation
Here we write the mathematical calculations that can be used to relate the radius on the camera

to the radius of the BEC in the case of the TF approximation. We use the formula of an ellipsoid, and
we perform some integrations for the change of variables.

A.1 . General case
The equation of the ellipsoid with radii (Rx, Ry, Rz) in the (Oxyz) frame is

x2

R2
x

+ y2

R2
y

+ z2

R2
z

= 1 (A.1)
and the frame transformation is writtenxy

z

 = P camera
chip

XY
Z

 =

P11 P12 P13
P21 P22 P23
P31 P32 P33


XY
Z

 (A.2)
The projection of the BEC on the camera plane (OXY ) is an ellipse, and we want to express the radii
RX and RY as a function of Rx, Ry and Rz . The first step is to get the projection on the (OXY ) plane
along the Z axis. To do this, we have to solve the equation obtained by deriving the ellipsoid equation
A.1 with respect to Z
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We thus get
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Eq. (A.4) is the equation of the plane (OXY ). By writing Z as a function of x, y and z thanks to the
transformation (A.2) and using Eq. (A.1), which describes the ellipsoid, we finally get

AX2 +BXY + CY 2 = 1 (A.6)
where

A = (P11 − P13F/H)2

R2
x
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(A.7a)
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Using the notations of [77], Eq. (A.6) represents the projection of the ellipsoid onto the (OXY ) plane,
which is an ellipse. This ellipse is characterized by its principal axes P and S. The axis P is oriented at
an angle r with respect to the horizontal axis X . From the equation of a rotated ellipse, we can find
the expressions for P , S and r. We get

A = cos2 r

P 2 + sin2 r

S2 (A.8a)
B = 2 sin r cos r

( 1
P 2 − 1

S2

)
(A.8b)

C = sin2 r

P 2 + cos2 r

S2 (A.8c)
Inverting this set of equations gives

tan(2r) = B/(A− C) (A.9a)
1
P 2 = A+ C

2 + A− C

2 cos(2r) (A.9b)
1
S2 = A+ C

2 − A− C

2 cos(2r) (A.9c)
The principal axes P and S of the projected ellipse can be determined from these equations. Note
that in the case where r ≡ 0 [π], we have P = RX and S = RY .

A.2 . Application to a 2D rotation
The analytical expressions from the previous section are not very convenient at first glance due

to the many notations. However, for applications where the frame transformation matrix is not full,
such as in the case of a 2D rotation, these terms are simplified and easier to manipulate.
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Let us consider the case where the camera is rotated by an angle α around the axis orthogonal to
the chip, as described in Chapter 2. The frame transformation is then written asxy

z

 = P camera
chip

XY
Z

 =

0 − sinα − cosα
0 cosα − sinα
1 0 0


XY
Z

 =

−Y sinα− Z cosα
Y cosα− Z sinα

X

 (A.10)

Equation (A.3) applied to this particular case yields
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from which we can extract
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x −R2
y) cosα sinα
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Finally, using (A.10) and (A.12) we get
x =

[
−R2

x sinα
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and
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y cos2 α
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In addition to the fact that z = X , these coordinates x and y can now be inserted into the Equation
(A.1) of the ellipsoid to give

X2

R2
z

+ Y 2

R2
x sin2 α+R2

y cos2 α
= 1 (A.15)

This is the expression of an ellipse in the (XY ) plane, and we can finally express its radii along theX
and Y directions RX and RY as

RX = Rz (A.16a)
RY =

√
R2

x sin2 α+R2
y cos2 α (A.16b)

We notice that this expression is the same as the one that can be found using the variance method,
which shows that both methods give the same result. However, depending on the system being stu-
died, onemay prefer to use the variancemethod to obtain the cloud size expression, as the notations
are more straightforward.
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ix B Rotation of a BEC mixture ex-perimental setup with respectto gravity direction
The aim of this part is to provide a quantitative comparison between experimental data and simu-

lation results for themixture experiment performedby theMAIUS team in the laboratory inHannover.
Each section presents the results from a different rotation angle of the experimental setup. For

completeness, we reproduce the Figures 4.10 and 4.11 from section 4.6.2 in the first section of this
appendix.

Rotation angle x1 (µm) y1 (µm) z1 (µm) x2 (µm) y2 (µm) z2 (µm)
0◦ -1.62 2.23 332.43 -1.76 2.24 331.35
15◦ -8.79 3.29 332.35 -5.14 2.75 331.31
30◦ -15.58 4.29 332.14 -8.44 3.22 331.21
45◦ -21.52 5.15 331.80 -11.20 3.62 331.06
60◦ -25.79 5.80 331.37 -13.35 3.93 330.86

Table B.1 – Position of the trap centre for Rb (x1, y1, z1) and K (x2, y2, z2) for different orientations ofthe setup with respect to the gravity direction. Coordinates expressed in the chip frame, origin at thecentre of the chip.

Rotation angle ω1,X1 (Hz) ω1,Y1 (Hz) ω1,Z1 (Hz) ω2,X2 (Hz) ω2,Y2 (Hz) ω2,Z2 (Hz)
0◦ 25.3 345.1 347.1 36.5 504.1 509.8
15◦ 25.3 345.1 347.3 36.5 504.2 510.0
30◦ 25.3 345.0 348.0 36.5 504.2 510.4
45◦ 25.2 345.1 349.0 36.4 504.3 511.0
60◦ 25.1 345.3 350.1 36.4 504.5 511.7

Table B.2 – Initial trap frequency for Rb (ω1,X1 , ω1,Y1 , ω1,Z1) and K (ω2,X2 , ω2,Y2 , ω2,Z2) for differentorientations of the setup with respect to the gravity direction.
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B.1 . Initial setup, α = 0◦
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Figure B.1 – 2D atomic densities of K (first row) and Rb (second row) after a free expansion of 25 ms,starting from the initial trap described in Tables B.1 and B.2. First column : false-colour absorptionimagesmeasured by theMAIUS-2 apparatus in a ground-based experiment [79]. The direction of gra-vity, indicated by white arrows, is vertical along the camera axisXC , orthogonal to the atom chip. TheRb and K images are normalized for better visibility and the density scale is adjusted for each species.The fitted atom numbers are 43,900 for Rb and 14,400 for K. Second column : Condensate probabilitydensities calculated with the scaled-grid approach in the plane (XC , YC) of the camera convoluted toa 15 µmGaussian, after 25 ms of free expansion. Third column : Calculated total probability densitiesincluding thermal atoms. The simulated Rb peak was shifted by 81.6 µm in the XC direction and by16.3 µm in the YC direction to match its position with the observation from panel d.
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Figure B.2 – Integrated atom densities of Rb (first row) and K (second row) in arbitrary units. In the firstcolumn the integration of the 2D images shown in Figure B.1 is performed along YC and in the secondcolumn the integration is performed alongXC . The solid blue line is the experimental measurementand the green dashed line is the Gaussian fit describing the thermal component of the atomic cloud.The solid red line is the adjusted numerical simulation, which includes both the computed conden-sed and the fitted thermal components. The vertical lines correspond to the average position of thecondensed part of the atomic cloud for the solid red line, and to the centre of the thermal part forthe dash-dotted green line. The offsets between the positions of the condensed and thermal parts inthe directions (XC , YC) are (+33.54,−0.41) µm for Rb and (−40.93,−5.25) µm for K.
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B.2 . Rotated setup, α = 15◦
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Figure B.3 – 2D atomic densities of K (first row) and Rb (second row) after a free expansion of 25ms for the setup rotated by α = 15◦ with respect to the gravity direction, starting from the initialtrap described in Tables B.1 and B.2. First column : false-colour absorption images measured by theMAIUS-2 apparatus in a ground-based experiment. The direction of gravity, indicated bywhite arrows,is at a 15◦ angle with respect to the camera axis XC , orthogonal to the atom chip. The Rb and Kimages are normalized for better visibility and the density scale is adjusted for each species. Thefitted atom numbers are 73,500 for Rb and 15,500 for K. Second column : Condensate probabilitydensities calculated with the scaled-grid approach in the plane (XC , YC) of the camera convoluted toa 15 µmGaussian, after 25 ms of free expansion. Third column : Calculated total probability densitiesincluding thermal atoms. The simulated Rb peak was shifted by 34.9 µm in the XC direction and by14.2 µm in the YC direction to match its position with the observation from panel d.
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Figure B.4 – Integrated atom densities of Rb (first row) and K (second row) in arbitrary units, the setupis rotated by α = 15◦ with respect to the gravity direction. In the first column the integration of the2D images shown in Figure B.1 is performed along YC and in the second column the integration isperformed alongXC . The solid blue line is the experimental measurement and the green dashed lineis the Gaussian fit describing the thermal component of the atomic cloud. The solid red line is theadjusted numerical simulation, which includes both the computed condensed and the fitted thermalcomponents. The vertical lines correspond to the average position of the condensedpart of the atomiccloud for the solid red line, and to the centre of the thermal part for the dash-dotted green line. Theoffsets between the positions of the condensed and thermal parts in the directions (XC , YC) are
(+18.67,+1.06) µm for Rb and (−5.44,−10.67) µm for K.
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B.3 . Rotated setup, α = 30◦
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Figure B.5 – 2D atomic densities of K (first row) and Rb (second row) after a free expansion of 25ms for the setup rotated by α = 30◦ with respect to the gravity direction, starting from the initialtrap described in Tables B.1 and B.2. First column : false-colour absorption images measured by theMAIUS-2 apparatus in a ground-based experiment. The direction of gravity, indicated bywhite arrows,is at a 30◦ angle with respect to the camera axis XC , orthogonal to the atom chip. The Rb and Kimages are normalized for better visibility and the density scale is adjusted for each species. Thefitted atom numbers are 46,900 for Rb and 20,200 for K. Second column : Condensate probabilitydensities calculated with the scaled-grid approach in the plane (XC , YC) of the camera convoluted toa 15 µmGaussian, after 25 ms of free expansion. Third column : Calculated total probability densitiesincluding thermal atoms. The simulated Rb peak was shifted by 9.0 µm in the XC direction and by12.0 µm in the YC direction to match its position with the observation from panel d.
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Figure B.6 – Integrated atom densities of Rb (first row) and K (second row) in arbitrary units, the setupis rotated by α = 30◦ with respect to the gravity direction. In the first column the integration of the2D images shown in Figure B.1 is performed along YC and in the second column the integration isperformed alongXC . The solid blue line is the experimental measurement and the green dashed lineis the Gaussian fit describing the thermal component of the atomic cloud. The solid red line is theadjusted numerical simulation, which includes both the computed condensed and the fitted thermalcomponents. The vertical lines correspond to the average position of the condensedpart of the atomiccloud for the solid red line, and to the centre of the thermal part for the dash-dotted green line. Theoffsets between the positions of the condensed and thermal parts in the directions (XC , YC) are
(+17.95,+2.50) µm for Rb and (−26.28,−14.65) µm for K.
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B.4 . Rotated setup, α = 45◦
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Figure B.7 – 2D atomic densities of K (first row) and Rb (second row) after a free expansion of 25ms for the setup rotated by α = 45◦ with respect to the gravity direction, starting from the initialtrap described in Tables B.1 and B.2. First column : false-colour absorption images measured by theMAIUS-2 apparatus in a ground-based experiment. The direction of gravity, indicated bywhite arrows,is at a 45◦ angle with respect to the camera axis XC , orthogonal to the atom chip. The Rb and Kimages are normalized for better visibility and the density scale is adjusted for each species. Thefitted atom numbers are 15,900 for Rb and 26,400 for K. Second column : Condensate probabilitydensities calculated with the scaled-grid approach in the plane (XC , YC) of the camera convoluted toa 15 µmGaussian, after 25 ms of free expansion. Third column : Calculated total probability densitiesincluding thermal atoms. The simulated Rb peak was shifted by 8.0 µm in the XC direction and by8.5 µm in the YC direction to match its position with the observation from panel d.
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Figure B.8 – Integrated atom densities of Rb (first row) and K (second row) in arbitrary units, the setupis rotated by α = 45◦ with respect to the gravity direction. In the first column the integration of the2D images shown in Figure B.1 is performed along YC and in the second column the integration isperformed alongXC . The solid blue line is the experimental measurement and the green dashed lineis the Gaussian fit describing the thermal component of the atomic cloud. The solid red line is theadjusted numerical simulation, which includes both the computed condensed and the fitted thermalcomponents. The vertical lines correspond to the average position of the condensedpart of the atomiccloud for the solid red line, and to the centre of the thermal part for the dash-dotted green line. Theoffsets between the positions of the condensed and thermal parts in the directions (XC , YC) are
(+19.12,+10.18) µm for Rb and (−1.08,−15.81) µm for K.
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B.5 . Rotated setup, α = 60◦
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Figure B.9 – 2D atomic densities of K (first row) and Rb (second row) after a free expansion of 25ms for the setup rotated by α = 60◦ with respect to the gravity direction, starting from the initialtrap described in Tables B.1 and B.2. First column : false-colour absorption images measured by theMAIUS-2 apparatus in a ground-based experiment. The direction of gravity, indicated bywhite arrows,is at a 60◦ angle with respect to the camera axis XC , orthogonal to the atom chip. The Rb and Kimages are normalized for better visibility and the density scale is adjusted for each species. Thefitted atom numbers are 27,700 for Rb and 23,200 for K. Second column : Condensate probabilitydensities calculated with the scaled-grid approach in the plane (XC , YC) of the camera convoluted toa 15 µmGaussian, after 25 ms of free expansion. Third column : Calculated total probability densitiesincluding thermal atoms. The simulated Rb peak was shifted by 0.2 µm in the XC direction and by7.7 µm in the YC direction to match its position with the observation from panel d.
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Figure B.10 – Integrated atom densities of Rb (first row) and K (second row) in arbitrary units, thesetup is rotated by α = 60◦ with respect to the gravity direction. In the first column the integration ofthe 2D images shown in Figure B.1 is performed along YC and in the second column the integrationis performed along XC . The solid blue line is the experimental measurement and the green dashedline is the Gaussian fit describing the thermal component of the atomic cloud. The solid red line is theadjusted numerical simulation, which includes both the computed condensed and the fitted thermalcomponents. The vertical lines correspond to the average position of the condensedpart of the atomiccloud for the solid red line, and to the centre of the thermal part for the dash-dotted green line. Theoffsets between the positions of the condensed and thermal parts in the directions (XC , YC) are
(+24.48,+5.50) µm for Rb and (−3.47,−11.53) µm for K.
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