
The Performance of Distributed Applications:
A Traffic Shaping Perspective

Jasper A. Hasenoot
jasper@hasenoot.com
Leiden University
The Netherlands

Jan S. Rellermeyer
rellermeyer@vss.uni-hannover.de

Leibniz University Hannover
Germany

Alexandru Uta
a.uta@liacs.leidenuniv.nl

Leiden University
The Netherlands

ABSTRACT
Widely used in datacenters and clouds, network traffic shaping is
a performance influencing factor that is often overlooked when
benchmarking or simply deploying distributed applications. While
in theory traffic shaping should allow for a fairer sharing of network
resources, in practice it also introduces new problems: performance
(measurement) inconsistency and long tails. In this paper we in-
vestigate the effects of traffic shaping mechanisms on common
distributed applications. We characterize the performance of a dis-
tributed key-value store, big data workloads, and high-performance
computing under state-of-the-art benchmarks, while the underly-
ing network’s traffic is shaped using state-of-the-art mechanisms
such as token-buckets or priority queues. Our results show that
the impact of traffic shaping needs to be taken into account when
benchmarking or deploying distributed applications. To help re-
searchers, practitioners, and application developers we uncover
several practical implications and make recommendations on how
certain applications are to be deployed so that performance is least
impacted by the shaping protocols.

CCS CONCEPTS
• Networks → Network reliability.

KEYWORDS
networked application performance; traffic shaping
ACM Reference Format:
Jasper A. Hasenoot, Jan S. Rellermeyer, and Alexandru Uta. 2023. The Per-
formance of Distributed Applications: A Traffic Shaping Perspective. In
Proceedings of the 2023 ACM/SPEC International Conference on Performance
Engineering (ICPE ’23), April 15–19, 2023, Coimbra, Portugal. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3578244.3583733

1 INTRODUCTION
Cloud performance is highly volatile [26] either due to hardware
fail-slow phenomena [38], noisy neighbors [7] or interactions with
providers policies [82]. The latter are commonly instantiated by
cloud providers to maximize utilization of available hardware re-
sources, such as servers or networks, while ensuring that a min-
imum Service Level Agreement (SLA) is met. This allows for the
maximization of profits at minimal cost for the provider.

This work is licensed under a Creative Commons Attribution-
ShareAlike International 4.0 License.

ICPE ’23, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0068-2/23/04.
https://doi.org/10.1145/3578244.3583733

Cloud providers can generally consistently provide RAM [75]
and – to a lesser degree – (v)CPUs [27, 75], however, the avail-
able network bandwidth is only shown as a maximum available
amount [32, 80], which is not guaranteed [33, 75, 80]. While it is
possible to provide a minimum bandwidth guarantee, in practice
this impacts over-subscription [7] and is therefore not specified
by current cloud providers. As a result, the end-user performance
predictability is severely compromised [75, 78], as in practice per-
formance distributions are long-tailed [18, 82].

To ensure a fair sharing of network resources between tenants,
and thus ensuring a Quality of Service (QoS), cloud providers utilize
traffic shaping techniques like priority queues and token buckets.
The former allow for prioritizing certain network flows over others,
causing an imbalance between flows of different priorities. This
could be used to ensure that latency-sensitive traffic flows (e.g. Voice
over IP; VoIP) get processed with a lower latency, for example [10].
The introduction or removal of such flows may therefore cause
sudden changes in network performance – provided the network is
nearing congestion – when using a traffic flow with a lower priority.
The latter allows for limiting the available bandwidth to each host,
by limiting the amount of data able to be sent in a certain time
frame. The token bucket refills at a preset rate, up to a maximum
buffer [42, 43]. This allows for short bursts of high bandwidth traffic
– which appear uncapped – provided there is little network usage
in between, allowing for the bucket to refill.

Variance and inconsistency in network performance due tomulti-
user resource sharing across servers and networks [75], combined
with over-subscription on network links [34] as well as traffic shap-
ing [82], can impact the performance of applications relying on the
consistency of these resources [6]. This, in turn, impacts any per-
formance evaluations or generally experiments, which may lead to
unfair, unrepeatable or incorrect results. Evaluation of distributed
applications without regard for the impact of variable network per-
formance therefore may not be representative of the performance
in a real-world cloud environment with shared resources.

Since cloud users and experimenters have no control over those
mechanisms, their impact on application performance is difficult
to assess. As a consequence, our community lacks a deep under-
standing of the effects of traffic shaping on cloud-based distributed
applications. In this article we showcase and quantify the severity
of such effects on a variety of workloads with the goal of aiding
practitioners, experimenters and cloud providers with novel in-
sights on how applications interact with traffic shaping and giving
practical advice on how to counteract these effects.

We create a comprehensive benchmarking and experimental
harness using setups similar to state-of-the-art cloud environments,
with physical and virtualized resources (e.g. switches), as well as

207

https://doi.org/10.1145/3578244.3583733
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3578244.3583733
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578244.3583733&domain=pdf&date_stamp=2023-04-15

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Jasper A. Hasenoot, Jan S. Rellermeyer, & Alexandru Uta

commonly used traffic shaping techniques. The addition of a suite
of distributed applications covering multiple domains (e.g., key-
value store, big data, and high-performance computing) allows for
real-world representative results to be obtained.

We enforce shaping techniques using either dedicated network
equipment, such as switches, or on-host virtual appliances. The
former allows for a more granular control over network flows [64].
The latter is achieved using a kernel-bypass network processor such
as the Data Plane Development Kit (DPDK) [22]. Our experiments
are deployed on CloudLab [25], which allows to create dedicated
links between nodes as well as user-managed switches to apply the
QoS traffic shaping measures.

This article makes the following contributions: (1) We design
a novel experimental setup to uncover the interaction between
state-of-the-art distributed applications and traffic shaping. Our
application-independent framework1, is tailored to CloudLab but
adaptable to a broader context. (2) After running over a thousand
individual experiments and analyzing application behavior, we pro-
vide novel insights into the effect of traffic shaping on distributed
applications spanning different domains. (3) We give recommenda-
tions and actionable insights for the benchmarking of distributed
applications in the context of traffic shaping, as well as determining
the optimal environment when deploying them.

2 BACKGROUND: CLOUD NETWORKS
The Software Defined Networking (SDN) [50] paradigm has for-
ever changed the design of cloud- and datacenter networks. SDN
separates the data plane – which processes network traffic – from
the control plane, which configures it. Via this decoupling, the con-
trol of the network can be centralized for rapid deployment. Net-
work equipment supporting SDN may either be hardware-based or
software-based, like Open vSwitch [71] (OVS). Most modern clouds
nowadays implement SDNs [16, 30] to enable better control over
the networking infrastructure. The control plane configures the
SDN switches through OpenFlow [60], specifying “flows” through
the network based on packet header data [72], which may option-
ally be modified [65]. The Data Plane Development Kit (DPDK) [22]
allows for network packet processing to bypass the kernel entirely,
providing speed at the cost of reduced configurability. Combining
this with OVS into OVS-DPDK [71] alleviates some of this cost, as
OVS can be configured using OpenFlow [60] at runtime.
Quality of Service & Traffic Shaping. Quality of Service allows
for distinguishing between applications based on communication
requirements [10, p. 6]. Network flows can be treated with different
priorities or be given more or less bandwidth. This in turn can also
influence ping or jitter [10] In practice, bandwidth between flows is
divided using priority queues, with bandwidth caps being enforced
through token buckets [12, 19]. In public Cloud environments this
increases fairness and gives rise to multiple bandwidth tiers [32, 80].
Priority Queue. Priority Queues divide bandwidth between traffic
flows using strict and/or (weighted) fair queues [44]. The former
allows high priority flows to starve other flows by using all available
bandwidth [44] The latter shares bandwidth between flows using
weights [68], with higher priority resulting in a larger bandwidth
share. The flow priority is stored in the IP header’s DSCP [36] field.
1available at https://github.com/JasperAH/ts-ds-resources

It has four priority tiers and three “drop probability” tiers. This is
used to drop packets if the available bandwidth is exceeded [83].
Token Bucket. Token Buckets are used to limit the maximum flow
bandwidth. They are defined by the Committed Burst Size (CBS) and
Committed Information Rate (CIR): the bucket size and refill rate,
respectively [42, 43]. Both are defined in bits or packets (“tokens”)
within this context [42, 43]. Traffic transmitted on a flow does
not exceed the specified CIR on average [42, 43], though it can be
exceeded temporarily. Transmitted traffic subtracts “tokens” from
the token bucket proportionally to the packet size or count [42, 43].
If traffic rates exceed the CIR, the built-up tokens in the bucket
are first depleted before the traffic is shaped down to the CIR [42].
Adding a second token bucket, defined by the Excessive Burst Size
(EBS) and Peak Information Rate (PIR) [43], allows for a larger burst
where traffic is sent with a higher (DSCP) drop probability once it
exceeds CIR. This way more bandwidth may be utilized. The PIR
is only used if remaining available bandwidth allows it, the CIR
remains as the minimal bandwidth that is guaranteed [43].

3 EXPERIMENT DESIGN: HOW TO QUANTIFY
TRAFFIC SHAPING EFFECTS ON
DISTRIBUTED APPLICATIONS

To understand the implications of traffic shaping on modern cloud-
based applications, we design a set of large-scale, extensive ex-
periments. The main goals of this article and of the design of our
large-scale experiments are:

(1) Designing a networking setup that is realistic, akin to mod-
ern cloud datacenter networks.

(2) Implementing state-of-the-art traffic shaping techniques on
top of the aforementioned networks.

(3) Running a suite of modern, state-of-the-art benchmarks and
applications against state-of-the-art traffic-shaped cloud net-
works.

(4) Understanding how traffic shaping mechanisms, policies,
and parameters influence the aforementioned modern bench-
marks and applications.

To understand the interaction between traffic shaping and work-
loads, we measure achieved performance against or relative to a
baseline without traffic shaping or even without interference traffic.
Next to this, we assess performance consistency. We define as
consistent the performance which exhibits low variability, and
as inconsistent highly-variable performance, e.g. with long tails.
We use the CloudLab [25] platform, which allows users to re-

serve nodes and create private (user-managed) networks.We do this
through a user-shareable profile, which contains the number and
type of nodes used, the connecting network and other resources,
such as storage.We provide each nodewith a pre-configured Docker

Node: xl170
CPU 10-core Intel E5-2640v4 (2.4GHz)
RAM 64GB ECC DDR4-2400 (4x 16GB)
Disk Intel DC S3520 480 GB 6G SATA SSD

NIC
Two Dual-port Mellanox ConnectX-4
25 GB NIC (PCIe v3.0, 8 lanes)

Table 1: The xl170 node [13] on CloudLab [25].

208

https://github.com/JasperAH/ts-ds-resources

The Performance of Distributed Applications:
A Traffic Shaping Perspective ICPE ’23, April 15–19, 2023, Coimbra, Portugal

image, which – together with the profile – allows us to create iden-
tical experiment environments for our experiments, enabling repro-
ducibility. For the networking setup, we describe a solution in the
form of a Docker overlay network which uses OVS-DPDK to model
the behavior of common public clouds on a regular network, in-
cluding the generation of interference traffic generation and traffic
shaping settings. We conduct all experiments using Docker contain-
ers backed by our OVS-DPDK setup as this allows us to apply traffic
shaping both on-host and on-switch, both with (network-)resource
contention present. In all experiment setups we use the xl170 nodes,
described in Table 1. These contain Mellanox ConnectX-4 NICs,
which support DPDK [63]. They are connected to a user-managed
Mellanox MSN2410-BB2F switch using 10Gb/s Ethernet links which
are allocated via a NetScout 3903 L1 switch managed by CloudLab.

3.1 Docker Overlay Network
We use the Docker overlay network as the basis for our experiments,
which is backed by OVS-DPDK on each host. This virtual network
lays on top of the physical user-managed network provided by
CloudLab. We use a single Consul [40] cluster store instance, which
tracks the network status across nodes, as well as a Docker and OVS-
DPDK instance on each node [2]. These instances communicate
with Consul over a separate control network. This way we create a
realistic setup, similar to those found in Cloud environments, where
there is a combination of an on-host (kernel-bypass) and a physical
network, with on each node a system that allows for the creation
of virtualized environments [17, 47].

When creating virtual networks or adding containers to Docker,
all network-related events are passed to the OVS-DPDK instance
through the use of an OVN Docker overlay driver [79] on each host.
This enables regular Docker commands to manage the network. The
driver translates the network events to OpenFlow, used to control
OVS-DPDK. We slightly modified the overlay driver to make it
compatible with current library versions and Python3.

Using this setup, we can automatically assign IP addresses within
the overlay network IP pool to our containers upon creation, which
allows them to communicate using the user-managed network. To
allow our containers to automatically connect, we first create an
OVS-DPDK backed network in Docker, and specify its name in the
docker-compose file for each container.

3.2 Interference Traffic
Since traffic in networked environments varies over time, we cre-
ated interference traffic in our experimental setup that exhibits
similar behavior. We based our traffic pattern on the traffic gen-
erated in the experiments simulating cloud environments ran by
Ballani et al. [6]: our interference traffic is normally distributed
around max_bandwidth

2 . To make sure our higher and lower interfer-
ence bandwidths are used more frequently, we choose our standard
deviation such that our distribution is slightly wider than the feasi-
ble values between [0,max_bandwidth].

To generate the interference traffic according to this distribution
we use Iperf3 [24], which batches packets to create small (bidi-
rectional) bursts of traffic. We use each sampled bandwidth for
5 seconds to account for wind-up time between switching band-
widths, after which we sample a new value and repeat the process.

Experiment Profile Description
No Interference No changes
Normally Distributed
Interference

Normally distributed interference traffic on
node interfaces

Token Bucket Token bucket on node interfaces in addition
to interference

Priority Queue
Priority queue alternating between high and
low priority on node interfaces in addition to
interference

Token Bucket &
Priority Queue Combination of the above

Table 2: Experiment profiles with regard to traffic shaping
and interference. We execute experiments on each of the
profiles above.

By carrying out experiments multiple times or over a prolonged
period we ensure the setup is exposed to a range of bandwidths.

3.3 Traffic Shaping
We use the same set of traffic shaping profiles in all of our experi-
ments, described in Table 2. The interference traffic we described
in Section 3.2 is present in all profiles except the “no interference”
profile. We apply the token bucket and priority queue settings to
the switch ports connected to all nodes, with the priority queue
settings having high and low priority for different ports.

Priority queues on-switch work on a port-by-port basis. There-
fore we cannot subject traffic emerging from a node to different
QoS parameters. However, we can subject external traffic sources
transmitting to the same node or port to them. We therefore con-
figure DSCP priorities on the source ports of traffic. We choose two
configurations: Equal priority and low/high priority. In the first
we use equal (or no) DSCP values for the traffic, whereas in the
second we use traffic class 1 (low) and 4 (high) to grant priority
to alternating nodes. We omit drop probability as it is superseded
by traffic class. All queues that we use are Weighted Round Robin
(WRR) queues, as strict priority queues could cause lower priority
traffic to never be transmitted. We apply priority queues to switch
ports in an alternating fashion, such that our hosts transmitting
interference traffic between them have different priorities. In our ex-
periment topologies, which we describe in Sections 3.5, 3.6 and 3.7,
the interference traffic we show between nodes has one node on
higher priority than the other if we use unequal priority. We realize
priority queues on-host in a similar way using OVS-DPDK, giving
flows different DSCP traffic classes – as we mentioned previously –
in an alternating fashion.

Traffic shaping is configured using a single bucket, with a CBS of
100k and a CIR of 1000M. This way we utilize most of the available
bandwidth, reducing the impact the bandwidth reduction itself has
on performance – though we do still throttle it to a small degree.
This way of shaping allows us to send traffic via micro bursts,
consuming the CBS, which should cause our applications that send
traffic infrequently to be hardly impacted by the token bucket. The
bursts may cause small temporary bottlenecks, however, which we
expect to impact the performance of the distributed applications.
We apply the token buckets to the switch ports corresponding to the
nodes and police only outgoing traffic from the node (i.e. incoming
traffic from the perspective of the switch). This restriction with

209

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Jasper A. Hasenoot, Jan S. Rellermeyer, & Alexandru Uta

relation to policing direction also applies to the interfaces used by
OVS-DPDK, which we use to apply a per-container token bucket.
We use the same CBS and CIR as the token bucket on the regular
switch for these token buckets.

Finally we use a hybrid traffic shaping approach, using both the
physical switch as well as the OVS-DPDK backed on-host switch.
In this approach we use either an on-host token bucket and an
on-switch priority queue, or vice versa. We do not alter the config-
urations of either – they are as we described previously – which
allows us to observe the effect of shared responsibility on the per-
formance of the applications as well. We expect that this allows for
more fine-grained control using on-host shaping, while we could
use the on-switch shaping to reduce the load on the host to take
over course-grain traffic shaping tasks.

If we were to use the dual-bucket setup we described in Section 2,
we would be able to utilize the full link speed at all times without
any baseline throttling. However, since traffic exceeding the CIR is
marked using lower DSCP values to accomplish this – increasing
the probability packets are dropped – this would cause an overlap
between our token bucket and priority queue profiles. We therefore
only use the single bucket traffic shaping.

3.4 Distributed Applications
The distributed applications we use in our experiments fall in the
following categories: Key-Value Store, Big Data, and High Perfor-
mance Computing (HPC), thereby creating a representative baseline
covering different types of distributed applications typically found
in cloud environments nowadays [5, 29, 46, 61]. Concretely, we
picked MongoDB [62], Apache Spark [86] and applications using
the Message Passing Interface (MPI) [35] respectively.

3.5 Key-Value Store Experiment Setup
We use a synchronizing MongoDB cluster with one primary and
two backup nodes, which replicate data from the primary. The Mon-
goDB cluster is reachable from the node we run the benchmark
on through a user-managed switch, as we show in Figure ?? of the
Appendix. On-switch traffic shaping is implemented here. Between
node pairs we generate bidirectional, normally distributed interfer-
ence traffic, described in Section 3.2. An OVS-DPDK backed Docker
overlay spans the network through the user-managed switch, to
connect MongoDB, our benchmark, and our Iperf3 noise generation.
Our nodes communicate out-of-band to transmit Docker network
overlay events, such as containers joining or leaving.

To evaluate the performance of the MongoDB Key-Value Store
cluster, we use the MongoDB YCSB benchmark [14]. This contains
six predefined experiments [15], which we show in Table 3. They
cover a range of use cases using varying relative amounts of read,
update and write operations.

3.6 Big Data Experiment Setup
To measure the effect of traffic shaping on a Big Data workload, we
use Apache Spark [86] and the HiBench [45] “sparkbench” bench-
mark. This benchmark comprises real-world workloads from web
search, machine learning and analytical query domains, as well as
“micro” benchmarks based on the example applications provided
with Apache Spark. Our experiment topology consists of four Spark

workers with interference traffic between themselves – which we
generate as described in Section 3.2 – as well as a separate master
node which also houses the namenode, as we show in Figure ??.

In the preliminary experimentswe conducted, the Terasort bench-
mark showed promise due to its reconfigurability with regard to
data size, as well as due to its degree of use of communication
channels. This makes it more susceptible to changes in bandwidth
and latency, which should allow any effect of traffic shaping to be
visible through application performance.

3.7 HPC Experiment Setup
Our setup for the High Performance Computing experiment con-
sists of a cluster of MPI nodes with bidirectional interference traffic
between them – as we described in Section 3.2 – which we connect
through a user-managed switch, as we show in Figure ??. We run
the Docker containers on the MPI nodes using privileged mode, as
well as in the host IPC namespace, to ensure that the MPI send &
recv calls run without error.

We tested the performance of the cluster of MPI nodes using
the HPC Challenge (HPCC) benchmark suite [56], which consists
of a set of standardized benchmarks as well as latency and band-
width related benchmarks [54], which we show in Table 4. These
benchmarks cover a range of workloads such that we can evalu-
ate multiple facets of the performance of the system. We run the
benchmark suite for 100 times for all the traffic shaping settings
we described in Section 3.3, using the “base run” settings. This
prohibits us to modify the HPCC source code, which we found was
not needed in order to run HPCC on our Docker-based MPI cluster.
We configured each node through a hostfile to have eight slots,
with a maximum of ten. We imposed no memory constraints.

4 RESULTS
After executing the experiments described in Section 3 we ended
up with a large collection of over 1000 individual experiments. We
discuss a selection of the most relevant and interesting results.

4.1 Data Interpretation
As best practice suggests, we ran experiments sufficiently many
times to achieve statistical significance (more details in Section 4.5).
After ensuring that our results are stationary and not multi-modal,
we decided to present our data in as much detail as possible rather
than only a single value such as either median or mean.

Therefore, in most of the graphs presented in this section we
focus on the full distribution of data through presenting boxplots.
We have decided to use these because they are better at presenting
the spread (and hence variance) of data. For experiments where
performance exhibits a rather long-tailed distribution, we present
additional data for the 95th, 99th, and 99.9th percentiles, which are
widely used to describe the tail performance of systems.

When comparing boxplots, several aspects are important. First,
boxplots where whiskers are more far apart show a distribution that
exhibits more variability and longer tails. Therefore, practitioners
should always prefer results depicted in boxplots that have tighter
ranges as the performance they characterize is more predictable.
The same goes for the box part of the boxplots, which characterize

210

The Performance of Distributed Applications:
A Traffic Shaping Perspective ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Workload Description Example
A Update heavy workload Recent actions being recorded in a session store
B Read mostly workload Tagging Photos. Tags can be added (update), but reading tags is the most occurring operation
C Read only Caches of user profiles which are created elsewhere
D Read latest workload News, where people want to read the latest, e.g. user status
E Short ranges Forum threads, where each scan retrieves all comments for the thread, using e.g. a thread id
F Read-modify-write workload A database allowing for the recording of user data/activity i.e. reading, writing and modifying data.

Table 3: The workloads contained in the YCSB Benchmark Suite, which cover a range of use cases [15]. We run each benchmark
using a record and operations count of 1, 000, 000, using a modified version of YCSB which outputs more detailed results.

Benchmark Benchmark Focus
HPL [69] Floating point execution rate for solving a system of linear equations.
DGEMM [21] Floating point execution rate for double precision real matrix-matrix multiplication.
STREAM [59] Sustainable memory bandwidth (in GB/s).
PTRANS [4] Rate of transfer for large arrays of data from multiprocessor’s memory.
RandomAccess [48] Rate of random updates of memory.
FFT [81] Floating point rate of execution of double precision complex one-dimensional Discrete Fourier Transform (DFT).

Latency/Bandwidth
(Based on b_eff [76])

Latency and bandwidth of network communication using basic MPI routines. The measurement is done during
(non-)simultaneous communication and therefore covers two extreme levels of contention that might occur in real applications:
no contention and contention caused by each process communicating with a randomly chosen neighbor in parallel.

Table 4: The measurement focus of workloads [55] contained within the HPCC benchmark suite [56]. The suite covers different
aspects of HPC performance such that we can obtain a representative measure of system performance. We run each benchmark
for 100 passes in the “base run” config, where no altered source code is allowed.

the 25th, 50th and 75th percentiles. Moreover, when directly com-
paring two distributions practitioners usually focus on a certain
percentile. Therefore, for example, one could pick the median (e.g.,
50th percentile) for drawing conclusions about certain configura-
tions of the traffic shaping setup. When drawing conclusions about
specific traffic shaping techniques we either consider the median
performance or tail percentiles (e.g., P95, P99, P99.9).

Finally, in all our experiments, when presenting performance we
either focus on throughput (e.g., operations per second, bandwidth
etc.), or latency. For the former, higher is better, while for the latter
smaller is preferred in practice.

4.2 Key-Value Store
Key-value stores are an integral part ofmodern cloudworkloads [29].
They exhibit a unique network fingerprint in that they send and
receive many relatively small payloads coming from many (dis-
tributed) users.
Hypothesis: Key-value store workloads are generally more sensi-
tive to latency rather than bandwidth.
The results we obtained from the Key-Value Store experiments

fell into roughly three categories. The first category encompasses
the general improvement of the latency consistency when we apply
traffic shaping techniques, with the exception of on-switch token
buckets which slightly reduce consistency and have high tail latency.
The second category concerns the fact that we observed that traffic
shaping techniques have little effect on the latency consistency, with
the exception of on-switch token buckets which make it slightly
worse. The third category is similar, where we generally observe
little influence from the traffic shaping techniques, though in this
case we see that the on-switch token bucket has a large negative
impact on the latency consistency. In this Section, for each of the
categories we highlight some of the results.

4.2.1 General Latency Improvement. We show an example of the
first category – a general improvement over the baseline with
interference traffic – in Figure 1. All traffic shaping techniques
reduce the spread of operation latencies we measured, with the
exception of the on-switch token bucket. We observe this in the
results of READ operations across workloads B, C and D, which
are READ-heavy workloads. We measured a median latency below
200𝜇s, whereas the median latency of the READ or SCAN operations
we measured in other workloads is much higher, even when we
compare the “no interference” baseline latencies. We presume this is
due to the fact that their READ operations are larger, which reduces
the relative effect the traffic-shaping techniques might have.

While the spread of the latencies depicts the on-switch token
bucket as equivalent or slightly worse compared to the normally
distributed interference without traffic shaping, the tail latencies
show a very large difference. As we show in Table 5, these tail
latencies are two to three orders of magnitude larger. We presume
this is due to the fact that in this case we share the token bucket
between tenants (i.e. the benchmark and the interference), causing
heavy contention. We also observe a negative impact on tail latency
caused by on-host token buckets, achieving a P99.9 twice as high
as the experiment without any traffic shaping present. We can
slightly improve this by adding a priority queue, which across
all experiments improves tail latencies. For this READ operation
workload in particular, we observe that the on-host priority queue
outperforms the other options in both consistency and tail latency.
Conclusion 1. In Key-Value Store workloads, smaller read
operations benefit from priority queues in both latency consis-
tency and tail latency.

Conclusion 2. In Key-Value Store workloads, the latency
consistency of smaller read operations may benefit from on-
host token buckets, though at the cost of a higher tail latency.
On-switch token buckets provide worse consistency and have
tail latencies two to three orders of magnitude higher.

211

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Jasper A. Hasenoot, Jan S. Rellermeyer, & Alexandru Uta

Figure 1: Read latency YCSB workload B (whiskers:
±1.5IQR). Traffic shaping measures generally improve
latency, on-switch token buckets have little effect.

Figure 2: Read latency
YCSBWorkload F (whiskers:
±1.5IQR). Traffic shaping
measures generally have
little effect on latency,
on-switch token buckets
make latency slightly less
consistent.

Figure 3: Update latency
YCSBWorkload F (whiskers:
±1.5IQR). Traffic shaping
measures generally have
little effect on latency, except
the on-host priority queue.
On-switch token buckets
greatly reduce latency consis-
tency.

Experiment Runtime (𝜇s) P95 P99 P99.9
No Interference 246 360 551
Normally Distributed Interference 440 633 937
Token Bucket on Switch 430 205695 211199
Priority Queue on Switch 389 536 759
Token Bucket & Priority Queue on Switch 429 205823 211071
Token Bucket on Host 394 856 1947
Priority Queue on Host 318 449 681
Token Bucket & Priority Queue on Host 391 653 1708
Priority Queue on Host,
Token Bucket on Switch 428 205695 210687

Token Bucket on Host,
Priority Queue on Switch 392 626 1610

Table 5: The tail latencies of the Read operation in YCSB
Workload B with shaping present we observed are generally
slightly above or below that of interference without shaping,
though the on-switch token bucket incurs a tail latency far
larger than any other traffic shaping measure.

4.2.2 No Latency Improvement & Large Tail Latency. We show an
example of the second category, in which traffic shaping has little
effect on latency consistency in general, in Figure 2. Here we once
again observe the on-switch token bucket slightly reducing con-
sistency compared to the baseline interference without any traffic
shaping present. We also observe this pattern in the READ operation
of workloads A and F, the READ-MODIFY-WRITE operation of work-
load F, and the SCAN and INSERT operations of workload E. These
workloads generally take more time than those of the first category
we showed in Section 4.2.1, and they are more focused on updating,
inserting or modifying records instead of primarily reading them.
This shift in focus might also be the reason that we observe a higher
baseline “no interference” latency in these workloads, which leaves
little room for improvement due to traffic shaping.

Similarly to the READ-focused workloads, the tail latencies we ob-
served for traffic shaping measures using on-switch token buckets
are two to three orders of magnitude larger than the other solu-
tions, as we detail in Table ?? (see Appendix). Contrary to these
READ-focused workloads, however, we observe that any other traffic
shaping measure is equivalent or improves tail latencies compared
to the baseline with interference traffic. This is further improved by
the addition of a priority queue, except in the case where we imple-
ment the token bucket on-host and the priority queue on-switch.

We found that the INSERT operation of workload E is a special
case since its on-switch token bucket tail latencies differ from the
others, as they are more in line with that of the other traffic shaping
techniques. In the case of the on-host token bucket, we found
that it even achieves the lowest tail latency of all traffic shaping
settings, though the on-host priority queue still provides the most
consistent latency. We expect that this may be because workload
E uses (short) ranges in its operations. Assuming that inserting
a range takes longer than a single insert or update, the latency
consistency may be relatively less impacted between traffic shaping
settings. We found that the on-host token bucket is better due to the
same reason, as the larger size of ranges benefits from per-tenant
throttling as this results in a fairer division of bandwidth.
Conclusion 3. In Key-Value Store workloads, read operations
in update-heavy workloads benefit from traffic shaping – espe-
cially priority queues – mostly by reducing tail latency, though
general consistency is hardly impacted. This does not hold for
on-switch token buckets which increase tail latencies by two to
three orders of magnitude.

Conclusion 4. In Key-Value Store workloads, insert opera-
tions inserting (small) ranges – i.e. consecutive records of a
sorted attribute – benefit from on-host token buckets to reduce
tail latency and exhibit a small impact on consistency and tail
latency when using on-switch token buckets.

212

The Performance of Distributed Applications:
A Traffic Shaping Perspective ICPE ’23, April 15–19, 2023, Coimbra, Portugal

4.2.3 Large Decrease in Latency Consistency. We generally ob-
served little impact on latency consistency by introducing traffic
shaping techniques in the third category, with the exception of
the on-switch token bucket. When we added this, it negatively
impacted the consistency, as we show in Figure 3. We also observed
this kind of behavior in the UPDATE operations of workloads A, B
and F, as well as the INSERT operation of workload D. As we found
that this UPDATE-heavy workload generally has a very low opera-
tion latency, and that the negative impact of the on-switch token
bucket is relatively large compared to the previous two categories.
Still we expect that small improvements may be achieved through
the use of the on-host priority queue.

Compared to the other two categories, we observe that tail laten-
cies hardly increase through the use of traffic shaping techniques.
Similarly, we observe that the on-switch token buckets generally
show an increase in tail latency over the interference without traffic
shaping, though this increase is comparatively small, as we detail in
Table ?? (see Appendix). Given the structure of the experiment, we
think it is likely that the UPDATE operations hardly gets impacted
by the on-switch token bucket, since this meters incoming traffic
from the perspective of the switch, i.e. traffic sent by the nodes.
While our interference traffic is bidirectional, the sending part of
the benchmark has no contention with it due to this reason. We pre-
sume that only the confirmation response from the MongoDB node
has a possibility of getting delayed due to contention, which would
explain why we observe no large tail latencies for the on-switch
token bucket configurations. We could then explain the overall
increase in latency – both in the tail and consistency – as a flat
overhead seemingly introduced by the on-switch token bucket.

4.3 Big Data
Widely-spread in current clouds, through offerings such asDatabricks,
Snowflake or AWS EMR, big data workloads are an integral part of
the cloud workload landscape nowadays. While most workloads
are CPU-intensive [66], several are sensitive to traffic shaping [82],
especially due to changes in bandwidth. This is because these work-
loads usually send large payloads for either fully reading remote
files or exchanging intermediate data through shuffles.
Hypothesis: The network-bound big data workloads make large
data transfers and are therefore sensitive to bandwidth rather than
latency.
Not all benchmarks are equally dependent on the underlying

network [66], we found that it would be very difficult to show the
effect of traffic shaping on an application hardly using the network
over the noise of background interference traffic. We found that
Terasort, by comparison, is network-bound. We thus present results
achieved when running Terasort using a large dataset.

We found that the results of the HiBench Terasort benchmark, as
we show in Figure 4, show that an increase in throughput directly
translates to a decrease in runtime. The on-switch token bucket
has a negative impact on performance, though it retains similar
performance consistency to the results achieved on interference
traffic without traffic shaping. This behavior is expected, as all com-
munication between nodes (i.e. the benchmark traffic as well as the
interference traffic) gets throttled by the token bucket, increasing

Figure 4: Execution time of Terasort under the effects of
different traffic shaping settings (whiskers: ±1.5IQR).We find
that only the combination of on-switch priority queue and
token bucket shows a decrease in consistency.

contention. When we add a priority queue to the token bucket, how-
ever, we observe a decrease in performance consistency, especially
so when it concerns an on-switch priority queue. This decrease in
consistency is greater than we would expect when compared to
the slight decrease in consistency resulting from adding only the
(on-switch) priority queue.

The cause is the difference in priority between nodes causes
workloads to sometimes send to nodes at a higher priority than the
interference traffic, leading to an increase in observed performance.
However, the opposite may also occur, where the interference traffic
has higher priority. We find that these differences are then exacer-
bated by adding the token bucket, which (in the presence of lower
interference) could lead to higher tails in performance, as well as
lower tails when higher interference is present.
Conclusion 5. In Big Data workloads, the throughput related
performance loss caused by the introduction of the on-switch
token bucket may increase variability caused by the on-switch
priority queue. This happens in cases where any node may
connect to any other node, with not all nodes having equal
traffic shaping settings.

4.4 High Performance Computing
HPC primitives are widely used nowadays in the cloud for many
applications, such as high-frequency trading [53] or, weather or
seismic simulation [67], or more recently, deep-learning [3, 11, 77].
These applications send and receive both large and small payloads,
but, more importantly use networks as a means for synchronizing
computation.
Hypothesis: HPC workloads are sensitive to both latency and
bandwidth as they send both small and large payloads. Moreover,
synchronization primitives (e.g., barriers) are especially sensitive
to latency increases such as those given by packet buffering.
As we previously mentioned in Section 3.7, we used the HPCC

benchmark suite to benchmark MPI performance in our High Per-
formance Computing experiment. This suite consists of many sub-
benchmarks, each of which has their corresponding results. We
identified roughly four categories, which are as follows. In this
Section, for each category we highlight and discuss some results:

213

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Jasper A. Hasenoot, Jan S. Rellermeyer, & Alexandru Uta

Figure 5: The on-switch token bucket improves performance
consistency over no-shaping interference. Priority queues
make it worse. When we combine the two, consistency in-
creases further, while such improvements are not observed
for on-host token buckets. Whiskers are ±1.5IQR.

• Performance of Token Bucket and Priority Queue combina-
tions

• Negative Impact of the On-Switch Token Bucket
• Token Bucket Improvement
• Minimal Effect

4.4.1 Performance of Token Bucket and PriorityQueue combinations.
We found that in multiple HPCC sub-benchmarks the combination
of a token bucket and priority queue results in better performance
when compared to the baseline, where only the normally distributed
interference without any traffic shaping is present. We primarily
found that this increase presented itself in either increased con-
sistency, decreased consistency with higher performance tails, or
equivalent consistency at a higher performance level. We did not
see this improvement across all combinations of token bucket and
priority queue locations – i.e. both on-host, both on-switch or split
up either way – however. In some cases, we found that the perfor-
mance of the token bucket and priority queue combination even
gets worse. In this Section we highlight some of these combinations.

The first combination concerns the on-host priority queue and
the on-switch token bucket. As we show in Figure 5, both the aver-
age and maximum ping-pong latencies are very consistent when
we use the on-switch token bucket, which is further improved upon
when we add a priority queue. When we use the same configura-
tion with an on-host token bucket we observe worse performance,
however. We see similar behavior when measuring the average
bandwidth, though we find that here the influence from the token
bucket is far less. Do note that we measured this using dedicated
latency and bandwidth-measuring benchmarks, which do not mea-
sure any other aspects of the system.

We were surprised by the latency results in particular, since
they directly contradict the results we obtained in YCSB on Mon-
goDB in Section 4.2. We expect this may be caused by the fact that
the ping-pong latency is measured between all nodes, while the
YCSB benchmark communicates with a singleMongoDB entrypoint.
Because this spreads the load, we presume that the impact from
contention at the token bucket might be smaller. Another point of
difference we found is that YCSB measures the entire operation
latency, not merely the network latency.

Since this HPCC ping-pong benchmark has negligible operation
cost on the nodes, as well as minimal required IP-packet size – the
packet size is 8 byte – we find that the chance for contention to
occur due to the token bucket is simply lower. Iperf3, by comparison,
has a packet size of 8KB for TCP and 1470 byte for UDP [37]. With
standard Ethernet frames having a maximum size of 1500 byte
by default [23] (we do not use 9000 byte jumbo frames), the TCP
packets we send using Iperf3 have to be split up into multiple large
frames. All our Iperf3 traffic is therefore far larger than the traffic
we generate in the ping-pong experiment. This might cause these
small frames to be able to pass the token bucket whereas the Iperf3
frames would be dropped, when the token bucket nears depletion.

Due to the fact that the Ethernet links have a maximum band-
width by default, we would expect to also observe this behavior
when the token bucket is absent, which we do not. As we show
in the bandwidth benchmark results in Figure 6 there is only a
small difference in consistency between the presence and absence
of the on-host token bucket. We expect that the Iperf3 traffic is
allowed to fully saturate the Ethernet link, leaving less chance for
smaller ping-pong packets to pass, increasing their latency due to
head-of-line blocking.
Conclusion 6. In HPC workloads, very small IP-packets or
Ethernet frames may benefit from on-switch (i.e. shared) to-
ken buckets when competing traffic consists of large Ethernet
frames.

The second combination concerns the increase in performance
at the cost of consistency when we use both the on-switch priority
queue and token bucket. As we show in Figure 7, the throughput
increases by adding the on-switch token bucket. We find that it
manages to approach the performance of the benchmark without
any interference present when the on-switch priority queue is
added, which allows higher throughput peaks though at a far lower
consistency. This behavior is not repeated for any other HPCC
benchmark, however.

We find it plausible that the StarSTREAM “Add” benchmark
benefits from the same perks as the latency benchmark previously
did, in that the packet sizes are small enough to be allowed past
the token bucket. The overhead added by on-host processing –
which we did not observe in the latency benchmark – leads us to
believe that this HPCC benchmark is more susceptible to other
forms of resource contention (e.g. CPU). We also find that the
decrease in consistency by adding the on-switch token bucket may
be explained by the difference in priority of the node, as it varies
between nodes. We would expect traffic from higher priority nodes
to be less likely to be dropped than that from lower priority nodes,
and given the fact that we use a star topology, we do meet multiple
priority combinations. In our experiment, the MPI node on which
we started the HPCC benchmark had a higher priority, which could
explain the higher peaks.

A third combination is one where we observe worse performance
when using the on-switch token bucket and on-switch priority
queue, contrary to the performance we see in the StarSTREAM
“Add” benchmark. As we show in Figure 8, this is likely due to the
on-switch token bucket. Because the HPCC “Single” benchmarks
runs on a (randomly selected) single node, we would expect hardly
any network influence to be possible.We presume that themeasured

214

The Performance of Distributed Applications:
A Traffic Shaping Perspective ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Figure 6: The on-switch token bucket improves perfor-
mance consistency over no-shaping interference. On-
switch priority queue degrades performance consis-
tency. Combined on-switch token bucket with an on-
host priority queue improves consistency. Whiskers
are ±1.5IQR.

Figure 7: The on-switch
token bucket with the addi-
tion of an on-host priority
queue performs better for the
StarSTREAM “Add” bench-
mark only. Whiskers are
±1.5IQR.

Figure 8: The on-switch token
bucket, both by itself and com-
bined with the on-switch prior-
ity queue, performs worse on
“Single” FFT andRandomAccess.
Whiskers are ±1.5IQR.

latency inconsistency is due to the transferring of data from the
main HPCC node to the selected benchmark node at the start and
end of the experiment, though this should not have this large an
influence. We observe this behavior in both the Single FFT and
RandomAccess benchmarks. While we find these results surprising
– since the “Single” benchmarks are inherently non-distributed –
we omit further analysis of these results.

4.4.2 Negative Impact of the On-Switch Token Bucket. Some of
the HPCC experiments showed severe impact when we added the
on-switch token bucket, to the point where in some cases there
are orders-of-magnitude differences compared to other results. In
Figures 9 and 10 we show two such examples. In the left case, we
find that the difference is relatively small, allowing the results of
the other experiments to still be visible. The MPI FFT benchmark
we show on the right seems very sensitive to the on-switch token
bucket in particular, showing far worse performance.

We find this large difference is surprising since the addition of
the on-switch token bucket showed an improvement of perfor-
mance with regard to latency, as we previously showed in Figure 5.
We also showed in Figure 6 that the consistency of the bandwidth
is improved by the addition of the on-switch token bucket. It is
possible that the ping-pong bandwidth we showed there suffers
less than the “Naturally Ordered Ring Bandwidth” benchmark of
Figures 9 and 10, and that the MPI FFT benchmark is particularly
sensitive to reductions in available bandwidth. Considering the pre-
vious results we find it exceedingly unlikely that high tail latency
would be the cause in this case.

Conclusion 7. In HPC workloads, bandwidth-dependent ap-
plications have their performance reduced due to bandwidth
contention when an on-switch token bucket is implemented. If
bandwidth management is required, usage of an on-host token
bucket for more granular control is recommended instead.

4.4.3 Token Bucket Improvement. We find that some of the HPCC
benchmarks perform considerably more consistent once a token

bucket gets added. TheHPCC StarSTREAMbenchmark in particular
shows improvement on “Copy” and “Scale” when we introduce an
on-switch token bucket. Unlike our previous results where the on-
switch token bucket caused either a gain or loss of performance,
in the case of the HPCC HPL benchmark we find that both the
on-switch and on-host token bucket have a positive impact, as we
show in Figure 11. When we add a priority queue in this case, we
mostly observe a reduction in consistency.

HPL solves a dense linear system [69] and claims to be scalable
with respect to computation and communication volume [70]. This
latter claim comes with the assumption that there are direct point-
to-point links between processors, which have a communication
time roughly linearly dependent on the number of items communi-
cated. This is not the case in our experiment since we use a switched
network, where no point-to-point connections between nodes exist.
When we take this into account, we find that the token buckets
increase the reliability (i.e. consistent latency and available band-
width) of the network, while the priority queues likely interfere
with the assumed linear nature of communication, or at least do
nothing to improve it. We find that this makes sense, as the traffic
from different nodes or containers in the experiment is not treated
equally when using priority queues, so a decrease in consistency
would be unexpected.
Conclusion 8. In HPC workloads, the applications with
stricter assumptions regarding network bandwidth and/or la-
tency are likely to benefit from traffic shaping, token buckets
in particular.

4.5 Threats to Validity
The focal points when discussing the validity of research results
are construct, internal, and external validity [28, 84]. We discuss
these three validity concerns in the following four points.
1. Result Statistical Confidence. As best practice suggests [51,
58, 82], we have run our experiments sufficiently many times
such that we achieved confidence in the presented results. This

215

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Jasper A. Hasenoot, Jan S. Rellermeyer, & Alexandru Uta

Figure 9: Negative impact due to the on-switch token
bucket. This behavior is a stark contrast to the im-
provement in performance we showed in Figure 5.
Whiskers are ±1.5IQR.

Figure 10: Large negative im-
pact due to the on-switch token
bucket. This behavior is a stark
contrast to the improvement in
performance we showed in Fig-
ure 5. Whiskers are ±1.5IQR.

Figure 11: Token buckets con-
sistently improve the perfor-
mance achieved without any
traffic shaping, unlike priority
queues, which approximately
match it.Whiskers are±1.5IQR.

resulted in running experiments hundreds to thousands of times
until confidence intervals for median performance became suffi-
ciently tight [58]. This resulted in experiments being run many
more times than the current status quo which favors few repeti-
tions which do not offer confidence in results [82]. While this still
leaves (negligible) potential room for error, we believe it is sufficient
for the purpose of this article. Applying state-of-the-art statistical
experimentation techniques gives us confidence that the results we
achieved and the conclusions we have drawn are accurate.

Moreover, performing many trial and error microbenchmarks
and experiments we ensured that the parameters we vary and
consider for the traffic shaping techniques are the right ones for
generating effects in the applications we considered. To make sure
the list of parameters we consider and modify is exhaustive and
there are no others that could be relevant we conducted exhaustive
literature reviews of the topic [16, 22, 30, 41, 47, 74, 85]. We have
described these in detail in Section 2.
2. Cloud Network Setups. Commercial clouds have different and
constantly evolving datacenter networks [16, 30, 31]. These net-
works are likely to differ significantly between providers either in
topology, technology or simply customer-facing policies. Hence,
researchers or practitioners might find it difficult to quickly exper-
iment with and understand the details behind cloud network im-
plementations. This is either due to provider opaqueness or simply
because of the inability to emulate such large-scale systems in lab-
based setups. Nevertheless, although commercial cloud networks
might seem out of reach, in this article we experiment with all their
building blocks – from traffic shaping policies, to kernel-bypassing
technology like DPDK. We therefore stress that our results consti-
tute the very basis of understanding the performance of distributed
applications under more complex cloud network incarnations.
3. Applicability to Other Application Domains. When design-
ing the experiment presented in Section 3, one of themost important
decisions was to thoroughly choose the application benchmark do-
mains. The benchmarks we chose span wide and very important
domains such as key-value stores, big data and high-performance
computing.

While these domains are broad, the industry-standard bench-
marks we used to evaluate their performance are both extensive and
thorough, providing detailed results on many facets of their perfor-
mance. Other domains which we do not cover – e.g. microservice-
based architectures or distributed machine learning – can have
overlapping network requirements to ours, such as low latency
or high bandwidth, which may be subject to additional variance
constraints. Moreover, we believe behavior exhibited by other appli-
cations, such as machine learning could be similar to applications
we used in this work. For example, widely-used machine learning
frameworks use MPI-based primitives for transferring data [8, 11].

While their corresponding performance impacts may not be
completely equivalent, when we consider the spread of domains
comprising our results we find that despite this, our findings could
serve as a basis for estimating performance impact in these domains
when the characteristics of their network usage are known.
4. Over-fitting to well-known Benchmarks.Overfitting systems
to specific applications is a phenomenon many practitioners fall
victim to. We argue that in this work the benchmarks we used are a
means to an end – namely measuring effects when applying traffic
shaping. Moreover, the overall method presented here is generic,
and can be applied easily to other application domains as well by
adding more benchmarks in the suite.

The benchmarks cover many facets of application performance,
and we run them using mostly default settings. We have not done
any benchmark specific tuning, and we have kept the benchmark
settings identical between experiments. We do not benchmark a
solution where tuning it to perform better on those specific bench-
marks would be relevant or show better results. We merely aim to
show differences in performance when traffic shaping is applied.
The benchmarks are therefore a tool and not a measure of the
quality of our work. Despite this, other benchmarks and/or other
applications will likely exhibit some differences in performance
changes, due to the nature of them having (slightly) differing net-
work requirements. However, as the reliance on networks will show
similarities, so will the results, which should follow the general
trend shown in our results.

216

The Performance of Distributed Applications:
A Traffic Shaping Perspective ICPE ’23, April 15–19, 2023, Coimbra, Portugal

5 PRACTICAL IMPLICATIONS
When we take the results generated in this work into account,
there are practical implications that one needs to consider when
experimenting, benchmarking or deploying in shared cloud environ-
ments. We note that in all cases part of the distributed application
performance is at the mercy of the cloud providers, since the traffic
shaping policies for the shared network are not set in stone and
may therefore be subject to change. Even after careful evaluation,
it may be possible that after some time a different solution would
provide better performance, everything else being equal.
1. Benchmark the to-be-deployed application. We found that
the response of distributed applications to the addition of traf-
fic shaping techniques varies based on both the application and
traffic shaping techniques used, as the variety in our Conclusions
shows. No one-size-fits-all solution is possible. We therefore ad-
vise to benchmark the application in the desired environment on a
smaller scale, comparing the results to a (non-shared) controlled
environment to quantify the impact. Additionally, if the provider
of the shared cloud environment allows for some control over the
intermittent traffic shaping, we encourage adding this as a tun-
able parameter in the benchmark. Finally, different cloud providers
have differences in their traffic shaping policies. Should project
constraints allow it, we find it worthwhile to compare between
providers as well.
2. On-switch Token Buckets negatively impact tail latencies
of many applications.We mentioned this in Conclusions 2 and 3.
We find that this occurs primarily when implemented in a way
where contention may occur, which sharply increases tail latency
compared to a baseline without traffic shaping. We therefore ad-
vise the use of an on-host token bucket if control of bandwidth is
required. This also allows for more granular, per-container control,
and impacts tail latencies to a smaller degree, as we mentioned in
Conclusion 7. While this does not hold for all types of applications,
we found that the introduction of a priority queue may alleviate
some of this impact, as we mentioned in Conclusion 1.
3. Applicationswith small IP packetsmay benefit fromToken
Buckets. If the distributed application sends small IP packets or
Ethernet frames – compared to other traffic on the shared links –
we found that the use of a token bucket may reduce tail latency
when we compared it to a baseline without traffic shaping. In cases
where tail latency is not reduced, we observed a relatively small
increase. We observed this effect in both on-host and on-switch
token buckets in Conclusions 2, 4 and 6. Note that this introduces
a dependency on the network traffic of other tenants, which are
generally outside our control.
4. Consider the assumptions about the network. In the general
case, we find that applications with strict assumptions about the
network benefit from traffic shaping techniques like priority queues
and token buckets, which we mentioned in Conclusion 8. If we
make assumptions about the topology of the network (e.g. star or
mesh topology), we need to consider that this may influence the
performance of the application when traffic shaping is added, as
we mentioned in Conclusion 5.
5. Design experiments taking cloud variability into account.
We found that both use of token buckets and priority queues – re-
gardless of whether they are on-host or on-switch – may exacerbate

the increase of variability caused by contention. While we may be
willing to tolerate some variance when getting a rough estimate
of viable cloud providers and traffic shaping settings, when we
require repeatability and representative results, we need to take
additional measures. While some of these recommendations have
been made in the past [82], in the context of the acquired results
we think they deserve repeating. In the case of repeatability, when
we run experiments in shared cloud environments, we find that
the presence of traffic shaping may require additional repeats of
experiments to improve the reliability of the results. In the case of
representative results, we find that specific experiments showing
the change in performance in the presence of traffic shaping – such
as those seen in shared cloud environments – may be necessary.We
find that in both cases it may be beneficial to specifically benchmark
the network latency and bandwidth over time – alongside other
sources of contention – and provide this information in addition to
the acquired results.

6 RELATEDWORK
In this section we describe the relation of our contributions to the
following categories of related work.
Effect of Network Conditions on Distributed Applications.
Previous work has looked at the effect of sudden changes in WAN
topology or traffic shaping on the performance of distributed appli-
cations [52, 57], as well as the impact of virtualization of network
equipment, in particular when caused by CPU contention [78]. We
further elaborate on the analysis of the effect the network has on
distributed applications in this work by analyzing the impact of
traffic shaping in particular.
(On-Host) Congestion Control in Data center Networks. Sev-
eral articles have previously discussed ways to realize congestion
control within data center networks, taking latency and bandwidth
requirements, as well as impact on local resources (CPU, mem-
ory) into account [41, 47, 74, 85]. They achieve this either through
on-host shaping techniques or VM placement. We further build
upon this by determining the impact of such techniques on the
distributed applications using the network, and we attempt to min-
imize this through e.g. hierarchical traffic shaping, which divides
responsibilities between the on-host vSwitch and the traditional
network switch.
Repeating Experiments in Networked Environments. In order
to take countermeasures against variance in networked environ-
ments, previous research has looked at randomized multiple inter-
leaved trials [1] and simultaneous benchmarking [9]. Next to this, it
has identified inconsistencies in performance in public cloud envi-
ronments despite or because of countermeasures being in place [82].
In addition to this, we discuss the resulting performance variance
in distributed applications due to network contention caused by
traffic shaping in particular.
Performance Guarantees. Performance guarantees have previ-
ously been measured using either dedicated tools to measure (tail)
latency [49] combined with statistical tests, as well as combin-
ing simulation and emulation accurately representing a real-world
topology to benchmark performance [39]. We further emphasise
the importance of such guarantees in this work, given the impact
that traffic shaping has on distributed applications.

217

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Jasper A. Hasenoot, Jan S. Rellermeyer, & Alexandru Uta

Data Plane Development Kit. Previous research has expanded
upon DPDK by processing traffic based on expected processing
time [20]. It has also been compared to other state-of-the-art kernel-
bypass network processors [73]. We utilize OVD-DPDK as a kernel-
bypass network processor, omitting extensions to it and bench-
marks of it.

7 CONCLUSION
Traffic shaping is a given in modern cloud datacenters. Cloud work-
loads are therefore inherently affected even though the experi-
menters who deploy them may not be aware. This leads to per-
formance inconsistency, long-tailed performance and difficulty in
determining what datacenter setups benefit applications.

In this article we set up to understand the performance impli-
cations of state-of-the-art traffic shaping mechanisms on a wide
range of distributed applications. To this end we developed a com-
prehensive experimental harness that mimics real-world behavior
while running real-world applications. Our comprehensive sets of
experiments revealed novel insights into the non-trivial interaction
between traffic shapers and applications.We offer a set of actionable
insights, helping practitioners run benchmarks, deploying applica-
tions and making sense of performance.

ACKNOWLEDGEMENTS
The work in this article was in part supported by The Dutch Na-
tional Science Foundation NWO Veni grant VI.202.195.

REFERENCES
[1] Ali Abedi and Tim Brecht. 2017. Conducting Repeatable Experiments in Highly

Variable Cloud Computing Environments. In Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering (L’Aquila, Italy) (ICPE
’17). Association for Computing Machinery, New York, NY, USA, 287–292. https:
//doi.org/10.1145/3030207.3030229

[2] Yaser Ahmed. 2018. https://www.intel.com/content/www/us/en/developer/
articles/technical/using-docker-containers-with-open-vswitch-and-dpdk-on-
ubuntu-1710.html.

[3] Ammar Ahmad Awan, Khaled Hamidouche, Akshay Venkatesh, and Dha-
baleswar K Panda. 2016. Efficient large message broadcast using NCCL and
CUDA-aware MPI for deep learning. In Proceedings of the 23rd European MPI
Users’ Group Meeting. 15–22.

[4] David Bailey, Mark Baker, Michael Berry, Jack Dongarra, Vladimir Getov, Ian
Glendinning, Charles Grassl, Tom Haupt, Tony Hey, Roger Hockney, and et al.
1996. PARKBENCH MATRIX KERNEL BENCHMARKS. https://www.netlib.org/
parkbench/html/matrix-kernels.html.

[5] Raj Bala, Bob Gill, Dennis Smith, David Wright, and Kevin Ji. 2021. Magic
Quadrant for Cloud Infrastructure and Platform Services. https://www.gartner.
com/doc/reprints?id=1-271OE4VR&ct=210802&st=sb.

[6] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011. To-
wards Predictable Datacenter Networks. In Proceedings of the ACM SIGCOMM
2011 Conference (Toronto, Ontario, Canada) (SIGCOMM ’11). Association for
Computing Machinery, New York, NY, USA, 242–253. https://doi.org/10.1145/
2018436.2018465

[7] Hitesh Ballani, Keon Jang, Thomas Karagiannis, Changhoon Kim, Dinan Gu-
nawardena, and Greg O’Shea. 2013. Chatty Tenants and the Cloud Network
Sharing Problem. In 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13). USENIX Association, Lombard, IL, 171–184. https:
//www.usenix.org/conference/nsdi13/technical-sessions/presentation/ballani

[8] Yixin Bao, Yanghua Peng, Yangrui Chen, and Chuan Wu. 2020. Preemptive all-
reduce scheduling for expediting distributed DNN training. In IEEE INFOCOM
2020-IEEE Conference on Computer Communications. IEEE, 626–635.

[9] Lubomír Bulej, Vojtěch Horký, Petr Tuma, François Farquet, and Aleksandar
Prokopec. 2020. Duet Benchmarking: Improving Measurement Accuracy in the
Cloud. In Proceedings of the ACM/SPEC International Conference on Performance
Engineering (Edmonton AB, Canada) (ICPE ’20). Association for Computing Ma-
chinery, New York, NY, USA, 100–107. https://doi.org/10.1145/3358960.3379132

[10] Andrew Campbell, Geoff Coulson, and David Hutchison. 1994. A Quality of
Service Architecture. SIGCOMM Comput. Commun. Rev. 24, 2 (apr 1994), 6–27.
https://doi.org/10.1145/185595.185648

[11] Minsik Cho, Ulrich Finkler, David Kung, and Hillery Hunter. 2019. Blueconnect:
Decomposing all-reduce for deep learning on heterogeneous network hierarchy.
Proceedings of Machine Learning and Systems 1 (2019), 241–251.

[12] Cisco. 2010. Defining QoS Queues. https://www.cisco.com/assets/sol/sb/
Switches_Emulators_v2_2_015/help/nk_configuring_quality_service16.html.

[13] CloudLab. 2021. The Cloudlab Manual - Hardware. https://docs.cloudlab.us/
hardware.html.

[14] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA)
(SoCC ’10). Association for Computing Machinery, New York, NY, USA, 143–154.
https://doi.org/10.1145/1807128.1807152

[15] Brian Frank Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. 2019. YCSB Workloads. https://github.com/brianfrankcooper/
YCSB/tree/master/workloads.

[16] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman
Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,
James Alexander Docauer, et al. 2018. Andromeda: Performance, isolation, and
velocity at scale in cloud network virtualization. In 15th USENIX symposium on
networked systems design and implementation (NSDI 18). 373–387.

[17] Mike Dalton, David Schultz, Ahsan Arefin, Alex Docauer, Anshuman Gupta,
Brian Matthew Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,
Jake Adriaens, Jesse L Alpert, Jing Ai, Jon Olson, Kevin P. DeCabooter, Marc Asher
de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi, Srini-
vas Krishnan, Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin Vahdat.
2018. Andromeda: Performance, Isolation, and Velocity at Scale in Cloud Net-
work Virtualization. In 15th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2018. USENIX Association, Renton, WA, 373–387.

[18] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013), 74–80.

[19] Dell EMC Inc. 2017. User’s Configuration Guide - Dell EMC Networking N-Series
N1100-ON, N1500, N2000, N2100-ON, N3000, N3100-ON, and N4000 Switches.

[20] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias, Boon Thau
Loo, Linh Thi Xuan Phan, and Irene Zhang. 2021. When Idling is Ideal: Optimiz-
ing Tail-Latency for Heavy-Tailed Datacenter Workloads with PerséPhone. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(Virtual Event, Germany) (SOSP ’21). Association for Computing Machinery, New
York, NY, USA, 621–637. https://doi.org/10.1145/3477132.3483571

[21] Jack Dongarra, Iain Duff, Jeremy Du Croz, and Sven Hammar-
ling. 1989. LAPACK: Linear Algebra PACKage - DGEMM. https:
//www.netlib.org/lapack/explore-html/d1/d54/group__double__blas__level3_
gaeda3cbd99c8fb834a60a6412878226e1.html.

[22] DPDK Project. 2021. Data Plane Development Kit. https://www.dpdk.org/.
[23] Mike Duckett, Jerome Moisand, Tom Anschutz, Diamantis Kourkouzelis, and

Peter Arberg. 2006. Accommodating a Maximum Transit Unit/Maximum Receive
Unit (MTU/MRU) Greater Than 1492 in the Point-to-Point Protocol over Ethernet
(PPPoE). RFC 4638. https://doi.org/10.17487/RFC4638

[24] Jon Dugan, Seth Elliott, Bruce A. Mah, Jeff Poskanzer, and Kaustubh Prabhu.
[n. d.]. Iperf - the ultimate speed test tool for TCP, UDP and SCTP. https://iperf.fr/.

[25] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The De-
sign and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). USENIX Association, Renton, WA, 1–14. https://www.flux.
utah.edu/paper/duplyakin-atc19

[26] Dmitry Duplyakin, Alexandru Uta, Aleksander Maricq, and Robert Ricci. 2020. In
Datacenter Performance, The Only Constant Is Change. In 2020 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing (CCGRID).
IEEE, 370–379.

[27] Jamie Ericson, Masoud Mohammadian, and Fabiana Santana. 2017. Analysis of
Performance Variability in Public Cloud Computing. In 2017 IEEE International
Conference on Information Reuse and Integration (IRI) (San Diego, CA, USA). IEEE,
San Diego, CA, USA, 308–314. https://doi.org/10.1109/IRI.2017.47

[28] Robert Feldt and Ana Magazinius. 2010. Validity threats in empirical software
engineering research-an initial survey.. In Seke. 374–379.

[29] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the clouds: a study of emerging
scale-out workloads on modern hardware. Acm sigplan notices 47, 4 (2012),
37–48.

[30] AndrewD Ferguson, Steve Gribble, Chi-Yao Hong, Charles Killian,WaqarMohsin,
Henrik Muehe, Joon Ong, Leon Poutievski, Arjun Singh, Lorenzo Vicisano, et al.
2021. Orion: Google’s {Software-Defined} Networking Control Plane. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 21).
83–98.

218

https://doi.org/10.1145/3030207.3030229
https://doi.org/10.1145/3030207.3030229
https://www.intel.com/content/www/us/en/developer/articles/technical/using-docker-containers-with-open-vswitch-and-dpdk-on-ubuntu-1710.html
https://www.intel.com/content/www/us/en/developer/articles/technical/using-docker-containers-with-open-vswitch-and-dpdk-on-ubuntu-1710.html
https://www.intel.com/content/www/us/en/developer/articles/technical/using-docker-containers-with-open-vswitch-and-dpdk-on-ubuntu-1710.html
https://www.netlib.org/parkbench/html/matrix-kernels.html
https://www.netlib.org/parkbench/html/matrix-kernels.html
https://www.gartner.com/doc/reprints?id=1-271OE4VR&ct=210802&st=sb
https://www.gartner.com/doc/reprints?id=1-271OE4VR&ct=210802&st=sb
https://doi.org/10.1145/2018436.2018465
https://doi.org/10.1145/2018436.2018465
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/ballani
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/ballani
https://doi.org/10.1145/3358960.3379132
https://doi.org/10.1145/185595.185648
https://www.cisco.com/assets/sol/sb/Switches_Emulators_v2_2_015/help/nk_configuring_quality_service16.html
https://www.cisco.com/assets/sol/sb/Switches_Emulators_v2_2_015/help/nk_configuring_quality_service16.html
https://docs.cloudlab.us/hardware.html
https://docs.cloudlab.us/hardware.html
https://doi.org/10.1145/1807128.1807152
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://doi.org/10.1145/3477132.3483571
https://www.netlib.org/lapack/explore-html/d1/d54/group__double__blas__level3_gaeda3cbd99c8fb834a60a6412878226e1.html
https://www.netlib.org/lapack/explore-html/d1/d54/group__double__blas__level3_gaeda3cbd99c8fb834a60a6412878226e1.html
https://www.netlib.org/lapack/explore-html/d1/d54/group__double__blas__level3_gaeda3cbd99c8fb834a60a6412878226e1.html
https://www.dpdk.org/
https://doi.org/10.17487/RFC4638
https://iperf.fr/
https://www.flux.utah.edu/paper/duplyakin-atc19
https://www.flux.utah.edu/paper/duplyakin-atc19
https://doi.org/10.1109/IRI.2017.47

The Performance of Distributed Applications:
A Traffic Shaping Perspective ICPE ’23, April 15–19, 2023, Coimbra, Portugal

[31] Dan Gibson, Hema Hariharan, Eric Lance, Moray McLaren, Behnam Montazeri,
Arjun Singh, Stephen Wang, Hassan MG Wassel, Zhehua Wu, Sunghwan Yoo,
et al. 2022. Aquila: A unified, low-latency fabric for datacenter networks. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 22).
1249–1266.

[32] Google Cloud. 2022. Configuring a VM with higher bandwidth.
https://cloud.google.com/compute/docs/networking/configure-vm-with-
high-bandwidth-configuration.

[33] Google Cloud Platform. 2022. Egress Bandwidth. https://cloud.google.com/
compute/docs/network-bandwidth#vm-out.

[34] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A Scalable and Flexible Data Center Network. In Proceed-
ings of the ACM SIGCOMM 2009 Conference on Data Communication (Barcelona,
Spain) (SIGCOMM ’09). Association for Computing Machinery, New York, NY,
USA, 51–62. https://doi.org/10.1145/1592568.1592576

[35] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. 1996. A high-
performance, portable implementation of the MPI message passing interface
standard. Parallel Comput. 22, 6 (1996), 789–828. https://doi.org/10.1016/0167-
8191(96)00024-5

[36] Daniel B. Grossman. 2002. New Terminology and Clarifications for Diffserv. RFC
3260. https://doi.org/10.17487/RFC3260

[37] Vivien Gueant. [n. d.]. iPerf = iPerf3 and iPerf2 user documentation. https:
//iperf.fr/iperf-doc.php.

[38] Haryadi S Gunawi, Riza O Suminto, Russell Sears, Casey Golliher, Swaminathan
Sundararaman, Xing Lin, Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
CaitieMcCaffrey, et al. 2018. Fail-slow at scale: Evidence of hardware performance
faults in large production systems. ACM Transactions on Storage (TOS) 14, 3 (2018),
1–26.

[39] S. Guruprasad, R. Ricci, and J. Lepreau. 2005. Integrated network experimentation
using simulation and emulation. In First International Conference on Testbeds and
Research Infrastructures for the DEvelopment of NeTworks and COMmunities. IEEE,
Trento, Italy, 204–212. https://doi.org/10.1109/TRIDNT.2005.21

[40] HashiCorp. 2022. Consul by HashiCorp. https://www.consul.io/.
[41] Keqiang He, Eric Rozner, Kanak Agarwal, Yu (Jason) Gu, Wes Felter, John Carter,

and Aditya Akella. 2016. AC/DC TCP: Virtual Congestion Control Enforcement
for Datacenter Networks. In Proceedings of the 2016 ACM SIGCOMM Conference
(Florianopolis, Brazil) (SIGCOMM ’16). Association for Computing Machinery,
New York, NY, USA, 244–257. https://doi.org/10.1145/2934872.2934903

[42] Dr. Juha Heinanen and Dr. Roch Guerin. 1999. A Single Rate Three Color Marker.
RFC 2697. https://doi.org/10.17487/RFC2697

[43] Dr. Juha Heinanen and Dr. Roch Guerin. 1999. A Two Rate Three Color Marker.
RFC 2698. https://doi.org/10.17487/RFC2698

[44] Mong-Fong Homg, Wei-Tsong Lee, Kuan-Rong Lee, and Yau-Hwang Kuo. 2001.
An adaptive approach to weighted fair queue with QoS enhanced on IP network.
In Proceedings of IEEE Region 10 International Conference on Electrical and Elec-
tronic Technology. TENCON 2001 (Cat. No.01CH37239) (Singapore), Vol. 1. IEEE,
Singapore, 181–186 vol.1. https://doi.org/10.1109/TENCON.2001.949576

[45] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2011. The
HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Anal-
ysis. In New Frontiers in Information and Software as Services, Divyakant Agrawal,
K. Selçuk Candan, and Wen-Syan Li (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 209–228.

[46] IBM Cloud Team. 2020. Top 7 most common uses of cloud computing. https:
//www.ibm.com/cloud/blog/top-7-most-common-uses-of-cloud-computing.

[47] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. 2015. Silo: Pre-
dictable Message Latency in the Cloud. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication (London, United Kingdom)
(SIGCOMM ’15). Association for Computing Machinery, New York, NY, USA,
435–448. https://doi.org/10.1145/2785956.2787479

[48] David Koester and Bob Lucas. 2009. RandomAccess. https://icl.utk.edu/
projectsfiles/hpcc/RandomAccess/.

[49] Marios Kogias, Stephen Mallon, and Edouard Bugnion. 2019. Lancet: A self-
correcting Latency Measuring Tool. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). USENIX Association, Renton, WA, 881–896. https://www.
usenix.org/conference/atc19/presentation/kogias-lancet

[50] Diego Kreutz, Fernando M. V. Ramos, Paulo Esteves Veríssimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. 2015. Software-Defined
Networking: A Comprehensive Survey. Proc. IEEE 103, 1 (2015), 14–76. https:
//doi.org/10.1109/JPROC.2014.2371999

[51] Jean-Yves Le Boudec. 2010. Performance evaluation of computer and communica-
tion systems. Vol. 2. Epfl Press Lausanne.

[52] Luca Liechti, Paulo Gouveia, João Neves, Peter Kropf, Miguel Matos, and Vale-
rio Schiavoni. 2019. THUNDERSTORM: A Tool to Evaluate Dynamic Network
Topologies on Distributed Systems. In 2019 38th Symposium on Reliable Dis-
tributed Systems (SRDS). IEEE, Lyon, France, 241–24109. https://doi.org/10.1109/
SRDS47363.2019.00034

[53] JohnWLockwood, Adwait Gupte, Nishit Mehta, Michaela Blott, Tom English, and
Kees Vissers. 2012. A low-latency library in FPGA hardware for high-frequency
trading (HFT). In 2012 IEEE 20th annual symposium on high-performance inter-
connects. IEEE, 9–16.

[54] Piotr Luszczek and Jack J Dongarra. 2012. HPC Challenge Benchmark. https:
//icl.utk.edu/hpcc/index.html.

[55] Piotr Luszczek and Jack J. Dongarra. 2016. HPCC Benchmark Suite Measurements.
https://icl.utk.edu/hpcc/faq/index.html#90.

[56] Piotr Luszczek, Jack J Dongarra, David Koester, Rolf Rabenseifner, Bob Lucas,
Jeremy Kepner, John McCalpin, David Bailey, and Daisuke Takahashi. 2005.
Introduction to the HPC challenge benchmark suite. Technical Report. Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United States).

[57] Massimiliano Marcon, Marcel Dischinger, Krishna P Gummadi, and Amin Vahdat.
2011. The local and global effects of traffic shaping in the internet. In 2011 Third
International Conference on Communication Systems and Networks (COMSNETS
2011). IEEE, 1–10.

[58] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn, Ryan
Stutsman, and Robert Ricci. 2018. Taming performance variability. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). 409–425.

[59] John D. McCalpin. 1991-2007. STREAM: Sustainable Memory Bandwidth in High
Performance Computers. Technical Report. University of Virginia, Charlottesville,
Virginia. http://www.cs.virginia.edu/stream/ A continually updated technical
report. http://www.cs.virginia.edu/stream/.

[60] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev. 38,
2 (mar 2008), 69–74. https://doi.org/10.1145/1355734.1355746

[61] Microsoft. 2022. What is cloud computing? A beginner’s guide: Microsoft azure.
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/#uses.

[62] MongoDB Inc. 2021. MongoDB Documentation. https://docs.mongodb.com/
manual/introduction/.

[63] ThomasMonjalon. 2022. DPDK supported NICs. https://core.dpdk.org/supported/
nics/.

[64] Sung-Whan Moon and K.G. Shin. 2001. Implementing traffic shaping and link
scheduling on a high-performance server. In Proceedings Seventh IEEE Real-
Time Technology and Applications Symposium. IEEE, Taipei, Taiwan, 216–225.
https://doi.org/10.1109/RTTAS.2001.929888

[65] Open Networking Foundation. 2015. OpenFlow Switch Specification – Version
1.5.1 (Protocol version 0x06). https://opennetworking.org/wp-content/uploads/
2014/10/openflow-switch-v1.5.1.pdf.

[66] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. 2015. Making sense of performance in data analytics frameworks. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15).
293–307.

[67] Dhabaleswar Kumar Panda, Hari Subramoni, Ching-Hsiang Chu, and Moham-
madreza Bayatpour. 2021. The MVAPICH project: Transforming research into
high-performance MPI library for HPC community. Journal of Computational
Science 52 (2021), 101208.

[68] A.K. Parekh and R.G. Gallager. 1993. A generalized processor sharing approach
to flow control in integrated services networks: the single-node case. IEEE/ACM
Transactions on Networking 1, 3 (1993), 344–357. https://doi.org/10.1109/90.234856

[69] A Petitet, R C Whaley, J Dongarra, and A Cleary. 2018. HPL - A Portable Imple-
mentation of the High-Performance Linpack Benchmark for Distributed-Memory
Computers. https://www.netlib.org/benchmark/hpl/.

[70] A Petitet, R C Whaley, J Dongarra, and A Cleary. 2018. HPL Scalability Analysis.
https://www.netlib.org/benchmark/hpl/scalability.html.

[71] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Ami-
don, and Martin Casado. 2015. The Design and Implementation of Open
vSwitch. In 12th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 15). USENIX Association, Oakland, CA, 117–130. https:
//www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff

[72] Ben Pfaff, Justin Pettit, and Jean Tourrilhes. 2021. ovs-fields – protocol header
fields in OpenFlow andOpen vSwitch. http://www.openvswitch.org/support/dist-
docs/ovs-fields.7.pdf.

[73] Nikolai Pitaev, Matthias Falkner, Aris Leivadeas, and Ioannis Lambadaris. 2018.
Characterizing the Performance of Concurrent Virtualized Network Functions
with OVS-DPDK, FD.IO VPP and SR-IOV. In Proceedings of the 2018 ACM/SPEC
International Conference on Performance Engineering (Berlin, Germany) (ICPE
’18). Association for Computing Machinery, New York, NY, USA, 285–292. https:
//doi.org/10.1145/3184407.3184437

[74] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo
Contavalli, and Amin Vahdat. 2017. Carousel: Scalable Traffic Shaping at End
Hosts. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (Los Angeles, CA, USA) (SIGCOMM ’17). Association for
Computing Machinery, New York, NY, USA, 404–417. https://doi.org/10.1145/
3098822.3098852

219

https://cloud.google.com/compute/docs/networking/configure-vm-with-high-bandwidth-configuration
https://cloud.google.com/compute/docs/networking/configure-vm-with-high-bandwidth-configuration
https://cloud.google.com/compute/docs/network-bandwidth#vm-out
https://cloud.google.com/compute/docs/network-bandwidth#vm-out
https://doi.org/10.1145/1592568.1592576
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.17487/RFC3260
https://iperf.fr/iperf-doc.php
https://iperf.fr/iperf-doc.php
https://doi.org/10.1109/TRIDNT.2005.21
https://www.consul.io/
https://doi.org/10.1145/2934872.2934903
https://doi.org/10.17487/RFC2697
https://doi.org/10.17487/RFC2698
https://doi.org/10.1109/TENCON.2001.949576
https://www.ibm.com/cloud/blog/top-7-most-common-uses-of-cloud-computing
https://www.ibm.com/cloud/blog/top-7-most-common-uses-of-cloud-computing
https://doi.org/10.1145/2785956.2787479
https://icl.utk.edu/projectsfiles/hpcc/RandomAccess/
https://icl.utk.edu/projectsfiles/hpcc/RandomAccess/
https://www.usenix.org/conference/atc19/presentation/kogias-lancet
https://www.usenix.org/conference/atc19/presentation/kogias-lancet
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/SRDS47363.2019.00034
https://doi.org/10.1109/SRDS47363.2019.00034
https://icl.utk.edu/hpcc/index.html
https://icl.utk.edu/hpcc/index.html
https://icl.utk.edu/hpcc/faq/index.html#90
http://www.cs.virginia.edu/stream/
https://doi.org/10.1145/1355734.1355746
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/#uses
https://docs.mongodb.com/manual/introduction/
https://docs.mongodb.com/manual/introduction/
https://core.dpdk.org/supported/nics/
https://core.dpdk.org/supported/nics/
https://doi.org/10.1109/RTTAS.2001.929888
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://doi.org/10.1109/90.234856
https://www.netlib.org/benchmark/hpl/
https://www.netlib.org/benchmark/hpl/scalability.html
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
http://www.openvswitch.org/support/dist-docs/ovs-fields.7.pdf
http://www.openvswitch.org/support/dist-docs/ovs-fields.7.pdf
https://doi.org/10.1145/3184407.3184437
https://doi.org/10.1145/3184407.3184437
https://doi.org/10.1145/3098822.3098852
https://doi.org/10.1145/3098822.3098852

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Jasper A. Hasenoot, Jan S. Rellermeyer, & Alexandru Uta

[75] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. 2010. RuntimeMeasure-
ments in the Cloud: Observing, Analyzing, and Reducing Variance. Proc. VLDB
Endow. 3, 1–2 (sep 2010), 460–471. https://doi.org/10.14778/1920841.1920902

[76] Gerrit Schulz and Rolf Rabenseifner. 2016. Effective bandwidth (B_EFF) bench-
mark. https://fs.hlrs.de/projects/par/mpi//b_eff/.

[77] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Pen-
porn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, et al. 2018. Mesh-tensorflow: Deep learning for supercomputers. Advances
in neural information processing systems 31 (2018).

[78] Ryan Shea, Feng Wang, Haiyang Wang, and Jiangchuan Liu. 2014. A deep
investigation into network performance in virtual machine based cloud environ-
ments. In IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.
IEEE, Toronto, ON, Canada, 1285–1293. https://doi.org/10.1109/INFOCOM.2014.
6848061

[79] Gurucharan Shetty. 2015. OVN-Docker-overlay-driver. https://github.com/
shettyg/ovn-docker/blob/master/ovn-docker-overlay-driver.

[80] Julie Solon and Marilyn Flax. 2021. Amazon EC2 instance network band-
width. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-
network-bandwidth.html.

[81] Daisuke Takahashi. 2020. FFTE: A Fast Fourier Transform Package. http://www.
ffte.jp/.

[82] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan Reller-
meyer, Carlos Maltzahn, Robert Ricci, and Alexandru Iosup. 2020. Is Big Data
Performance Reproducible in Modern Cloud Networks?. In 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20). USENIX
Association, Santa Clara, CA, 513–527. https://www.usenix.org/conference/
nsdi20/presentation/uta

[83] Walter Weiss, Dr. Juha Heinanen, Fred Baker, and John T. Wroclawski. 1999.
Assured Forwarding PHB Group. RFC 2597. https://doi.org/10.17487/RFC2597

[84] Hyrum KWright, Miryung Kim, and Dewayne E Perry. 2010. Validity concerns in
software engineering research. In Proceedings of the FSE/SDP workshop on Future
of software engineering research. 411–414.

[85] Ye Yang, Haiyang Jiang, Yulei Wu, Yilong Lv, Xing Li, and Gaogang Xie. 2021.
C2QoS: CPU-Cycle based Network QoS Strategy in vSwitch of Public Cloud. In
2021 IFIP/IEEE International Symposium on Integrated Network Management (IM).
IEEE, Bordeaux, France, 438–444.

[86] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (oct
2016), 56–65. https://doi.org/10.1145/2934664

220

https://doi.org/10.14778/1920841.1920902
https://fs.hlrs.de/projects/par/mpi//b_eff/
https://doi.org/10.1109/INFOCOM.2014.6848061
https://doi.org/10.1109/INFOCOM.2014.6848061
https://github.com/shettyg/ovn-docker/blob/master/ovn-docker-overlay-driver
https://github.com/shettyg/ovn-docker/blob/master/ovn-docker-overlay-driver
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
http://www.ffte.jp/
http://www.ffte.jp/
https://www.usenix.org/conference/nsdi20/presentation/uta
https://www.usenix.org/conference/nsdi20/presentation/uta
https://doi.org/10.17487/RFC2597
https://doi.org/10.1145/2934664

	Abstract
	1 Introduction
	2 Background: Cloud Networks
	3 Experiment Design: How to Quantify Traffic Shaping Effects on Distributed Applications
	3.1 Docker Overlay Network
	3.2 Interference Traffic
	3.3 Traffic Shaping
	3.4 Distributed Applications
	3.5 Key-Value Store Experiment Setup
	3.6 Big Data Experiment Setup
	3.7 HPC Experiment Setup

	4 Results
	4.1 black Data Interpretation
	4.2 Key-Value Store
	4.3 Big Data
	4.4 High Performance Computing
	4.5 Threats to Validity

	5 Practical Implications
	6 Related Work
	7 Conclusion
	References

