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Abstract: Ensuring food security in precision agriculture requires early prediction of soybean yield at
various scales within the United States (U.S.), ranging from international to local levels. Accurate
yield estimation is essential in preventing famine by providing insights into food availability during
the growth season. Numerous deep learning (DL) algorithms have been developed to estimate
soybean yield effectively using time-series remote sensing (RS) data to achieve this goal. However,
the training data with short time spans can limit their ability to adapt to the dynamic and nuanced
temporal changes in crop conditions. To address this challenge, we designed a 3D-ResNet-BiLSTM
model to efficiently predict soybean yield at the county level across the U.S., even when using training
data with shorter periods. We leveraged detailed Sentinel-2 imagery and Sentinel-1 SAR images to
extract spectral bands, key vegetation indices (VIs), and VV and VH polarizations. Additionally,
Daymet data was incorporated via Google Earth Engine (GEE) to enhance the model’s input features.
To process these inputs effectively, a dedicated 3D-ResNet architecture was designed to extract
high-level features. These enriched features were then fed into a BiLSTM layer, enabling accurate
prediction of soybean yield. To evaluate the efficacy of our model, its performance was compared
with that of well-known models, including the Linear Regression (LR), Random Forest (RF), and
1D/2D/3D-ResNet models, as well as a 2D-CNN-LSTM model. The data from a short period
(2019 to 2020) were used to train all models, while their accuracy was assessed using data from
the year 2021. The experimental results showed that the proposed 3D-Resnet-BiLSTM model had
a superior performance compared to the other models, achieving remarkable metrics (R2 = 0.791,
RMSE = 5.56 Bu Ac−1, MAE = 4.35 Bu Ac−1, MAPE = 9%, and RRMSE = 10.49%). Furthermore,
the 3D-ResNet-BiLSTM model showed a 7% higher R2 than the ResNet and RF models and an
enhancement of 27% and 17% against the LR and 2D-CNN-LSTM models, respectively. The results
highlighted our model’s potential for accurate soybean yield predictions, supporting sustainable
agriculture and food security.

Keywords: soybean; yield prediction; Conv3D; ResNet; BiLSTM; Sentinel 1–2; Daymet; Google Earth
Engine (GEE)

1. Introduction

A high oil and protein content make soybeans a vital crop for food security. The
United States (U.S.) is the leading global producer of this valuable commodity [1,2]. In 2021,
the nation accomplished a historic feat by achieving a soybean production of 4.44 billion
bushels (https://www.farmprogress.com/crops/farm-futures-survey-finds-record-2021
-corn-crop, accessed on 15 January 2022). However, the soybean industry grapples with
diverse challenges, from population growth and climate change [3]. Effectively addressing
these challenges necessitates comprehensively evaluating crop type, soil quality, climate
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conditions, environment, diseases, fertilizers, and seeds [4]. The U.S. Department of
Agriculture (USDA) does not provide crop yield predictions until the subsequent March [5].
Therefore, early crop yield prediction becomes imperative in preventing famine by assessing
food availability throughout the cultivation period. As such, timely and accurate crop yield
prediction is paramount in evaluating trade balances, enhancing food security, formulating
production, storage, and transportation strategies, and facilitating urbanization [6].

Accurate crop yield prediction relies on two primary techniques: traditional ground
observations and advanced Remote Sensing (RS). Traditional methods are highly accurate
but are costly and time-consuming, limiting their feasibility for large-scale applications
like state-level assessments [4]. In recent years, RS technology has gained popularity for
crop yield prediction. Its advantages include large-scale coverage, continuous monitoring,
multispectral capabilities, affordability, and long-term data archiving across various spatial,
spectral, and temporal resolutions [4,7]. Furthermore, the rich multispectral data within RS
images allows us the opportunity to derive a wide range of valuable Vegetation Indices
(VIs) (e.g., Normalized Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and
Green Normalized Vegetation Index (GNDVI)). These indices can be utilized to monitor the
phenology and growth of crops. Soil attributes such as pH, type, and moisture, coupled with
features like Land Surface Temperature (LST), integrated drought indices, precipitation,
vapor pressure, and humidity, have also been employed for crop yield prediction [8,9].

The prediction of crop yield data can be achieved via two main categories of mod-
els: process-based biophysical (PB) and machine-learning (ML) models. PB models
(e.g., Agricultural Production System Simulator (APSIM), Decision Support System for
Agro-Technology Transfer (DSSAT)) dynamically simulate crop yield by employing well-
calibrated crop growth models. This framework often uses RS data to reinitialize, recalibrate,
or update state variables in a model at a higher spatial resolution than the driving data.
Nevertheless, calibrating process-based models at larger scales remains challenging, re-
quiring various field measurements [1,10]. Consequently, in numerous scenarios requiring
cost-effectiveness and flexible modeling of intricate patterns, ML-based algorithms are
often preferred [11]. Traditional ML models such as Support Vector Machine (SVM) and
Random Forest (RF) have proven effective in crop yield prediction [12–14]. However, these
algorithms might struggle to extract advanced features from the input data. This limitation
has driven the adoption of Deep Learning (DL) methods, including Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN), and the specific Long Short-Term
Memory (LSTM) architecture. These models can extract intricate features from basic ones
and effectively represent the complex correlations between the input and output variables
using multiple hidden layers [4,15]. Therefore, these models have been widely developed
for soybean yield prediction models in recent years. For example, You et al. [16] combined
a Gaussian Process component to a CNN or LSTM for predicting crop yield using MODIS
Land Surface Temperature (LST) data and MODIS Surface Reflectance (SR) data between
2003 and 2015 in the U.S. Sun et al. [5] also introduced an innovative deep CNN-LSTM to
predict soybean yield at the county level within the U.S. from 2003 to 2015 using weather
and MODIS LST and SR datasets. Similarly, Terliksiz et al. [17] designed a 3D-CNN model
for soybean yield prediction in Lauderdale County using MODIS LST and SR data between
2003 and 2016. Khaki et al. [18] developed a CNN-RNN model that effectively captured
the temporal relationships between environmental factors and the genetic enhancement of
seeds without requiring access to genotype data. They used yield performance, manage-
ment, weather data, and soil data variables to predict corn and soybean yield between 1980
and 2018 in the U.S. Khaki et al. [19] also developed the Yield-Net model, which utilized
MODIS products, including MOD09A1 and MYD11A2, from 2004 to 2018 to predict crop
yields. Schwalbert et al. [20] also designed an LSTM model to forecast soybean yield using
Vis like NDVI, EVI, LST, and precipitation during southern Brazil’s growing season be-
tween 2003 and 2016. Zhu et al. [21] introduced a DL-based Adaptive Crop Model (DACM)
for accurate soybean yield prediction in the U.S. between 2003 and 2017, using MODIS LST
data and MODIS SR data.
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While the previously mentioned studies have shown commendable progress and
promising results in soybean yield estimation, specific challenges persist. The MODIS
has been extensively employed for soybean yield prediction due to its high temporal res-
olution [5,7,9,17], but its accuracy is limited by its low spatial resolution. However, the
potential of even higher-resolution images, such as those from Sentinel-2, which provide
rich spectral information including red-edge bands, needs more attention. Additionally,
the potential of combining Sentinel-2 and Sentinel-1 images, along with weather and cli-
matology variables, to improve prediction accuracy has been less regarded. Furthermore,
current approaches often employ 1D/2D-CNN-LSTM models to predict crop yield, lim-
iting their ability to incorporate future data and demanding substantial computational
resources [5,22,23]. While these models have demonstrated robust prediction abilities with
long-time span training data, assessing their performance in scenarios where the data is
limited to a shorter period is imperative.

In response to these challenges, we introduced the 3D-ResNet-BiLSTM model as a
solution for early and accurate county-level soybean yield prediction for the U.S. during the
growing season, using a short period dataset derived from the Sentinel 1, Sentinel 2, and
Daymet data. Employing the 3D-ResNet architecture in our model allows us to capture rich
spatial features from the input data, facilitating enhanced feature extraction and improved
performance in yield prediction. A notable advantage of the 3D-ResNets is their incorpora-
tion of residual blocks, enabling the network to learn residual functions that streamline deep
network training [24]. The predictive aspect of our model is powered via the Bidirectional
LSTM (BiLSTM) module, enabling bidirectional data utilization during calculations. This
bidirectional processing is particularly advantageous for sequential data, incorporating both
preceding and subsequent information, resulting in heightened prediction accuracy [22].
Moreover, our proposed method evaluates soybean yield prediction specifically during the
growing season, providing valuable insights into temporal variability and challenges, which
has received comparatively less attention in the prior literature.

The remainder of this study is structured as follows: Section 2 provides in-depth
details on the study area, datasets, methodology, the 3D-ResNet-BiLSTM model, and the
evaluation metrics. Section 3 presents the experimental results, while Section 4 describes
an extensive discussion that contextualizes the results of the experiments. Finally, Section 5
presents concluding remarks and overall conclusions.

2. Materials and Methods
2.1. Study Area

The study was located in the U.S., including eighteen states: North Dakota, South
Dakota, Nebraska, Kansas, Oklahoma, Minnesota, Iowa, Missouri, Arkansas, Louisiana,
Wisconsin, Illinois, Michigan, Indiana, Ohio, Kentucky, Tennessee, and Mississippi (see
Figure 1). The research was carried out from 2019 to 2021, centering on the growth of
soybeans, a key cereal crop cultivated within the study area. Soybeans are commonly
sown between May and early June, with harvesting in the late months of September
and October (https://www.ers.usda.gov/topics/crops/soybeans-and-oil-crops/oil-crops-
sector-at-a-glance/, accessed on 1 September 2021).

https://www.ers.usda.gov/topics/crops/soybeans-and-oil-crops/oil-crops-sector-at-a-glance/
https://www.ers.usda.gov/topics/crops/soybeans-and-oil-crops/oil-crops-sector-at-a-glance/
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Figure 1. Study area: U.S. states outlined in red indicate the specific focus for county-level soybean 
yield estimation. The soybean crops displayed are from the 2021 USDA NASS Cropland Data Layer. 
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Sentinel 1 SAR (COPERNICUS/S1_GRD), Sentinel-2 Surface Reflectance (S2_SR_HAR-
MONIZED), Daymet weather (Daymet V4), USDA Yield, Crop Land Data Layer (CDL), 
and County Boundaries data. 

Sentinel-1 collects data from a dual-polarization C-band Synthetic Aperture Radar 
(SAR) instrument at 5.405GHz, with each scene including 1 or 2 polarization bands out of 
four possible options. The available combinations are single-band VV or HH and dual-
band VV + VH or HH + HV, with a pixel size of 10 m [25]. 

Sentinel-2 provides high-resolution, multi-spectral imagery for monitoring vegeta-
tion, soil, water cover, and more, with a pixel size of 10, 20, and 60 m [25]. 

The Daymet data provides highly accurate and detailed gridded estimates of daily 
weather parameters across Continental North America, Hawaii, and Puerto Rico, with a 
resolution of 1 km × 1 km. This invaluable resource offers unparalleled insights into these 
regions’ weather patterns and conditions, allowing for more precise planning and deci-
sion making in various fields [26]. The Crop Land Data Layer (CDL) with a spatial resolu-
tion of 30 m was retrieved from the USDA, which employs the Decision Tree approach to 
categorize agricultural areas using various sensors [27]. Non-soybean pixels were masked 
using CDL. 

The USDA creates an annual report outlining crop acreage, yields, areas harvested, 
and other production information (https://quickstats.nass.usda.gov/, accessed on 15 
January 2021). The data from Sentinel 1, Sentinel 2, and Daymet were all retrieved via the 
Google Earth Engine (GEE) cloud-based platform [28]. Training and test data were gath-
ered within the timeframe of 2019 to 2021. Cloud-covered and non-soybean pixels were 
excluded to compute specific features. These selected features were then employed as in-
puts for DL models, enabling the prediction of soybean yield. Table 1 displays the statis-
tical characteristics of yield observations for both the training and test datasets. 

  

Figure 1. Study area: U.S. states outlined in red indicate the specific focus for county-level soybean
yield estimation. The soybean crops displayed are from the 2021 USDA NASS Cropland Data Layer.

2.2. Dataset

This study employed a variety of data sources to predict soybean yield, including Sentinel
1 SAR (COPERNICUS/S1_GRD), Sentinel-2 Surface Reflectance (S2_SR_HARMONIZED),
Daymet weather (Daymet V4), USDA Yield, Crop Land Data Layer (CDL), and County
Boundaries data.

Sentinel-1 collects data from a dual-polarization C-band Synthetic Aperture Radar
(SAR) instrument at 5.405GHz, with each scene including 1 or 2 polarization bands out of
four possible options. The available combinations are single-band VV or HH and dual-band
VV + VH or HH + HV, with a pixel size of 10 m [25].

Sentinel-2 provides high-resolution, multi-spectral imagery for monitoring vegetation,
soil, water cover, and more, with a pixel size of 10, 20, and 60 m [25].

The Daymet data provides highly accurate and detailed gridded estimates of daily
weather parameters across Continental North America, Hawaii, and Puerto Rico, with a
resolution of 1 km × 1 km. This invaluable resource offers unparalleled insights into these
regions’ weather patterns and conditions, allowing for more precise planning and decision
making in various fields [26]. The Crop Land Data Layer (CDL) with a spatial resolution
of 30 m was retrieved from the USDA, which employs the Decision Tree approach to
categorize agricultural areas using various sensors [27]. Non-soybean pixels were masked
using CDL.

The USDA creates an annual report outlining crop acreage, yields, areas harvested, and
other production information (https://quickstats.nass.usda.gov/, accessed on 15 January 2021).
The data from Sentinel 1, Sentinel 2, and Daymet were all retrieved via the Google Earth Engine
(GEE) cloud-based platform [28]. Training and test data were gathered within the timeframe
of 2019 to 2021. Cloud-covered and non-soybean pixels were excluded to compute specific
features. These selected features were then employed as inputs for DL models, enabling the
prediction of soybean yield. Table 1 displays the statistical characteristics of yield observations
for both the training and test datasets.

https://quickstats.nass.usda.gov/
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Table 1. Sample plot yield statistics for the year in the study area.

Type Year Number of
Samples

Min
(Bu AC−1)

Max
(Bu AC−1)

Mean
(Bu AC−1)

Std.
(Bu AC−1)

train 2019 437 21.80 65.50 49.64 8.15

train 2020 682 24.70 72.30 52.37 8.58

test 2021 601 13.80 77.30 53.25 12.20

2.3. Methodology

This methodology is designed to predict soybean yields at the county level in the U.S.
during the in-season period, explicitly focusing on August and utilizing the 3D-ResNet-
BiLSTM model. As depicted in Figure 2, the approach involves two fundamental steps.
Initially, relevant features are extracted from the Sentinel-1, Sentinel-2, and Daymet data
within the GEE platform, resulting in 23 distinct features spanning 2019, 2020, and 2021.
These features serve as the independent variables for the model. Correspondingly, the
USDA soybean yield data are considered dependent variables, forming the input data for
constructing the 3D-ResNet-BiLSTM model.
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Figure 2. Workflow of the proposed method.

The input dataset is categorized into training, validation, and test datasets, and the
model is trained using data from 2019 and 2020. The input dataset is classified into training,
validation, and test datasets, and the model is trained using data from 2019 and 2020. The
trained model is then utilized to predict soybean yields based on the test feature vector
for the year 2021. Using USDA’s test yield value data from 2021, model predictions are
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subsequently evaluated. A detailed exposition of the feature extraction and 3D-ResNet-
BiLSTM model is provided in Sections 2.3.1 and 2.3.2.

2.3.1. Feature Selection

In this study, crop yield estimation was facilitated using various RS features. Sentinel-2
SR data were employed to derive various suitable Vis (see Table 2) such as DVI, GNDVI,
EVI, LSWI, RVI, SAVI, VARIGREEN, WDRVI, and NDVI, drawing from established works
(see Table 2). Furthermore, the predictive power was improved by tapping into the distinct
spectral bands of Sentinel-2 data, including Blue, Red, Green, Near Infrared (NIR), narrow
NIR (nNIR), Red Edge 1/2/3, and Shortwave Infrared (SWIR) 1/2. In addition, the study
incorporated Sentinel-1 SAR polarization VV and VH data alongside weather-derived
features from Daymet, like precipitation and vapor pressure. This comprehensive feature
set was integrated within the GEE cloud-based platform. The feature generation process
for each county within the GEE system included four key steps: (1) the creation of monthly
composites, (2) masking out cloud-covered regions, (3) excluding non-soybean areas using
the Cropland Data Layer (CDL), and (4) the calculation of the monthly feature averages
for soybean fields within each county, delineated by county boundaries. The temporal
progression of the extracted features for soybean fields during the planting season is
visually depicted in Figure 3.
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Table 2. The extracted Indicators from Sentinel 1 and Sentinel 2.

Name Formula Ref.

Normalized Difference Vegetation Index (NDVI) ρNir − ρRed
ρNir + ρRed

[29]

Wide Dynamic Range Vegetation Index (WDRVI) 0.1 × ρNir − ρRed
0.1 × ρNir + ρRed

[30]

Enhanced Vegetation Index (EVI) 2.5 × (ρ Nir − ρRed)
(ρNir + 6 × ρRed − 7.5 × ρBlue + 1) [31]
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Table 2. Cont.

Name Formula Ref.

Difference Vegetation Index (DVI) ρNir − ρRed [32]

Land Surface Water Index (LSWI) ρNir − ρSwir
ρNir + ρSwir

[33]

Ratio Vegetation Index (RVI) ρNir
ρRed

[34]

Visible Atmospherically Resistant Index Green (VARIgreen) ρGreen − ρRed
ρGreen + ρRed − ρBlue

[35]

Soil Adjusted Vegetation Index (SAVI) ρNir − ρRed
ρNir + ρRed + 0.5 × 1.5 [36]

Green Normalized Difference Vegetation
Index (GNDVI)

ρNir − ρGreen
ρNir + ρGreen

[30]

2.3.2. 3D-ResNet-BiLSTM Model Architecture

The proposed 3D-ResNet-BiLSTM model is a hybrid architecture that combines the 3D-
ResNet and BiLSTM, as illustrated in Figure 4. The 3D-ResNet model is initially employed
to extract high-level features from the input data previously generated from selected
features. Subsequently, the BiLSTM algorithm is utilized to predict soybean yield based on
these extracted features. By merging these two components, our model effectively captures
intricate relationships between the input RS data and the in situ crop yield, resulting in
more accurate predictions.
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3D-ResNet Component

Our 3D-ResNet component was designed to handle spatial and temporal factors within
SAR, optical, and weather data, ensuring highly accurate soybean crop yield estimations.
This design captures crop growth trends and their spatial distribution in fields, as illustrated
in Figure 4. The 3D-ResNet consists of three layers, each comprising an Identity block
and two Conv3D blocks, custom-tailored to the unique dynamics of soybean crops. Each
preceding block’s output is the subsequent input in this cascading design.

The Identity block assumes a central role within this framework, featuring a sequence
of 3D convolutional layers and a skip connection block. These skip connections preserve
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unique SAR, vIs, and weather data attributes, facilitating gradient flow in multi-modal
data and enhancing soybean crop estimation [24]. This aspect is crucial in soybean crop
estimation, enabling the model to learn and capture intricate relationships between the
input features and yield outcomes.

The Conv3D block includes a set of 3D CNNs, enhancing the model’s capacity to
analyze spatial and temporal information within SAR, optical VIs, and weather features.
Similarly, the Conv3D block, equipped with skip connections, captures spatiotemporal
dynamics, which is essential for accurate crop yield estimation [24]. This capacity is
precious as it reveals the interplay between the temporal trends and spatial arrangements,
providing critical insights into crop development and eventual yield outcomes.

The input X of the identity-block input passes through a sequence of operations: 3D
convolutional layer > linear activation function > 3D convolutional layer > linear activation
function > 3D convolutional layer, resulting in the extraction of features FIB. These extracted
features, FIB, are added to X and then processed via a linear activation function, denoted
as fL, which serves as the input for the subsequent Conv3D block (Equations (1) and (2)).

FIB = FIB + X (1)

FIB = fL(FIB) (2)

The input FIB is then processed via the Conv3D block, which involves a 3D convolu-
tional layer to extract features FX , as given by:

FX = WFIB + b (3)

where W represents the weight matrix and b is the bias term.
Moreover, within the Conv3D block, the input FIB undergoes a series of operations: 3D

convolutional layer > linear activation function > 3D convolutional layer > linear activation
function > 3D convolutional layer, to extract the FcB features. These features are further
added to FX and passed through the function fL to construct the input for the next block,
as described by:

Fo = FcB + FX (4)

Fo = fL(Fo) (5)

Bi-LSTM Component

Following the feature extraction via the 3D-ResNet, the data undergoes Batch Normal-
ization with linear activation and then enters the Bi-LSTM layer with ReLU activation. This
configuration enables precise soybean yield prediction, benefiting from the reverse-order
hidden state set for context capture [22].

In this way, a BiLSTM cell is initially fed with an input sequence, x = (x1, x2, . . . , xn),

where n represents the length of the sequence. Furthermore,
→
H denotes the forward hidden

sequence,
←
H means the backward hidden sequence, and yt = (y1, y2, . . . , yn) is the output

sequence. The final encoded output vector is the combined effect of both the forward

and backward information flow, i.e., yt = f
(→

H,
←
H ). The mathematical framework of the

BiLSTM neural networks’ architecture is presented in Equations (6)–(8) [37]

→
H = σ(w→

h x
xt + w→

h
→
h

xht + b→
h
) (6)

←
H = σ

(
w←

h x
xt + w←

h
←
h

xht + b←
h

)
(7)

yt = w
y
→
h

→
h t + w

y
←
h

←
h t + by (8)
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where σ represents the sigmoid activation function, mapping values to the [0, 1] range.
Finally, a dense layer with a linear activation function is applied to the output of BiLSTM
to predict soybean yield.

2.4. Evaluation Metrics

The performance of the proposed and considered models was evaluated using some
metrics, including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), Relative Root Mean Squared Error (RRMSE), and
Coefficient of determination (R2), which can be calculated as follows [38,39]:

RMSE =

√√√√√ N

∑
i=1

(
yi

pred − yi
obs

)2

N
(9)

MAE =
1
N

N

∑
i=1

∣∣∣yi
pred − yi

obs

∣∣∣ (10)

MAPE =
1
N

N

∑
i=1

∣∣∣yi
pred − yi

obs

∣∣∣
yi

obs
(11)

R2 = 1−
∑N

i=1

(
yi

pred − yi
obs

)2

∑N
i=1
(
yi

obs − ymean
)2 (12)

RRMSE =
RMSE
ymean

× 100 (13)

where N is the number of the test samples, yi,
obs and yi,

pred, respectively, are the observed
and predicted data ith test samples, and ymean represents the average of the observed data.

3. Experimental Results
3.1. Experimental Setup

All the experiments were conducted using the RS data extracted and prepared within
GEE. The experiments were implemented using a Python script in Google Colaboratory
(Colab), utilizing a TPU and 12 GB of RAM. As previously discussed, the proposed model
architecture incorporated 23 features extracted from the Sentinel 1–2 and Daymet data as
inputs. Accordingly, our model utilized input tensors with dimensions of 8 × 1 × 1 × 23
(time steps × features) and 9 × 1 × 1 × 23 (time steps × features) for the respective
months of August and September, specifically for the in-season growth period. To compare
the proposed model’s performance, we evaluated it against 1D/2D/3D-ResNet, ResNet,
2D-CNN-LSTM [5], RF, and LR. We also designed a 3D-RsNet architecture by removing
the BiLSTM layer from the proposed architecture. The 1D/2D-ResNet architectures were
implemented by replacing the Conv1D/2D layer with a Conv3D layer in the 3D-ResNet
architecture. The dense layer was replaced with a Conv3D layer in the 3D-ResNet architec-
ture to form the ResNet architecture. The training phase of all models employed is based on
the MAPE as the loss function, coupled with the Adam optimizer set at a uniform learning
rate of 1.10. The number of parameters used in the models under consideration is listed in
Table 3.

As demonstrated in Table 3, ResNet-based models outperformed the 2D-CNN-LSTM
model regarding computational efficiency, making them a more efficient choice for crop
yield estimation. The loss curves using training and validation datasets for the proposed
method and all considered models have been demonstrated in Figure 5.
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Table 3. The number of parameters and run time for all of the considered models in soybean
yield prediction.

Aug. Sept.

Model Parameter Time Parameters Time

3D-ResNet-BiLSTM 12,929 07 min 25 s 12,929 07 min 59 s

3D-ResNet 2433 06 min 39 s 2441 06 min 56 s

2D-ResNet 2433 05 min 05 s 2441 05 min 20 s

1D-ResNet 2433 05 min 05 s 2441 05 min 09 s

ResNet 4505 03 min 49 s 4809 03 min 48 s

2D-CNN-LSTM 372,353 15 min 21 s 375,745 18 min 53 s
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As seen in Figure 5, the proposed 3D-ResNet-BiLSTM model exhibited a rapid and
substantial reduction in its loss values, markedly diverging from the ResNet model, which
displayed a more gradual decline. This observed difference highlights the unique impact
of integrating Conv3D and BiLSTM networks into our architectural framework. Examining
the validation loss curves revealed higher fluctuations in August compared to September.
Moreover, these curves illustrated that including the extracted features in subsequent
months reduced the range of fluctuations. The evaluation of validation loss curves for
the 2D-CNN-LSTM did not indicate over/underfitting and a marginal improvement in
results was possible by extending the number of epochs. However, for the validation loss
curves of 2D-ResNet, overfitting was evident between epochs 800 and 1000, marked by
a substantial increase in the gap between the validation loss and the training loss. In a
broader context, preserving the best model based on loss validation might be more prudent
for yield prediction, considering the potential scenario where the model fails to achieve
proper convergence with the inclusion of validation data [40]. Our model architecture
demonstrated a superior performance to the models evaluated in scenarios with short-
period training data.

3.2. Comparative Results of the Soybean Yield Prediction

In this subsection, we presented comparative results for our model and another model
under consideration. The results for both the proposed and considered models in predicting
soybean yield are displayed in Table 4, covering the growth period during August and
September 2021.

Table 4. Performance of proposed and considered models for soybean yield prediction during the
Growing In-Season period (i.e., August and September).

Aug.

Model RMSE
(Bu Ac−1) R2 MAE

(Bu Ac−1) MAPE (%) RRMSE (%)

3D-ResNet-BiLSTM 5.53 0.79 4.28 8.80 10.38
3D-ResNet 5.71 0.78 4.50 9.41 10.72
2D-ResNet 6.03 0.75 4.85 10.13 11.32
1D-ResNet 6.12 0.74 4.96 10.45 11.49

ResNet 6.34 0.73 5.23 10.99 11.90
2D-CNN-LSTM 7.61 0.61 6.05 12.64 14.29

RF 6.56 0.71 5.44 11.22 12.31
LR 7.55 0.61 5.73 10.77 14.10

Sep.

Model RMSE
(Bu Ac−1) R2 MAE

(Bu Ac−1) MAPE (%) RRMSE (%)

3D-ResNet-BiLSTM 5.60 0.79 4.42 9.21 10.61
3D-ResNet 5.72 0.78 4.48 9.43 10.74
2D-ResNet 5.95 0.76 4.65 9.72 11.17
1D-ResNet 6.05 0.75 4.83 10.19 11.36

ResNet 6.65 0.70 5.50 11.74 12.48
2D-CNN-LSTM 7.79 0.59 6.40 13.57 14.62

RF 6.59 0.71 5.44 11.23 12.37
LR 9.58 0.38 7.32 13.06 17.99

The results from Table 4 indicated that the 3D-ResNet-BiLSTM model achieved the
best performance, demonstrating its capability for predicting soybean yield using multi-
sensor RS data. This model accurately forecasted soybean yield, especially in August,
before the harvest season. For instance, the RMSE of the proposed model was 5.53 Bu Ac−1
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in August and 5.60 Bu Ac−1 in September, marking an improvement of about 3% and
30% compared to the 3D-ResNet (the second-best model) and the LR (the worst model),
respectively. Moreover, the 3D-ResNet-BiLSTM model, with an RRMSE of approximately
10.5% and an R2 of 0.79, emerged as the most accurate soybean yield predictor, closely
followed by the 3D-ResNet. This improvement could be attributed to the incorporation of
temporal insights complementing the spatial information provided via the 3D architecture.

To better understand our proposed model’s effectiveness, we generated error maps for
August and September using our model and the models under consideration, as depicted
in Figures 6 and 7.
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As observed in Figures 6 and 7, the combined operation of the ResNet network,
Conv3d network, and BiLSTM network simultaneously reduced errors and rendered the
error maps brighter. The error maps also revealed that counties with lower yields also
tended to have higher percentage errors, represented by darker colors on the maps. Several
factors could reduce soybean yield, including climate changes, fertilization, irrigation,
drought, soil characteristics, disease, and pests. Notably, Oklahoma State had the highest
MAPE (132.51%) due to a lack of training data in that particular study. The 2D-CNN-LSTM
and LR models exhibited poor alignment between the predicted and observed yield values.

Figure 8 depicts scatter plots between the predicted and observed yields for the
proposed and considered models. These scatter plots confirmed the superior performance
of the 3D-ResNet-BiLSTM model in yield prediction when using a combination of the
Sentinel-1, Sentinel-2, and Daymet data as inputs.

The scatter plots clearly showed lower RMSE and RRMSE values and higher R2

values, indicating a more robust and more accurate relationship between the predicted and
observed soybean yield values. Furthermore, using the 3D-ResNet-BiLSTM architecture
was notably more effective in improving the accuracy of soybean yield prediction compared
to 1D/2D/3D-ResNet, ResNet, 2D-CNN-LSTM, RF, and LR. This highlights the advantage
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of using feature extraction with 3D-ResNet and yield prediction with BiLSTM, mainly
when dealing with limited training samples.
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It is important to note that our analysis primarily focused on lower-level features from
Sentinel-1 images, which may have influenced the results. Additionally, the quantity of
the data used in the analysis can also affect the model’s performance. Nonetheless, these
values confirm the robust performance and validity of the proposed method throughout
the soybean-growing season.

The R2 values of the proposed method reached 0.794 and 0.788 in August and Septem-
ber, respectively. In Figure 8, when using 3D-ResNet-BiLSTM, the fit line (depicted in blue,
representing the regression line between the predicted and observed yield values) is closely
aligned with the diagonal line (shown in black, signifying perfect agreement between the
predicted and actual yield values), and predictions were clustered reasonably around the
diagonal line. This proximity to the diagonal line indicates a stronger correlation between
the predicted and actual yield values when using the proposed method. Additionally,
the 1D/2D/3D-ResNet and ResNet models demonstrated good agreement between the
predicted and observed yield values.
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Figure 9 presented a visual depiction highlighting the distribution of soybean yield by
comparing the USDA yield with the predicted yield derived from the proposed method.
The results in Figure 9 demonstrated a substantial agreement between the observed and
predicted soybean yield during the analysis, reinforcing the reliability and accuracy of our
proposed method’s predictions.
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Based on the USDA yield map presented in Figure 9, it was evident that counties in
states such as North Dakota, South Dakota, Kansas, Missouri, Minnesota, and Oklahoma
experienced comparatively lower yields in 2021. In contrast, counties like Iowa, Nebraska,
Illinois, Indiana, Ohio, Kentucky, Tennessee, Arkansas, Mississippi, Louisiana, Michigan,
and Wisconsin displayed higher yields during the same period.

Figure 10 depicts the average accuracy of our proposed method compared to other
models for August and September. The average R2 values for the 3D-ResNet-BiLSTM,
3D-ResNet, 2D-ResNet, 1D-ResNet, ResNet, 2D-CNN-LSTM, RF, and LR models were
0.791, 0.779, 0.758, 0.716, 0.60, 0.708, and 0.499, respectively.

In Figure 10, our investigation shows significant performance improvements achieved
via various architectural modifications. Firstly, the inclusion of Conv1D demonstrated a
noteworthy 3.49% improvement in the performance of the ResNet model. Secondly, incor-
porating Conv2D contributed a substantial 4.28% improvement in ResNet’s performance.
Thirdly, the adoption of Conv3D proved highly effective, resulting in an impressive 6.41%
improvement in ResNet’s performance. Lastly, adding the BiLSTM layer enhanced the
performance of the 3D-ResNet model by a commendable 1.12%.

Moreover, our proposed model utilizing the Sentinel 1–2 and Daymet data has demon-
strated a significant increase of 19.025% in accuracy for soybean yield prediction compared
to the 2D-CNN-LSTM model presented by Sun et al. [5]. Error maps indicate that certain
cities exhibit the lowest errors in August, while others show the weakest errors in Septem-
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ber, indicating the time difference between sowing and harvesting. Our proposed method
achieves a high accuracy with an R2 of 0.791 in August and September. Table 5 presents the
MAPE metric for each state using the 3D-ResNet-BiLSTM model.
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Table 5. The evaluation of soybean yield prediction in each U.S. state was conducted based on the
proposed 3D-ResNet-BiLSTM model.

U.S. State RMSE
(Bu Ac−1)

MAE
(Bu Ac−1) MAPE (%) RRMSE (%)

Arkansas 6.74 5.60 11.08 13.00

Illinois 5.17 4.17 6.57 8.17

Indiana 4.53 3.49 5.74 7.55

Iowa 5.97 4.81 7.62 9.59

Kansas 5.54 4.75 13.25 13.75

Kentucky 4.50 3.75 6.62 7.92

Louisiana 6.94 6.05 10.75 12.62

Michigan 3.62 2.86 5.75 7.07

Minnesota 5.57 4.38 11.36 11.30

Mississippi 5.01 3.83 7.54 9.06
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Table 5. Cont.

U.S. State RMSE
(Bu Ac−1)

MAE
(Bu Ac−1) MAPE (%) RRMSE (%)

Missouri 5.12 4.08 9.07 10.61

Nebraska 5.72 4.62 7.43 9.32

North Dakota 6.54 5.40 25.09 25.01

Ohio 4.08 3.46 5.94 7.13

Oklahoma 18.29 18.29 132.51 132.51

South Dakota 4.21 3.60 9.98 10.64

Tennessee 4.41 3.36 6.48 8.65

Wisconsin 8.74 6.22 11.16 15.53

After comparing our proposed method with other models, it became evident that the
1D/2D/3D-ResNet models consistently outperformed the ResNet, 2D-CNN-LSTM, RF, and
LR models. Furthermore, we observed that the ResNet model’s yield prediction accuracy
improved notably when employing Conv3D layers instead of Conv1D/2D and dense
layers. In stark contrast, the Linear Regression model exhibited the poorest performance
among all the evaluated models.

4. Discussion

This study introduced the 3D-ResNet-BiLSTM model as a new predictor for forecasting
county-level soybean yield using a combination of Sentinel-1 and Sentinel-2 imagery and
Daymet climate data. Unlike widely-used approaches [5,9,16,17,19,21] that rely on MODIS
products, which are limited by their coarse spatial resolution, our study demonstrates the
value of integrating medium-resolution Sentinel 1–2 data with climate data for developing
more accurate yield prediction models. Additionally, we achieved improved performance
of the 3D-ResNet-BiLSTM model by significantly reducing the input tensor size by a factor
of 57.81 compared to MODIS data [5], facilitating early soybean yield predictions and
boosting the efficiency of the model training process.

Our study also examined the sensitivity of network architecture complexity in pre-
dicting soybean yield, particularly in scenarios with short-period training data. While
previous research by Sun et al. [5] has predominantly used 2D-CNN-LSTM architectures for
soybean yield prediction, these architectures often encounter an ill-posed problem when
confronted with insufficient/short-period training data due to more unknown parameters.
Our results demonstrate the capability of the proposed 3D-ResNet-BiLSTM architecture to
handle situations with limited/short-period training data effectively.

Furthermore, our research highlights the substantial advantages of combining feature
extraction with the ResNet and yield prediction with BiLSTM, leveraging the satisfactory
spatial resolution of Sentinel-1 and Sentinel-2 imagery to achieve accurate predictions
of soybean yield at the county level. Additionally, our implementation of three CNN
models—Conv1D, Conv2D, and Conv3D—revealed that using Conv3D significantly mini-
mized the MAPE than Conv2D and Conv1D (see Table 4). This superior performance of
Conv3D can be attributed to its capacity to extract spatial and temporal information from
time-series data [23].

While our study demonstrates the effectiveness of the 3D-ResNet-BiLSTM model for
soybean yield prediction, further research is needed to fully validate its performance across
different geographical regions and under diverse environmental conditions. Addition-
ally, exploring the integration of additional data sources, such as soil data or agricultural
management practices, could further enhance the accuracy and generalizability of the model.
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5. Conclusions

Soybean, a crucial commodity in U.S. agriculture, demands accurate regional yield
forecasting for informed planning decisions. This study harnesses diverse data sources,
including Sentinel-1, Sentinel-2, and Daymet data, extracting a comprehensive set of
19 features encompassing spectral bands, vegetation indices, SAR polarizations, and critical
weather parameters. A novel 3D-ResNet architecture was designed to process these diverse
inputs effectively, featuring a unique combination of 3D convolutional and recurrent layers.
This architecture extracts high-level features subsequently fed into a BiLSTM layer, enabling
precise prediction of soybean yield. To assess the efficacy of our model, we trained it on data
from 2019 to 2020 and set its performance using data from 2021. Evaluating the proposed
3D-ResNet-BiLSTM model against other models revealed its remarkable performance,
achieving an R2 of 0.79 and an RMSE of 5.56 Bu Ac-1, surpassing all other considered
models by a significant margin. This significant improvement can be mainly due to the
model’s capacity to effectively capture spatial and temporal patterns in the data, a crucial
aspect for accurate yield prediction in areas with complex terrain and variable weather
patterns. These findings underscore the transformative potential of fusing advanced RS
data, feature-rich datasets, and state-of-the-art deep learning models to pave the way
for data-driven agricultural decision-making. This approach not only enhances yield
forecasting accuracy but also holds promise for optimizing resource allocation, improving
crop management practices, and ultimately strengthening food security. As we move
forward, integrating additional data sources, such as soil data and agricultural management
practices, can further enhance the accuracy and generalizability of these models, leading to
even more informed and sustainable farming practices.
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