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Abstract
We calculate the (super)decomposition matrix for a
RoCK block of a double cover of the symmetric group
with abelian defect, verifying a conjecture of the first
author. To do this, we exploit a theorem of the second
author and Livesey that a RoCK block 𝜌,𝑑 is Morita
superequivalent to a wreath superproduct of a certain
quiver (super)algebra with the symmetric group 𝔖𝑑.
We develop the representation theory of this wreath
superproduct to compute its Cartan invariants. We
then directly construct projective characters for 𝜌,𝑑 to
calculate its decomposition matrix up to a triangular
adjustment, and show that this adjustment is trivial by
comparing Cartan invariants.

MSC 2020
20C30 (primary), 20C20, 05E10 (secondary)

Contents
1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. COMBINATORIAL PRELIMINARIES. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Compositions and partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Littlewood–Richardson coefficients, Specht modules and permutation modules . . 6
2.3. Kostka polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

© 2024 The Author(s). The Journal of the LondonMathematical Society is copyright © LondonMathematical Society. This is an open access
article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

J. London Math. Soc. (2) 2024;109:e12852. wileyonlinelibrary.com/journal/jlms 1 of 49
https://doi.org/10.1112/jlms.12852

https://orcid.org/0000-0001-8945-8453
mailto:m.fayers@qmul.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/jlms
https://doi.org/10.1112/jlms.12852
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fjlms.12852&domain=pdf&date_stamp=2024-01-31


2 of 49 FAYERS et al.

3. ROUQUIER BAR-CORES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1. Definition and first properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2. Rouquier bar-cores and dominance order . . . . . . . . . . . . . . . . . . . . . . 11
3.3. Rouquier bar-cores and containment of partitions . . . . . . . . . . . . . . . . . . 13

4. SUPERALGEBRAS, SUPERMODULES ANDWREATH SUPERPRODUCTS. . . . . . . 15
4.1. Superspaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2. Superalgebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3. Supermodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4. Representations of wreath superproducts 𝖶𝑑 . . . . . . . . . . . . . . . . . . . . 19
4.5. The super-Cartan matrix for 𝖶𝑑 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5. REPRESENTATIONS OF DOUBLE COVERS OF SYMMETRIC GROUPS . . . . . . . . 23
5.1. The double cover of the symmetric group . . . . . . . . . . . . . . . . . . . . . . 23
5.2. Branching rules and weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3. Virtual projective characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4. Projective characters from the 𝑞-deformed Fock space . . . . . . . . . . . . . . . . 26
5.5. RoCK blocks for double covers and the Kleshchev–Livesey Morita equivalence . . . 27
5.6. The regularisation theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6. PROJECTIVE CHARACTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1. Projective characters 𝜑̂𝜇 in RoCK blocks . . . . . . . . . . . . . . . . . . . . . . . 29
6.2. Gelfand–Graev induction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3. Projective characters obtained by induction . . . . . . . . . . . . . . . . . . . . . 34
6.4. The bijection 𝜆 ↦ 𝜆◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5. Adjustment matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7. CARTANMATRICES AND PROOF OF THE MAIN THEOREM . . . . . . . . . . . . . 44
7.1. The super-Cartan matrix and the adjustment matrix . . . . . . . . . . . . . . . . . 44
7.2. Entries in the unadjusted Cartan matrix . . . . . . . . . . . . . . . . . . . . . . . 45
7.3. Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ACKNOWLEDGEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1 INTRODUCTION

In the modular representation theory of the symmetric groups and their double covers, the cen-
tral outstanding question is the decomposition number problem: determining the composition
factors of the 𝑝-modular reductions of ordinary irreducible representations. Even for the sym-
metric groups, a solution to this problem seems far out of reach, but there is a remarkable family
of blocks for which the problem has been solved. These are called RoCK blocks. They are defined
in a combinatorial way using the abacus, and were identified by Rouquier [29] as being of partic-
ular importance. RoCK blocks have been pivotal in the proofs of several results, most importantly
in the proof of Broué’s abelian defect group conjecture for symmetric groups [6]. This hinges on
the proof by Chuang and Kessar [5] that a RoCK block of defect 𝑑 < 𝑝 is Morita equivalent to
the principal block of the wreath product 𝔖𝑝 ≀ 𝔖𝑑. A consequence of this is the formula due to
Chuang–Tan [8] for the decomposition numbers for RoCK blocks. The same formula appears in
a computation of certain canonical basis coefficients, due independently to Leclerc–Miyachi and
Chuang–Tan [7, 22].
In recent years, the representation theory of double covers of symmetric groups (or equiva-

lently, the study of projective representations of symmetric groups) has been studied extensively.
Let 𝑝 = 2𝓁 + 1 be an odd prime (see [11] for corresponding results in characteristic 2), and 𝔽 an
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algebraically closed field of characteristic 𝑝. Let 𝔖̂𝑛 denote one of the proper double covers of the
symmetric group 𝔖𝑛, for 𝑛 ⩾ 4, and let 𝑧 ∈ 𝔖̂𝑛 denote the central element of order 2. An irre-
ducible 𝔽𝔖̂𝑛-module𝑀 is a spin module if 𝑧 acts as−1 on𝑀, and a block of 𝔽𝔖̂𝑛 is a spin block if
it contains spin modules. In fact, for studying spin modules, it is more natural to consider 𝔽𝔖̂𝑛 as
a superalgebra (i.e. a ℤ∕2ℤ-graded algebra), and study spin supermodules and spin superblocks.
The modular spin representation theory of 𝔖̂𝑛 has been developed by Brundan and the second
author in [1, 2] (using two different approaches which were later unified by the second author
and Shchigolev [21]). The combinatorial part of this theory revolves around the combinatorics of
𝑝-strict partitions.
The definition of spin RoCK blocks for 𝔖̂𝑛 was given by the second author and Livesey [20],

who proved an analogue of Chuang and Kessar’s Morita equivalence result, and used this to show
that Broué’s conjecture holds for spin RoCK blocks. Our purpose in this paper is to give a for-
mula for the (super)decomposition numbers for spin RoCK blocks of abelian defect; in particular,
we prove a formula conjectured by the first author in [12] based on calculations of canonical
basis coefficients.
To state our main theorem, we briefly introduce some notation. For a strict partition 𝜆, we let

S(𝜆) denote a 𝑝-modular reduction of the irreducible spin supermodule for ℂ𝔖̂𝑛 labelled by 𝜆,
and for a restricted 𝑝-strict partition 𝜇, we let D(𝜇) denote the irreducible spin supermodule for
𝔽𝔖̂𝑛 labelled by 𝜇; see Section 5 for details on these.
If 𝜆 is any partition, we write ℎ(𝜆) for the number of positive parts of 𝜆, and 𝑎(𝜆) = 0

or 1 as 𝜆 has an even or odd number of positive even parts. Finally, c(𝛼; 𝜎, 𝜏) denotes the
Littlewood–Richardson coefficient corresponding to partitions 𝛼, 𝜎, 𝜏, and 𝐾−1

𝜏𝜎 (𝑞) the inverse
Kostka polynomial corresponding to 𝜎, 𝜏; see §2.2 and §2.3 for details on these.
Rouquier 𝑝-bar-cores are discussed in Section 3 — these correspond to spin RoCK blocks of

double covers of symmetric groups. Now our main theorem can be stated as follows.

Main Theorem. Suppose 𝑝 = 2𝓁 + 1 is an odd prime and 1 ⩽ 𝑑 < 𝑝, and that 𝜌 is a 𝑑-Rouquier
𝑝-bar-core. Suppose that 𝜆 is a strict partition and 𝜇 a restricted 𝑝-strict partition, both with 𝑝-bar-
core 𝜌 and 𝑝-bar-weight 𝑑. Let (𝜆(0), … , 𝜆(𝓁)) and (𝜇(0), … , 𝜇(𝓁)) be the 𝑝-bar-quotients of 𝜆, 𝜇. Then
the decomposition number [S(𝜆) ∶ D(𝜇)] equals

2⌊ 1
2

(ℎ(𝜆(0))+𝑎(𝜆))⌋∑𝐾−1
𝜆(0)𝜎(0)

(−1)

𝓁∏
𝑖=1

c(𝜆(𝑖); 𝜎(𝑖), 𝜏(𝑖)) c(𝜇(𝑖−1); 𝜎(𝑖−1), 𝜏(𝑖)′
),

where the sum is over all partitions 𝜎(0), … , 𝜎(𝓁−1), 𝜏(1), … , 𝜏(𝓁), and we read 𝜎(𝓁) as ∅.

We note that the assumption 𝑑 ⩾ 1made in the theorem is harmless— it simply means that we
are dealingwith blocks of non-trivial defect; on the other hand, the assumption𝑑 < 𝑝 is equivalent
to the assumption that the blocks we are dealing with have abelian defect groups.
The proof of our main theorem involves two parts.
Firstly, we use the Morita equivalence result of Kleshchev–Livesey which shows that a RoCK

block 𝜌,𝑑 with 𝑝-bar-weight 𝑑 < 𝑝 is Morita superequivalent to a wreath superproduct 𝖶𝑑 =

𝖠𝓁 ≀ 𝔖𝑑, where 𝖠𝓁 is an explicitly defined quiver superalgebra. In Section 4, we develop super-
algebra analogues of results of Chuang and Tan describing the representation theory of wreath
products. In particular, by explicitly constructing indecomposable projective supermodules, we
are able to determine the (super)Cartanmatrix of𝖶𝑑 when 𝑑 < 𝑝, and hence of𝜌,𝑑 (but without
any information on the labels of rows and columns).
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For the second part of the proof (in Section 6), we explicitly consider projective characters for
𝜌,𝑑. The results of Leclerc–Thibon [23] comparing decomposition numbers with canonical basis
coefficients, togetherwith the first author’s formula for canonical basis coefficients corresponding
to spinRoCKblocks, show that ourmain theorem is true ‘up to columnoperations’, that is, that the
decomposition matrix of 𝜌,𝑑 is obtained from the matrix claimed in our main theorem by post-
multiplying by a square matrix 𝐴. By explicitly constructing projective characters by induction
and comparing with known general results on decomposition numbers, we are able to show that
𝐴 is triangular with non-negative integer entries. By then calculating the Cartan matrix entries
predicted by our main theorem and showing that they agree with those of 𝖶𝑑 when 𝑑 < 𝑝, we
can deduce that 𝐴 is the identity matrix, which gives us our main theorem.

2 COMBINATORIAL PRELIMINARIES

We denote ℕ ∶= ℤ⩾1 and ℕ0 ∶= ℤ⩾0. Throughout the paper, we work over an algebraically closed
field 𝔽 of characteristic 𝑝 > 2. We write

⋄ 𝓁 ∶= (𝑝 − 1)∕2,
⋄ 𝐼 ∶= {0, 1, … ,𝓁},
⋄ 𝐽 ∶= {0, 1, … ,𝓁 − 1}.

For 𝑛 ∈ ℕ0, we write 𝐼𝑛 for the set of words 𝑖1 … 𝑖𝑛 with 𝑖1, … , 𝑖𝑛 ∈ 𝐼.

2.1 Compositions and partitions

A composition is an infinite sequence 𝜆 = (𝜆1, 𝜆2, … ) of non-negative integerswhich are eventually
zero. Any composition 𝜆 has finite sum |𝜆|, and we say that 𝜆 is a composition of |𝜆|. We write𝒞
for the set of all compositions, and for each 𝑑 ∈ ℕ0, we write𝒞(𝑑) for the set of all compositions of
𝑑.Whenwriting compositions, wemay collect consecutive equal parts togetherwith a superscript,
and omit an infinite tail of 0s.Wewrite∅ for the composition (0, 0, … ). A partition is a composition
whose parts are weakly decreasing. We write𝒫 for the set of all partitions, and𝒫(𝑑) for the set
of partitions of 𝑑. For example, (2,0,1,4) is a composition of 7 and (4, 1, 1) = (4, 12) a partition of 6.
A partition is strict if it has no repeated positive parts. We write 𝒫0(𝑑) for the set of all strict

partitions of 𝑑. Say that a strict partition 𝜆 is even if 𝜆 has an even number of positive even parts,
and odd otherwise. Now write

𝑎(𝜆) ∶=

{
0 if 𝜆 is even,
1 if 𝜆 is odd.

(2.1)

For example, (4,3,1) and (4,2,1) are strict partitions, while (4, 32) is not. Further (4,3,1) is odd while
(4,2,1) is even.
For a set 𝑆, let𝒫𝑆(𝑑) denote the set of all 𝑆-multipartitions of 𝑑. So, the elements of𝒫𝑆(𝑑) are

tuples 𝝀 = (𝜆(𝑠))𝑠∈𝑆 of partitions satisfying
∑

𝑠∈𝑆 |𝜆(𝑠)| = 𝑑. In the special case 𝑆 = 𝐼, we write the
elements of𝒫𝐼(𝑑) as tuples 𝝀 = (𝜆(0), … , 𝜆(𝓁)), and similarly, for𝒫𝐽(𝑑). We refer to 𝜆(𝑖) as the 𝑖th
component of 𝝀. We identify𝒫𝐽(𝑑) with the subset of𝒫𝐼(𝑑) consisting of those 𝝀 ∈ 𝒫𝐼(𝑑) with
𝜆(𝓁) = ∅. For example, taking 𝑝 = 5 and 𝑆 = 𝐼, ((22), ∅, (1)) is a 𝐼-multipartition of 5, however,
((22), ∅, (1)) ∉ 𝒫𝐽(5). On the other hand, again with 𝑝 = 5, ((22), (1), ∅) ∈ 𝒫𝐽(5).
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We use the following binary operations on partitions: if 𝜆, 𝜇 ∈ 𝒫, then we write 𝜆 + 𝜇 for the
partition (𝜆1 + 𝜇1, 𝜆2 + 𝜇2, … ), and 𝜆 ⊔ 𝜇 for the partition obtained by combining the parts of 𝜆

and 𝜇 and putting them in weakly decreasing order. For example, (3, 1) + (4, 12) = (7, 2, 1), while
(3, 1) ⊔ (4, 12) = (4, 3, 13).
The Young diagram of a partition 𝜆 is the set {(𝑟, 𝑐) ∈ ℕ2| 𝑐 ⩽ 𝜆𝑟}, whose elements are called

the nodes of 𝜆. We draw the Young diagram as an array of boxes using the English convention, in
which 𝑟 increases down the page and 𝑐 increases from left to right. We often identify partitions
with their Young diagrams; for example, we may write 𝜆 ⊆ 𝜇 to mean that 𝜆𝑟 ⩽ 𝜇𝑟 for all 𝑟. Using
the identifications of partitions and Young diagrams, in this case, we write 𝜇 ⧵ 𝜆 for the set of
nodes of 𝜇 which are not nodes of 𝜆. For example, (4, 3, 1) ⧵ (12) consists of the marked nodes in
the following diagram.

If 𝜆 is a partition, the conjugate partition 𝜆′ is obtained by reflecting the Young diagram of 𝜆 on
the main diagonal. For example, (4, 3, 1)′ = (3, 22, 1).
The dominance order is a partial order� defined on𝒫. We set 𝜆 � 𝜇 (and say that 𝜆 dominates

𝜇) if |𝜆| = |𝜇| and 𝜆1 + ⋯ + 𝜆𝑟 ⩾ 𝜇1 + ⋯ + 𝜇𝑟 for all 𝑟 ⩾ 1. This can be interpreted in terms of
Young diagrams in the following way: 𝜆 � 𝜇 if and only if the Young diagram of 𝜇 can be obtained
from the Young diagram of 𝜆 by moving some nodes further to the left, see [17, 1.4.10]. By [17,
1.4.11], the dominance order is reversed by conjugation: 𝜆 � 𝜇 if and only if 𝜇′ � 𝜆′. For example,
(42, 1) � (4, 3, 12) but (4, 12) � (32).
Now we introduce the prime 𝑝 into the combinatorics. Say that a partition is 𝑝-strict if its

repeated parts are all divisible by𝑝. A𝑝-strict partition 𝜆 is restricted if for all 𝑟 either 𝜆𝑟 − 𝜆𝑟+1 < 𝑝

or 𝜆𝑟 − 𝜆𝑟+1 = 𝑝 and 𝑝 ∤ 𝜆𝑟. We write 𝒫𝑝(𝑛) for the set of 𝑝-strict partitions of 𝑛, and ℛ𝒫𝑝(𝑛)

for the set of restricted 𝑝-strict partitions of 𝑛. For example, for 𝑝 = 5, (102, 2) is 5-strict while
(10, 82, 1) is not. Further, (102, 2) and (15,10,6,1) are not 5-restricted, while (102, 6, 1) is.
We also introduce some new terminology: say that a 𝑝-strict partition 𝜆 is a 𝑝′-partition (or

simply that 𝜆 is 𝑝′) if it has no positive parts divisible by 𝑝. For example, for 𝑝 = 5, (8,7,5,2) is not
5′, while (8,7,2) is.
Suppose that 𝜆 is a 𝑝-strict partition. Removing a 𝑝-bar from 𝜆 means either:

⋄ replacing a part 𝜆𝑟 ⩾ 𝑝 with 𝜆𝑟 − 𝑝, and rearranging the parts into decreasing order, or
⋄ deleting two parts summing to 𝑝.

In the first case, we assume that either 𝑝 ∣ 𝜆𝑟 or 𝜆𝑟 − 𝑝 is not a part of 𝜆, so that the resulting
partition is 𝑝-strict. For example, if 𝑝 = 5 and 𝜆 = (16, 5, 3, 2, 1), then the partitions which can
be obtained from 𝜆 by removing a 5-bar are (11,5,3,2,1), (16,3,2,1) and (16,5,1). The corresponding
5-bars are marked in the following diagram through x, y and z, respectively.
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Note that parts might have to be rearranged after having removed the corresponding nodes from
the diagram.
The 𝑝-bar-core of 𝜆 is the partition obtained by repeatedly removing 𝑝-bars until it is not possi-

ble to remove any more — this is well defined thanks to [26, Theorem 1]. The 𝑝-bar-weight of 𝜆 is
the number of 𝑝-bars removed to reach its 𝑝-bar-core. For example, if 𝑝 = 5, then the 5-bar-core
of (16,5,3,2,1) is (6,1) and its 5-bar-weight is 4.
If 𝜌 is a 𝑝-bar-core and 𝑑 ⩾ 1, we write:

⋄ 𝒫𝜌,𝑑
𝑝 for the set of 𝑝-strict partitions with 𝑝-bar-core 𝜌 and 𝑝-bar-weight 𝑑;

⋄ ℛ𝒫𝜌,𝑑
𝑝 for the set of restricted partitions in𝒫𝜌,𝑑

𝑝 ;
⋄ 𝒫𝜌,𝑑

0
for the set of strict partitions in𝒫𝜌,𝑑

𝑝 ;
⋄ 𝒫𝜌,𝑑

𝑝′ for the set of 𝑝′-partitions in𝒫𝜌,𝑑
𝑝 .

Note that𝒫𝜌,𝑑

𝑝′ ⊆ 𝒫𝜌,𝑑
0

.
Nowwe look at individual nodes. The residue of a node in column 𝑐 is the smaller of the residues

of 𝑐 − 1 and −𝑐 modulo 𝑝. So, the residues of nodes follow the repeating pattern

0, 1, … ,𝓁 − 1,𝓁,𝓁 − 1, … , 1, 0, 0, 1, … ,𝓁 − 1,𝓁,𝓁 − 1, … , 1, 0, …

from left to right in every row of a Young diagram. Note that the residue of a node is always
interpreted as an element of 𝐼. For 𝑖 ∈ 𝐼, an 𝑖-nodemeans a node of residue 𝑖. For example, in the
next diagram, the nodes of the partition (11,5,2) have been marked with their residues for 𝑝 = 5.

In particular, this partition has eight 0-nodes, seven 1-nodes and three 2-nodes.

2.2 Littlewood–Richardson coefficients, Specht modules and
permutation modules

For partitions 𝜆, 𝜇1, … , 𝜇𝑟, we denote by c(𝜆; 𝜇1, … , 𝜇𝑟) the corresponding Littlewood–Richardson
coefficient, which is zero unless |𝜆| = |𝜇1| + ⋯ + |𝜇𝑟|. In fact, c(𝜆; 𝜇1, … , 𝜇𝑟) does not depend on
the order of the partitions 𝜇1, … , 𝜇𝑟 and depends only on the multiset {𝜇1, … , 𝜇𝑟}. So, we will also
use the notation c(𝜆; 𝑀) for any multiset 𝑀 of partitions. If 𝑀 = {𝜇1, … , 𝜇𝑟} and 𝑁 = {𝜈1, … , 𝜈𝑠}

are two multisets of partitions, we can also consider

c(𝜆; 𝑀, 𝑁) ∶= c(𝜆; 𝜇1, … , 𝜇𝑟, 𝜈1, … , 𝜈𝑠).

Below we will use various standard results on Littlewood–Richardson coefficients which can
be found, for example, in [25, I.9] or [13, Section 5].
We will often use calculations involving representations of the symmetric group in characteris-

tic zero. For any group 𝐺, let 𝟏𝐺 denote the trivial 𝐺-module. For the group algebra ℂ𝔖𝑑, the
irreducible modules are the Specht modules 𝜆, for 𝜆 ∈ 𝒫(𝑛). In particular,  (𝑛) is the trivial
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DECOMPOSITION NUMBERS FOR ROCK BLOCKS OF DOUBLE COVERS 7 of 49

𝔖𝑛-module, and  (1𝑛) is the sign module, which we also denote 𝚜𝚐𝚗. It is well known that

𝜆 ⊗ 𝚜𝚐𝚗 ≅ 𝜆′ (2.2)

for all 𝜆, see [16, 6.7]. Given a ℂ𝔖𝑛-module 𝑀 and any partition 𝜆, we write [𝑀 ∶ 𝜆] for the
multiplicity of 𝜆 as a composition factor of 𝑀 if |𝜆| = 𝑛, and 0 otherwise.
We often induce and restrictmodules between𝔖𝑛 and its Young subgroups. If𝛼 = (𝛼1, … , 𝛼𝑟) ∈

𝒞(𝑛), then the Young subgroup 𝔖𝛼 is the naturally embedded subgroup 𝔖𝛼1
× ⋯ × 𝔖𝛼𝑟

of 𝔖𝑛.
Now given modules 𝑀1, … , 𝑀𝑟 for 𝔖𝛼1

, … , 𝔖𝛼𝑟
respectively, we obtain a module 𝑀1 ⊠ ⋯ ⊠ 𝑀𝑟

for 𝔖𝛼 and the induced module

𝑀1 ◦ ⋯ ◦ 𝑀𝑟 ∶= Ind
𝔖𝑛

𝔖𝛼
𝑀1 ⊠ ⋯ ⊠ 𝑀𝑟.

For example, if 𝜆 ∈ 𝒞(𝑛), then  (𝜆1) ◦  (𝜆2) ◦ ⋯ is the permutation module 𝜆 defined in [16,
4.1], nowadays called the Young permutation module. In general, given partitions 𝛼1, … , 𝛼𝑟 and 𝜆,
the multiplicity [𝛼1

◦ … ◦ 𝛼𝑟
∶ 𝜆] is the Littlewood–Richardson coefficient c(𝜆; 𝛼1, … , 𝛼𝑟). By

Frobenius reciprocity, this can also be written as [Res𝔖(|𝛼1|,…,|𝛼𝑟 |)𝜆 ∶ 𝛼1
⊠ ⋯ ⊠ 𝛼𝑟

].
Later, we will need the following results.

Lemma 2.1. Suppose 𝛼 ∈ 𝒫 and 𝛽, 𝛾 ∈ 𝒞. Then

c(𝛼; (1𝛽1), (1𝛽2), … , (𝛾1), (𝛾2), … ) =
[
(𝛽 ⊗ 𝚜𝚐𝚗) ◦𝛾 ∶ 𝛼

]
.

Proof. The left-hand side equals[
( (1𝛽1 ) ◦  (1𝛽2 ) ◦ ⋯) ◦ ( (𝛾1) ◦  (𝛾2) ◦ ⋯) ∶ 𝛼

]
=
[(

( (𝛽1) ⊗ 𝚜𝚐𝚗) ◦ ( (𝛽2) ⊗ 𝚜𝚐𝚗) ◦ ⋯
)
◦ ( (𝛾1) ◦  (𝛾2) ◦ ⋯) ∶ 𝛼

]
=
[(

( (𝛽1) ◦  (𝛽2) ◦ ⋯) ⊗ 𝚜𝚐𝚗
)
◦ ( (𝛾1) ◦  (𝛾2) ◦ ⋯) ∶ 𝛼

]
=
[
(𝛽 ⊗ 𝚜𝚐𝚗) ◦𝛾 ∶ 𝛼

]
.

□

Lemma 2.2. Suppose 𝜆 ∈ 𝒞 and 𝜏, 𝜎 ∈ 𝒫. Then∑
𝜇∈𝒫

[𝜆 ∶ 𝜇][𝜏 ◦ 𝜎 ∶ 𝜇] =
∑

𝛽,𝛾∈𝒞
𝛽+𝛾=𝜆

[𝛽 ∶ 𝜏][𝛾 ∶ 𝜎].

Proof. Let 𝑛 = |𝜆|. We may assume that |𝜏| + |𝜎| = 𝑛 as well (since otherwise both sides are obvi-
ously zero) and we may restrict the range of summation on the left-hand side to 𝜇 ∈ 𝒫(𝑛). The
definition of𝜆 gives [𝜆 ∶ 𝜇] = [ (𝜆1) ◦  (𝜆2) ◦ ⋯ ∶ 𝜇]. On the other hand, if we define 𝐾

to be the Young subgroup𝔖(|𝜏|,|𝜎|), then Frobenius reciprocity gives [𝜏 ◦ 𝜎 ∶ 𝜇] = [Res𝐾
𝜇 ∶

𝜏 ⊠ 𝜎]. Since the irreducible ℂ𝔖𝑛-modules are precisely the modules 𝜇 for 𝜇 ∈ 𝒫(𝑛), the
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8 of 49 FAYERS et al.

left-hand side gives the multiplicity

[Res𝐾Ind𝔖𝑛 𝟏𝔖𝜆
∶ 𝜏 ⊠ 𝜎].

By Mackey’s Theorem, this is the same as∑
𝐻

[Ind𝐾𝟏𝐻 ∶ 𝜏 ⊠ 𝜎],

summing over 𝐾-conjugacy class representatives of subgroups 𝐻 ⩽ 𝐾 of the form (𝔖𝜆)𝑥 ∩ 𝐾 for
𝑥 ∈ 𝔖𝑛. We can take these representatives to be the groups 𝔖𝛽 × 𝔖𝛾 as 𝛽, 𝛾 range over composi-
tions satisfying |𝛽| = |𝜏|, |𝛾| = |𝜎| and 𝛽𝑟 + 𝛾𝑟 = 𝜆𝑟 for each 𝑟. Now the definition of the modules
𝛽 and𝛾 gives the result. □

We have the following ‘Mackey formula’ for Littlewood–Richardson coefficients.

Lemma 2.3. Suppose 𝛼, 𝛽, 𝛾, 𝛿 ∈ 𝒫. Then∑
𝜆∈𝒫

c(𝜆; 𝛼, 𝛽) c(𝜆; 𝛾, 𝛿) =
∑

𝜑,𝜒,𝜓,𝜔∈𝒫

c(𝛼; 𝜑, 𝜒) c(𝛽; 𝜓, 𝜔) c(𝛾; 𝜑, 𝜓) c(𝛿; 𝜒, 𝜔).

Proof. The special case where 𝛼 = (𝑟) is proved by Chuang and Tan [7, Lemma 2.2(3)], but their
proof works in the general case. □

2.3 Kostka polynomials

Given 𝜆, 𝜎 ∈ 𝒫, wewrite𝐾−1
𝜆𝜎

(𝑡) for the inverse Kostka polynomial indexed by 𝜆, 𝜎; this polynomial
arises in the theory of symmetric functions: it is the coefficient of the Schur function 𝑠𝜎 when the
Hall–Littlewood symmetric function 𝑃𝜆 is expressed in terms of Schur functions. We refer to [25,
III.6] for more information on Kostka polynomials, but we note in particular that 𝐾−1

𝜆𝜎
(𝑡) is zero

unless 𝜆 � 𝜎 and that 𝐾−1
𝜆𝜆

(𝑡) = 1; see [12, Lemma 3.4].
Of special importance for us will be the evaluation of 𝐾−1

𝜆𝜎
(𝑡) at 𝑡 = −1. So 𝐾−1

𝜆𝜎
(−1) is the

coefficient of 𝑠𝜎 in the Schur P-function 𝑃𝜆.
We note two lemmas that we will need later.

Lemma 2.4. Suppose 𝜎 ∈ 𝒫(𝑛). Then 𝐾−1
𝜆𝜎

(−1) ∈ ℕ0 for all 𝜆 ∈ 𝒫0(𝑛), and there is at least one
𝜆 ∈ 𝒫0(𝑛) for which 𝐾−1

𝜆𝜎
(−1) > 0.

Proof. Stembridge [30, Theorem 9.3(b)] shows that 𝐾−1
𝜆𝜎

(−1) equals the number of tableaux of a
certain type, which means in particular that 𝐾−1

𝜆𝜎
(−1) ∈ ℕ0. Stembridge’s formula shows in par-

ticular that 𝐾−1
𝜆𝜎

(−1) > 0 when 𝜆 is the strict partition whose parts are the diagonal hook lengths
of 𝜎. □

Lemma 2.5. Suppose 𝜉, 𝜋 ∈ 𝒫. Then∑
𝜆∈𝒫0

2ℎ(𝜆)𝐾−1
𝜆𝜉

(−1)𝐾−1
𝜆𝜋

(−1) =
∑

𝛽,𝛾∈𝒫

c(𝜉; 𝛽, 𝛾′) c(𝜋; 𝛽, 𝛾).
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DECOMPOSITION NUMBERS FOR ROCK BLOCKS OF DOUBLE COVERS 9 of 49

Proof. We consider symmetric functions in an infinite set of variables 𝑋. Let 𝑠𝜋 denote the Schur
function indexed by𝜋 ∈ 𝒫. Since the Schur functions are linearly independent, it suffices to show
the following equality of symmetric functions, for each 𝜉:∑

𝜆∈𝒫0
𝜋∈𝒫

2ℎ(𝜆)𝐾−1
𝜆𝜉

(−1)𝐾−1
𝜆𝜋

(−1)𝑠𝜋 =
∑

𝛽,𝛾,𝜋∈𝒫

c(𝜉; 𝛽, 𝛾′) c(𝜋; 𝛽, 𝛾)𝑠𝜋.

Working with an indeterminate 𝑡, consider the symmetric function∑
𝜆,𝜋∈𝒫

𝑏𝜆(𝑡)𝐾−1
𝜆𝜉

(𝑡)𝐾−1
𝜆𝜋

(𝑡)𝑠𝜋,

where 𝑏𝜆(𝑡) is the polynomial defined in [25, (2.12) on p. 210]. According to the transition matrix
in [25, p. 241], this coincides with the ‘dual Schur function’ 𝑆𝜉(𝑡). Now specialise 𝑡 to −1. It is
immediate from the definition of 𝑏𝜆(𝑡) that

𝑏𝜆(−1) =

{
2ℎ(𝜆) if 𝜆 ∈ 𝒫0

0 otherwise,

so we find that

𝑆𝜉(−1) =
∑

𝜆∈𝒫0
𝜋∈𝒫

2ℎ(𝜆)𝐾−1
𝜆𝜉

(−1)𝐾−1
𝜆𝜋

(−1)𝑠𝜋.

Let us write 𝑆𝜉(−1) as 𝑆̄𝜉 . According to [25, III.8, Example 7(a)], 𝑆̄𝜉 equals the function 𝑠𝜉(𝑋∕−𝑋)

defined in [25, I.5, Example 23]. From Equation (1) in [loc. cit.], we obtain

𝑠𝜉(𝑋∕−𝑋) =
∑
𝛽∈𝒫

𝑠𝛽𝑠𝜉′∕𝛽′ ,

where the skew Schur function 𝑠𝜉′∕𝛽′ equals
∑

𝛾∈𝒫 c(𝜉′; 𝛽′, 𝛾)𝑠𝛾. In addition, 𝑠𝛽𝑠𝛾 =∑
𝜋∈𝒫 c(𝜋; 𝛽, 𝛾)𝑠𝜋 (indeed, this is the most usual definition of the Littlewood–Richardson

coefficients), so that∑
𝜆∈𝒫0
𝜋∈𝒫

2ℎ(𝜆)𝐾−1
𝜆𝜉

(−1)𝐾−1
𝜆𝜋

(−1)𝑠𝜋 =
∑

𝛽,𝛾∈𝒫

c(𝜉′; 𝛽′, 𝛾) c(𝜋; 𝛽, 𝛾)𝑠𝜋.

Now the standard result that c(𝜉′; 𝛽′, 𝛾) = c(𝜉; 𝛽, 𝛾′) gives the required equality. □

3 ROUQUIER BAR-CORES

3.1 Definition and first properties

For any 𝑝-strict partition 𝜌, define

𝑟𝑖(𝜌) ∶= |{ 𝑟 ∈ ℕ | 𝜌𝑟 ≡ 𝑖 (mod 𝑝)}|
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10 of 49 FAYERS et al.

for 𝑖 ∈ {1, … , 𝑝 − 1}. If 𝜌 is a 𝑝-bar-core, then 𝜌 is determined by the integers 𝑟𝑖(𝜌). Following [20],
given 𝑑 ⩾ 1, we say that a 𝑝-bar-core 𝜌 is 𝑑-Rouquier if

⋄ 𝑟1(𝜌) ⩾ 𝑑, and
⋄ 𝑟𝑖(𝜌) ⩾ 𝑟𝑖−1(𝜌) + 𝑑 − 1 for 2 ⩽ 𝑖 ⩽ 𝓁.

(This automatically implies that 𝑟𝑖(𝜌) = 0 for 𝑖 > 𝓁, since a 𝑝-bar-core cannot have two parts
whose sum is divisible by 𝑝.)
Assume that 𝜌 is a 𝑑-Rouquier 𝑝-bar-core, and 𝜆 ∈ 𝒫𝜌,𝑑

𝑝 . We want to define the 𝑝-bar-quotient
of 𝜆. Firstly note that 𝑟𝑖(𝜆) = 𝑟𝑖(𝜌) for each 1 ⩽ 𝑖 ⩽ 𝓁, since 𝑟𝑖(𝜌) ⩾ 𝑑, cf. [20, Lemma 4.1.1.(i)]. Now
define 𝜆(0) to be the partition obtained by taking all the parts of 𝜆 divisible by 𝑝 and dividing them
by 𝑝. For 1 ⩽ 𝑖 ⩽ 𝓁, let 𝑟 ∶= 𝑟𝑖(𝜆), let 𝜆𝑘1

> … > 𝜆𝑘𝑟
be the parts of 𝜆 congruent to 𝑖 modulo 𝑝 and

define the partition

𝜆(𝑖) ∶=

(
𝜆𝑘1

− (𝑟 − 1)𝑝 − 𝑖

𝑝
,
𝜆𝑘2

− (𝑟 − 2)𝑝 − 𝑖

𝑝
, … ,

𝜆𝑘𝑟
− 𝑖

𝑝

)
.

The 𝑝-bar-quotient of 𝜆 is the multipartition (𝜆(0), … , 𝜆(𝓁)) ∈ 𝒫𝐼(𝑑).

Example. Suppose 𝑝 = 5 and 𝜌 = (32, 27, 22, 17, 16, 12, 11, 7, 6, 2, 1). Then 𝜌 is 4-Rouquier, with
(𝑟1(𝜌), 𝑟2(𝜌), 𝑟3(𝜌), 𝑟4(𝜌)) = (4, 7, 0, 0). The partition 𝜆 = (37, 32, 22, 17, 16, 12, 11, 10, 7, 6, 2, 1) lies
in𝒫𝜌,4

0
, and has 5-bar-quotient (𝜆(0), 𝜆(1), 𝜆(2)) = ((2), ∅, (12)).

Lemma 3.1. Suppose that 𝜌 is a 𝑑-Rouquier 𝑝-bar-core, and 𝜆 ∈ 𝒫𝜌,𝑑
𝑝 , with 𝑝-bar-quotient

(𝜆(0), … , 𝜆(𝓁)). Then:

(i) 𝜆 is strict if and only if 𝜆(0) is strict;
(ii) 𝜆 is 𝑝′ if and only if 𝜆(0) = ∅;
(iii) 𝜆 is restricted if and only if 𝜆(𝓁) = ∅.

Proof. The first two statements follow directly from the definition, sowe need only prove the third.
Note that by the given properties of the integers 𝑟𝑖(𝜌), the 𝑑 largest parts of 𝜌 are all congruent to
𝓁 modulo 𝑝, and 𝜌𝑘 < 𝜌1 − (𝑑 − 1)𝑝 for any 𝑘 with 𝜆𝑘 ≢ 𝓁 (mod 𝑝).
We obtain 𝜆 from 𝜌 by adding 𝑑 𝑝-bars. So, any part 𝜆𝑘 for which 𝜆𝑘 ≢ 𝓁 (mod 𝑝) satisfies

𝜆𝑘 < 𝜌1 + 𝑝. If 𝜆(𝓁) = ∅, then 𝜆1 < 𝜌1 + 𝑝, while 𝜆 contains all the integers 𝓁,𝓁 + 𝑝, … , 𝜌1, so 𝜆

is restricted.
If instead 𝜆(𝓁)

1
≠ 0, choose 𝑎 such that 𝜆(𝓁)

𝑎 > 𝜆(𝓁)
𝑎+1

. Then, |𝜆(𝓁)| ⩾ 𝑎, so that |𝜆(𝑖)| ⩽ 𝑑 − 𝑎 for any
𝑖 ≠ 𝓁. This means that any part 𝜆𝑘 ≢ 𝓁 (mod 𝑝) satisfies 𝜆𝑘 < 𝜌1 − (𝑎 − 1)𝑝 = 𝜌𝑎. So, 𝜆 contains
the part 𝜆𝑎 = 𝜌𝑎 + 𝜆(𝓁)

𝑎 𝑝, but does not contain any parts 𝜆𝑘 with 𝜌𝑎 + (𝜆(𝓁)
𝑎 − 1)𝑝 ⩽ 𝜆𝑘 < 𝜌𝑎 +

𝜆(𝓁)
𝑎 𝑝, so is not restricted. □

Clearly, 𝜆 ∈ 𝒫𝜌,𝑑
𝑝 is determined by 𝜌 and the 𝑝-bar-quotient (𝜆(0), … , 𝜆(𝓁)); conversely,

given a multipartition (𝜆(0), … , 𝜆(𝓁)) ∈ 𝒫𝐼(𝑑), there is a partition 𝜆 ∈ 𝒫𝜌,𝑑
𝑝 with 𝑝-bar-quotient

(𝜆(0), … , 𝜆(𝓁)). In view of this and Lemma 3.1, we see that

|𝒫𝜌,𝑑
𝑝 | = |𝒫𝐼(𝑑)| and |𝒫𝜌,𝑑

𝑝′ | = |ℛ𝒫𝜌,𝑑
𝑝 | = |𝒫𝐽(𝑑)|. (3.1)
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DECOMPOSITION NUMBERS FOR ROCK BLOCKS OF DOUBLE COVERS 11 of 49

3.2 Rouquier bar-cores and dominance order

For our calculations in RoCK blocks, it will be helpful to introduce a partial order on 𝒫𝐼(𝑑):
given two multipartitions (𝜆(0), … , 𝜆(𝓁)) and (𝜇(0), … , 𝜇(𝓁)) in 𝒫𝐼(𝑑), we write ( 𝜆( 0), … , 𝜆(𝓁)) ≽

( 𝜇( 0), … , 𝜇(𝓁)) if

|𝜆(0)| + ⋯ + |𝜆(𝑘−1)| + 𝜆(𝑘)′

1 + ⋯ + 𝜆(𝑘)′

𝑐 ⩾ |𝜇(0)| + ⋯ + |𝜇(𝑘−1)| + 𝜇(𝑘)′

1 + ⋯ + 𝜇(𝑘)′

𝑐

for all 0 ⩽ 𝑘 ⩽ 𝓁 and 𝑐 ⩾ 1. This order can be visualised by drawing the Young diagrams of
𝜆(0), … , 𝜆(𝓁) in a row from left to right; then ( 𝜆( 0), … , 𝜆(𝓁)) ≽ ( 𝜇( 0), … , 𝜇(𝓁)) if and only if
(𝜆(0), … , 𝜆(𝓁)) can obtained from (𝜇(0), … , 𝜇(𝓁)) by moving nodes further to the left.

Lemma 3.2. Let 𝜌 be a 𝑑-Rouquier 𝑝-bar-core. Suppose that the partitions 𝜆 and 𝜇 in𝒫𝜌,𝑑
𝑝 have 𝑝-

bar-quotients (𝜆(0), … , 𝜆(𝓁)) and (𝜇(0), … , 𝜇(𝓁)), respectively. Then, ( 𝜆( 0), … , 𝜆(𝓁)) ≽ ( 𝜇( 0), … , 𝜇(𝓁))

if and only if 𝜆 � 𝜇.

Proof. For 𝑖 = 0, … ,𝓁, let 𝑟𝑖 be the largest part of 𝜌 congruent to 𝑖 modulo 𝑝. We also denote
𝝀 ∶= (𝜆(0), … , 𝜆(𝓁)), 𝝁 ∶= (𝜇(0), … , 𝜇(𝓁)).
We construct 𝜆 from 𝜌 by successively adding 𝑝-bars. Correspondingly, the 𝑝-bar-quotient 𝝀

is obtained from (∅, … , ∅) by adding nodes; adding the node (𝑟, 𝑐) to 𝜆(𝑖) corresponds to adding
nodes to 𝜆 in columns{

𝑟𝑖 + (𝑐 − 𝑟)𝑝 + 1, 𝑟𝑖 + (𝑐 − 𝑟)𝑝 + 2, … , 𝑟𝑖 + (𝑐 − 𝑟 + 1)𝑝 if 𝑖 > 0

(𝑐 − 1)𝑝 + 1, (𝑐 − 1)𝑝 + 2, … , 𝑐𝑝 if 𝑖 = 0.
(3.2)

We now prove the ‘only-if’ part of the lemma. It is easy to see that if 𝝀 ≽ 𝝁, then we can reach
𝝀 from 𝝁 by a sequence of moves in which a single node is moved further to the left; so, it suffices
to consider a single such move, and show that this move corresponds to moving nodes to the left
in 𝜇. So, suppose that 𝝀 is obtained from 𝝁 by replacing the node (𝑠, 𝑐) in the 𝑗th component with
the node (𝑟, 𝑏) in the 𝑖th component, where 𝑖 ⩽ 𝑗.
If 0 < 𝑖 = 𝑗, then 𝑏 − 𝑟 < 𝑐 − 𝑠, so by (3.2), 𝜆 is obtained from 𝜇 by moving 𝑝 nodes further

to the left. If 0 = 𝑖 = 𝑗, then a similar argument applies using the inequality 𝑏 < 𝑐. If 0 < 𝑖 < 𝑗,
then 𝑏 − 𝑟 ⩽ 𝑐 − 𝑠 + 𝑑 − 1, because 𝜇(𝑖)

1
+ 𝜇(𝑗)′

1 ⩽ 𝑑. Now (3.2) and the fact that 𝑟𝑖 < 𝑟𝑗 + (𝑑 − 1)𝑝

means that 𝜆 is obtained from 𝜇 by moving 𝑝 nodes further to the left. If 0 = 𝑖 < 𝑗, then we use a
similar argument via the inequality 𝑏 ⩽ 𝑐 − 𝑠 + 𝑑.
In any case, we obtain 𝜆 ⊲ 𝜇, as required.
We now prove the ‘if’ part of the lemma. Assume 𝝀 ⋡ 𝝁; then we must show that 𝜆 � 𝜇.
Case 1: There is 𝑘 ∈ 𝐼 such that |𝜆(0)| + ⋯ + |𝜆(𝑘)| < |𝜇(0)| + ⋯ + |𝜇(𝑘)|.
Note that in this case, 𝑘 < 𝓁. Let 𝑎 = |𝜆(0)| + ⋯ + |𝜆(𝑘)| and 𝑏 = |𝜇(0)| + ⋯ + |𝜇(𝑘)|. Now let

𝜈, 𝜉 ∈ 𝒫𝜌,𝑑
𝑝 be given by

𝜈(𝑖) =

⎧⎪⎨⎪⎩
(1𝑎) if 𝑖 = 0

(1𝑑−𝑎) if 𝑖 = 𝑘 + 1

∅ otherwise,
𝜉(𝑖) =

⎧⎪⎨⎪⎩
(𝑏) if 𝑖 = 𝑘

(𝑑 − 𝑏) if 𝑖 = 𝓁

∅ otherwise.
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12 of 49 FAYERS et al.

Then, ( 𝜈( 0), … , 𝜈(𝓁)) ≽ 𝝀 and 𝝁 ≽ ( 𝜉( 0), … , 𝜉(𝓁)). So (from the ‘⇒’ part of the lemma) in order to
show that 𝜆 � 𝜇, it suffices to show that 𝜈 � 𝜉. To do this, we let 𝑟 be such that 𝜌𝑟 = 𝑟𝑘+1 − (𝑑 −

𝑎 − 1)𝑝, and compare 𝜈1 + ⋯ + 𝜈𝑟 with 𝜉1 + ⋯ + 𝜉𝑟. We obtain

𝜈1 + ⋯ + 𝜈𝑟 = 𝜌1 + ⋯ + 𝜌𝑟 + (𝑑 − 𝑎)𝑝,

𝜉1 + ⋯ + 𝜉𝑟 = 𝜌1 + ⋯ + 𝜌𝑟 + (𝑑 − 𝑏)𝑝 + max{𝑟𝑘 − 𝑟𝑘+1 + (𝑑 + 𝑏 − 𝑎 − 1)𝑝, 0},

and now the assumptions 𝑟𝑘+1 > 𝑟𝑘 + (𝑑 − 1)𝑝 and 𝑎 < 𝑏 give 𝜈1 + ⋯ + 𝜈𝑟 > 𝜉1 + ⋯ + 𝜉𝑟, so that
𝜈 � 𝜉.
Case 2: |𝜆(0)| + ⋯ + |𝜆(𝑘)| ⩾ |𝜇(0)| + ⋯ + |𝜇(𝑘)| for every 𝑘 ∈ 𝐼.
The assumption that 𝝀 ⋡ 𝝁 means that we can find 𝑘 ∈ 𝐼 and 𝑐 ⩾ 1 for which

𝑘−1∑
𝑖=0

|𝜆(𝑖)| + 𝜆(𝑘)′

1 + ⋯ + 𝜆(𝑘)′

𝑐 <

𝑘−1∑
𝑖=0

|𝜇(𝑖)| + 𝜇(𝑘)′

1 + ⋯ + 𝜇(𝑘)′

𝑐. (3.3)

Firstly, we assume that 𝑘 > 0.
Let 𝑟 = 𝜆(𝑘)′

𝑐, and 𝑠 = 𝑟𝑘 + (𝑐 − 𝑟 + 1)𝑝; then we claim that 𝜆′
1

+ ⋯ + 𝜆′
𝑠 < 𝜇′

1
+ ⋯ + 𝜇′

𝑠, so that
𝜆 � 𝜇.
We calculate 𝜆′

1
+ ⋯ + 𝜆′

𝑠 − (𝜌′
1

+ ⋯ + 𝜌′
𝑠) using (3.2). For 0 ⩽ 𝑖 < 𝑘, each node of 𝜆(𝑖) con-

tributes 𝑝 to this sum. In addition, each node (𝑡, 𝑏) of 𝜆(𝑘) for which 𝑏 − 𝑡 ⩽ 𝑐 − 𝑟 contributes
𝑝 to the sum. (The nodes of 𝜆(𝑖) for 𝑖 > 𝑘 do not contribute, because of the inequality 𝑟𝑘+1 − 𝑟𝑘 >

(𝑑 − 1)𝑝.) Writing 𝑇𝑟,𝑐 =
∑𝑟−1

𝑥=1 min{𝑥, 𝑐}, we obtain

𝑠∑
𝑖=1

𝜆′
𝑖 −

𝑠∑
𝑖=1

𝜌′
𝑖 =

(
𝑘−1∑
𝑖=0

|𝜆(𝑖)| +
∑

𝑡⩾max{1,𝑟−𝑐}

min{𝜆(𝑘)
𝑡 , 𝑡 + 𝑐 − 𝑟}

)
𝑝

=

(
𝑘−1∑
𝑖=0

|𝜆(𝑖)| +

𝑐∑
𝑑=1

𝜆(𝑘)′

𝑑 − 𝑇𝑟,𝑐

)
𝑝,

with the second equality coming from the fact that 𝜆(𝑘)′

𝑐 = 𝑟.
We calculate 𝜇′

1
+ ⋯ + 𝜇′

𝑠 − (𝜌′
1

+ ⋯ + 𝜌′
𝑠) in the same way. The assumption that |𝜇(0)| + ⋯ +|𝜇(𝑘−1)| ⩽ |𝜆(0)| + ⋯ + |𝜆(𝑘−1)| means that each node of 𝜇(𝑖) for 𝑖 < 𝑘 contributes 𝑝 to this sum,

whereas the nodes of 𝜇(𝑖) for 𝑖 > 𝑘 do not contribute. So, as with 𝜆, we obtain

𝑠∑
𝑖=1

𝜇′
𝑖 −

𝑠∑
𝑖=1

𝜌′
𝑖 =

(
𝑘−1∑
𝑖=0

|𝜇(𝑖)| +
∑

𝑡⩾max{1,𝑟−𝑐}

min{𝜇(𝑘)
𝑡 , 𝑡 + 𝑐 − 𝑟}

)
𝑝.

It follows that

∑
𝑡⩾max{1,𝑟−𝑐}

min{𝜇(𝑘)
𝑡 , 𝑡 + 𝑐 − 𝑟} ⩾

𝑐∑
𝑑=1

𝜇(𝑘)′

𝑑 − 𝑇𝑟,𝑐,
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DECOMPOSITION NUMBERS FOR ROCK BLOCKS OF DOUBLE COVERS 13 of 49

and then,

𝑠∑
𝑖=1

𝜇′
𝑖 −

𝑠∑
𝑖=1

𝜌′
𝑖 ⩾

(
𝑘−1∑
𝑖=0

|𝜇(𝑖)| +

𝑐∑
𝑑=1

𝜇(𝑘)′

𝑑 − 𝑇𝑟,𝑐

)
𝑝.

We obtain 𝜆′
1

+ ⋯ + 𝜆′
𝑠 < 𝜇′

1
+ ⋯ + 𝜇′

𝑠, as required.
Now assume instead that 𝑘 = 0. Then, we claim that 𝜆′

1
+ ⋯ + 𝜆′

𝑐𝑝 < 𝜇′
1

+ ⋯ + 𝜇′
𝑐𝑝. As for the

case above, we calculate 𝜆′
1

+ ⋯ + 𝜆′
𝑠 − (𝜌′

1
+ ⋯ + 𝜌′

𝑠) using (3.2). Each node (𝑡, 𝑏) of 𝜆(0) with
𝑏 ⩽ 𝑐 contributes 𝑝 to this sum, and the nodes of 𝜆(𝑖) for 𝑖 ⩾ 1 do not contribute, because of the
inequality 𝑟1 > 𝑑𝑝 and the fact that |𝜆(0)| ⩾ 𝑐. So, we obtain

𝑐𝑝∑
𝑖=1

𝜆′
𝑖 −

𝑐𝑝∑
𝑖=1

𝜌′
𝑖 =

𝑐∑
𝑖=1

𝜆(0)′

𝑖 .

The same formula with 𝜇 in place of 𝜆 gives the result. □

3.3 Rouquier bar-cores and containment of partitions

We will need the following generalisation of [20, Lemma 4.1.2].

Proposition 3.3. Suppose that 𝜌 is a 𝑑-Rouquier 𝑝-bar-core. Suppose 𝜆 ∈ 𝒫𝜌,𝑎
𝑝 and 𝛼 ∈ 𝒫𝜌,𝑏

𝑝 ,
where 𝑎, 𝑏 ⩽ 𝑑, and let (𝜆(0), … , 𝜆(𝓁)) and (𝛼(0), … , 𝛼(𝓁)) be the 𝑝-bar-quotients of 𝜆 and 𝛼. Then,
the following are equivalent:

(i) 𝜆 ⊆ 𝛼;
(ii) 𝜆(𝑗) ⊆ 𝛼(𝑗) for all 𝑗 ∈ 𝐼;
(iii) 𝛼 can be obtained from 𝜆 by successively adding 𝑝-bars.

Proof. It is trivial that (iii)⇒(i). It is also very easy to see that (ii)⇒(iii): adding a node to a compo-
nent of the 𝑝-bar-quotient corresponds to increasing one of the parts of the partition by 𝑝, which
is a way of adding a 𝑝-bar.
So, it remains to show that (i)⇒(ii). (We remark that the case where 𝑏 − 𝑎 = 1 is proved in [20,

Lemma 4.1.2].)
We use induction on 𝑎. The case 𝑎 = 0 is trivial, so we assume 𝑎 > 0, and that the result is true

with 𝑎 replaced by any smaller value. Assume 𝜆 ⊆ 𝛼.
Suppose 𝜇 ∈ 𝒫𝜌,𝑎−1

𝑝 and that the 𝑝-bar-quotient (𝜇(0), … , 𝜇(𝓁)) of 𝜇 is obtained from the 𝑝-bar-
quotient of 𝜆 by removing a single node. Then, 𝜇 ⊂ 𝜆 (from the fact that (ii)⇒(iii)⇒(i)), so 𝜇 ⊂ 𝛼,
and the inductive hypothesis gives 𝜇(𝑗) ⊆ 𝛼(𝑗) for all 𝑗. So, the only node of (𝜆(0), … , 𝜆(𝓁)) which
can fail to be a node of (𝛼(0), … , 𝛼(𝓁)) is the node removed to obtain 𝜇. In particular, if there are at
least two such partitions 𝜇 (i.e. if (𝜆(0), … , 𝜆(𝓁)) has at least two removable nodes), then 𝜆(𝑗) ⊆ 𝛼(𝑗)

for all 𝑗 as required.
So, we can assume that (𝜆(0), … , 𝜆(𝓁)) has only one removable node. This means that there is

𝑘 ∈ 𝐼 such that 𝜆(𝑘) is a rectangular partition (𝑥𝑦)with 𝑥, 𝑦 ⩾ 1, while 𝜆(𝑗) = ∅ for 𝑗 ≠ 𝑘. From the
argument in the previous paragraph, we can assume that 𝛼(𝑘) contains the partition (𝑥𝑦−1, 𝑥 − 1).
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14 of 49 FAYERS et al.

If we suppose for a contradiction that 𝜆(𝑘) ⊈ 𝛼(𝑘), then 𝛼(𝑘) has fewer than min{𝑥, 𝑦} nodes (𝑟, 𝑐)

for which 𝑐 − 𝑟 = 𝑥 − 𝑦.
For each 𝑗, we define 𝑟𝑗 to be the largest part of 𝜌 congruent to 𝑗 modulo 𝑝. As observed in

Lemma 3.2, adding the node (𝑟, 𝑐) to the 𝑗th component of 𝜆(𝑗) corresponds to adding nodes to 𝜆

in columns

𝑟𝑗 + (𝑐 − 𝑟)𝑝 + 1, 𝑟𝑗 + (𝑐 − 𝑟)𝑝 + 2, … , 𝑟𝑗 + (𝑐 − 𝑟 + 1)𝑝,

where we write 𝑟 = 1 if 𝑗 = 0, and 𝑟 = 𝑟 otherwise.
Assume first that 𝑘 ⩾ 1. Then, the assumption 𝜆 ⊆ 𝛼 and the paragraph above give

𝛼′
𝑟𝑘+(𝑥−𝑦)𝑝+1

− 𝜌′
𝑟𝑘+(𝑥−𝑦)𝑝+1

⩾ 𝜆′
𝑟𝑘+(𝑥−𝑦)𝑝+1

− 𝜌′
𝑟𝑘+(𝑥−𝑦)𝑝+1

= min{𝑥, 𝑦}.

Since 𝛼(𝑘) has fewer thanmin{𝑥, 𝑦} nodes (𝑟, 𝑐) for which 𝑐 − 𝑟 = 𝑥 − 𝑦, there must be some 𝑗 ≠ 𝑘

such that 𝛼(𝑗) has a node (𝑟, 𝑐) for which

𝑟𝑘 + (𝑥 − 𝑦)𝑝 + 1 =

{
𝑟𝑗 + (𝑐 − 𝑟)𝑝 + 𝑘 − 𝑗 + 1 if 𝑗 < 𝑘,

𝑟𝑗 + (𝑐 − 𝑟)𝑝 + 𝑝 + 𝑘 − 𝑗 + 1 if 𝑗 > 𝑘.

In fact, this is impossible for 𝑗 > 𝑘, since it gives

(𝑟 − 𝑐 − 1 + 𝑥 − 𝑦)𝑝 + 𝑗 − 𝑘 = 𝑟𝑗 − 𝑟𝑘 ⩾ (𝑑 − 1)𝑝 + 𝑗 − 𝑘,

and therefore,

𝑟 − 𝑐 + 𝑥 − 𝑦 ⩾ 𝑑.

But |𝛼(𝑗)| ⩾ 𝑟 − 𝑐 + 1 and |𝛼(𝑘)| ⩾ 𝑥 + 𝑦 − 2, and we obtain |𝛼(𝑘)| + |𝛼(𝑗)| ⩾ 𝑑 + 1, which contra-
dicts the assumption that 𝛼 ∈ 𝒫𝜌,𝑏

𝑝 with 𝑏 ⩽ 𝑑.
So, instead 𝑗 < 𝑘. Now we obtain

(𝑐 − 𝑟 + 𝑦 − 𝑥)𝑝 + 𝑘 − 𝑗 = 𝑟𝑘 − 𝑟𝑗 ⩾ (𝑑 − 1)𝑝 + 𝑘 − 𝑗,

so that

𝑐 − 𝑟 + 𝑦 − 𝑥 ⩾ 𝑑 − 1.

But |𝛼(𝑗)| ⩾ 𝑐 − 𝑟 + 1 and |𝛼(𝑘)| ⩾ 𝑥 + 𝑦 − 2 and |𝛼(𝑗)| + |𝛼(𝑘)| ⩽ 𝑑, so we have equality every-
where, and, in particular, |𝛼(𝑗)| + |𝛼(𝑘)| = 𝑑.
Now we perform a similar calculation using the fact that 𝛼′

𝑟𝑘+(𝑥−𝑦+1)𝑝
− 𝜌′

𝑟𝑘+(𝑥−𝑦+1)𝑝
⩾

min{𝑥, 𝑦}. Now there is 𝑗′ ≠ 𝑘 such that (writing 𝑟 = 1 if 𝑗′ = 0 and 𝑟 = 𝑟 otherwise)

𝑟𝑘 + (𝑥 − 𝑦 + 1)𝑝 =

{
𝑟𝑗′ + (𝑐 − 𝑟)𝑝 + 𝑘 − 𝑗′ if 𝑗′ < 𝑘,

𝑟𝑗′ + (𝑐 − 𝑟)𝑝 + 𝑝 + 𝑘 − 𝑗′ if 𝑗′ > 𝑘.
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DECOMPOSITION NUMBERS FOR ROCK BLOCKS OF DOUBLE COVERS 15 of 49

Now the case 𝑗′ < 𝑘 leads to an impossibility (in a similar way to the case 𝑗 > 𝑘 above), so 𝑗′ must
be greater than 𝑘. But now we have indices 𝑗 < 𝑘 < 𝑗′ with |𝛼(𝑗)| + |𝛼(𝑘)| + |𝛼(𝑗′)| ⩾ 𝑑 + 1, which
again contradicts the assumption 𝛼 ∈ 𝒫𝜌,𝑑

𝑝 . The result follows in the case 𝑘 ⩾ 1.
The case 𝑘 = 0 is similar but simpler. In this case,

𝛼′
(𝑥−1)𝑝+1

− 𝜌′
(𝑥−1)𝑝+1

⩾ 𝜆′
(𝑥−1)𝑝+1

− 𝜌′
(𝑥−1)𝑝+1

= 𝑦,

but 𝛼(0) has fewer than 𝑦 nodes in column 𝑥, so there is 𝑗 > 0 such that 𝛼(𝑗) has a node (𝑟, 𝑐) with

(𝑥 − 1)𝑝 + 1 = 𝑟𝑗 + (𝑐 − 𝑟)𝑝 + 𝑝 + 1 − 𝑗

and therefore,

(𝑟 − 𝑐 + 𝑥 − 2)𝑝 + 𝑗 = 𝑟𝑗 ⩾ (𝑑 − 1)𝑝 + 𝑗

so that

𝑟 − 𝑐 + 𝑥 − 2 ⩾ 𝑑 − 1.

But now the fact that |𝛼(0)| ⩾ 𝑥 − 1 and |𝛼(𝑗)| ⩾ 𝑟 − 𝑐 + 1 gives a contradiction. So, the result
follows in the case 𝑘 = 0 as well. □

4 SUPERALGEBRAS, SUPERMODULES ANDWREATH
SUPERPRODUCTS

The representation theory of double covers of symmetric groups is best approached via superalge-
bras. In this section, we recall the general theory and then study representations of some special
wreath superproducts 𝖠𝓁 ≀ 𝔖𝑑 which play a crucial role for RoCK (super)blocks of double covers
of symmetric groups, cf. Theorem 5.4. Our aim is to compute the Cartan invariants for 𝖠𝓁 ≀ 𝔖𝑑 in
the case where 𝑑 < 𝑝 in terms of Littlewood–Richardson coefficients, cf. Corollary 4.11.

4.1 Superspaces

Wewrite ℤ∕2ℤ = {0̄, 1̄}. If 𝑉 is a vector space over 𝔽, a ℤ∕2ℤ-grading on 𝑉 is a direct sum decom-
position 𝑉 = 𝑉0̄ ⊕ 𝑉1̄. A vector superspace is a vector space with a chosen ℤ∕2ℤ-grading. For
𝜀 ∈ ℤ∕2ℤ, if 𝑣 ∈ 𝑉𝜀, we write |𝑣| = 𝜀 and say that 𝑣 is homogeneous of parity 𝜀.
If 𝑉 and 𝑊 are superspaces and 𝜀 ∈ ℤ∕2ℤ, then a linear map 𝑓 ∶ 𝑉 → 𝑊 is called a

homogeneous superspace homomorphism of parity 𝜀 if 𝑓(𝑉𝛿) ⊆ 𝑊𝛿+𝜀 for all 𝛿 ∈ ℤ∕2ℤ. A super-
space homomorphism 𝑓 ∶ 𝑉 → 𝑊 means a map 𝑓 = 𝑓0̄ + 𝑓1̄, where for 𝜀 = 0̄, 1̄, the map
𝑓𝜀 ∶ 𝑉 → 𝑊 is a homogeneous superspace homomorphism of parity 𝜀. We will use the term
‘even homomorphism’ to mean ‘homogeneous homomorphism of parity 0̄’, and similarly for
odd homomorphisms.
We write Π for the parity change functor, see, for example, [19, §12.1]. Thus, for a superspace

𝑉, the superspace Π𝑉 equals 𝑉 as a vector space, but with parities swapped. We define an odd
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16 of 49 FAYERS et al.

isomorphism of superspaces

𝜎𝑉 ∶ 𝑉 ⟶ Π𝑉, 𝑣 ⟼ (−1)|𝑣|𝑣.

If 𝑉1, … , 𝑉𝑑 are superspaces, then 𝑉1 ⊗ ⋯ ⊗ 𝑉𝑑 is a superspace with |𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑| = |𝑣1| +

⋯ + |𝑣𝑑|. (Here and below in similar situations, we assume that the elements 𝑣𝑘 are homogeneous
and extend by linearity where necessary.) If 𝑓𝑖 ∶ 𝑉𝑖 → 𝑊𝑖 is a superspace homomorphism for
𝑖 = 1, … , 𝑑, then

𝑓1 ⊗ ⋯ ⊗ 𝑓𝑑 ∶ 𝑉1 ⊗ ⋯ ⊗ 𝑉𝑑 → 𝑊1 ⊗ ⋯ ⊗ 𝑊𝑑

is a superspace homomorphism defined from

(𝑓1 ⊗ ⋯ ⊗ 𝑓𝑑)(𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑) = (−1)
∑

1⩽𝑟<𝑠⩽𝑑 |𝑓𝑠||𝑣𝑟|𝑓1(𝑣1) ⊗ ⋯ ⊗ 𝑓𝑑(𝑣𝑑).

Let 𝑉 = 𝑉0̄ ⊕ 𝑉1̄ be a superspace, and 𝑑 ∈ ℕ. The symmetric group 𝔖𝑑 acts on 𝑉⊗𝑑 via

𝑤(𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑) ∶= (−1)[𝑤;𝑣1,…,𝑣𝑑]𝑣𝑤−1(1) ⊗ ⋯ ⊗ 𝑣𝑤−1(𝑑),

where for 𝑤 ∈ 𝔖𝑑 and 𝑣1, … , 𝑣𝑑 ∈ 𝑉, we have

[𝑤; 𝑣1, … , 𝑣𝑑] ∶=
∑

1⩽𝑎<𝑐⩽𝑑
𝑤(𝑎)>𝑤(𝑐)

|𝑣𝑎||𝑣𝑐|.
It is now easy to check that

𝜎⊗𝑑
𝑉

(𝑤(𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑)) = 𝚜𝚐𝚗(𝑤)
(

𝑤
(

𝜎⊗𝑑
𝑉

(𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑)
))

. (4.1)

4.2 Superalgebras

An 𝔽-superalgebra is an 𝔽-algebra 𝐴 with a chosen ℤ∕2ℤ-grading 𝐴 = 𝐴0̄ ⊕ 𝐴1̄ such that
𝑎𝑏 ∈ 𝐴|𝑎|+|𝑏| (whenever 𝑎, 𝑏 ∈ 𝐴 are both homogeneous). If 𝐴 and 𝐵 are 𝔽-superalgebras, a
superalgebra homomorphism 𝑓 ∶ 𝐴 → 𝐵 is an even unital algebra homomorphism.
If 𝐴1, … , 𝐴𝑑 are superalgebras, then the superspace 𝐴1 ⊗ ⋯ ⊗ 𝐴𝑑 is a superalgebra with

multiplication

(𝑎1 ⊗ ⋯ ⊗ 𝑎𝑑)(𝑏1 ⊗ ⋯ ⊗ 𝑏𝑑) = (−1)
∑

1⩽𝑟<𝑠⩽𝑑 |𝑎𝑠||𝑏𝑟|𝑎1𝑏1 ⊗ ⋯ ⊗ 𝑎𝑑𝑏𝑑.

The following superalgebras will play a major role in this paper.
Definition 4.1. We consider the quiver
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DECOMPOSITION NUMBERS FOR ROCK BLOCKS OF DOUBLE COVERS 17 of 49

and define the Brauer tree algebra 𝖠𝓁 to be the path algebra of this quiver generated by length 0
paths {e𝑗 ∣ 𝑗 ∈ 𝐽}, and length 1 paths 𝗎 and {a𝑘,𝑘+1, a𝑘+1,𝑘 ∣ 0 ⩽ 𝑘 ⩽ 𝓁 − 2}, modulo the following
relations:

(i) all paths of length three or greater are zero;
(ii) all paths of length two that are not cycles are zero;
(iii) the length-two cycles based at the vertex 𝑖 ∈ {1, … ,𝓁 − 2} are equal;
(iv) 𝗎2 = a0,1a1,0 if 𝑙 ⩾ 2.

For example, if 𝓁 = 1, then the algebra 𝖠𝓁 is the truncated polynomial algebra 𝔽[𝗎]∕(𝗎3). The
algebra 𝖠𝓁 is considered as a superalgebra by declaring that 𝗎 is odd and all other generators are
even.

Definition 4.2. For 𝑑 ∈ ℕ, we consider the wreath superproduct W𝑑 ∶= A𝓁 ≀ 𝔖𝑑. As a vector
superspace, this is just 𝖠⊗𝑑

𝓁 ⊗ 𝔽𝔖𝑑, with 𝔽𝔖𝑑 concentrated in degree 0̄. The multiplication is
determined by the following requirements.

(1) 𝒛 ↦ 𝒛 ⊗ 1 defines a superalgebra embedding 𝖠⊗𝑑
𝓁 → 𝖠⊗𝑑

𝓁 ⊗ 𝔽𝔖𝑑; we identify 𝖠⊗𝑑
𝓁 with a

subsuperalgebra of 𝖶𝑑 via this embedding.
(2) 𝑥 ↦ 1 ⊗ 𝑥 defines a superalgebra embedding 𝔽𝔖𝑑 → 𝖠⊗𝑑

𝓁 ⊗ 𝔽𝔖𝑑; we identify 𝔽𝔖𝑑 with a
subsuperalgebra of 𝖶𝑑 via this embedding.

(3) 𝑤(z1 ⊗ ⋯ ⊗ z𝑑) = 𝑤(z1 ⊗ ⋯ ⊗ z𝑑)𝑤 for all 𝑤 ∈ 𝔖𝑑 and all z1, … , z𝑑 ∈ 𝖠𝓁 .

4.3 Supermodules

Let 𝐴 be a superalgebra. An 𝐴-supermodulemeans an 𝐴-module 𝑉 with a chosen ℤ∕2ℤ-grading
𝑉 = 𝑉0̄ ⊕ 𝑉1̄ such that 𝑎𝑣 ∈ 𝑉|𝑎|+|𝑣| for all (homogeneous) 𝑎 ∈ 𝐴 and 𝑣 ∈ 𝑉.
If 𝑉 and 𝑊 are 𝐴-supermodules, then a homomorphism 𝑓 ∶ 𝑉 → 𝑊 of superspaces is a

homomorphism of 𝐴-supermodules if 𝑓(𝑎𝑣) = (−1)|𝑓||𝑎|𝑎𝑓(𝑣) for 𝑎 ∈ 𝐴 and 𝑣 ∈ 𝑉.
For an 𝐴-supermodule 𝑉, the superspace Π𝑉 is considered as an 𝐴-supermodule via the

new action 𝑎 ⋅ 𝑣 = (−1)|𝑎|𝑎𝑣 for 𝑎 ∈ 𝐴 and 𝑣 ∈ Π𝑉 = 𝑉. The map 𝜎𝑉 ∶ 𝑉 → Π𝑉 is then an odd
isomorphism of supermodules; in particular, 𝜎𝑉(𝑎𝑣) = (−1)|𝑎|𝑎 ⋅ 𝜎𝑉(𝑣) for 𝑎 ∈ 𝐴 and 𝑣 ∈ 𝑉.
Wewrite ‘≃’ for an even isomorphism of𝐴-supermodules, and ‘≅’ for an arbitrary isomorphism

of 𝐴-supermodules, cf. [19, Chapter 12].
A subsupermodule of an 𝐴-supermodule 𝑉 is an 𝐴-submodule 𝑊 ⊆ 𝑉 such that 𝑊 = (𝑊 ∩

𝑉0̄) ⊕ (𝑊 ∩ 𝑉1̄). An 𝐴-supermodule is irreducible if it has exactly two subsupermodules.
Irreducible supermodules come in two different types: an irreducible supermodule is of type 𝙼 if

it is irreducible as amodule, and of type 𝚀 otherwise (in which case as amodule it is the direct sum
of two non-isomorphic irreducible modules, see, e.g. [19, Section 12.2]). Every irreducible module
arises in one of these ways from an irreducible supermodule (see, e.g. [19, Corollary 12.2.10]), so
understanding the irreducible supermodules (together with their types) is essentially equivalent
to understanding irreducible modules.
If 𝐿 is a finite-dimensional irreducible𝐴-supermodule, then 𝐿 is of type 𝙼 if and only if 𝐿 ≄ Π𝐿,

see [19, Lemma 12.2.8].
If𝐴1, … , 𝐴𝑑 are superalgebras and𝑉1, … , 𝑉𝑑 are supermodules over𝐴1, … , 𝐴𝑑, respectively, we

have a supermodule 𝑉1 ⊠ ⋯ ⊠ 𝑉𝑑 over 𝐴1 ⊗ ⋯ ⊗ 𝐴𝑑, which is 𝑉1 ⊗ ⋯ ⊗ 𝑉𝑑 as a superspace
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18 of 49 FAYERS et al.

with the action defined by

(𝑎1 ⊗ ⋯ ⊗ 𝑎𝑑)(𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑) = (−1)
∑

1⩽𝑟<𝑠⩽𝑑 |𝑎𝑠||𝑣𝑟|𝑎1𝑣1 ⊗ ⋯ ⊗ 𝑎𝑑𝑣𝑑.

If 𝑓𝑖 ∶ 𝑉𝑖 → 𝑊𝑖 is an 𝐴-supermodule homomorphism for 𝑖 = 1, … , 𝑑, then

𝑓1 ⊗ ⋯ ⊗ 𝑓𝑑 ∶ 𝑉1 ⊠ ⋯ ⊠ 𝑉𝑑 → 𝑊1 ⊠ ⋯ ⊠ 𝑊𝑑

is a homomorphism of supermodules over 𝐴1 ⊗ ⋯ ⊗ 𝐴𝑑. In particular,

𝜎𝑉1
⊗ ⋯ ⊗ 𝜎𝑉𝑑

∶ 𝑉1 ⊠ ⋯ ⊠ 𝑉𝑑 → (Π𝑉1) ⊠ ⋯ ⊠ (Π𝑉𝑑) (4.2)

is an isomorphism of (𝐴1 ⊗ ⋯ ⊗ 𝐴𝑑)-modules (of parity 𝑑 (mod 2)).
If 𝑉 is a finite-dimensional 𝐴-supermodule, a composition series of 𝑉 is a sequence of sub-

supermodules 0 = 𝑉0 ⊂ 𝑉1 ⊂ ⋯ ⊂ 𝑉𝑛 = 𝑉 such that 𝑉𝑘∕𝑉𝑘−1 is an irreducible supermodule
for all 𝑘 = 1, … , 𝑛. If 𝐿1, … , 𝐿𝑛 are irreducible 𝐴-modules (not necessarily distinct) such that
𝑉𝑘∕𝑉𝑘−1 ≃ 𝐿𝑘 for 𝑘 = 1, … , 𝑛, we say that 𝑉 has composition factors 𝐿1, … , 𝐿𝑘. These are well
defined up to even isomorphisms and permutation. So, if 𝐿 is an irreducible 𝐴-supermodule, we
have a well-defined composition multiplicity

[𝑉 ∶ 𝐿] ∶= |{𝑘 ∣ 𝐿𝑘 ≅ 𝐿}|.
(If 𝐿 is of type 𝙼 so that 𝐿 ≄ Π𝐿, we could consider the more delicate graded composition mul-
tiplicity [𝑉 ∶ 𝐿]𝜋 = 𝑚 + 𝑛𝜋 where 𝑚 = |{𝑘 ∣ 𝐿𝑘 ≃ 𝐿}| and 𝑛 = |{𝑘 ∣ 𝐿𝑘 ≃ Π𝐿}|, so that [𝑉 ∶ 𝐿] =

𝑚 + 𝑛, but this will not be needed.)
If𝐴 is a finite-dimensional superalgebra and 𝐿 is an irreducible𝐴-supermodule, we denote the

projective cover of 𝐿 by 𝑃𝐿. This is a direct summand of the regular supermodule with head 𝐿, see
[19, Proposition 12.2.12]. The composition factors of the principal indecomposable supermodules
𝑃𝐿 will be of central importance in this paper. In particular, the super-Cartan invariants of 𝐴 are
defined as the multiplicities

𝑐𝐿,𝐿′ ∶= [𝑃𝐿 ∶ 𝐿′]

for all irreducible 𝐴-supermodules 𝐿, 𝐿′. The super-Cartan matrix of 𝐴 is then the matrix (𝑐𝐿,𝐿′ )

of all super-Cartan invariants of 𝐴.
For the superalgebra 𝖠𝓁 of Definition 4.1, up to even isomorphisms and parity shifts Π, a

complete set of irreducible 𝖠𝓁-supermodules is

{𝐿𝑗 ∣ 𝑗 ∈ 𝐽}, (4.3)

where 𝐿𝑗 is spanned by an even vector 𝑣𝑗 such that e𝑗𝑣𝑗 = 𝑣𝑗 and all other standard generators of
𝖠𝓁 act on 𝑣𝑗 as zero. Now, note that for each 𝑗, the supermodule 𝐿𝑗 is of type 𝙼, and 𝑃𝑗 ∶= 𝖠𝓁e𝑗 is
a projective cover of 𝐿𝑗 . We can easily write down a basis for each 𝑃𝑗:

𝑃0 = ⟨e0, 𝗎e0, a1,0e0, 𝗎2e0⟩ (omitting a1,0e0 if 𝓁 = 1),

𝑃𝑗 = ⟨e𝑗, a𝑗−1,𝑗e𝑗, a𝑗+1,𝑗e𝑗, a𝑗,𝑗+1a𝑗+1,𝑗e𝑗⟩ for 1 ⩽ 𝑗 ⩽ 𝓁 − 2,
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DECOMPOSITION NUMBERS FOR ROCK BLOCKS OF DOUBLE COVERS 19 of 49

𝑃𝓁−1 = ⟨e𝓁−1, a𝓁−2,𝓁−1e𝓁−1, a𝓁−1,𝓁−2a𝓁−2,𝓁−1e𝓁−1⟩ if 𝓁 ⩾ 2.

From this, we can immediately read off the composition factors of each 𝑃𝑗 .

Lemma 4.3. 𝑃0 has composition factors 𝐿0, Π𝐿0, 𝐿1, 𝐿0 (omitting 𝐿1 if 𝓁 = 1), 𝑃𝑖 has composition
factors 𝐿𝑖, 𝐿𝑖−1, 𝐿𝑖+1, 𝐿𝑖 for 1 ⩽ 𝑖 ⩽ 𝓁 − 2 and 𝑃𝓁−1 has composition factors 𝐿𝓁−1, 𝐿𝓁−2, 𝐿𝓁−1 if 𝓁 ⩾ 2.

4.4 Representations of wreath superproducts 𝗪𝒅

We suppose from now until the end of Section 4 that 𝑑 < 𝑝 or 𝑝 = 0. Our aim is to develop the
representation theory of the wreath superproduct algebra 𝖶𝑑 from Definition 4.2, and ultimately
to compute the super-Cartan matrix for 𝖶𝑑. We take inspiration from the paper [8] by Chuang
and Tan; many of our results are straightforward adaptations of their results to supermodules.
Given 𝒋 = 𝑗1 … 𝑗𝑑 ∈ 𝐽𝑑, we define the idempotent

e𝒋 ∶= e𝑗1
⊗ ⋯ ⊗ e𝑗𝑑

∈ 𝖠⊗𝑑
𝓁 ⊆ 𝖶𝑑.

Then, we have the orthogonal idempotent decomposition in 𝖶𝑑:

1 =
∑
𝒋∈𝐽𝑑

𝑒𝒋. (4.4)

For a composition 𝛿 = (𝛿1, … , 𝛿𝑘) of 𝑑, we have a Young subgroup 𝔖𝛿 = 𝔖𝛿1
× ⋯ × 𝔖𝛿𝑘

⩽ 𝔖𝑑

and the corresponding parabolic subalgebra

𝖶𝛿 ∶= 𝖠⊗𝑑
𝓁 ⊗ 𝔽𝔖𝛿 ⊆ 𝖶𝑑.

Note that 𝖶𝛿 ≅ 𝖶𝛿1
⊗ ⋯ ⊗ 𝖶𝛿𝑘

(tensor product of superalgebras). If 𝑉1, … , 𝑉𝑘 are supermod-
ules for𝖶𝛿1

, … , 𝖶𝛿𝑘
, respectively, then we have the supermodule 𝑉1 ⊠ ⋯ ⊠ 𝑉𝑘 over𝖶𝛿1

⊗ ⋯ ⊗

𝖶𝛿𝑘
= 𝖶𝛿, so we can form the 𝖶𝑑-supermodule

𝑉1◦… ◦𝑉𝑘 ∶= Ind
𝖶𝑑

𝖶𝛿
(𝑉1 ⊠ ⋯ ⊠ 𝑉𝑘).

Note that the operation ‘◦’ is commutative in the sense that 𝑉◦𝑉′ ≃ 𝑉′◦𝑉.
Recall that if 𝜆 ∈ 𝒫(𝑑), wewrite𝜆 for the corresponding Spechtmodule for𝔽𝔖𝑑. Our assump-

tions on 𝑝 mean that 𝜆 is irreducible, and we can fix a primitive idempotent 𝑓𝜆 ∈ 𝔽𝔖𝑑 such that
𝔽𝔖𝑑𝑓𝜆 ≅ 𝜆.
Now given 𝝀 ∈ 𝒫𝐽(𝑑), define 𝛿 ∶= (𝛿0, … , 𝛿𝓁−1) = (|𝜆(0)|, … , |𝜆(𝓁−1)|). Then we have a primi-

tive idempotent

𝑓𝝀 ∶= 𝑓𝜆(0)
⊗ ⋯ ⊗ 𝑓𝜆(𝓁−1)

∈ 𝔽𝔖𝛿0
⊗ ⋯ ⊗ 𝔽𝔖𝛿𝓁−1

= 𝔽𝔖𝛿,

from which we define an idempotent

𝑒(𝝀) ∶= 𝑒
⊗𝛿0

0
⊗ ⋯ ⊗ 𝑒

⊗𝛿𝓁−1

𝓁−1
⊗ 𝑓𝝀 ∈ 𝖶𝑑. (4.5)
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Let 𝑉 be a finite-dimensional 𝖠𝓁-supermodule and 𝜆 ∈ 𝒫(𝑑). Denote:

𝑉(𝜆) ∶= 𝑉⊗𝑑 ⊗ 𝜆

considered as a 𝖶𝑑-supermodule via

𝒛(𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑 ⊗ 𝑦) = 𝒛(𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑) ⊗ 𝑦,

𝑤(𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑 ⊗ 𝑦) = 𝑤(𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑) ⊗ 𝑤𝑦

for all 𝒛 ∈ 𝖠⊗𝑥
𝓁 ,𝑤 ∈ 𝔖𝑑, 𝑣1, … , 𝑣𝑑 ∈ 𝑉, 𝑦 ∈ 𝜆. Important special cases of this constructionwhere

𝑉 = 𝐿𝑗 and 𝑉 = 𝑃𝑗 are the simple 𝖠𝓁-module and its projective cover constructed in Section 4.3
yield the 𝖶𝑑-supermodules 𝐿𝑗(𝜆) and 𝑃𝑗(𝜆). For a general 𝑉, we have the following two results.

Lemma4.4. Let𝑉 be a finite-dimensional𝖠𝓁-supermodule and𝜆 ∈ 𝒫(𝑑). Then, (Π𝑉)(𝜆) ≅ 𝑉(𝜆′).

Proof. By (2.2), we have 𝜆′
≅ 𝜆 ⊗ 𝚜𝚐𝚗, so we can identify 𝜆′ with 𝜆 as vector spaces but with

the new action 𝑤 ⋅ 𝑑 = 𝚜𝚐𝚗(𝑤)𝑤𝑑. Now, we consider the linear isomorphism

𝜑 ∶= 𝜎⊗𝑑
𝑉

⊗ id ∶ 𝑉(𝜆′) = 𝑉⊗𝑑 ⊗ 𝜆′ ∼
⟶ (Π𝑉)⊗𝑑 ⊗ 𝜆 = (Π𝑉)(𝜆).

As pointed out in (4.2), 𝜑 is an isomorphism of 𝖠⊗𝑑
𝓁 -supermodules. On the other hand, for

𝑣1, … , 𝑣𝑑 ∈ 𝑉, 𝑦 ∈ 𝜆′ and 𝑤 ∈ 𝔖𝑑, we have

𝜑(𝑤(𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑 ⊗ 𝑦)) = 𝜑(𝑤(𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑) ⊗ (𝚜𝚐𝚗(𝑤)𝑤𝑦))

= 𝚜𝚐𝚗(𝑤)𝜎⊗𝑑
𝑉 (𝑤(𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑)) ⊗ 𝑤𝑦

= 𝑤
(

𝜎⊗𝑑
𝑉

(𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑)
)

⊗ 𝑤𝑦

= 𝑤𝜑(𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑 ⊗ 𝑦),

where we use (4.1) for the penultimate equality. So, 𝜑 is also an isomorphism of 𝔽𝔖𝑑-modules. It
follows that 𝜑 is an isomorphism of 𝖶𝑑-supermodules. □

Lemma 4.5. Let 𝑉 be a finite-dimensional 𝖠𝓁-supermodule, and 𝛿 = (𝛿1, … , 𝛿𝑘) be a composition
of 𝑑.

(i) For 𝜆 ∈ 𝒫(𝑑), we have

Res
𝖶𝑑

𝖶𝛿
𝑉(𝜆) ≅

⨁
𝜇1∈𝒫(𝛿1),…,𝜇𝑘∈𝒫(𝛿𝑘)

(
𝑉(𝜇1) ⊠ ⋯ ⊠ 𝑉(𝜇𝑘)

)⊕ c(𝜆;𝜇1,…,𝜇𝑘)
.

(ii) For 𝜇1 ∈ 𝒫(𝛿1), … , 𝜇𝑘 ∈ 𝒫(𝛿𝑘), we have

𝑉(𝜇1)◦… ◦𝑉(𝜇𝑘) ≅
⨁

𝜆∈𝒫(𝑑)

𝑉(𝜆)⊕ c(𝜆;𝜇1,…,𝜇𝑘).
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Proof. The proof is identical to that of [8, Lemma 3.3] paying attention to the superalgebra
signs. □

Given 𝝀 = (𝜆(0), … , 𝜆(𝓁−1)) ∈ 𝒫𝐽(𝑑), we now define the 𝖶𝑑-supermodules

𝐿(𝝀) ∶= 𝐿0(𝜆(0))◦… ◦𝐿𝓁−1(𝜆(𝓁−1)),

𝑃(𝝀) ∶= 𝑃0(𝜆(0))◦… ◦𝑃𝓁−1(𝜆(𝓁−1)).

Proposition 4.6. The set {𝐿(𝝀) ∣ 𝝀 ∈ 𝒫𝐽(𝑑)} is a complete irredundant set of irreducible 𝖶𝑑-
supermodules up to even isomorphism and parity shift. Moreover, 𝑃(𝝀) is a projective cover of 𝐿(𝝀)

for each 𝝀 ∈ 𝒫𝐽(𝑑).

Proof. The first statement is easy to see and is well known, see, for example, [24, Theorem A.5].
For the second statement, note using Frobenius reciprocity that𝑃(𝝀) ≃ 𝖶𝑑𝑒(𝝀) for the idempotent
𝑒(𝝀) ∈ 𝖶𝑑 defined in (4.5). We now also deduce that dim Hom𝖶𝑑

(𝑃(𝝀), 𝐿(𝝁)) = 𝛿𝝀,𝝁 completing
the proof. □

Now, we determine the composition factors of the modules 𝐿(𝝀1)◦⋯◦𝐿(𝝀𝑘).

Lemma 4.7. Let 𝝁 ∈ 𝒫𝐽(𝑑) and let (𝛿1, … , 𝛿𝑘) be a composition of 𝑑. For 𝑟 = 1, … , 𝑘, suppose 𝝀𝑟 =

(𝜆(𝑟,0), … , 𝜆(𝑟,𝓁−1)) ∈ 𝒫𝐽(𝛿𝑟). Then,

[𝐿(𝝀1)◦⋯◦𝐿(𝝀𝑘) ∶ 𝐿(𝝁)] =
∏
𝑗∈𝐽

c(𝜇(𝑗); 𝜆(1,𝑗), … , 𝜆(𝑘,𝑗)).

Proof. This follows from Lemma 4.5(ii) using commutativity of ‘◦’. □

4.5 The super-Cartan matrix for 𝗪𝒅

In this subsection, we continue to assume that 𝑑 < 𝑝 or 𝑝 = 0. Having explicitly constructed the
irreducible and projective indecomposable supermodules for 𝖶𝑑, we now proceed to compute its
super-Cartan invariants.

Lemma 4.8. Let 𝑉, 𝑊 be finite-dimensional 𝖠𝓁-supermodules and 𝑈 be a subsupermodule of 𝑉

such that𝑉∕𝑈 ≃ 𝑊. Then, for 𝜆 ∈ 𝒫(𝑑), the𝖶𝑑-supermodule𝑉(𝜆) has a filtration with subfactors
𝑈(𝜇)◦𝑊(𝜈) each appearing exactly c(𝜆; 𝜇, 𝜈) times.

Proof. For 0 ⩽ 𝑐 ⩽ 𝑑, we denote by 𝑉𝑐 the subsupermodule of 𝑉(𝜆) = 𝑉⊗𝑑 ⊗ 𝜆 spanned by the
vectors of the form 𝑣1 ⊗ ⋯ ⊗ 𝑣𝑑 ⊗ 𝑥 such that at least 𝑐 of the vectors 𝑣1, … , 𝑣𝑑 ∈ 𝑉 belong to 𝑈

and 𝑥 ∈ 𝜆. This gives a filtration 𝑉(𝜆) = 𝑉0 ⊇ 𝑉1 ⊇ ⋯ ⊇ 𝑉𝑑 ⊇ 𝑉𝑑+1 = 0 with

𝑉𝑐

𝑉𝑐+1

≅
⨁

𝜇∈𝒫(𝑐)
𝜈∈𝒫(𝑑−𝑐)

(𝑈(𝜇)◦𝑊(𝜈))⊕ c(𝜆;𝜇,𝜈),
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cf. the proof of [8, Lemma 4.2]. □

Lemma 4.9. Let 𝜆 ∈ 𝒫(𝑑), and 𝑉 be an 𝖠𝓁-supermodule with composition series

𝑉 = 𝑉0 ⊃ 𝑉1 ⊃ ⋯ ⊃ 𝑉𝑚+1 = 0.

Set 𝐾 ∶= {0, … , 𝑚}. For 𝝂 = (𝜈(0), … , 𝜈(𝑚)) ∈ 𝒫𝐾(𝑑) and 𝑗 ∈ 𝐽, define multisets

𝑀(𝑗, 𝝂) ∶= {𝜈(𝑘) ∣ 𝑘 ∈ 𝐾, 𝑉𝑘∕𝑉𝑘+1 ≃ 𝐿𝑗}

𝑀′(𝑗, 𝝂) ∶= {(𝜈(𝑘))′ ∣ 𝑘 ∈ 𝐾, 𝑉𝑘∕𝑉𝑘+1 ≃ Π𝐿𝑗}.

Then, for any 𝝁 = (𝜇(0), … , 𝜇(𝓁−1)) ∈ 𝒫𝐽(𝑑), we have

[𝑉(𝜆) ∶ 𝐿(𝝁)] =
∑

𝝂∈𝒫𝐾(𝑑)

c(𝜆; 𝜈(0), … , 𝜈(𝑚))
∏
𝑗∈𝐽

c(𝜇(𝑗); 𝑀(𝑗, 𝝂), 𝑀′(𝑗, 𝝂)).

Proof. This follows by induction from Lemma 4.8, using Lemmas 4.4 and 4.5. □

The following result is a ‘superversion’ of [8, Proposition 4.4].

Proposition 4.10. Let 𝑉0, … , 𝑉𝓁−1 be finite-dimensional 𝖠𝓁-supermodules and 𝝀 =

(𝜆(0), … , 𝜆(𝓁−1)) ∈ 𝒫𝐽(𝑑). Set

𝑉(𝝀) ∶= 𝑉0(𝜆(0))◦… ◦𝑉𝓁−1(𝜆(𝓁−1)).

Let 𝑉𝑗 = 𝑉𝑗,0 ⊃ 𝑉𝑗,1 ⊃ ⋯ ⊃ 𝑉𝑗,𝑚𝑗+1 = 0 be a composition series of 𝑉𝑗 for each 𝑗 ∈ 𝐽. Set

𝐾 ∶= {(𝑗, 𝑠) ∈ 𝐽 × ℕ0 ∣ 𝑠 ⩽ 𝑚𝑗}.

For 𝑖 ∈ 𝐽 and 𝝂 ∈ 𝒫𝐾(𝑑), let

𝑀(𝑖, 𝝂) ∶= {𝜈(𝑗,𝑠) ∣ (𝑗, 𝑠) ∈ 𝐾 and 𝑉𝑗,𝑠∕𝑉𝑗,𝑠+1 ≃ 𝐿𝑖}

𝑀′(𝑖, 𝝂) ∶= {(𝜈(𝑗,𝑠))′ ∣ (𝑗, 𝑠) ∈ 𝐾 and 𝑉𝑗,𝑠∕𝑉𝑗,𝑠+1 ≃ Π𝐿𝑖}.

Then, for any 𝝁 = (𝜇(0), … , 𝜇(𝓁−1)) ∈ 𝒫𝐽(𝑑), we have

[𝑉(𝝀) ∶ 𝐿(𝝁)] =
∑

𝝂∈𝒫𝐾(𝑑)

∏
𝑗∈𝐽

c(𝜆(𝑗); 𝜈(𝑗,0), … , 𝜈(𝑗,𝑚𝑗)) c(𝜇(𝑗); 𝑀(𝑗, 𝝂), 𝑀′(𝑗, 𝝂)).

Proof. For 𝑗 ∈ 𝐽, we set

𝑀(𝑖, 𝝂, 𝑗) ∶=
{

𝜈(𝑗,𝑠) ∣ 0 ⩽ 𝑠 ⩽ 𝑚𝑗 and 𝑉𝑗,𝑠∕𝑉𝑗,𝑠+1 ≃ 𝐿𝑖

}
𝑀′(𝑖, 𝝂, 𝑗) ∶=

{
(𝜈(𝑗,𝑠))′ ∣ 0 ⩽ 𝑠 ⩽ 𝑚𝑗 and 𝑉𝑗,𝑠∕𝑉𝑗,𝑠+1 ≃ Π𝐿𝑖

}
,
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so that 𝑀(𝑖, 𝝂) =
⨆

𝑗∈𝐽 𝑀(𝑖, 𝝂, 𝑗) and 𝑀′(𝑖, 𝝂) =
⨆

𝑗∈𝐽 𝑀′(𝑖, 𝝂, 𝑗).
By Lemma 4.9, for each 𝑗 ∈ 𝐽, setting 𝛿𝑗 ∶= |𝜆(𝑗)|, we have in the Grothendieck group

[𝑉(𝜆(𝑗))] =
∑

𝝁𝑗∈𝒫𝐽(𝛿𝑗)

𝑞𝝁𝑗 [𝐿(𝝁𝑗)],

where

𝑞𝝁𝑗 =
∑

𝜈(𝑗,0),…,𝜈
(𝑗,𝑚𝑗)

c(𝜆(𝑗); 𝜈(𝑗,0), … , 𝜈(𝑗,𝑚𝑗))
∏
𝑖∈𝐽

c(𝜇(𝑗,𝑖); 𝑀(𝑖, 𝝂, 𝑗), 𝑀′(𝑖, 𝝂, 𝑗)).

Now,

[ 𝑉 ( 𝝀)] =
[
𝑉 ( 𝜆( 0))◦⋯◦𝑉𝓁−1 ( 𝜆(𝓁−1))

]
=

∑
𝝁0∈𝐽 ( 𝛿0),…,𝝁𝓁−1∈𝐽 ( 𝛿𝓁−1)

𝑞𝝁0 ⋯ 𝑞𝝁𝓁−1

[
𝐿𝝁0◦⋯◦𝐿𝝁𝓁−1

]
.

It remains to apply Lemma 4.7 and use the following identity involving Littlewood–Richardson
coefficients:

c(𝜇(𝑖); 𝑀(𝑖, 𝝂), 𝑀′(𝑖, 𝝂)) = c(𝜇(𝑖); 𝜇(0,𝑖), … , 𝜇(𝓁−1,𝑖))
∏
𝑗∈𝐽

c(𝜇(𝑗,𝑖); 𝑀(𝑖, 𝝂, 𝑗), 𝑀′(𝑖, 𝝂, 𝑗)),

which, in turn, follows from the description of the Littlewood–Richardson coefficient in terms of
induction for symmetric groups using the transitivity of induction. □

Corollary 4.11. Let 𝝀, 𝝁 ∈ 𝒫𝐽(𝑑). Then,

[𝑃(𝝀) ∶ 𝐿(𝝁)] =
∑∏

𝑗∈𝐽

c(𝜇(𝑗); 𝛼(𝑗), 𝛽(𝑗+1), 𝛾(𝑗−1), 𝛿(𝑗)) c(𝜆(𝑗); 𝛼(𝑗), 𝛽(𝑗), 𝛾(𝑗), 𝛿(𝑗)),

where the summation is over all partitions 𝛼(𝑖), 𝛽(𝑖), 𝛾(𝑖), 𝛿(𝑖) with 𝑖 ∈ 𝐽, reading 𝛾(−1) = (𝛽(0))′ and
𝛽(𝓁) = 𝛾(𝓁−1) = ∅. (If 𝓁 = 1, this formula is interpreted as 𝑐𝜆,𝜇 =

∑
𝛼,𝛽,𝛿 c(𝜇; 𝛼, 𝛽′, 𝛿) c(𝜆; 𝛼, 𝛽, 𝛿).)

Proof. Apply Proposition 4.10 to the case 𝑉(𝝀) = 𝑃(𝝀), using Lemma 4.3. □

5 REPRESENTATIONS OF DOUBLE COVERS OF SYMMETRIC
GROUPS

5.1 The double cover of the symmetric group

Let 𝔖̂𝑛 denote a proper double cover of the symmetric group 𝔖𝑛. Then 𝔖̂𝑛 contains a central
element 𝑧 of order 2, with 𝔖̂𝑛∕⟨𝑧⟩ ≅ 𝔖𝑛.
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24 of 49 FAYERS et al.

The central involution 𝑧 yields a central idempotent 𝑒𝑧 = 1

2
(1 − 𝑧), and direct sum decomposi-

tion

𝔽𝔖̂𝑛 = 𝑒𝑧𝔽𝔖̂𝑛 ⊕ (1 − 𝑒𝑧)𝔽𝔖̂𝑛.

The algebra (1 − 𝑒𝑧)𝔽𝔖̂𝑛 is isomorphic to 𝔽𝔖𝑛, so we concentrate here on representations of
𝑒𝑧𝔽𝔖̂𝑛, often called the spin representations of 𝔖𝑛. We identify 𝑒𝑧𝔽𝔖̂𝑛 with the twisted group
algebra 𝑛, see [19, Section 13.1], where a superalgebra structure is defined on 𝑛 by letting 𝑒𝑧𝜎 be
even or odd depending on whether the image of 𝜎 in 𝔖𝑛 is even or odd.
The classification of irreducible spin supermodules in characteristic 0 goes back to Schur

(though Schur worked with modules rather than supermodules, and only constructed charac-
ters; the corresponding modules were constructed much later, by Nazarov [28]). For each strict
partition 𝜆 of 𝑛, there is an irreducible spin supermodule Sℂ(𝜆) for ℂ𝔖̂𝑛, and {Sℂ(𝜆)| 𝜆 ∈ 0(𝑛)}

is a complete irredundant set of irreducible spin supermodules. Moreover, recalling (2.1), the
supermodule Sℂ(𝜆) is of type 𝙼 if 𝑎(𝜆) = 0, and of type 𝚀 if 𝑎(𝜆) = 1.
The classification of irreducible supermodules in characteristic 𝑝 is due to Brundan and the

second author [2]. (Another classification is obtained in [1], and [21, Theorem B] shows that
the two classifications agree.) For each restricted 𝑝-strict partition 𝜇 of 𝑛, there is an irreducible
𝑛-supermodule D(𝜇), and {D(𝜇)| 𝜇 ∈ 𝑝(𝑛)} is a complete irredundant set of irreducible 𝑛-
supermodules. Moreover, D(𝜇) is of type 𝙼 if 𝜇 has an even number of nodes of non-zero residue,
and of type 𝚀 otherwise.
Since we shall be interested exclusively in representations in characteristic 𝑝, we use the nota-

tion S(𝜆) for a 𝑝-modular reduction of Sℂ(𝜆), viewed as a 𝑛-supermodule. Note that S(𝜆) is
not well defined as a supermodule, but its composition factors are. The (super) decomposition
number problem then asks for the composition multiplicities [S(𝜆) ∶ D(𝜇)] for 𝜆 ∈ 𝒫0(𝑛) and
𝜇 ∈ ℛ𝒫𝑝(𝑛).
The block classification for spinmodules is due toHumphreys [14]. Here, we prefer to deal with

spin superblocks, that is, indecomposable direct summands of 𝑛 as a superalgebra; in fact, blocks
and superblocks coincide except in the trivial case of simple blocks, so we ignore this distinction,
and say ‘block’ to mean ‘superblock’, see [20, §5.2b] for more details on this. With this convention,
each S(𝜆) belongs to a single block, and the 𝑛-supermodules S(𝜆) and D(𝜇) lie in the same block
if and only if 𝜆 and 𝜇 have the same 𝑝-bar-core. This automatically means that they have the
same 𝑝-bar-weight, so blocks are labelled by pairs (𝜌, 𝑑), where 𝜌 is a 𝑝-bar-core and 𝑑 ∈ ℕ0 with|𝜌| + 𝑝𝑑 = 𝑛. We write 𝜌,𝑑 for the block corresponding to the pair (𝜌, 𝑑).
An alternative statement of the block classification can be given using residues: in view of [26,

Theorem 5], two 𝑝-strict partitions of 𝑛 have the same 𝑝-bar-core if and only if they have the same
number of 𝑖-nodes for each 𝑖 ∈ 𝐼. So, we may alternatively label a block of 𝑛 with a multiset con-
sisting of 𝑛 elements of 𝐼, corresponding to the residues of the nodes of any partition labelling an
irreducible module in the block. We write 𝑆 for the block labelled by the multiset 𝑆. An impor-
tant consequence of this is that all the irreducible supermodules in a block have the same type; so
we say that a block has type 𝙼 or 𝚀 accordingly.
We also have a double cover 𝔄̂𝑛 ⊆ 𝔖̂𝑛 of the alternating group whose twisted group algebra

𝑒𝑧𝔽𝔄̂𝑛 can be identified with the even component (𝑛)0̄. Moreover, by [18, Proposition 3.16], the
even component 𝜌,𝑑

0̄
of 𝜌,𝑑 is a single block of 𝔽𝔄̂𝑛, unless 𝑑 = 0 and 𝜌,𝑑 is of type 𝙼. We refer

the reader to [20, §5.2b] for more on this.
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5.2 Branching rules and weights

The block classification using multisets of residues allows us to define restriction and induction
functors 𝐸𝑖 and 𝐹𝑖 . Suppose that 𝑀 is a 𝑛-supermodule lying in the block 𝑆 . Given 𝑖 ∈ 𝐼, we
define a 𝑛+1-module 𝐹𝑖𝑀 by inducing 𝑀 to 𝑛+1 and then taking the block component lying in
the block 𝑆⊔{𝑖} (if there is such a block; otherwise, we set 𝐹𝑖𝑀 ∶= 0). The restriction functor 𝐸𝑖

is defined in a similar way by restricting to 𝑛−1 and removing a copy of 𝑖 from 𝑆. The functors
𝐸𝑖, 𝐹𝑖 (which are called res𝑖 and ind𝑖 in [19, (22.17),(22.18)]) are defined for all 𝑛, so we can consider
powers 𝐸𝑟

𝑖
, 𝐹𝑟

𝑖
for 𝑟 ⩾ 0.

Given 𝜆 ∈ 𝒫0(𝑛), let 𝑀(𝜆, 𝑖) be the set of strict partitions of 𝑛 + 1 which can be obtained by
adding an 𝑖-node to 𝜆. Then, in view of [27, Theorem 3], in the Grothendieck group of 𝑛+1, we
have

[𝐹𝑖S(𝜆)] =
∑

𝜇∈𝑀(𝜆,𝑖)

𝑎𝜆𝜇[S(𝜇)], (5.1)

where 𝑎𝜆𝜇 equals 2 if 𝜆 is odd and 𝜇 is even, and 1 otherwise. Frobenius reciprocity yields a cor-
responding result for 𝐸𝑖S(𝜆). (This description of [𝐸𝑖S(𝜆)] and [𝐹𝑖S(𝜆)] can also be deduced by
considering the 𝑝 > 𝑛 case of [19, Theorems 22.3.4, 22.3.5].)
We can now apply the operators 𝐸𝑖 and 𝐹𝑖 to characters of supermodules (either ordinary char-

acters or 𝑝-modular Brauer characters) as well as to supermodules. For example, if 𝜒𝜆 denotes
the character of an irreducible supermodule 𝑆ℂ(𝜆), we define 𝐹𝑖𝜒

𝜆 =
∑

𝜇∈𝑀(𝜆,𝑖) 𝑎𝜆𝜇𝜒𝜇. We define
𝐸𝑖𝜒

𝜆 similarly.
The modular branching rules of Brundan–Kleshchev and Kleshchev–Shchigolev give infor-

mation on the modules 𝐸𝑖D(𝜇). We just need one result, and to state this, we need some more
combinatorics. Recall that in Section 2.1, for partitions 𝛼 ⊆ 𝛽, 𝛽 ⧵ 𝛼 has been defined to consist of
the nodes of 𝛽 which are not contained in 𝛼. Suppose that 𝜇 is a 𝑝-strict partition and 𝑖 ∈ 𝐼. Let
𝜇− denote the smallest 𝑝-strict partition such that 𝜇− ⊆ 𝜇 and 𝜇 ⧵ 𝜇− consists of 𝑖-nodes. These
nodes are called the removable 𝑖-nodes of 𝜇. Similarly, let 𝜇+ denote the largest 𝑝-strict partition
such that 𝜇+ ⊇ 𝜇 and 𝜇+ ⧵ 𝜇 consists of 𝑖-nodes. These nodes are called the addable 𝑖-nodes of 𝜇.
The 𝑖-signature of 𝜇 is the sequence of signs obtained by listing the addable and removable

𝑖-nodes of 𝜇 from left to right, writing a + for each addable 𝑖-node and a − for each removable 𝑖-
node. The reduced 𝑖-signature is the subsequence obtained by successively deleting adjacent pairs
+−. The removable nodes corresponding to the − signs in the reduced 𝑖-signature are called the
normal 𝑖-nodes of 𝜇.
The result we will need below is the following (see [21, Theorem A(ii)]).

Lemma 5.1. Suppose 𝜇 ∈ ℛ𝒫𝑝(𝑛) and 𝜈 ∈ ℛ𝒫𝑝(𝑛 − 1), and that 𝜈 is obtained from 𝜇 by
removing a normal 𝑖-node. Then D(𝜈) is a composition factor of 𝐸𝑖D(𝜇).

Now given a 𝑛-supermodule and a word 𝒊 = 𝑖1 … 𝑖𝑛 ∈ 𝐼𝑛, we say that 𝒊 is a weight of 𝑀 if
𝐸𝑖1

… 𝐸𝑖𝑛
𝑀 ≠ 0. The fact that the functors 𝐸𝑖 are exact, together with the results above, yields the

following.

Proposition 5.2. Suppose 𝑖 ∈ 𝐼 and 𝑖1 … 𝑖𝑛−1 ∈ 𝐼𝑛−1.
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26 of 49 FAYERS et al.

(i) Suppose 𝜆 ∈ 𝒫0(𝑛) and 𝜇 ∈ 𝒫0(𝑛 − 1) is obtained from 𝜆 by removing an 𝑖-node. If 𝑖1 … 𝑖𝑛−1 is
a weight of S(𝜇), then 𝑖1 … 𝑖𝑛−1𝑖 is a weight of S(𝜆).

(ii) Suppose 𝜇 ∈ ℛ𝒫𝑝(𝑛) and 𝜈 ∈ ℛ𝒫𝑝(𝑛 − 1) is obtained from 𝜇 by removing a normal 𝑖-node.
If 𝑖1 … 𝑖𝑛−1 is a weight of D(𝜈), then 𝑖1 … 𝑖𝑛−1𝑖 is a weight of D(𝜇).

For (much) more information on branching rules for 𝑛, see [19, Part II] and [21].

5.3 Virtual projective characters

Given 𝜆 ∈ 𝒫𝜌,𝑑
0

, we write 𝜒𝜆 for the character of the irreducible supermodule Sℂ(𝜆), and we
denote by Ch𝜌,𝑑 the ℚ-span of the set {𝜒𝜆 ∣ 𝜆 ∈ 𝒫𝜌,𝑑

0
} of class functions on 𝔖̂|𝜌|+𝑑𝑝.

For each 𝜇 ∈ ℛ𝒫𝜌,𝑑
𝑝 , we have an indecomposable projective supermodule 𝑃(𝜇) with simple

head 𝐷(𝜇). Lifting the idempotents as in the classical theory, we deduce that 𝑃(𝜇) lifts to char-
acteristic zero, yielding the character 𝜑𝜇 ∈ Ch𝜌,𝑑. We denote by PCh𝜌,𝑑 the ℚ-span of the set
{𝜑𝜇 ∣ 𝜇 ∈ ℛ𝒫𝜌,𝑑

𝑝 } and refer to the elements of PCh𝜌,𝑑 as virtual projective characters.
Note that {𝜒𝜆 ∣ 𝜆 ∈ 𝒫𝜌,𝑑

0
} is a basis for Ch𝜌,𝑑 since each 𝜒𝜆 is either an irreducible character

or a sum of two irreducible characters 𝜒𝜆,+ + 𝜒𝜆,−, and all the irreducible characters 𝜒𝜆,±, 𝜒𝜇

are distinct (cf. [19, Corollary 12.2.10]). Moreover, {𝜑𝜇 ∣ 𝜇 ∈ ℛ𝒫𝜌,𝑑
𝑝 } is a basis for PCh𝜌,𝑑. This is

proved as for the 𝜒𝜆. First, note that each 𝜑𝜇 is either an indecomposable projective character
or a sum of two indecomposable projective characters 𝜑𝜆,+ + 𝜑𝜆,−, and all the indecomposable
projective characters 𝜑𝜆,±, 𝜑𝜇 are distinct in view of [19, Proposition 12.2.12 and Lemma 12.2.16].
Then use linear independence of the indecomposable projective characters [6, Theorem 18.26(iii)].
Given 𝜑 =

∑
𝜆∈𝒫𝜌,𝑑

0

𝑎𝜆𝜒𝜆 ∈ Ch𝜌,𝑑, we write the coefficient 𝑎𝜆 as [𝜑 ∶ 𝜒𝜆]. We say that𝜒𝜆 occurs

in 𝜑 if [𝜑 ∶ 𝜒𝜆] is non-zero. Below we will use a superversion of Brauer reciprocity to compute
decomposition numbers for 𝜌,𝑑 in terms of the multiplicities [𝜑𝜇 ∶ 𝜒𝜆]:

[S(𝜆) ∶ D(𝜇)] =

⎧⎪⎨⎪⎩
2[𝜑𝜇 ∶ 𝜒𝜆] if Sℂ(𝜆) is of type 𝚀 and D(𝜇) is of type 𝙼,
1

2
[𝜑𝜇 ∶ 𝜒𝜆] if Sℂ(𝜆) is of type 𝙼 and D(𝜇) is of type 𝚀,

[𝜑𝜇 ∶ 𝜒𝜆] otherwise.
(5.2)

This follows from the classical Brauer reciprocity taking into account that when Sℂ(𝜆) is of type 𝚀,
we have 𝜒𝜆 = 𝜒𝜆,+ + 𝜒𝜆,−, and when D(𝜇) is of type 𝚀, we have 𝜑𝜆 = 𝜑𝜆,+ + 𝜑𝜆,−, and moreover,
D(𝜇) ≅ D(𝜇, +) ⊕ D(𝜇, −) for non-isomorphic irreducible modulesD(𝜇, +) andD(𝜇, −) obtained
from each other by tensoring with sign.

5.4 Projective characters from the 𝒒-deformed Fock space

Leclerc and Thibon [23] show how one can use canonical basis vectors to obtain another basis for
the space PCh𝜌,𝑑; we briefly outline the background. Let 𝑞 be an indeterminate. The level-1 Fock
space of type 𝐴(2)

2𝑙
is a ℚ(𝑞)-vector spaceℱ with a standard basis

{ |𝜆⟩ | 𝜆 a 𝑝-strict partition}.
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DECOMPOSITION NUMBERS FOR ROCK BLOCKS OF DOUBLE COVERS 27 of 49

This space is naturally a module for the quantum group 𝑈𝑞(𝐴(2)
2𝑙

). We note that the conventions
for residues (and for simple roots in type𝐴(2)

2𝑙
) used here are as in [12, 20] and differ from those in

[23]. The submodule ofℱ generated by the vector |∅⟩ possesses a canonical basis{
𝐺(𝜇) || 𝜇 a restricted 𝑝-strict partition

}
.

Expanding the canonical basis vectors in terms of the standard basis, one obtains the
𝑞-decomposition numbers 𝑑𝜆𝜇(𝑞), indexed by pairs of 𝑝-strict partitions 𝜆, 𝜇 with 𝜇 restricted:

𝐺(𝜇) =
∑

𝜆 𝑝-strict
𝑑𝜆𝜇(𝑞)|𝜆⟩.

In fact, [23, Theorem 4.1] implies that 𝑑𝜆𝜇(𝑞) is zero unless 𝜆 and 𝜇 have the same 𝑝-bar-core and
the same size, so for 𝜇 ∈ ℛ𝒫𝜌,𝑑

𝑝 , we actually have

𝐺(𝜇) =
∑

𝜆∈𝒫𝜌,𝑑
𝑝

𝑑𝜆𝜇(𝑞)|𝜆⟩. (5.3)

By [23, Theorem 4.1(i)], each 𝑑𝜆𝜇(𝑞) is a polynomial in 𝑞with integer coefficients. So, given a strict
partition 𝜆 and a restricted 𝑝-strict partition 𝜇, recalling (2.1), we can define the integers

𝐷𝜆𝜇 = 2⌊ 1
2

(ℎ𝑝(𝜆)+1−𝑎(𝜆))⌋𝑑𝜆𝜇(1),

where ℎ𝑝(𝜆) denotes the number of positive parts of 𝜆 that are divisible by 𝑝. Then, the discussion
in [23, Section 6] shows the following.

Proposition 5.3. Suppose that 𝜇 is a restricted 𝑝-strict partition of 𝑛. Then the character

𝜑̂𝜇 ∶=
∑

𝜆 strict
𝐷𝜆𝜇𝜒𝜆 (5.4)

is a virtual projective character of 𝔖̂𝑛. Moreover, {𝜑̂𝜇 ∣ 𝜇 ∈ ℛ𝒫𝜌,𝑑
𝑝 } is a basis for PCh𝜌,𝑑 .

In fact, the character 𝜑̂𝜇 coincides with 𝜑𝜇 quite often, and our main aim in this paper is to
show that 𝜑̂𝜇 = 𝜑𝜇 when 𝜇 ∈ ℛ𝒫𝜌,𝑑

𝑝 and 𝜌,𝑑 is an abelian defect RoCK block.

5.5 RoCK blocks for double covers and the Kleshchev–LiveseyMorita
equivalence

Now, following [20], we can define RoCK blocks: given a 𝑝-bar-core 𝜌 and 𝑑 ⩾ 0, we say that
𝜌,𝑑 is a RoCK block if 𝜌 is 𝑑-Rouquier. The term ‘RoCK’ is borrowed from the corresponding
theory for (non-spin) representations of symmetric groups, and stands for ‘Rouquier or Chuang
–Kessar’.
The definition of spin RoCK blocks is a natural analogue of the non-spin situation, and we

expect that RoCK blocks will play a similarly important role. This has already begun with the use
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28 of 49 FAYERS et al.

of RoCK blocks in proving Broué’s conjecture for double covers [4, 9, 20]. Our purpose in this
paper is to emulate the work of Chuang and Tan in the non-spin case and find the decomposition
numbers for RoCK blocks.
Recall the material of Section 4, in particular, the wreath superproduct 𝖶𝑑 = 𝖠𝓁 ≀ 𝔖𝑑. One of

themain results of [20] is aMorita superequivalence relating aRoCK (super)block𝜌,𝑑 with𝑑 < 𝑝

and 𝖶𝑑. This easily implies the following theorem.

Theorem 5.4. Suppose 1 ⩽ 𝑑 < 𝑝, and 𝜌 is a 𝑑-Rouquier 𝑝-bar-core. Then, we have a Morita
equivalence

𝖶𝑑 ∼Mor

{
𝜌,𝑑 if 𝜌,𝑑 is of type 𝙼,


𝜌,𝑑

0̄
if 𝜌,𝑑 is of type 𝚀.

Proof. By [20, Proposition 5.4.10(i)], we have a Morita superequivalence

𝜌,𝑑 ∼sMor

{
𝖶𝑑 if 𝜌,𝑑 is of type 𝙼,
𝖶𝑑 ⊗ 1 if 𝜌,𝑑 is of type 𝚀.

where 1 is the Clifford superalgebra of rank 1. If 𝜌,𝑑 is of type 𝙼, the result follows immediately
since Morita superequivalence implies Morita equivalence, see [20, §2.2c]. If 𝜌,𝑑 is of type 𝚀,
then we obtain 𝜌,𝑑 ⊗ 1 ∼sMor 𝖶𝑑 ⊗ 1 ⊗ 1 ≃ 𝖶𝑑 ⊗ 2, and we apply [20, Lemmas 2.2.19 and
2.2.20]. □

5.6 The regularisation theorem

One of the early general results concerning decomposition numbers for symmetric groups
is James’s regularisation theorem [15]. Later, we will need the analogue for spin modules,
which was proved by Brundan and the second author [3, Theorem 1.2]. They define (in
a combinatorial way) a function 𝜆 ↦ 𝜆reg from 𝒫0(𝑛) to ℛ𝒫𝑝(𝑛) and prove the following
statement.

Theorem 5.5. Suppose that 𝜆 is a strict partition. Then, D(𝜆reg) occurs as a composition factor of
S(𝜆), and D(𝜈) is a composition factor of S(𝜆) only if 𝜆reg � 𝜈.

We will not need the exact definition of regularisation, since we use an alternative description
of regularisation in RoCK blocks, as follows.

Lemma 5.6. Suppose that 𝜌 is a 𝑑-Rouquier 𝑝-bar-core, and 𝜆 ∈ 𝒫𝜌,𝑑
0

with 𝑝-bar-quotient
(𝜆(0), … , 𝜆(𝓁)). Then 𝜆reg is the partition inℛ𝒫𝜌,𝑑

𝑝 with 𝑝-bar-quotient

(𝜆(0), … , 𝜆(𝓁−2), 𝜆(𝓁−1) + 𝜆(𝓁)′
, ∅).

Lemma 5.6 is not very hard to prove directly from the combinatorial definition of 𝜆reg, but we
will give a proof using canonical basis coefficients in Section 6.1.
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6 PROJECTIVE CHARACTERS

Having summarised all the backgroundwe need, we nowwork towards ourmain result. Through-
out this section, we fix an integer 𝑑 ⩾ 1 and a 𝑑-Rouquier 𝑝-bar-core 𝜌. Our aim is to work with
projective characters in 𝜌,𝑑; our main result in this section is to find the decomposition matrix
for 𝜌,𝑑 up to multiplying by a non-negative unitriangular matrix. Note that the results of this
section do not require 𝑑 < 𝑝.

6.1 Projective characters 𝝋̂𝝁 in RoCK blocks

Recall the virtual projective characters 𝜑̂𝜇 defined in (5.4). One of the main results of the first
author’s paper [12] is an explicit determination of the canonical basis vectors 𝐺(𝜇) for partitions
in RoCK blocks. As a result of this, we can give the characters 𝜑̂𝜇 in 𝜌,𝑑 explicitly.
Firstly, we give the formula for the canonical basis coefficients in a weight space corresponding

to a RoCK block. Recall the notation of Section 2.3.

Theorem 6.1 [12, Theorem 8.2]. Suppose that 𝜌 is a 𝑑-Rouquier 𝑝-bar-core, 𝜆 ∈ 𝒫𝜌,𝑑
𝑝 and 𝜇 ∈

ℛ𝒫𝜌,𝑑
𝑝 . Then

𝑑𝜆𝜇(𝑞) =
∑

𝐾−1
𝜆(0)𝜎(0)

(−𝑞2)

𝓁∏
𝑖=1

c(𝜆(𝑖); 𝜎(𝑖), 𝜏(𝑖)) c(𝜇(𝑖−1); 𝜎(𝑖−1), 𝜏(𝑖)′
)𝑞2

∑
𝑖∈𝐼 𝑖(|𝜆(𝑖)|−|𝜇(𝑖)|),

where the sum is over all partitions 𝜎(0), … , 𝜎(𝓁−1), 𝜏(1), … , 𝜏(𝓁), and we read 𝜎(𝓁) as ∅.

As a consequence, we can write down the characters 𝜑̂𝜇 in RoCK blocks; this follows from
Theorem 6.1, (5.3) and the definition (5.4).

Corollary 6.2. Suppose that 𝜌 is a 𝑑-Rouquier 𝑝-bar-core and 𝜇 ∈ ℛ𝒫𝜌,𝑑
𝑝 . Then

𝜑̂𝜇 =
∑

𝜆∈𝒫𝜌,𝑑
0

2⌊ 1
2

(ℎ(𝜆(0))+1−𝑎(𝜆))⌋∑𝐾−1
𝜆(0)𝜎(0)

(−1)

𝓁∏
𝑖=1

c(𝜆(𝑖); 𝜎(𝑖), 𝜏(𝑖)) c(𝜇(𝑖−1); 𝜎(𝑖−1), 𝜏(𝑖)′
)𝜒𝜆,

where the second sum is over all partitions 𝜎(0), … , 𝜎(𝓁−1), 𝜏(1), … , 𝜏(𝓁), and we read 𝜎(𝓁) as ∅.

Corollary 6.3. Suppose that 𝜌 is a 𝑑-Rouquier 𝑝-bar-core and 𝜇 ∈ ℛ𝒫𝜌,𝑑
𝑝 . Then 𝜑̂𝜇 is a

non-negative integral linear combination of irreducible characters 𝜒𝜆 with 𝜆 ∈ 𝒫𝜌,𝑑
0

.

Proof. Follows from Corollary 6.2 and Lemma 2.4. □

We now use Theorem 6.1 to give the deferred proof of Lemma 5.6. This relies on the following
regularisation theorem for canonical basis coefficients.

Theorem6.4 [10, Theorem3.2]. If𝜆 ∈ 𝒫𝑝(𝑛)and𝜇 ∈ ℛ𝒫𝑝(𝑛), then𝑑𝜆𝜆reg (𝑞) ≠ 0, and𝑑𝜆𝜇(𝑞) = 0

unless 𝜆reg � 𝜇.
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Proof of Lemma 5.6. The lemma asserts that 𝜆reg is the partition 𝜈 ∈ 𝒫𝜌,𝑑
𝑝 defined by

𝜈(𝑖) =

⎧⎪⎨⎪⎩
𝜆(𝑖) if 0 ⩽ 𝑖 ⩽ 𝓁 − 2,

𝜆(𝓁−1) + 𝜆(𝓁)′ if 𝑖 = 𝓁 − 1,

∅ if 𝑖 = 𝓁.

Theorem 6.4 shows that 𝜆reg is the most dominant 𝑝-strict partition 𝜇 for which 𝑑𝜆𝜇(𝑞) ≠ 0. So, to
show that 𝜆reg = 𝜈 we must show that 𝑑𝜆𝜈(𝑞) ≠ 0, and that if 𝜇 � 𝜈 with 𝑑𝜆𝜇(𝑞) ≠ 0, then 𝜇 = 𝜈.
Showing that 𝑑𝜆𝜈(𝑞) ≠ 0 is straightforward: in order to obtain a non-zero summand in the for-

mula in Theorem 6.1, we must take 𝜎(𝑖) = 𝜆(𝑖) for 0 ⩽ 𝑖 ⩽ 𝓁 − 1, 𝜏(𝑖) = ∅ for 1 ⩽ 𝑖 ⩽ 𝓁 − 1, and
𝜏(𝓁) = 𝜆(𝓁), giving 𝑑𝜆𝜈(𝑞) = 𝑞2|𝜆(𝓁)|.
Now take a 𝑝-strict partition such that 𝜇 � 𝜈 and 𝑑𝜆𝜇(𝑞) ≠ 0. From (5.3), 𝜇 must lie inℛ𝒫𝜌,𝑑

𝑝 .
Choose partitions 𝜎(𝑖), 𝜏(𝑖) for which the summand in Theorem 6.1 is non-zero. We assume for
the rest of the proof that 𝑝 ⩾ 5; a minor modification is needed when 𝑝 = 3, which we leave to
the reader.
In view of Lemma 3.2, the assumption that 𝜇 � 𝜈 means that

|𝜇(0)| + ⋯ + |𝜇(𝑟)| ⩽ |𝜆(0)| + ⋯ + |𝜆(𝑟)|
for 0 ⩽ 𝑟 ⩽ 𝓁 − 2. On the other hand, the non-vanishing of the polynomial 𝐾−1

𝜆(0)𝜎(0)
(−𝑞2) and of

the Littlewood–Richardson coefficients c(𝜆(𝑖); 𝜎(𝑖), 𝜏(𝑖)) and c(𝜇(𝑖−1); 𝜎(𝑖−1), 𝜏(𝑖)′
) implies that

|𝜇(0)| + ⋯ + |𝜇(𝑟)| = |𝜆(0)| + ⋯ + |𝜆(𝑟)| + |𝜏(𝑟+1)|
for 0 ⩽ 𝑟 ⩽ 𝓁 − 1. So, |𝜏(1)| = ⋯ = |𝜏(𝓁−1)| = 0 and |𝜏(𝓁)| = |𝜆(𝓁)|. Again, by the non-vanishing of
the Littlewood–Richardson coefficients, it then follows that 𝜏(1) = ⋯ = 𝜏(𝓁−1) = ∅, while 𝜏(𝓁) =

𝜆(𝓁). This, in turn, gives 𝜎(𝑖) = 𝜇(𝑖) for 0 ⩽ 𝑖 ⩽ 𝓁 − 2, and 𝜎(𝑖) = 𝜆(𝑖) for 1 ⩽ 𝑖 ⩽ 𝓁 − 1, so that

⋄ 𝐾−1
𝜆(0)𝜇(0)

(𝑡) ≠ 0,

⋄ 𝜇(𝑖) = 𝜆(𝑖) for 1 ⩽ 𝑖 ⩽ 𝓁 − 2,
⋄ c(𝜇(𝓁−1); 𝜆(𝓁−1), 𝜆(𝓁)′

) ≠ 0.

In particular, |𝜇(𝑖)| = |𝜈(𝑖)| for all 𝑖, so (again using Lemma 3.2) the assumption 𝜇 � 𝜈 amounts
to the statement that 𝜇(𝑖) � 𝜈(𝑖) for all 𝑖. But now the only way that 𝐾−1

𝜆(0)𝜇(0)
(𝑡) = 𝐾−1

𝜈(0)𝜇(0)
(𝑡) can

be non-zero is if 𝜇(0) = 𝜈(0) = 𝜆(0). A standard result about Littlewood–Richardson coefficients
is that the most dominant partition 𝜉 for which c(𝜉; 𝜆(𝓁−1), 𝜆(𝓁)′

) ≠ 0 is 𝜆(𝓁−1) + 𝜆(𝓁)′, so we also
obtain 𝜇(𝓁−1) = 𝜈(𝓁−1), and therefore, 𝜇 = 𝜈. □

6.2 Gelfand–Graev induction

Our aim is to explore the relationship between the characters 𝜑𝜇 and 𝜑̂𝜇 by considering a third
set of projective characters obtained by inducing the projective character 𝜒𝜌 along special words
which we call thick Gelfand–Graev words. Recall the induction operators 𝐹𝑖 from Section 5.2.

 14697750, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12852 by T

echnische Inform
ationsbibliot, W

iley O
nline L

ibrary on [25/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DECOMPOSITION NUMBERS FOR ROCK BLOCKS OF DOUBLE COVERS 31 of 49

Given 𝑖 ∈ 𝐽 and 𝑘 ⩾ 1, we define the corresponding thick Gelfand–Graev word (cf. [20, (4.2.1)])

g 𝑖,𝑘 ∶= 𝓁𝑘(𝓁 − 1)2𝑘 … (𝑖 + 1)2𝑘𝑖𝑘 … 1𝑘02𝑘1𝑘 … 𝑖𝑘 (6.1)

and the corresponding induction operator

𝐹(𝑖, 𝑘) ∶= 𝐹𝑘
𝑖 … 𝐹𝑘

1 𝐹2𝑘
0 𝐹𝑘

1 … 𝐹𝑘
𝑖 𝐹2𝑘

𝑖+1 … 𝐹2𝑘
𝓁−1

𝐹𝑘
𝓁 . (6.2)

We want to know what these operators do to characters in a RoCK block.

Remark 6.5. We could define divided power induction operators 𝐹(𝑟)
𝑖

∶=
𝐹𝑟

𝑖

𝑟!
and use them in place

of the usual powers in the definition of 𝐹(𝑖, 𝑘). This would produce slightly simpler formulas in
Propositions 6.6 and 6.7 below but would notmake things any easier, since, a priori, 𝐹(𝑟)

𝑖
is defined

on the Grothendieck groups with scalars extended from ℤ to ℚ (although one can check, using
[19, Lemma 22.3.15] for the case of large 𝑝, that, in fact, 𝐹(𝑟)

𝑖
is always defined on the Grothendieck

groups without extending scalars; we will not pursue this).

Proposition 6.6. Take 𝑖 ∈ 𝐽, 𝜆 ∈ 𝒫𝜌,𝑐
0

and 𝛼 ∈ 𝒫𝜌,𝑐+𝑘
0

, where 𝑘 ⩾ 1 and 𝑐 + 𝑘 ⩽ 𝑑. Then, 𝜒𝛼

occurs in 𝐹(𝑖, 𝑘)𝜒𝜆 if and only if the 𝑝-bar-quotient (𝛼(0), … , 𝛼(𝓁)) is obtained from (𝜆(0), … , 𝜆(𝓁)) by
adding𝑘 nodes in components 𝑖 and 𝑖 + 1, with no twonodes added in the same columnof component
𝑖 or in the same row of component 𝑖 + 1. If 𝛼 satisfies this condition, define

𝑓(𝜆, 𝛼) = ||{ 𝑐 ⩾ 1 | 𝛼(0) ⧵ 𝜆(0) contains a node in column 𝑐 but not in column 𝑐 + 1}||.
Then

[𝐹(𝑖, 𝑘)𝜒𝜆 ∶ 𝜒𝛼] = 2𝑓(𝜆,𝛼)+ 1
2

(𝑘(𝑝−2)+ℎ(𝜆(0))−ℎ(𝛼(0))+𝑎(𝜆)−𝑎(𝛼))(2𝑘)!𝓁−𝑖𝑘!2𝑖+1.

Proof. Firstly, we assume 𝑖 > 0.
For 𝑗 ∈ 𝐼, we define a 𝑗-hook to be a set of nodes of the form

{(𝑟 + 𝓁 − 𝑗, 𝑐 + 𝑗 + 1), (𝑟 + 𝓁 − 𝑗 − 1, 𝑐 + 𝑗 + 2), … , (𝑟, 𝑐 + 𝓁 + 1), (𝑟, 𝑐 + 𝓁 + 2), … , (𝑟, 𝑐 + 𝑗 + 𝑝)}

for 𝑟 ⩾ 1 and 𝑐 ⩾ 0 with 𝑝 ∣ 𝑐. In other words, a 𝑗-hook is a set of 𝑝 nodes with residues in the
configuration below.
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In [20, Section 4.1a], Kleshchev and Livesey observe that if 𝜆 ∈ 𝒫𝜌,𝑐
0

with 𝑐 < 𝑑, then adding a
node to the 𝑗th component of the 𝑝-bar-quotient of 𝜆 corresponds to adding a 𝑗-hook to 𝜆.
By Proposition 3.3, if 𝜆 ∈ 𝒫𝜌,𝑐

0
and 𝛼 ∈ 𝒫𝜌,𝑐+𝑘

0
with 𝛼 ⊇ 𝜆, then 𝛼 can be obtained from 𝜆 by

adding some 𝑝-bars. Thus, 𝛼(𝑗) ⊇ 𝜆(𝑗) for all 𝑗 ∈ 𝐼. In particular, if 𝜒𝛼 occurs in 𝐹(𝑖, 𝑘)𝜒𝜆, then 𝛼

is obtained from 𝜆 by adding 𝑗-hooks (for various values of 𝑗). But by the branching rule 𝛼 is also
obtained from 𝜆 by adding nodes one at a time, with a specific sequence of residues determined
by the definition of 𝐹(𝑖, 𝑘). In particular, the last 𝑘 nodes added must all have residue 𝑖, so there
must be a strict partition 𝛽 with 𝜆 ⊂ 𝛽 ⊂ 𝛼 such that 𝛼 ⧵ 𝛽 comprises 𝑘 nodes of residue 𝑖.
In any of the individual 𝑗-hooks comprising 𝛼 ⧵ 𝜆, the last node added must either be the left-

most node of residue 𝑗, or the rightmost node of residue 𝑗 − 1. So, the last node added can have
residue 𝑖 only if 𝑗 = 𝑖 or 𝑖 + 1. Moreover, the assumption that 𝑖 > 0 means that the last two nodes
added in a given 𝑗-hook cannot both have residue 𝑖. So, the only way the last 𝑘 nodes added in
reaching 𝛼 from 𝜆 can all have residue 𝑖 is if all the added hooks are 𝑖-hooks or (𝑖 + 1)-hooks, and
each of these hooks contains exactly one node of 𝛼 ⧵ 𝛽. In particular, the 𝑝-bar-quotient of 𝛼 is
obtained from the 𝑝-bar-quotient of 𝜆 by adding nodes in components 𝑖 and 𝑖 + 1.
If two nodes are added to the same column of 𝜆(𝑖), the corresponding 𝑖-hooks are diagonally

adjacent, as in the following diagram.

But now the 𝑖-hook on the right cannot contain a node of 𝛼 ⧵ 𝛽, because the 𝑖-node at the left
of this hook must be added before the (𝑖 − 1)-node at the right of the hook on the left. This is a
contradiction. Similarly, if two nodes are added to the same row of 𝜆(𝑖+1), then the corresponding
hooks are horizontally adjacent, and we reach a contradiction in the same way.

This is enough to prove the ‘only if’ part of the proposition. For the ‘if’ part, suppose that the 𝑝-
bar-quotient of 𝛼 is obtained from the 𝑝-bar-quotient of 𝜆 by adding nodes in different columns
of 𝜆(𝑖) and in different rows of 𝜆(𝑖+1). To show that 𝜒𝛼 occurs in 𝐹(𝑖, 𝑘)𝜒𝜆, we show that we can
get from 𝜆 to 𝛼 by adding nodes one at a time with the appropriate sequence of residues.
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We begin by adding all the 𝓁-nodes in 𝛼 ⧵ 𝜆 (in an arbitrary order), then all the (𝓁 − 1)-nodes,
and so on, down to the (𝑖 + 1)-nodes. Then we add an 𝑖-node in each hook, then an (𝑖 − 1)-node
in each hook, and so on, working along the arm of each hook, until we add a node of residue 1 to
each hook. Then we add all nodes of residue 0 in 𝛼 ⧵ 𝜆, and then all remaining nodes of residues
1, … , 𝑖 in turn. The assumptions on 𝛼 mean that we obtain a strict partition at each stage, so 𝜒𝛼

does occur in 𝐹(𝑖, 𝑘)𝜒𝜆.
The construction in the preceding paragraph enables us to compute the coefficient of 𝜒𝛼 in

𝐹(𝑖, 𝑘)𝜒𝜆. To do this, we need to count possible orders in which the nodes of 𝛼 ⧵ 𝜆 can be added
to 𝜆 with the required sequence of residues, so that the partition obtained at each stage is strict.
For each term 𝐹𝑎𝑘

𝑗
appearing in 𝐹(𝑖, 𝑘), we need to add 𝑎𝑘 nodes of residue 𝑗, and it is clear that

the choice made in the previous paragraph is the only possibility: in order to be able to add the
nodes of residue 0 in a given hook when applying 𝐹2𝑘

0
, we must already have added the nodes of

residues 𝑖, 𝑖 − 1, … , 1 to the left of the nodes of residue 0 in that hook. So, our only choice is in
which order to add the 𝑗-nodes for each factor 𝐹𝑎𝑘

𝑗
. In each case, we have a free choice, except for

the factor 𝐹2𝑘
0
: here in each hook, the leftmost 0-node must be added before the rightmost one.

So, the number of choices of order is

𝑘! ×

𝓁−1∏
𝑗=𝑖+1

(2𝑘)! ×

𝑖∏
𝑖=1

𝑘!2 ×
(2𝑘)!

2𝑘
=

𝑘!2𝑖+1(2𝑘)!𝓁−𝑖

2𝑘
.

It remains to consider the coefficients 𝑎𝜆𝜇 appearing in the branching rule. Because 𝑖 > 0, the
assumptions on 𝛼 give 𝛼(0) = 𝜆(0), which, in turn, implies that ℎ(𝜆) = ℎ(𝛼); therefore, as we go
from 𝜆 to 𝛼 by adding nodes, the partitions obtained alternate between even and odd. So, the
number of times we pass from an odd partition to an even partition is 1

2
(𝑘𝑝 + 𝑎(𝜆) − 𝑎(𝛼)). This

yields

[𝐹(𝑖, 𝑘)𝜒𝜆 ∶ 𝜒𝛼] = 2
1
2

(𝑘(𝑝−2)+𝑎(𝜆)−𝑎(𝛼))(2𝑘)!𝓁−𝑖𝑘!2𝑖+1,

which agrees with the proposition because 𝜆(0) = 𝛼(0).
Nowwe consider the casewhere 𝑖 = 0. Now in order for𝜒𝛼 to appear in𝐹(𝑖, 𝑘)𝜒𝜆, it must be the

case that 𝛼 is obtained from 𝜆 by adding 𝑗-hooks, and now theremust exist a strict partition 𝛽 with
𝜆 ⊂ 𝛽 ⊂ 𝛼 such that 𝛼 ⧵ 𝛽 comprises 2𝑘 nodes of residue 0. Arguing as in the previous case, this
implies that 𝛼(𝑗) = 𝜆(𝑗) for 𝑗 ⩾ 2, while 𝛼(1) is obtained from 𝜆(1) by adding nodes in distinct rows,
and 𝛼(0) ⊇ 𝜆(0). Now if two nodes are added in the same column of 𝜆(0), then the corresponding
0-hooks are vertically stacked, as in the following diagram.

But now the upper 0-bar cannot contain any nodes of 𝛼 ⧵ 𝛽, giving a contradiction. So, again, we
find that the nodes added to 𝜆(0) to obtain 𝛼(0) must be added in distinct columns.
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34 of 49 FAYERS et al.

Now suppose that 𝛼 satisfies the conditions, and consider how we can obtain 𝛼 from 𝜆 by
applying 𝐹(0, 𝑘) ∶= 𝐹2𝑘

0
𝐹2𝑘

1
… 𝐹2𝑘

𝓁−1
𝐹𝑘
𝓁 . For each of the residues 𝑗 = 𝓁,𝓁 − 1, … , 1, we can add the

𝑗-nodes of 𝛼 ⧵ 𝜆. In each added 1-hook, the two 0-nodes must be added in order from left to right,
but otherwise there are no restrictions on the 1-hooks. The 0-nodes occurring in the added 0-
hooks can be added in any order, except that when two added 0-hooks correspond to nodes in
consecutive columns of 𝛼(0), then the rightmost 0-node of the left hook is adjacent to the leftmost
0-node of the right hook (as in one of the following diagrams) so that these two nodes must be
added in a specific order.

As a result, we obtain a coefficient 𝑘!(2𝑘)!𝓁∕2𝑘−𝑓(𝜆,𝛼). But we also need to take into account the
coefficients coming from the branching rule: the partitions obtained as we add nodes alternate
between even and odd, except when we add a node in column 1. So, we obtain a further factor
2

1
2

(𝑘𝑝+𝑎(𝜆)−𝑎(𝛼)+ℎ(𝜆)−ℎ(𝛼)). Putting these coefficients together, we obtain

[𝐹(0, 𝑘)𝜒𝜆 ∶ 𝜒𝛼] = 2𝑓(𝜆,𝛼)+ 1
2

(𝑘(𝑝−2)+ℎ(𝜆)−ℎ(𝛼)+𝑎(𝜆)−𝑎(𝛼))(2𝑘)!𝓁𝑘!,

in agreement with the proposition. □

6.3 Projective characters obtained by induction

Our aim is to explore the relationship between the characters 𝜑𝜇 and 𝜑̂𝜇, which we do by
considering a third set of projective characters.
Recall from Section 2.1 the set 𝒫𝜌,𝑑

𝑝′ ⊆ 𝒫𝜌,𝑑
0

of the 𝑝′-partitions in 𝒫𝜌,𝑑
𝑝 . By Lemma 3.1(ii), a

partition 𝜆 ∈ 𝒫𝜌,𝑑
𝑝 is 𝑝′ if and only if 𝜆(0) = ∅. Recall (6.2). Given 𝜆 ∈ 𝒫𝜌,𝑑

𝑝′ , we will define a
projective character 𝜑̃𝜆 by inducing the projective character 𝜒𝜌:

𝜑̃𝜆 =

𝓁∏
𝑖=1

𝜆
(𝑖)
1∏

𝑟=1

𝐹(𝑖 − 1, 𝜆(𝑖)′

𝑟) 𝜒𝜌 ∈ PCh𝜌,𝑑, (6.3)

where the factors 𝐹(𝑖 − 1, 𝜆(𝑖)′

𝑟) can be taken in any order. (It is not obvious at this stage that 𝜑̃𝜆

is independent of the order of the factors, but we will see in Corollary 6.9(ii) that this is the case.
For now, we define 𝜑̃𝜆 by fixing an arbitrary order for each 𝜆.)
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For any strict partition 𝜋 and any composition 𝛾, let 𝑐(𝜋; 𝛾) be the number of ways 𝜋 can be
obtained from ∅ by adding at each step 𝛾𝑖 nodes all in different columns such that each step a
strict partition is obtained. Now given 𝛼 ∈ 𝒫𝜌,𝑑

0
and 𝜆 ∈ 𝒫𝜌,𝑑

𝑝′ , define

𝐷̃𝜆 = 2
1
2

(𝑑(𝑝−2)+𝑎(𝜆)−𝑎(𝜌))
𝓁∏

𝑖=1

∏
𝑟⩾1

(2𝜆(𝑖)′

𝑟)!
𝑙−𝑖+1𝜆(𝑖)′

𝑟!
2𝑖−1,

𝐷̃𝜆𝛼 = 𝐷̃𝜆

∑
𝛽(1),…,𝛽(𝓁)∈𝒞
𝛾(1),…,𝛾(𝓁)∈𝒞

𝛽(𝑖)+𝛾(𝑖)=𝜆(𝑖)′

𝑐(𝛼(0); 𝛾(1))

𝓁∏
𝑖=1

[
(𝛽(𝑖)

⊗ 𝚜𝚐𝚗) ◦𝛾(𝑖+1)
∶ 𝛼(𝑖)

]
,

where we read 𝛾(𝓁+1) as ∅. Then we can deduce the following result from Proposition 6.6.

Proposition 6.7. Suppose 𝛼 ∈ 𝒫𝜌,𝑑
0

and 𝜆 ∈ 𝒫𝜌,𝑑

𝑝′ . Then 𝜒𝛼 occurs in 𝜑̃𝜆 if and only if 𝐷̃𝜆𝛼 ≠ 0.
Furthermore, if 𝛼 is a 𝑝′-partition, then [𝜑̃𝜆 ∶ 𝜒𝛼] = 𝐷̃𝜆𝛼 .

Proof. We construct 𝜑̃𝜆 by starting from 𝜒𝜌 and applying each of the operators 𝐹(𝑖 − 1, 𝜆(𝑖)′

𝑟), for
1 ⩽ 𝑖 ⩽ 𝓁 and 1 ⩽ 𝑟 ⩽ 𝜆(𝑖)

1
. We start from the 𝑝-bar-quotient of 𝜌, that is, (∅, … , ∅), and when we

apply 𝐹(𝑖 − 1, 𝜆(𝑖)′

𝑟), we add 𝜆(𝑖)′

𝑟 nodes in components 𝑖 − 1 and 𝑖 in accordance with Proposi-
tion 6.6, and we consider the possible choices of how to add these nodes. Let 𝛽(𝑖)

𝑟 be the number
of nodes we add in component 𝑖, and 𝛾(𝑖)

𝑟 the number of nodes we add in component 𝑖 − 1. This
defines partitions 𝛽(𝑖), 𝛾(𝑖) for 1 ⩽ 𝑖 ⩽ 𝓁 with 𝛽(𝑖) + 𝛾(𝑖) = 𝜆(𝑖)′, and we need to consider all possi-
ble such choices of 𝛽(𝑖), 𝛾(𝑖). Take a particular choice of 𝛽(𝑖), 𝛾(𝑖), and consider the coefficient of 𝜒𝛼

obtained. Recall from Proposition 6.6 that when we apply 𝐹(𝑖 − 1, 𝜆(𝑖)′

𝑟), the nodes added in com-
ponent 𝑖 − 1must be in distinct columns, and the nodes added in component 𝑖 must be in distinct
rows. So (by the Pieri rule), the number of ways of obtaining the 𝑝-bar-quotient (𝛼(0), 𝛼(1), … , 𝛼(𝓁))

is

𝑐(𝛼(0); 𝛾(1))

𝓁∏
𝑖=1

c(𝛼(𝑖); (𝛾(𝑖+1)
1

), (𝛾(𝑖+1)
2

), … , (1𝛽
(𝑖)
1 ), (1𝛽

(𝑖)
2 ), …)

= 𝑐(𝛼(0); 𝛾(1))

𝓁∏
𝑖=1

[
(𝛽(𝑖)

⊗ sgn)◦𝛾(𝑖+1)
∶ 𝛼(𝑖)

]
by Lemma 2.1; here, we read 𝛾(𝓁+1) = ∅.
We sum over all possible choices of 𝛽(𝑖), 𝛾(𝑖) to get 𝐷̃𝜆𝛼∕𝐷̃𝜆; so, the coefficient of 𝜒𝛼 is non-zero

if and only if 𝐷̃𝜆𝛼 ≠ 0. In the case where 𝛼 is a 𝑝′-partition, the product of the coefficients arising
from Proposition 6.6 is 𝐷̃𝜆, so the coefficient of 𝜒𝛼 in 𝜑̃𝜆 is 𝐷̃𝜆𝛼. □

Our next task is to show that the characters 𝜑̃𝜆 are linearly independent. Firstly, we use Proposi-
tion 6.7 to give more information about the structure of the characters 𝜑̃𝜆. Recall the partial order
≽ on multipartitions from Section 3.
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36 of 49 FAYERS et al.

Proposition 6.8. Suppose 𝜆 ∈ 𝒫𝜌,𝑑

𝑝′ . Then the character 𝜒𝜆 occurs in 𝜑̃𝜆, while any character 𝜒𝛼

occurring in 𝜑̃𝜆 satisfies

(𝜆(0), … , 𝜆(𝓁)) ≼ (𝛼(0), … , 𝛼(𝓁)) ≼ (𝜆(1)′
, … , 𝜆(𝓁)′

, ∅).

Proof. Certainly,𝜒𝜆 occurs in 𝜑̃𝜆: in the sum inProposition 6.7,we can take𝛽(𝑖) = 𝜆(𝑖)′ and 𝛾(𝑖) = ∅

for all 𝑖; the corresponding summand is then

𝓁−1∏
𝑖=1

[
𝜆(𝑖)′

⊗ 𝚜𝚐𝚗 ∶ 𝜆(𝑖)
]

=

𝓁−1∏
𝑖=1

[
𝜆(𝑖)′

⊗ 𝚜𝚐𝚗 ∶ 𝜆(𝑖)′

⊗ 𝚜𝚐𝚗
]

=

𝓁−1∏
𝑖=1

[
𝜆(𝑖)′

∶ 𝜆(𝑖)′]
,

which is well known to be non-zero (indeed, 𝜆(𝑖)′

is defined to be a submodule of𝜆(𝑖)′

).
Now suppose that 𝜒𝛼 occurs in 𝜑̃𝜆, and choose 𝛽(1), … , 𝛽(𝓁), 𝛾(1), … , 𝛾(𝓁) such that the corre-

sponding summand in 𝐷̃𝜆𝛼 is non-zero. Then, in particular, |𝛼(𝑖)| = |𝛽(𝑖)| + |𝛾(𝑖+1)| for 0 ⩽ 𝑖 ⩽ 𝓁
(where we read 𝛽(0) = 𝛾(𝓁+1) = ∅). To show that ( 𝛼( 0), … , 𝛼(𝓁)) ≽ ( 𝜆( 0), … , 𝜆(𝓁)), take 0 ⩽ 𝑘 ⩽ 𝓁
and 𝑐 ⩾ 1. Then, (

𝑘−1∑
𝑖=0

|𝛼(𝑖)| +

𝑐∑
𝑖=1

𝛼(𝑘)′

𝑖

)
−

(
𝑘−1∑
𝑖=0

|𝜆(𝑖)| +

𝑐∑
𝑖=1

𝜆(𝑘)′

𝑖

)

= |𝛾(𝑘)| +

𝑐∑
𝑖=1

𝛼(𝑘)′

𝑖 −

𝑐∑
𝑖=1

𝜆(𝑘)′

𝑖

⩾ |𝛾(𝑘)| +

𝑐∑
𝑖=1

(𝛽(𝑘) ⊔ 𝛾(𝑘+1)′
)𝑖 −

𝑐∑
𝑖=1

𝛽(𝑘)
𝑖

−

𝑐∑
𝑖=1

𝛾(𝑘)
𝑖

⩾

𝑐∑
𝑖=1

(𝛽(𝑘) ⊔ 𝛾(𝑘+1)′
)𝑖 −

𝑐∑
𝑖=1

𝛽(𝑘)
𝑖

⩾ 0,

as required.
To show that (𝛼(0), … , 𝛼(𝓁)) ≼ (𝜆(1)′

, … , 𝜆(𝓁)′
, ∅), take 0 ⩽ 𝑘 ⩽ 𝓁 and 𝑐 ⩾ 1. Then,(

𝑘−1∑
𝑖=0

|𝜆(𝑖+1)| +

𝑐∑
𝑖=1

𝜆(𝑘+1)
𝑖

)
−

(
𝑘−1∑
𝑖=0

|𝛼(𝑖)| +

𝑐∑
𝑖=1

𝛼(𝑘)′

𝑖

)

= |𝛽(𝑘)| +

𝑐∑
𝑖=1

𝜆(𝑘+1)
𝑖

−

𝑐∑
𝑖=1

𝛼(𝑘)′

𝑖

⩾ |𝛽(𝑘)| +

𝑐∑
𝑖=1

(𝛽(𝑘+1)′
⊔ 𝛾(𝑘+1)′

)𝑖 −

𝑐∑
𝑖=1

(𝛽(𝑘) + 𝛾(𝑘+1)′
)𝑖
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⩾

𝑐∑
𝑖=1

((𝛽(𝑘+1))′ ⊔ 𝛾(𝑘+1)′
)𝑖 −

𝑐∑
𝑖=1

𝛾(𝑘+1)′

𝑖

⩾ 0,

as required. □

As a consequence, we can show that the characters 𝜑̃𝜆 span the space of virtual projec-
tive characters, and derive some information about the form of the indecomposable projective
characters.

Corollary 6.9.

(i) The set {𝜑̃𝜆| 𝜆 ∈ 
𝜌,𝑑

𝑝′ } is a basis for the space of virtual projective characters in 𝜌,𝑑 .

(ii) For each 𝜆 ∈ 𝒫𝜌,𝑑

𝑝′ , the character 𝜑̃𝜆 is independent of the order of the factors 𝐹(𝑖 − 1, 𝜆(𝑖)′

𝑟).

(iii) There is a bijection 𝜆 ↦ 𝜆◦ from𝒫𝜌,𝑑

𝑝′ toℛ𝒫𝜌,𝑑
𝑝 such that 𝜒𝜆 occurs in 𝜑𝜆◦ , and any character

𝜒𝛼 occurring in 𝜑𝜆◦ satisfies 𝛼 � 𝜆.

Proof.

(i) Since |𝒫𝜌,𝑑

𝑝′ | = |ℛ𝒫𝜌,𝑑
𝑝 | by (3.1), it suffices to show that the 𝜑̃𝜆 are linearly independent.

But this follows from Proposition 6.8 which shows that the matrix giving the multiplicities
[𝜑̃𝜆 ∶ 𝜒𝛼] for 𝛼, 𝜆 ∈ 𝒫𝜌,𝑑

𝑝′ is triangular with non-zero diagonal.

(ii) Let 𝜑̃𝜆 be defined using a particular choice of order of the factors 𝐹(𝑖 − 1, (𝜆(𝑖)′

𝑟)), and let 𝜑̃𝜆∗

be defined in the sameway but using a different order. By Proposition 6.7, 𝜑̃𝜆 − 𝜑̃𝜆∗ is a linear
combination of the characters𝜒𝛼 with 𝛼 not being𝑝′. By (i), we canwrite 𝜑̃𝜆 − 𝜑̃𝜆∗ as a linear
combination of the characters 𝜑̃𝜉 with 𝜉 ∈ 𝒫𝜌,𝑑

𝑝′ . If this linear combination is non-zero, then
take 𝜉maximal in the dominance order such that 𝜑̃𝜉 appearswith non-zero coefficient. Then,
by Proposition 6.8, the character 𝜒𝜉 occurs in 𝜑̃𝜆 − 𝜑̃𝜆∗ , a contradiction.

(iii) Since 𝜑̃𝜆 is a character (not just a virtual character), it can be written as a linear combination,
with non-negative coefficients, of the indecomposable projective characters. Since 𝜒𝜆 occurs
in 𝜑̃𝜆, it must occur in some indecomposable constituent 𝜑𝜆◦ of 𝜑̃𝜆. Then, if 𝜒𝛼 occurs in 𝜑𝜆◦ ,
it must occur in 𝜑̃𝜆, giving 𝛼 � 𝜆.
This defines a map 𝒫𝜌,𝑑

𝑝′ → ℛ𝒫𝜌,𝑑
𝑝 , 𝜆 ↦ 𝜆◦ with the required properties. This map is

obviously injective, and hence bijective since |𝒫𝜌,𝑑

𝑝′ | = |ℛ𝒫𝜌,𝑑
𝑝 | by (3.1). □

6.4 The bijection 𝝀 ↦ 𝝀◦

In Corollary 6.9(iii), we have defined the bijection

𝒫𝜌,𝑑

𝑝′ → ℛ𝒫𝜌,𝑑
𝑝 , 𝜆 ↦ 𝜆◦

such that 𝜒𝜆 occurs in 𝜑𝜆◦ , and any character 𝜒𝛼 occurring in 𝜑𝜆◦ satisfies 𝛼 � 𝜆. The goal of
this subsection is to prove Proposition 6.12 which describes the bijection explicitly. To prove this
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proposition, we consider weights of modules, as outlined in Section 5.2.We fix a weight 𝒊𝜌 ofD(𝜌).
Recalling (6.1), for any 𝜆 ∈ 𝒫𝜌,𝑑

𝑝′ and 𝑗 ∈ 𝐽, define the word g 𝑗,𝜆 to be the concatenation

g 𝑗,𝜆 ∶= g 𝑗,𝜆(𝑗+1)′
1 g 𝑗,𝜆(𝑗+1)′

2 g 𝑗,𝜆(𝑗+1)′
3 … .

Now define g𝜆 to be the concatenation

g𝜆 ∶= 𝒊𝜌 g𝓁−1,𝜆 g𝓁−2,𝜆 … g0,𝜆.

Lemma 6.10. Let 𝜇 ∈ 𝒫𝜌,𝑑
0

. Then g𝜆 is a weight of S(𝜇) if and only if 𝜒𝜇 occurs in 𝜑̃𝜆.

Proof. For a word 𝒊 = 𝑖1 … 𝑖𝑛 ∈ 𝐼𝑛, we denote 𝐸𝒊 ∶= 𝐸𝑖1
… 𝐸𝑖𝑛

and 𝐹𝒊 ∶= 𝐹𝑖𝑛
… 𝐹𝑖1

. Then by def-
inition, g𝜆 is a weight of S(𝜇) if and only if 𝐸g𝜆 S(𝜇) ≠ 0 if and only if 𝐸g𝜆 𝜒𝜇 ≠ 0. But 𝐸g𝜆 =

𝐸𝒊𝜌𝐸g𝓁−1,𝜆 … 𝐸g0,𝜆 , so 𝐸g𝜆 𝜒𝜇 ≠ 0 if and only if 𝐸g𝓁−1,𝜆 … 𝐸g0,𝜆 𝜒𝜇 = 𝑐𝜒𝜌 for some non-zero scalar
𝑐. By Frobenius reciprocity, this is equivalent to the fact that 𝜒𝜇 occurs in 𝐹g0,𝜆 … 𝐹g𝓁−1,𝜆 𝜒𝜌.
Recalling the definition (6.3) of 𝜑̃𝜆 and taking into account Corollary 6.9(ii), we deduce that
𝐹g0,𝜆 … 𝐹g𝓁−1,𝜆 𝜒𝜌 = 𝜑̃𝜆, completing the proof of the lemma. □

Given 𝜇 ∈ ℛ𝒫𝜌,𝑑
𝑝 , define 𝜇̃ ∈ ℛ𝒫𝜌,𝑑−|𝜇(0)|

𝑝 to be the partition with 𝑝-bar-core 𝜌 and 𝑝-bar-
quotient (∅, 𝜇(1), … , 𝜇(𝓁−1), ∅); in other words, 𝜇̃ is defined by deleting from 𝜇 all the parts
divisible by 𝑝 from 𝜇, cf. Lemma 3.1(iii).
Given 𝜆 ∈ 𝒫𝜌,𝑑

𝑝′ , define 𝜆̂ ∈ 𝒫𝜌,𝑑−|𝜆(1)|
𝑝′ to be the partition with 𝑝-bar-core 𝜌 and 𝑝-bar-quotient

(∅, ∅, 𝜆(2), … , 𝜆(𝓁)).

Lemma 6.11. Suppose 𝜇 ∈ ℛ𝒫𝜌,𝑑
𝑝 and 𝜆 ∈ 𝒫𝜌,𝑑

𝑝′ . If 𝜇(0) = 𝜆(1)′ and g 𝜆̂ is a weight of D(𝜇̃), then
g𝜆 is a weight of D(𝜇).

Proof. By Proposition 5.2, it suffices to show that we can get from 𝜇 to 𝜇̃ by successively removing
normal nodes, with the residues of these nodes giving the word g0,𝜇

(0)
1 g0,𝜇

(0)
2 … . We use induction

on |𝜇(0)|, with the case 𝜇(0) = ∅ being vacuous. For the inductive step, suppose 𝜇(0) ≠ ∅. Let 𝜇−

be the partition obtained from 𝜇 by deleting the last positive part divisible by 𝑝; call this last part
𝑘 = 𝜇(0)

ℎ(𝜇(0))
. Similarly, define 𝜆− by deleting the last non-zero column from 𝜆(1). Then, 𝜇̃ = 𝜇− and

𝜆̂ = 𝜆−, so by induction, if g 𝜆̂ is a weight ofD(𝜇̃), then g𝜆− is a weight ofD(𝜇−). So, we just need to
show that we can get from 𝜇 to 𝜇− by removing 2𝑘 normal 0-nodes, then 2𝑘 normal 1-nodes,. . . ,
2𝑘 normal (𝓁 − 1)-nodes, and finally 𝑘 normal 𝓁-nodes. In fact, to do this, it suffices to look at
the first 𝑘𝑝 columns of 𝜇. By assumption, 𝜇 has at least one part equal to 𝑘𝑝, so let 𝑟 be maximal
such that 𝜇𝑟 = 𝑘𝑝, and let ℎ = ℎ(𝜇). Then (because 𝜌 is 𝑑-Rouquier), the integers 𝜇𝑟+1, … , 𝜇ℎ are
simply the integers 𝑎 < 𝑘𝑝which are congruent to 1, … ,𝓁modulo 𝑝. So, 𝜇 has removable 0-nodes
in columns 1, 𝑝, 𝑝 + 1, 2𝑝, … , 𝑘𝑝. These are normal, andwe define a smaller partition by removing
them; specifically, if we remove them in order from right to left, then each node remains normal
until it is removed. Now rows 𝑟, … , ℎ − 1 of the resulting partition are the integers 𝑎 < 𝑘𝑝 which
are congruent to 2, … ,𝓁 or−1modulo 𝑝. This means that there are removable 1-nodes in columns
2, 𝑝 − 1, 𝑝 + 2, 2𝑝 − 1, … , 𝑘𝑝 − 1. These nodes are normal, and we remove them (again, in order
from right to left). Now rows 𝑟, … , ℎ − 1 of the resulting partition are the integers 𝑎 < 𝑘𝑝 which

 14697750, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12852 by T

echnische Inform
ationsbibliot, W

iley O
nline L

ibrary on [25/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DECOMPOSITION NUMBERS FOR ROCK BLOCKS OF DOUBLE COVERS 39 of 49

are congruent to 1, 3, … ,𝓁 or −2 modulo 𝑝. We continue in this way, removing at the final step
normal 𝓁-nodes in columns 𝑙 + 1, 2𝑙 + 1, … , 𝑘𝑝 − 𝑙. In the partition resulting after this final step,
rows 𝑟, … , ℎ − 1 are the integers 𝑎 < 𝑘𝑝 which are congruent to 1, … ,𝓁modulo 𝑝, in other words,
the integers 𝜇𝑟+1, … , 𝜇ℎ. So, the overall effect is just to have deleted the part 𝑘𝑝, and we have the
partition 𝜇−, as required. □

Proposition 6.12. Suppose 𝜆 ∈ 𝒫𝜌,𝑑

𝑝′ . Then 𝜆◦ is the partition with 𝑝-bar-quotient

(𝜆(1)′
, … , 𝜆(𝓁)′

, ∅).

Proof. The defining properties of the bijection 𝜆 ↦ 𝜆◦, togetherwith Brauer reciprocity (5.2), show
that the composition factors of S(𝜆) lie among the irreducible supermodules D(𝜅◦) for which 𝜅 �
𝜆, and include D(𝜆◦) at least once.
Now consider weights. By Lemma 6.10, g𝜆 is a weight of S(𝜅) if and only if 𝜒𝜅 occurs in 𝜑̃𝜆,

which, by Proposition 6.8 and Lemma 3.2, happens only if 𝜅 � 𝜆. So, if 𝜅 ⊳ 𝜆, then g𝜆 is not a
weight of S(𝜅), and, in particular, is not a weight of D(𝜅◦). So, g𝜆 is not a weight of any com-
position factor of S(𝜆) except possibly D(𝜆◦); but g𝜆 is a weight of S(𝜆), so it must be a weight
of D(𝜆◦).
So, we can characterise the bijection 𝜇 ↦ 𝜆◦ recursively by the conditions

𝜆◦ ∉
{

𝜅◦
|| 𝜅 ⊲ 𝜆

}
, g𝜆 is a weight of D(𝜆◦). (6.4)

Now to prove the proposition, we use induction on 𝑑. For given 𝑑, we consider first the parti-
tions 𝜆 for which 𝜆(1) ≠ ∅. For these partitions, we use induction on the dominance order; so, we
assume that the proposition is true if 𝜆 is replaced with any partition 𝜅 ⊲ 𝜆 (observe by Lemma 3.2
that if 𝜆 and 𝜅 are 𝑝′-partitions with 𝜆(1) ≠ ∅ and 𝜅 ⊲ 𝜆, then 𝜅(1) ≠ ∅ as well).
Given 𝜆 with 𝜆(1) ≠ ∅, let 𝜆̂ be the partition with 𝑝-bar-quotient (∅, ∅, 𝜆(2), … , 𝜆(𝓁)) as above.

By induction on 𝑑, we know that 𝜆̂◦ is the partition with 𝑝-bar-quotient (∅, 𝜆(2)′
, … , 𝜆(𝓁)′

, ∅). In
particular, 𝐷(∅, 𝜆(2)′

, … , 𝜆(𝓁)′
, ∅) has g 𝜆̂ as a weight. Now Lemma 6.11 shows that g𝜆 is a weight

of 𝐷(𝜆(1)′
, … , 𝜆(𝓁)′

, ∅). By induction, we know the partitions 𝜅◦ for 𝜅 ⊲ 𝜆, in particular, we know
that none of them has 𝑝-bar-quotient (𝜆(1)′

, … , 𝜆(𝓁)′
, ∅). So, from the characterisation (6.4), 𝜆◦

must be the partition with 𝑝-bar-quotient (𝜆(1)′
, … , 𝜆(𝓁)′

, ∅).
So (for our fixed 𝑑), we can assume that the proposition is truewhenever 𝜆(1) ≠ ∅. In particular,

this means that {
𝜅◦

|| 𝜅 ∈ 𝒫𝜌,𝑑

𝑝′ , 𝜅(1) ≠ ∅
}

= {𝜇 | 𝜇 ∈ ℛ𝒫𝜌,𝑑
𝑝 , 𝜇(0) ≠ ∅},

and therefore, {
𝜅◦

|| 𝜅 ∈ 𝒫𝜌,𝑑

𝑝′ , 𝜅(1) = ∅
}

= {𝜇 | 𝜇 ∈ ℛ𝒫𝜌,𝑑
𝑝 , 𝜇(0) = ∅}. (6.5)

Now we deal with partitions 𝜆 for which 𝜆(1) = ∅. For these partitions, we use induction with
a different order: we write 𝜅 ◂⩽ 𝜆 if (∅, ∅, 𝜅(2)′

, … , 𝜅(𝓁)′
) ≽ (∅, ∅, 𝜆(2)′

, … , 𝜆(𝓁)′
), and we assume

that the proposition is true if 𝜆 is replaced by any 𝜅 for which 𝜅◂ 𝜆.
Now (6.5) shows that there is 𝜅 with 𝜅(1) = ∅ such that 𝜅◦ is the partition with 𝑝-bar-quotient

(∅, 𝜆(2)′
, … , 𝜆(𝓁)′

, ∅). By Theorem 5.5 and Brauer reciprocity (5.2), we know that 𝜒𝜅
◦ occurs in 𝜑𝜅◦ ,

 14697750, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12852 by T

echnische Inform
ationsbibliot, W

iley O
nline L

ibrary on [25/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



40 of 49 FAYERS et al.

and therefore, occurs in 𝜑̃𝜅. Then, Proposition 6.8 gives

(∅, 𝜆(2)′
, … , 𝜆(𝓁)′

, ∅) ≼ (∅, 𝜅(2)′
, … , 𝜅(𝓁)′

, ∅),

which is the same as saying 𝜅 ◂⩽ 𝜆. But if 𝜅◂ 𝜆, then we know by induction that 𝜅◦ is the partition
with 𝑝-bar-quotient (∅, 𝜅(2)′

, … , 𝜅(𝓁)′
, ∅), a contradiction. So, 𝜅 = 𝜆, and we are done. □

6.5 Adjustment matrix

Now we can return to the virtual projective characters 𝜑̂𝜇. Firstly, we express the characters 𝜑̃𝜆 in
terms of the characters 𝜑̂𝜇.

Proposition 6.13. Suppose 𝜆 ∈ 𝒫𝜌,𝑑

𝑝′ . Then

𝜑̃𝜆 = 𝐷̃𝜆

∑
𝜇∈ℛ𝒫𝜌,𝑑

𝑝

𝓁∏
𝑖=1

[
𝜆(𝑖)′

∶ 𝜇(𝑖−1)
]
𝜑̂𝜇.

Proof. Proposition 6.8 shows that 𝜑̃𝜆 is determined among all virtual projective characters in𝜌,𝑑

by the coefficients [𝜑̃𝜆 ∶ 𝜒𝛼] for 𝛼 ∈ 𝒫𝜌,𝑑

𝑝′ . So, we fix 𝛼 ∈ 𝒫𝜌,𝑑

𝑝′ , and we just need to show that the
coefficient of 𝜒𝛼 on each side of the equation is the same.
Using Corollary 6.2 together with the assumption that 𝛼(0) = ∅, we find that the coefficient of

𝜒𝛼 on the right-hand side of the equation can be written as 𝐷̃𝜆𝑋𝜆𝛼, where

𝑋𝜆𝛼 =
∑

𝜇∈ℛ𝒫𝜌,𝑑
𝑝

𝓁∏
𝑖=1

[
𝜆(𝑖)′

∶ 𝜇(𝑖−1)
] ∑

𝜎(∙),𝜏(∙)

𝓁∏
𝑖=1

c(𝛼(𝑖); 𝜎(𝑖), 𝜏(𝑖)) c(𝜇(𝑖−1); 𝜎(𝑖−1), 𝜏(𝑖)′
).

Here and throughout this proof,
∑

𝜎(∙),𝜏(∙) means that we sum over all 𝜎(1), … , 𝜎(𝓁−1), 𝜏(1), … , 𝜏(𝓁) ∈

𝒫, and we read 𝜎(0) and 𝜎(𝓁) as ∅.
Summing over 𝜇 ∈ ℛ𝒫𝜌,𝑑

𝑝 is equivalent to summing over 𝜇(0), … , 𝜇(𝓁−1) ∈ 𝒫 (because if|𝜇(0)| + ⋯ + |𝜇(𝓁−1)| ≠ 𝑑, then the summand is zero anyway). So, we can write

𝑋𝜆𝛼 =
∑

𝜎(∙),𝜏(∙)

𝓁∏
𝑖=1

c(𝛼(𝑖); 𝜎(𝑖), 𝜏(𝑖))
∑

𝜇(𝑖−1)∈𝒫

[
𝜆(𝑖)′

∶ 𝜇(𝑖−1)
][
𝜎(𝑖−1)

◦ 𝜏(𝑖)′

∶ 𝜇(𝑖−1)
]

=
∑

𝜎(∙),𝜏(∙)

𝓁∏
𝑖=1

c(𝛼(𝑖); 𝜎(𝑖), 𝜏(𝑖))
∑

𝛽(𝑖),𝛾(𝑖)∈𝒞

𝛽(𝑖)+𝛾(𝑖)=𝜆(𝑖)′

[
𝛽(𝑖)

∶ 𝜏(𝑖)′][
𝛾(𝑖)

∶ 𝜎(𝑖−1)
]

=
∑

𝜎(∙),𝜏(∙)

𝓁∏
𝑖=1

∑
𝛽(𝑖),𝛾(𝑖)∈𝒞

𝛽(𝑖)+𝛾(𝑖)=𝜆(𝑖)′

[
𝛽(𝑖)

⊗ 𝚜𝚐𝚗 ∶ 𝜏(𝑖)
][
𝛾(𝑖)

∶ 𝜎(𝑖−1)
][
𝜏(𝑖)

◦ 𝜎(𝑖)
∶ 𝛼(𝑖)

]
,
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where for the second equality, we use Lemma 2.2. Since we interpret 𝜎(0) as ∅, the term [𝛾(1)
∶

𝜎(0)
] equals 1 if 𝛾(1) = ∅, and 0 otherwise. But if 𝛾(1) ≠ ∅, then (comparing the sizes of all the

partitions involved) the product of the remaining terms in the summand is zero anyway. So,we can
simply omit the term [𝛾(1)

∶ 𝜎(0)
]. Since we read 𝜎(𝓁) as ∅, we can also add a harmless factor

[𝛾(𝓁+1)
∶ 𝜎(𝓁)

] in which we interpret 𝛾(𝓁+1) as ∅. Now (with a shift of variable) 𝑋𝜆𝛼 becomes

∑
𝜎(∙),𝜏(∙)

∑
𝛽(1),…,𝛽(𝓁)∈𝒞
𝛾(1),…,𝛾(𝓁)∈𝒞

𝛽(𝑖)+𝛾(𝑖)=𝜆(𝑖)′

𝓁∏
𝑖=1

[
𝛽(𝑖)

⊗ 𝚜𝚐𝚗 ∶ 𝜏(𝑖)
][
𝛾(𝑖+1)

∶ 𝜎(𝑖)
][
𝜏(𝑖)

◦ 𝜎(𝑖)
∶ 𝛼(𝑖)

]
,

=
∑

𝛽(1),…,𝛽(𝓁)∈𝒞
𝛾(1),…,𝛾(𝓁)∈𝒞

𝛽(𝑖)+𝛾(𝑖)=𝜆(𝑖)′

∑
𝜎(∙),𝜏(∙)

𝓁∏
𝑖=1

[
(𝛽(𝑖)

⊗ 𝚜𝚐𝚗) ⊠ 𝛾(𝑖+1)
∶ 𝜏(𝑖)

⊠ 𝜎(𝑖)
][
𝜏(𝑖)

◦ 𝜎(𝑖)
∶ 𝛼(𝑖)

]

=
∑

𝛽(1),…,𝛽(𝓁)∈𝒞
𝛾(1),…,𝛾(𝓁)∈𝒞

𝛽(𝑖)+𝛾(𝑖)=𝜆(𝑖)′

𝓁∏
𝑖=1

[
(𝛽(𝑖)

⊗ 𝚜𝚐𝚗) ◦𝛾(𝑖+1)
∶ 𝛼(𝑖)

]
,

where in the final equality, we use transitivity of induction and the fact that for any 𝑡, 𝑠, the
irreducible ℂ(𝔖𝑡 × 𝔖𝑠)-modules are precisely the modules 𝜏 ⊠ 𝜎 for 𝜏 ∈ 𝒫(𝑡) and 𝜎 ∈ 𝒫(𝑠).
So, 𝐷̃𝜆𝑋𝜆𝛼 coincides with the coefficient 𝐷̃𝜆𝛼 from Proposition 6.7 (bearing in mind that 𝛼(0) =

∅), and the proof is complete. □

We are now ready to prove the main result of this section. Firstly, we need somemore notation.
Recall from above the bijection

𝒫𝜌,𝑑

𝑝′ ⟼ ℛ𝒫𝜌,𝑑
𝑝 , 𝜆 ⟼ 𝜆◦,

where 𝜆◦ is the partition with 𝑝-bar-quotient (𝜆(1)′
, … , 𝜆(𝓁)′

, ∅). We write 𝜇 ↦ 𝜇◦ for the
inverse bijection.
Given 𝜆 ∈ 𝒫𝜌,𝑑

𝑝 , we define g(𝜆) to be the composition (|𝜆(0)|, … , |𝜆(𝓁)|) ∈ 𝒞(𝑑). Given a
composition 𝑚 = (𝑚0, … , 𝑚𝓁−1, 0) of 𝑑, we define 𝑚◦ to be the composition (0, 𝑚0, … , 𝑚𝓁−1).
Now say that a virtual character 𝜓 is 𝑚-bounded if:

⋄ every 𝜒𝛼 occurring in 𝜓 satisfies 𝑚 � g(𝛼) � 𝑚◦,
⋄ there is at least one 𝜒𝛼 occurring in 𝜓 with g(𝛼) = 𝑚 and
⋄ there is at least one 𝜒𝛼 occurring in 𝜓 with g(𝛼) = 𝑚◦.

Say that a virtual character 𝜓 is 𝑚-semi-bounded if:

⋄ every 𝜒𝛼 occurring in 𝜓 satisfies g(𝛼) � 𝑚◦ and
⋄ there is at least one 𝜒𝛼 occurring in 𝜓 with g(𝛼) = 𝑚◦.

We make the following observations about the virtual characters we have defined. We begin
with the virtual characters 𝜑̂𝜇.
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Lemma 6.14. Suppose 𝜇 ∈ ℛ𝒫𝜌,𝑑
𝑝 , and let 𝑚 = g(𝜇). Then 𝜑̂𝜇 is 𝑚-bounded.

Proof. Suppose that 𝜒𝛼 occurs in 𝜑̂𝜇. Then, by Corollary 6.2, there are partitions
𝜎(0), … , 𝜎(𝓁−1), 𝜏(1), … , 𝜏(𝓁) such that

𝐾−1
𝛼(0)𝜎(0)

(−1)

𝓁∏
𝑖=1

c(𝛼(𝑖); 𝜎(𝑖), 𝜏(𝑖)) c(𝜇(𝑖−1); 𝜎(𝑖−1), 𝜏(𝑖)′
) ≠ 0

(where as usual we read 𝜎(𝓁) = ∅). Using the fact that𝐾−1
𝜋𝜎(−1) is non-zero only if |𝜋| = |𝜎|, while

c(𝛽; 𝛾, 𝛿) is non-zero only if |𝛽| = |𝛾| + |𝛿|, this gives
|𝜇(0)| + ⋯ + |𝜇(𝑟−1)| + |𝜎(𝑟)| = |𝛼(0)| + ⋯ + |𝛼(𝑟)| = |𝜇(0)| + ⋯ + |𝜇(𝑟)| − |𝜏(𝑟+1)| (6.6)

for each 𝑟 = 0, 1, … ,𝓁 (interpreting |𝜏(𝓁+1)| as 0), so that
(|𝜇(0)|, … , |𝜇(𝓁−1)|, 0) � (|𝛼(0)|, … , |𝛼(𝓁)|) � (0, |𝜇(0)|, … , |𝜇(𝓁−1)|)

as required.
Now use Lemma 2.4 to choose a strict partition 𝜈(0) for which 𝐾−1

𝜈(0)𝜇(0)
(−1) ≠ 0, and let 𝜈 be the

partition in 𝒫𝜌,𝑑
0

with 𝑝-bar-quotient (𝜈(0), 𝜇(1), … , 𝜇(𝓁−1), ∅). Then, g(𝜈) = 𝑚 and 𝜒𝜈 occurs in
𝜑̂𝜇 (the only non-zero summand is for 𝜏(𝑖) = ∅ and 𝜎(𝑖) = 𝜇(𝑖) for every 𝑖).
Finally, let 𝜆 = 𝜇◦. Then g(𝜆) = 𝑚 and 𝜒𝜆 occurs in 𝜑̂𝜇 (the only non-zero summand is for

𝜏(𝑖) = 𝜇(𝑖−1)′ and 𝜎(𝑖) = ∅ for every 𝑖). □

Next we look at the characters 𝜑̃𝜆.

Lemma 6.15. Suppose 𝜆 ∈ 𝒫𝜌,𝑑

𝑝′ and let 𝑚 = (|𝜆(1)|, … , |𝜆(𝓁)|, 0). Then 𝜑̃𝜆 is 𝑚-bounded.

Proof. The fact that 𝑚 � g(𝛼) � 𝑚◦ whenever 𝜒𝛼 occurs in 𝜑̃𝜆 is just a cruder version of the
second statement in Proposition 6.8. Furthermore, the first statement in Proposition 6.8 says
that 𝜒𝜆 occurs in 𝜑̃𝜆, and by definition, g(𝜆) = 𝑚◦. Finally, let 𝜉 be the partition in 𝒫𝜌,𝑑

0
with

𝑝-bar-quotient ((|𝜆(1)|), 𝜆(2)′
, … , 𝜆(𝓁)′

, ∅). Then, the coefficient 𝐷̃𝜆𝜉 from Proposition 6.7 is non-
zero: to see this, observe that the summand in which 𝛽(𝑖) = ∅ and 𝛾(𝑖) = 𝜆(𝑖)′ for each 𝑖 equals
𝑐((|𝜆(1)|), 𝜆(1)′

) = 1. Hence, 𝜒𝜉 occurs in 𝜑̃𝜆, and satisfies g(𝜉) = 𝑚. □

Finally, we look at the indecomposable projective characters 𝜑𝜇.

Lemma 6.16. Suppose 𝜇 ∈ ℛ𝒫𝜌,𝑑
𝑝 , and let 𝑚 = g(𝜇). Then 𝜑𝜇 is 𝑚-semi-bounded.

Proof. Let 𝜆 = 𝜇◦. Then, g(𝜆) = 𝑚◦, and Corollary 6.9(iii) says that 𝜑𝜇 is 𝑚-semi-bounded. □
We now have a lot of information about our three families of virtual characters. Take a

composition 𝑚 = (𝑚0, … , 𝑚𝓁−1, 0) of 𝑑, and let

ℛ𝒫𝑚 =
{

𝜇 ∈ ℛ𝒫𝜌,𝑑
𝑝

||| g(𝜇) = 𝑚
}

.
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Now define

𝑃𝑚 =
{

𝜑𝜇 || 𝜇 ∈ ℛ𝒫𝑚

}
,

𝑃̃𝑚 =
{

𝜑̃𝜆 ||| 𝜆◦ ∈ ℛ𝒫𝑚

}
,

𝑃̂𝑚 =
{

𝜑̂𝜇 || 𝜇 ∈ ℛ𝒫𝑚

}
.

Each of these sets is a linearly independent set of virtual characters, of size |ℛ𝒫𝑚|. The
virtual characters in 𝑃̃𝑚 and 𝑃̂𝑚 are 𝑚-bounded, whereas the virtual characters in 𝑃𝑚 are
𝑚-semi-bounded.
Now we can finally make the connection between the characters 𝜑𝜇 and the virtual

characters 𝜑̂𝜇.

Theorem 6.17. Take a composition 𝑚 = (𝑚0, … , 𝑚𝓁−1, 0) of 𝑑. Then, for each 𝜇, 𝜆◦ ∈ ℛ𝒫𝑚, we
can write

𝜑𝜇 =
∑

𝜈∈ℛ𝒫𝑚

𝐴𝜈𝜇𝜑̂𝜈 and 𝜑̃𝜆 =
∑

𝜈∈ℛ𝒫𝑚

𝐵𝜈𝜆𝜑𝜈,

where

⋄ 𝐴𝜈𝜇, 𝐵𝜈𝜆 ∈ ℕ0 for each 𝜈;
⋄ 𝐴𝜇𝜇 > 0 and 𝐵𝜆◦𝜆 > 0;
⋄ if 𝐴𝜈𝜇 > 0 resp. 𝐵𝜈𝜆 > 0, then 𝜈 � 𝜇 resp. 𝜈 � 𝜆◦.

Moreover, each character 𝜑𝜇 ∈ 𝑃𝑚 is 𝑚-bounded.

Proof. We use induction on𝑚 in decreasing dominance order. So, assume that the theorem is true
whenever 𝑚 is replaced by a composition 𝑛 ⊳ 𝑚.
Since 𝜆◦ ∈ ℛ𝒫𝑚, the character 𝜑̃𝜆 is 𝑚-bounded by Lemma 6.15. Because 𝜑̃𝜆 is a projective

character (not just a virtual projective character), it is a linear combination, with non-negative
coefficients, of the characters 𝜑𝜈 for 𝜈 ∈ ℛ𝒫𝜌,𝑑

𝑝 . We claim that only the characters 𝜑𝜈 for 𝜈 ∈

ℛ𝒫𝑚 can occur, that is that 𝜑̃𝜆 =
∑

𝜈∈ℛ𝒫𝑚
𝐵𝜈𝜆𝜑𝜈 for some non-negative integer coefficients 𝐵𝜈𝜆.

By Lemma 6.16, any other character 𝜑𝜓 that occurs is 𝑛-semi-bounded for some 𝑛 ≠ 𝑚: if 𝑛 �
𝑚, then there is a character 𝜒𝛼 occurring in 𝜑𝜓 for which g(𝛼) = 𝑛◦ � 𝑚◦, so 𝜑𝜓 cannot be a
constituent of 𝜑̃𝜆 because 𝜑̃𝜆 is𝑚-bounded. On the other hand, if 𝑛 ⊳ 𝑚, then by induction, 𝜑𝜓 is
𝑛-bounded, so includes a character 𝜒𝛼 with g(𝛼) = 𝑛 ⊳ 𝑚, so again the fact that 𝜑̃𝜆 is𝑚-bounded
means that 𝜑𝜓 does not appear in 𝜑̃𝜆. This proves our claim.
By the previous paragraph, the span of 𝑃̃𝑚 equals the span of 𝑃𝑚. On the other hand, Proposi-

tion 6.13 shows that the span of 𝑃̃𝑚 equals the span of 𝑃̂𝑚. So, the span of 𝑃𝑚 equals the span of
𝑃̂𝑚. In particular, each character 𝜑𝜇 ∈ 𝑃𝑚 is a linear combination of the virtual characters in 𝑃̂𝑚,
that is, there are coefficients 𝐴𝜈𝜇 such that

𝜑𝜇 =
∑

𝜈∈ℛ𝒫𝑚

𝐴𝜈𝜇𝜑̂𝜈

for each 𝜇 ∈ ℛ𝒫𝑚.
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But now observe fromCorollary 6.2 that each character 𝜑̂𝜈 ∈ 𝑃̂𝑚 includes exactly one character
𝜒𝛼 with g(𝛼) = 𝑚◦, namely the partition 𝛼 = 𝜈◦, and that [𝜑̂𝜈 ∶ 𝜒𝜈◦] = 1. To see this note that by

(6.6), we need to take 𝜎(𝑖) = ∅ and then 𝜏(𝑖) = 𝜈(𝑖−1)′ in order to have a non-zero summand in the
formula for [𝜑̂𝜈 ∶ 𝜒𝜈◦].
So, for each 𝜇, 𝜈, the coefficient 𝐴𝜇𝜈 is simply the coefficient [𝜑𝜇 ∶ 𝜒𝜈◦]. These coefficients are

certainly non-negative integers because𝜑𝜇 is a character, andCorollary 6.9(iii) shows that if𝐴𝜈𝜇 ≠

0, then 𝜈◦ � 𝜇◦. Since g(𝜇) = g(𝜈), this condition is the same as saying 𝜈 � 𝜇. This triangularity
property also gives 𝐴𝜇𝜇 ≠ 0 for each 𝜇, because the characters 𝜑𝜇 are linearly independent.
Furthermore, by Proposition 6.13,

∑
𝜓∈ℛ𝒫𝑚

𝐴𝜈𝜓𝐵𝜓𝜆 = 𝐷̃𝜆

𝓁−1∏
𝑖=0

[
𝜆◦

(𝑖)
∶ 𝜈(𝑖)

]
.

It then follows by [16, Theorem 4.13] that 𝜈 � 𝜆◦ whenever 𝐵𝜈𝜆 > 0, and then also that 𝐵𝜆◦𝜆 > 0

since by the previous paragraph 𝐴𝜆◦𝜓 > 0 only if 𝜓 � 𝜆◦.
The final statement of the theorem now follows for 𝑚: each 𝜑̂𝜈 ∈ 𝑃̂𝑚 is 𝑚-bounded, and is

a non-negative linear combination of irreducible characters, which means that any non-zero
non-negative linear combination of the 𝜑̂𝜈 will also be 𝑚-bounded; so, in particular, 𝜑𝜇 is
𝑚-bounded. □

We extend the definition of the integers 𝐴𝜈𝜇 to all 𝜇, 𝜈 ∈ ℛ𝒫𝜌,𝑑
𝑝 by setting 𝐴𝜈𝜇 = 0 when

g(𝜇) ≠ g(𝜈). Then, the matrix 𝐴 with entries 𝐴𝜈𝜇 is a non-singular square matrix with non-
negative integer entries, which is triangular with respect to the dominance order. We call 𝐴 the
adjustment matrix for 𝜌,𝑑. Theorem 6.17 shows that the (super)decomposition matrix for 𝜌,𝑑

can be obtained from the matrix determined by the characters 𝜑̂𝜇 by post-multiplying by 𝐴. Our
aim in the remainder of the paper is to show that 𝐴 is the identity matrix when 𝑑 < 𝑝 (and 𝜌,𝑑

is RoCK).

7 CARTANMATRICES AND PROOF OF THEMAIN THEOREM

7.1 The super-Cartan matrix and the adjustment matrix

In this subsection and the next, we consider the entries of the super-Cartan matrix of 𝜌,𝑑.
Recall from (5.4) and Corollary 6.2 that we have integers

𝐷𝜆𝜇 = 2⌊ 1
2

(ℎ(𝜆(0))+1−𝑎(𝜆))⌋ ∑
𝜎(0),…,𝜎(𝓁−1)∈𝒫

𝜏(1),…,𝜏(𝓁)∈𝒫

𝐾−1
𝜆(0)𝜎(0)

(−1)

𝓁∏
𝑖=1

c(𝜆(𝑖); 𝜎(𝑖), 𝜏(𝑖)) c(𝜇(𝑖−1); 𝜎(𝑖−1), 𝜏(𝑖)′
)

for 𝜆 ∈ 𝒫𝜌,𝑑
0

and 𝜇 ∈ ℛ𝒫𝜌,𝑑
𝑝 , such that 𝜑̂𝜇 =

∑
𝜆 𝐷𝜆𝜇𝜒𝜆 for each 𝜇. We also have from Section 6.5

an adjustment matrix 𝐴 such that 𝜑𝜇 =
∑

𝜈 𝐴𝜈𝜇𝜑̂𝜈 for each 𝜇. Hence,

[𝜑𝜇 ∶ 𝜒𝜆] =
∑

𝜈∈ℛ𝒫𝜌,𝑑
𝑝

𝐴𝜈𝜇𝐷𝜆𝜈
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for every 𝜆 ∈ 𝒫𝜌,𝑑
0

, 𝜇 ∈ ℛ𝒫𝜌,𝑑
𝑝 . So, by Brauer reciprocity (5.2), if we define

𝐷∗
𝜆𝜇

= 2⌊ 1
2

(ℎ(𝜆(0))+𝑎(𝜆))⌋ ∑
𝜎(0),…,𝜎(𝓁−1)∈𝒫

𝜏(1),…,𝜏(𝓁)∈𝒫

𝐾−1
𝜆(0)𝜎(0)

(−1)

𝓁∏
𝑖=1

c(𝜆(𝑖); 𝜎(𝑖), 𝜏(𝑖)) c(𝜇(𝑖−1); 𝜎(𝑖−1), 𝜏(𝑖)′
)

for all 𝜆, 𝜇, then

[S(𝜆) ∶ D(𝜇)] =
∑

𝜈∈ℛ𝒫𝜌,𝑑
𝑝

𝐴𝜈𝜇𝐷∗
𝜆𝜈

. (7.1)

Now consider the super-Cartan matrix entries

𝐶𝜈𝜇 = [𝑃(𝜈) ∶ D(𝜇)]

for 𝜇, 𝜈 ∈ ℛ𝒫𝜌,𝑑
𝑝 , where 𝑃(𝜈) denotes the projective cover of D(𝜈). From above, we can write

𝐶𝜈𝜇 =
∑

𝜆∈𝒫𝜌,𝑑
0

[𝜑𝜈 ∶ 𝜒𝜆][S(𝜆) ∶ D(𝜇)] =
∑

𝜆∈𝒫𝜌,𝑑
0

𝜉,𝜋∈ℛ𝒫𝜌,𝑑
𝑝

𝐴𝜉𝜇𝐷∗
𝜆𝜉

𝐴𝜋𝜈𝐷𝜆𝜋.

7.2 Entries in the unadjusted Cartan matrix

Our objective in this subsection is to compute the ‘unadjusted super-Cartan matrix’ entries

𝐶̊𝜇𝜈 ∶=
∑

𝜆

𝐷∗
𝜆𝜇

𝐷𝜆𝜈

for 𝜇, 𝜈 ∈ ℛ𝒫𝜌,𝑑
𝑝 . In Section 7.3, we will then use Corollary 4.11 and Theorem 5.4 to see that these

‘unadjusted super-Cartan matrix’ entries coincide with the actual super-Cartan matrix entries,
which will imply our main result.

Proposition 7.1. Suppose 𝜇, 𝜈 ∈ ℛ𝒫𝜌,𝑑
𝑝 . Then

𝐶̊𝜇𝜈 =

𝓁−1∏
𝑖=0

c(𝜇(𝑖); 𝜑(𝑖), 𝜒(𝑖), 𝜓(𝑖+1)′
, 𝜔(𝑖)) c(𝜈(𝑖); 𝜑(𝑖), 𝜓(𝑖), 𝜒(𝑖+1)′

, 𝜔(𝑖)),

summing over all partitions 𝜑(𝑖), 𝜓(𝑖), 𝜒(𝑖), 𝜔(𝑖) for 0 ⩽ 𝑖 ⩽ 𝓁 − 1 such that 𝜒(0) = 𝜓(0)′, and reading
𝜒(𝓁) = 𝜓(𝓁) = ∅.

Proof. From the definition of the integers 𝐷𝜆𝜇 and 𝐷∗
𝜆𝜇
, we obtain

𝐶̊𝜇𝜈 =
∑

𝜆∈𝒫𝜌,𝑑
0

𝐷∗
𝜆𝜇

𝐷𝜆𝜈

 14697750, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12852 by T

echnische Inform
ationsbibliot, W

iley O
nline L

ibrary on [25/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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=
∑(

2ℎ(𝜆(0))𝐾−1
𝜆(0)𝜎(0)

(−1)𝐾−1
𝜆(0)𝜎̄(0)

(−1)

𝓁∏
𝑖=1

c(𝜆(𝑖); 𝜎(𝑖), 𝜏(𝑖)) c(𝜇(𝑖−1); 𝜎(𝑖−1), 𝜏(𝑖)′
)

×

𝓁∏
𝑖=1

c(𝜆(𝑖); 𝜎̄(𝑖), 𝜏̄(𝑖)) c(𝜈(𝑖−1); 𝜎̄(𝑖−1), 𝜏̄(𝑖)′
)

)
,

where the sum is over 𝜆 ∈ 𝒫𝜌,𝑑
0

, 𝜎(𝑖), 𝜎̄(𝑖) ∈ 𝒫 for 0 ⩽ 𝑖 ⩽ 𝓁 − 1 and 𝜏(𝑖), 𝜏̄(𝑖) ∈ 𝒫 for 1 ⩽ 𝑖 ⩽ 𝓁, and
we read 𝜎(𝓁) = 𝜎̄(𝓁) = ∅. Summing over 𝜆 ∈ 𝒫𝜌,𝑑

0
is equivalent to summing over 𝜆(0), … , 𝜆(𝓁) ∈ 𝒫

with 𝜆(0) strict and |𝜆(0)| + ⋯ + |𝜆(𝓁)| = 𝑑. But, in fact, the summand is zero when |𝜆(0)| + ⋯ +|𝜆(𝓁)| ≠ 𝑑, so we can safely replace the variable 𝜆 ∈ 𝒫𝜌,𝑑
0

with variables 𝜆(0) ∈ 𝒫0 and 𝜆(𝑖) ∈ 𝒫
for 1 ⩽ 𝑖 ⩽ 𝓁.
We apply Lemma 2.3 to eliminate the variables 𝜆(1), … , 𝜆(𝓁). We obtain

𝐶̊𝜇𝜈 =
∑(

2ℎ(𝜆(0))𝐾−1
𝜆(0)𝜎(0)

(−1)𝐾−1
𝜆(0)𝜎̄(0)

(−1)

𝓁∏
𝑖=1

c(𝜎(𝑖); 𝜑(𝑖), 𝜒(𝑖)) c(𝜏(𝑖); 𝜓(𝑖), 𝜔(𝑖−1))

×

𝓁∏
𝑖=1

c(𝜎̄(𝑖); 𝜑(𝑖), 𝜓(𝑖)) c(𝜏̄(𝑖); 𝜒(𝑖), 𝜔(𝑖−1))

×

𝓁∏
𝑖=1

c(𝜇(𝑖−1); 𝜎(𝑖−1), 𝜏(𝑖)′
) c(𝜈(𝑖−1); 𝜎̄(𝑖−1), 𝜏̄(𝑖)′

)

)
,

where we have eliminated the variables 𝜆(𝑖) from the summation, and introduced new variables
𝜑(𝑖), 𝜓(𝑖), 𝜒(𝑖) ∈ 𝒫 for 1 ⩽ 𝑖 ⩽ 𝓁 and 𝜔(𝑖) for 0 ⩽ 𝑖 ⩽ 𝓁 − 1. Now we use standard relations for
Littlewood–Richardson coefficients to get

𝐶̊𝜇𝜈 =
∑(

2ℎ(𝜆(0))𝐾−1
𝜆(0)𝜎(0)

(−1)𝐾−1
𝜆(0)𝜎̄(0)

(−1) c(𝜇(0); 𝜎(0), 𝜓(1)′
, 𝜔(0)′

) c(𝜈(0); 𝜎̄(0), 𝜒(1)′
, 𝜔(0)′

)

×

𝓁∏
𝑖=2

c(𝜇(𝑖−1); 𝜑(𝑖−1), 𝜒(𝑖−1), 𝜓(𝑖)′
, 𝜔(𝑖−1)′

) c(𝜈(𝑖−1); 𝜑(𝑖−1), 𝜓(𝑖−1), 𝜒(𝑖)′
, 𝜔(𝑖−1)′

)

)
.

Here,wehave eliminated the variables𝜎(𝑖), 𝜎̄(𝑖) for 1 ⩽ 𝑖 ⩽ 𝓁 − 1 and 𝜏(𝑖), 𝜏̄(𝑖) for 1 ⩽ 𝑖 ⩽ 𝓁.Wehave
also elided the terms c(𝜎(𝓁); 𝜑(𝓁), 𝜒(𝓁)) c(𝜎̄(𝓁); 𝜑(𝓁), 𝜓(𝓁)). This is harmless because we interpret
𝜎(𝓁) = 𝜎̄(𝓁) = ∅, but it means that we now eliminate 𝜑(𝓁), 𝜒(𝓁), 𝜓(𝓁) as variables, reading 𝜓(𝓁) =

𝜒(𝓁) = ∅ in the formula above.
Now we apply Lemma 2.5 to eliminate the terms 𝐾−1

𝜆(0)𝜎(0)
(−1)𝐾−1

𝜆(0)𝜎̄(0)
(−1). We get

𝐶̊𝜇𝜈 =
∑(

c(𝜎(0); 𝜑(0), 𝜓(0)′
) c(𝜎̄(0); 𝜑(0), 𝜓(0)) c(𝜇(0); 𝜎(0), 𝜓(1)′

, 𝜔(0)′
) c(𝜈(0); 𝜎̄(0), 𝜒(1)′

, 𝜔(0)′
)

×

𝓁∏
𝑖=2

c(𝜇(𝑖−1); 𝜑(𝑖−1), 𝜒(𝑖−1), 𝜓(𝑖)′
, 𝜔(𝑖−1)′

) c(𝜈(𝑖−1); 𝜑(𝑖−1), 𝜓(𝑖−1), 𝜒(𝑖)′
, 𝜔(𝑖−1)′

)

)
,
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where we have eliminated the variable 𝜆(0) and introduced two new variables 𝜑(0), 𝜓(0) ∈ 𝒫. Now
we eliminate 𝜎(0), 𝜎̄(0) and obtain

𝐶̊𝜇𝜈 =
∑(

c(𝜇(0); 𝜑(0), 𝜓(0)′
, 𝜓(1)′

, 𝜔(0)′
) c(𝜈(0); 𝜑(0), 𝜓(0), 𝜒(1)′

, 𝜔(0)′
)

×

𝓁−1∏
𝑖=1

c(𝜇(𝑖); 𝜑(𝑖), 𝜒(𝑖), 𝜓(𝑖+1)′
, 𝜔(𝑖)′

) c(𝜈(𝑖); 𝜑(𝑖), 𝜓(𝑖), 𝜒(𝑖+1)′
, 𝜔(𝑖)′

)

)
.

Replacing 𝜔(𝑖) with 𝜔(𝑖)′ for each 𝑖 gives the required result. □

7.3 Proof of the main theorem

Let 𝑑 < 𝑝 and 𝜌 be a 𝑑-Rouquier 𝑝-bar-core. Take 𝜆 ∈ 𝒫𝜌,𝑑
0

and 𝜇 ∈ ℛ𝒫𝜌,𝑑
𝑝 . Our main theorem

asserts that the decomposition number [S(𝜆) ∶ D(𝜇)] equals the integer𝐷∗
𝜆𝜇
defined in Section 7.1.

We have seen in (7.1) that [S(𝜆) ∶ D(𝜇)] =
∑

𝜈 𝐴𝜈𝜇𝐷∗
𝜆𝜈
, so our task is to show that the adjustment

matrix 𝐴 is the identity matrix.
Recall from Section 7.1 that for genuine super-Cartan matrix entries, we have

𝐶𝜈𝜇 =
∑

𝜉,𝜋∈ℛ𝒫𝜌,𝑑
𝑝

𝐴𝜉𝜇𝐶̊𝜉𝜋𝐴𝜋𝜈,

and the unadjusted super-Cartan matrix entries 𝐶̊𝜉𝜋 are given by Proposition 7.1. The matrix 𝐴

is triangular with non-negative integer entries, which implies that 𝐶𝜈𝜇 ⩾ 𝐶̊𝜈𝜇 for all 𝜇, 𝜈, with
equality for all 𝜇, 𝜈 if and only if 𝐴 is the identity matrix. More simply, 𝐴 is the identity matrix if
and only if

∑
𝜇,𝜈 𝐶𝜈𝜇 =

∑
𝜇,𝜈 𝐶̊𝜈𝜇.

Assume first that 𝜌,𝑑 is of type 𝙼. Then simple modules are the same as simple super-
modules, and indecomposable projective modules are the same as indecomposable projective
supermodules, so the entries of the usual Cartan matrix are given by 𝐶𝜈𝜇.
Assume next that 𝜌,𝑑 is of type 𝚀. Then, when we look at modules rather than supermodules,

each 𝜑𝜇 splits as a sum 𝜑𝜇,+ ⊕ 𝜑𝜇,− and each simple moduleD(𝜇) splits as a direct sumD(𝜇, +) ⊕

D(𝜇, −). If we restrict to the double cover 𝔄̂𝑛 of the alternating group, then 𝜑𝜇,+ and 𝜑𝜇,− both
restrict to the same indecomposable projective character𝜑𝜇,0, and the simplemodulesD(𝜇, +) and
D(𝜇, −) both restrict to the same simple module E(𝜇, 0). So, Res𝔄̂𝑛

𝜑𝜇 = 2𝜑𝜇,0 and Res𝔄̂𝑛
D(𝜇) ≅

E(𝜇, 0)⊕2, and it follows that the entries of the usual Cartan matrix of the block 
𝜌,𝑑

0̄
of 𝔄̂𝑛 are

given by 𝐶𝜈𝜇.
Now consider the wreath product algebra 𝖶𝑑 from Section 4. By Theorem 5.4, this algebra is

Morita equivalent to𝜌,𝑑 if𝜌,𝑑 is of type 𝙼 or to𝜌,𝑑

0̄
if𝜌,𝑑 is of type 𝚀. In either case, the Cartan

matrix of𝖶𝑑 and thematrix (𝐶𝜈,𝜇) are the same up to row and column permutations; that is, there
is a bijection 𝜃 ∶ ℛ𝒫𝜌,𝑑

𝑝 → 𝒫𝐽(𝑑) such that 𝐶𝜈𝜇 = [𝑃(𝜃(𝜈)) ∶ 𝐿(𝜃(𝜇))] for all 𝜇, 𝜈. Summing over
𝜇, 𝜈, we obtain ∑

𝜇,𝜈∈ℛ𝒫𝜌,𝑑
𝑝

𝐶𝜈𝜇 =
∑

𝝀,𝝁∈𝒫𝐽(𝑑)

[𝑃(𝝀) ∶ 𝐿(𝝁)].
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48 of 49 FAYERS et al.

But a comparison of Proposition 7.1 and Corollary 4.11 shows that if we define a bijection

𝜄 ∶ ℛ𝒫𝜌,𝑑
𝑝 ⟶ 𝒫𝐽(𝑑), 𝜇 ⟼ (𝜆1, … , 𝜆𝓁),

where

𝜆𝑖 =

{
𝜇(𝑖−1) 𝑖 even
𝜇(𝑖−1)′

𝑖 odd,

then 𝐶̊𝜈𝜇 = [𝑃(𝜄(𝜈)), 𝐿(𝜄(𝜇))] for all 𝜇, 𝜈. Summing, we obtain∑
𝜇,𝜈∈ℛ𝒫𝜌,𝑑

𝑝

𝐶̊𝜈𝜇 =
∑

𝝀,𝝁∈𝒫𝐽(𝑑)

[𝑃(𝝀) ∶ 𝐿(𝝁)] =
∑

𝜇,𝜈∈ℛ𝒫𝜌,𝑑
𝑝

𝐶𝜈𝜇,

and the result follows.
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