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Abstract: We investigate existence and properties of discrete mixture rep-
resentations Pθ =

∑
i∈E wθ(i)Qi for a given family Pθ, θ ∈ Θ, of proba-

bility measures. The noncentral chi-squared distributions provide a classi-
cal example. We obtain existence results and results about geometric and
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1. Introduction

We say that a family {Pθ : θ ∈ Θ} of probability measures on some measurable
space (S,S) has a mixture representation in terms of a finite or countably infinite
family {Qi : i ∈ E} of probability measures on (S,S), the mixing distributions,
and a family of {wθ : θ ∈ Θ} of probability mass functions on E, the mixing
coefficients if, for all θ ∈ Θ,

Pθ(A) =
∑
i∈E

wθ(i)Qi(A) for all A ∈ S. (1)

We will generally have a continuous (uncountable) base family {Pθ : θ ∈ Θ}
and a parameter set Θ that is a subset of Rd for some d ≥ 1. Note that we
assume that E is discrete; we will therefore refer to (1) as a discrete mixture
representation.

A particularly interesting example, with connections to the power of statis-
tical tests and also to the Dynkin isomorphism in the theory of stochastic pro-
cesses, arises if we start with a standard normal random variableX and let Pθ be
the distribution of (X + θ)2. For such noncentral chi-squared distribution with
one degree of freedom and noncentrality parameter θ2, the representation (1)
holds with E = N0, Qi the central chi-squared distribution with 2i+1 degrees of
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freedom and wθ the probability mass function of the Poisson distribution with
mean θ2/2; see also equation (12) below.

Replacing the standard normal distribution by some other distribution μ on
the real line we obtain the noncentral distributions associated with μ. In [2] we
obtained representations similar to the classical case for such noncentral fam-
ilies if μ is the logistic distribution or the hyperbolic secant distribution, but
our methods there did not lead to similar results for other standard symmet-
ric distributions, such as the double exponential and the Cauchy distribution.
Initially, our aim was to develop an alternative approach that can be used in
these cases and for other parametric families. It turned out that the problems of
existence and properties of discrete mixture representations for a given family
of probability measures have some interesting general aspects, of a geometric
and statistical nature; these, together with their interaction, are now the major
themes of the present paper.

We briefly recall the general situation: With an arbitrary set of mixing dis-
tributions we need to replace the sum in (1) by an integral and thus require a
measurable structure, i.e. a σ-field E , on E together with E-measurability of all
functions y �→ Q(y,A), A ∈ S, so that Q is a Markov kernel (transition prob-
ability) from (E, E) to (S,S). For a probability measure τ on (E, E) we then
obtain Pτ , the mixed distribution with mixing kernel Q and mixing measure τ ,
by

Pτ (A) :=

∫
Q(y,A) τ(dy) for all A ∈ S. (2)

With S = {yk : k ∈ N0} countable and S the set of all subsets of S a discrete
mixture representation always exists for any family {Pθ : θ ∈ Θ}: With E = N0

we take Qk to be the probability measure δyk
concentrated on {yk} and define

the mixing coefficients by wθ(k) = Pθ({yk}). In the general situation we may
still use such a construction with Q(y, ·) = δy the one-point measure in y and
P itself as the mixing measure (here E = S, E = S, and we assume that
{y} ∈ S for all y ∈ S). In particular there is a mixture representation for every
family {Pθ : θ ∈ Θ} of probability measures on a given measurable space (S,S).
A discrete mixture representation, however, might not exist: For example, (1)
implies that the family {Pθ : θ ∈ Θ} is dominated by some σ-finite measure ν
(this is not true in general, for example if E is uncountable and E = S, and if
the family consists of all one-point measures). In fact, for a dominated family (1)
may be rewritten in terms of functions as

fθ(x) =
∑
i∈E

wθ(i) gi(x) for ν-almost all x ∈ S, (3)

where gi, fθ are ν-densities of Qi, Pθ. This way, we may regard {Pθ : θ ∈ Θ} as
a curve in the space L1 = L1(S,S, ν) of ν-integrable functions on S.

Mixed distributions are a canonical theme in probability and statistics, and
many authors have considered related problems. A standard reference for mix-
tures, especially from a statistical point of view, is Lindsay’s research mono-
graph [18]. The set of mixtures of binomial distributions has been considered in
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detail in [25] and [26], from a geometric and statistical angle respectively. In [17]
penalized maximum-likelihood estimators are proposed for mixed distributions.
A classical mixture result for a nonparametric distribution family appears in
connection with Grenander’s influential paper [11] about estimation of distribu-
tions on R+ that have decreasing densities and, more generally, in connection
with the structure of unimodal distributions [7, p. 158]. The special case of non-
central chi-squared is considered in many papers, see e.g. [10, 22, 13]. Finally, a
strong case for the use of mixture representations is made in [12], where these are
related to the removal of constraints in the optimization problems that typically
turn up once the estimates have to be calculated.

In Section 2 we provide existence results that can be used to obtain discrete
mixture representations in many cases, including the noncentral families associ-
ated with the double exponential and the Cauchy distribution mentioned above;
see Theorems 1 and 4. The proof of the first theorem is based on a representa-
tion of the σ-field S by a filtration that consists of σ-fields generated by finite or
countably infinite partitions of S, such as the dyadic partitions if S is the σ-field
of Borel subsets of the unit interval S. The result, however, is less explicit than
in the classical case of noncentral chi-squared distributions or the other cases
considered in [2].

In Section 3 we develop the curve view in (3) and relate the existence of
discrete mixture representations to continuity properties of the curve for spaces
other than L1.

Section 4 deals with geometric aspects. The set of all mixtures of a given
family of mixing distributions is obviously convex, but even in a stronger sense
which makes it well-suited to Dynkin’s approach [5] that is based on the notion
of barycentric map. In particular, and in contrast to the strategy used by many
papers in this area where Choquet’s representation theorem is an important
tool, we do not require topological notions for infinite-dimensional linear spaces.
Naturally, the (geometric) question arises whether a representation such as (1)
is minimal in the sense that the right hand side is the barycentric convex hull of
the parametric family on the left; see Theorem 10 for results in the chi-squared
case. The set of extreme points of the mixture family in the representation of
uniforms from Section 2 turns out to be empty; see part (a) of Theorem 11.

In Section 5, which contains several subsections, we consider statistical as-
pects. In particular, from this point of view mixtures such as (1) may be thought
of as representing a two-stage experiment: To obtain a random variable X with
distribution Pθ, we first choose an E-valued random variable T with probability
mass function wθ and then, given T = i, choose X with distribution Qi. In
particular, finding a discrete mixture representation is essentially the same as
finding a discrete sufficient statistic, on a possibly enlarged base space.

In Section 5.1 we relate our general existence result from Section 2 to the
construction of an important class of prior distribution families in nonparametric
Bayesian inference.

For Sections 5.2 and 5.3 the starting point is the observation that a represen-
tation such as (1) relates the parametric families {Wθ : θ ∈ Θ} of probability
distributions on (E, E), where Wθ is given by Wθ({i}) = wθ(i) for all i ∈ E,
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and the family {Pθ : θ ∈ Θ}. On general grounds the passage from the first
to the second family entails an information loss. This can be formalized by the
respective Fisher information. We obtain an integral expression for the classical
case with Poisson distributions and noncentral chi-squared distributions with
one degree of freedom, see Proposition 12. It turns out that at least half of
the information is lost, and that this bound is asymptotically tight as θ → ∞.
Moreover, it follows that the method of moments estimator for the noncentrality
parameter in the chi-squared case (which, together with some of its variants,
has been considered in several papers) is not efficient. Further, in the general
setup, the existence of a sufficient statistic T , on a possibly enlarged base space,
also leads to a comparison of experiments by conditioning on T . This is carried
out in Proposition 13 for the representation obtained in Section 2 for a family
of uniform distributions and the method of moments estimator.

In Section 5.4 we note that a discrete mixture representation leads to an
embedding of the parametric family into a nonparametric one, meaning that
the original parameter θ is replaced by the probability simplex on (E, E). In
our final result, Theorem 14, we show, again in the classical situation, that the
method of moments estimator for the mean functional is then asymptotically
efficient at a large class of distributions, including the noncentral chi-squared
with one degree of freedom. General aspects of and comments on nonparametric
maximum likelihood estimation for such classes, including the use of the EM
algorithm, are collected in Section 5.5.

Section 6 concludes our work and also mentions some directions for future
research. Finally, an appendix contains the proofs of our results.

2. Existence of discrete mixture representations

We construct a discrete mixture representation for a specific distribution family
and then use this result to obtain such representations for other families. We
begin the first step by outlining a general approach; see also Section 5.1 for a
similar treatment of a problem in nonparametric Bayesian inference.

Suppose that the basic space (S,S) is the increasing limit of a sequence of
finite spaces in the sense that S is generated by the union of Fn, n ∈ N, where
(Fn)n∈N is a filtration consisting of finite σ-fields. Then each Fn is generated
by a finite measurable partition Fn,1, . . . , Fn,kn of S, and these are nested. For
a prospective dominating probability measure ν we then put

E(ν) := {(n, k) : n ∈ N, k = 1, . . . , kn, ν(Fn,k) > 0},

and for i = (n, k) ∈ E(ν) we let Qi be the distribution with ν-density gn,k :=
ν(Fn,k)

−1 1Fn,k
. (Here and below 1A denotes the indicator function of the set

A.) For an arbitrary probability measure μ on (S,S) with ν-density f we
then obtain an increasing sequence of subprobabilities via their densities fn =∑kn

k=1 an,kgn,k, with an,k := sup{t ≥ 0 : ν(tgn,k ≤ f) = 1} for all (n, k) ∈ E(ν).
The desired discrete mixture representation then appears through the corre-
sponding differences if limn→∞

∫
(f − fn) dν = 0.
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It should be clear that this approach can also be used for two-sided filtrations
(Fn)n∈Z and countably infinite partitions. We now carry this out for a specific
parametric family, using the decomposition of the real line into dyadic intervals.
Let

Qbin = {k2m : k ∈ Z odd, m ∈ Z}

be the set of binary rational numbers. By convention, the notation (a, b) may
refer to a pair of real numbers or to an open interval, but the meaning should
always be clear from the context.

Let unif(a, b), −∞ < a < b < ∞, be the uniform distribution on the interval
(a, b) and let

Θ := {(a, b) ∈ R2 : −∞ < a < b < ∞}.

We define a countable set E ⊂ R2 by

E :=
{(

k2m, (k + 1)2m
)
: k,m ∈ Z

}
. (4)

Our first result now shows that the parametric family of uniform distributions
on bounded intervals of real numbers has a discrete mixture representation. We
give a constructive proof (see the appendix), which will prove instructive later
on when we use the representation provided by Theorem 1. The proof is based on
a decomposition of finite real intervals into those with binary rational endpoints
and length an integer power of 2. The condition in the theorem ensures that the
decomposition is unique, but see also Theorem 11 (a).

Theorem 1. For (a, b) ∈ Θ let C(a, b) be the set of pairs (p, q) = (k2m, (k +
1)2m) ∈ E with (p, q) ⊂ (a, b) and the property that (k + 2)2m > b if k is even
or (k − 1)2m < a if k is odd. Then, for each (a, b) ∈ Θ,

unif(a, b) =
∑

(p,q)∈E

w(a,b)(p, q) unif(p, q), (5)

where the mixing coefficients are given by

w(a,b)(p, q) =

⎧⎨
⎩

2m

b− a
, if (p, q) =

(
k2m, (k + 1)2m

)
∈ C(a, b),

0, otherwise.
(6)

Remark 2. A version of the theorem for the subfamily {unif(0, θ) : 0 < θ < 1}
is of separate interest; it is also easier to state: Each θ has a unique binary

expansion θ =
∑K(θ)

k=1 2−jk(θ), with K(θ) < ∞ if θ ∈ Qbin, and then, ignoring
the dependence on θ in the notation,

unif(0, θ) =

K∑
k=1

2jk unif
(
ak−1, ak

)
, (7)

with a0 := 0 and ak :=
∑k

l=1 2
−jl for k > 0. This will be taken up in Section 5.3.
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Let (Ω,A) and (Ω′,A′) be measurable spaces and suppose that T : Ω →
Ω′ is (A,A′)-measurable. We recall that the push-forward PT of a probability
measure P on (Ω,A) under T is the probability measure on (Ω′,A′) given by
PT (A) = P (T−1(A)), A ∈ A′. This is also known as the image of P under T .

Remark 3. The following structural property of the above discrete mixture
representation is worth noting; it also plays a role in the last part of the proof:
A set {Pθ : θ ∈ Θ} of distributions on the Borel subsets of the real line is a
location-scale family if the push-forward of any element under an affine-linear
transformation x �→ cx+d, c 	= 0, is again an element of the family. Clearly, this
holds for the family in Theorem 1. The (countable) subset of mixing distributions
that we obtain if the interval bounds are restricted to binary rationals still enjoys
this invariance property, provided that we restrict the shift d to Qbin and |c| to
an integer power of 2.

It should be clear that a family of distributions has a discrete mixture repre-
sentation if it can written as the union of a finite or countably infinite family of
families with this property, or as a subset. Below we repeatedly use two further
properties: For the first of these, suppose that (1) holds and that τ is a probabil-
ity measure on (Θ,B(Θ)). Then the τ -mixture Rτ with base family {Pθ : θ ∈ E}
can be written as

Rτ (A) :=

∫
Pθ(A) τ(dθ) =

∑
i∈E

w̃τ (i)Qi(A) for all A ∈ S, (8)

with w̃τ (i) :=
∫
wθ(i) τ(dθ) (here we implicitly assume that the functions θ �→

wθ(i), i ∈ E, are measurable). Hence a family of mixtures of the original family
again has a discrete mixture representation, even with the same family of mixing
distributions. For the second property let (S′,S ′) be another measurable space,
let T : Ω → Ω′ be measurable, and assume that {Pθ : θ ∈ Θ} has a mixture
representation Pθ =

∫
Q(y, ·)μθ(dy) as in (2). Then the following representation

of the push-forwards holds,

PT
θ =

∫
QT (y, ·) μθ(dy) for all θ ∈ Θ, (9)

where QT (y, ·) denotes the push-forward of Q(y, ·) under T . Clearly, the first of
these properties can be extended to non-discrete base families, and the second
can easily be specialized to the case of discrete E.

As mentioned in Section 1, noncentral distributions are of particular interest.
For these, we start with a distribution μ on the real line and write Pθ for the
distribution of (X + θ)2 or |X + θ|, where the random variable X is supposed
to have distribution μ. From (9) it is clear that for the existence of a discrete
mixture representation it is irrelevant which of these possibilities we choose.
Also, if μ is symmetric then we may assume that θ ≥ 0. Below, unless otherwise
specified, densities refer to densities with respect to the Lebesgue measure.

Theorem 4. Suppose that μ is symmetric and has a density f that is weakly
decreasing on R+. Then the associated noncentral family has a discrete mixture
representation.
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The proof uses a representation of μ as a mixture of uniform distributions on
the intervals (−y, y), y > 0.

Both the Cauchy distribution and the double exponential distribution satisfy
the assumptions in Theorem 4 which means that, answering a question raised
in Section 1, both noncentral families have a discrete mixture representation. In
the following example we give some details for the double exponential case.

Example 5. The (standard) double exponential distribution DExp(1) is given
by its density x �→ e−|x|/2, x ∈ R. It is easily checked that the corresponding
representing measure μ in the proof of Theorem 4 is equal to the gamma distri-
bution Γ(2, 1) with parameters 2 and 1, which has density function x �→ xe−x,
x ≥ 0, so that

DExp(1) =

∫
unif(−y, y) Γ(2, 1)(dy). (10)

Now let Pθ be the distribution of |X + θ|, where X ∼ DExp(1) and θ ≥ 0.
Then (10) implies

Pθ =

∫
unif(−y, y)Tθ Γ(2, 1)(dy), (11)

with Tθ(x) = |x+θ|. It is easy to check that the push-forwards in (11) can all be
written as a uniform distribution or as a mixture of two uniform distributions.
In both cases Theorem 1 is applicable.

In Theorem 11 below we consider the mixture family associated with the
mixing distributions that appear in (5) in more detail.

3. Representations with continuity properties

We recall that noncentral chi-squared distributions χ2
n(θ

2) with n degrees of
freedom may be written as

χ2
n(θ

2) =
∞∑
k=0

Po(θ2/2)({k})χ2
2k+n, θ ∈ R, (12)

where Po(λ) abbreviates the Poisson distribution with parameter λ and χ2
m is

the (central) chi-squared distribution with m degrees of freedom, i.e. the dis-
tribution of X2

1 + · · · + X2
m if X1, . . . , Xm are independent standard normal

random variables. This provides a discrete mixture representation for the non-
central chi-squared distributions χ2

n(θ
2) with arbitrary (n, θ2) ∈ N×(0,∞), and

taking n = 1 leads to such a representation for the subfamily addressed in the
introduction. In both cases we may take E to be the set of integers i > 0 and
{χ2

i : i ∈ E} as the family of mixture distributions.

In contrast to these and the similarly explicit representations obtained in [2]
our results in Section 2 with uniforms as mixing distributions seem to be less
‘usable’. In particular, they differ with respect to smoothness properties. For
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example, we may view θ �→ (i �→ wθ(i)) as a function on Θ with values in the
Banach space (	1, ‖ · ‖1),

	1 = 	1(E) :=
{
(ai)i∈E ∈ RE : ‖a‖1 :=

∑
i∈E

|ai| < ∞
}
. (13)

It is easy to see that the functions given by the mixing coefficients in (12) are
continuous. Notice though that in Theorem 1 and the results built on it we do
not require the mixing coefficients to be continuous.

What happens if we impose continuity assumptions on the discrete mixture
representation? We suggest to formalize these by regarding (1) as taking place in
a certain Banach space (B, ‖ · ‖); indeed, we have already done so when passing
from (1) to (3). In the classical case (12) with n > 1 we may for example use
B = Cb(R+), the space of bounded continuous functions f : R+ → R, with the
supremum norm ‖f‖∞ = supx≥0 |f(x)|. The continuous densities of χ2

n, n > 1,
are all bounded and it is easy to see that the respective norms tend to 0 as
n → ∞, which implies boundedness of the whole family in (B, ‖ · ‖). For the
subfamily with n = 1 we may similarly use Cb([ε,∞]) with an arbitrary ε > 0
(the continuous density of χ2

1 is not bounded).

The following simple result can be used to show that for a given family
{Pθ : θ ∈ Θ} a representation of the type (1) is only possible if the corresponding
smoothness assumptions are not too strong. In it, we regard θ �→ wθ as a function
on Θ with values in the Banach space (	1, ‖ · ‖1).

Proposition 6. Suppose that the representation (1) holds in some Banach space
(B, ‖ · ‖), and that

θ �→ wθ is continuous, (C)

{Qi : i ∈ E} is bounded in (B, ‖ · ‖). (B)

Then, the function θ �→ Pθ on Θ with values in B is continuous.

Remark 7. (a) Variations of this result are easily obtained. If (C) is amplified
to Lipschitz continuity, for example, then θ �→ Pθ is Lipschitz continuous too.
Further, if E = N then exponential coefficients can be introduced and (B) can
be relaxed or amplified to the boundedness of ρkQk, k ∈ N, with some ρ > 0 if
a corresponding bound is assumed to hold for the mixing coefficients.

(b) Continuity of course also depends on the topology chosen on Θ. In fact,
from a probabilistic point of view, especially in connection with the standard
model for an infinitely repeated toss of a fair coin, one might argue for Θ =
{0, 1}∞ instead of Θ = (0, 1) in the context of the family {unif(0, θ) : 0 <
θ < 1}. With the discrete topology on {0, 1} and the product topology on the
new Θ the function θ �→ (i �→ wθ(i)) then turns out to be continuous; see also
Proposition 13 (b).

We revisit two noncentral families under this continuity perspective. Below
we write l for the Lebesgue measure on the Borel subsets B of R and l+ for
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its restriction to the Borel subsets B+ of R+ or R+ \ {0}. Continuity of a mix-
ture representation refers to a notion of convergence for probability measures.
In (1) convergence of the series is the convergence of real numbers. As the mix-
ing coefficients are nonnegative and summable, this automatically amplifies to
convergence in total variation norm of the partial sums if we regard these as
measures. For a dominated sequence this in turn is equivalent to L1-convergence
of the respective densities. In the special case (S,S) = (R,B) and with dominat-
ing measure l the distance of probability measures then refers to the distance
of densities, that is, of functions f : R → R+. For these, other notions, stronger
than L1-convergence, can used, for example the distance based on the essential
supremum, or distances that use smoothness properties of the functions.

Example 8. We consider the uniform distributions unif(θ, θ+1), θ ∈ R. Clearly,
all Pθ can be interpreted, via their densities, as elements of

B := L∞(R,B, l) =
{
f : R → R : ‖f‖ess sup := inf{a : l(|f | > a) = 0} < ∞

}
.

Further, θ �→ Pθ is ‖·‖ess sup-bounded. For a bounded set of mixing distributions
and with continuity of the mixing coefficients, a representation of the form (1)
would imply that θ �→ Pθ is continuous, which is obviously not the case: For
example, ‖Pθ+1/n − Pθ‖ess sup ≥ 1 for all θ ∈ R, n ∈ N.

Example 9. Let μ = DExp(1) as in Example 5. We consider the corresponding
noncentral distributions Pθ, θ ≥ 0, where Pθ is the distribution of |X + θ| and
X has distribution μ. Then a continuous density of Pθ is given by

fθ(y) =
1

2

(
e−|y−θ| + e−y−θ

)
=

{
e−θ(ey + e−y)/2, 0 < y ≤ θ,

e−y(eθ + e−θ)/2, θ < y < ∞.

This implies that fθ(y) = fθ(0) +
∫ y

0
gθ(z) dz for all y ≥ 0, with

gθ(z) =

{
e−θ(ez − e−z)/2, 0 < z ≤ θ,

−e−z(eθ + e−θ)/2, θ < z < ∞.

In particular, fθ is differentiable in y 	= θ, and the derivative has a jump of
size 1 at y = θ. We can interpret all Pθ, via the gθ, as elements of the Banach
space B = L∞(R+,B+, l+). Repeating the step from (1) to (3) we may regard
a representation as taking place in B. In this space, θ → Pθ is not continuous,
so a discrete mixture representation for the noncentral family associated with
DExp(1) satisfying the assumptions (C) and (B) does not exist.

4. Geometric aspects

We briefly sketch Dynkin’s approach [5] to convex measurable structures in the
context of the present situation. Let M1 = M1(S,S) be the set of all probability
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measures on (S,S) and let B(M1) be the σ-field on M1 generated by the pro-
jections P �→ P (A), A ∈ S. Then each probability measure Ξ on (M1,B(M1))
defines a probability measure P = Ψ(Ξ) on (S,S), the barycenter of Ξ, via

P (A) =

∫
R(A) Ξ(dR) for all A ∈ S. (14)

Note that we integrate with respect to a measure Ξ on a set of probability
measures, which means that the integration variable R is a probability measure;
also, R(A) is short-hand for the function R �→ R(A) with A fixed. We say that
a subset M of M1 is barycenter convex if Ψ(Ξ) ∈ M for all probability measures
Ξ on (M,B(M)), where B(M) denotes the trace of B(M1) on M . The classical
notion appears if we restrict this to measures Ξ that are concentrated on a finite
number of points in M . The set of all probability measures on (N,P(N)) with
finite support provides an example of a family that is classically convex but not
barycenter convex; here and below P(A) denotes the power set associated with
a set A, i.e. the set of all subsets of A.

Now let (E, E) be another measurable space and let Q be a transition prob-
ability from (E, E) to (S,S). We write Mix{Q(y, ·) : y ∈ E} for the set of
probability measures on (S,S) that arise as Q-mixtures, see (2). It is easy to see
that Φ : E → M1, y �→ Q(y, ·), is (E ,B(M1))-measurable, and that the mixed
distribution Pτ is the barycenter of the push-forward Ξ = τΦ of τ under Φ.
Further, from the behavior of mixtures under push-forwards, see (9), it follows
that such mixture families are barycenter convex; indeed, Mix{Q(y, ·) : y ∈ E}
may be seen as the barycentric convex hull of the family {Q(y, ·) : y ∈ E}.

The basic equation (1) then says that {Pθ : θ ∈ Θ} is a subset of Mix{Qi :
i ∈ E}, where we have written Qi instead of Q(i, ·). By the mixture-of-mixtures
formula (8) this implies

Mix{Pθ : θ ∈ Θ} ⊂ Mix{Qi : i ∈ E}, (15)

and it seems natural to call a discrete mixture representation (1) minimal, if

Mix{Pθ : θ ∈ Θ} = Mix{Qi : i ∈ E}.

In this context, a description of the respective extreme points is of interest.
Suppose that μ =

∑
i∈E piQi ∈ Mix{Qi : i ∈ E} is a ‘true’ mixture in the sense

that 0 < pj < 1 for some j ∈ E. Then μ can written as

μ = (1− pj)μ1 + pjμ2 with μ1 :=
∑
i �=j

pi
1− pj

Qi, μ2 := Qj ,

hence the set of extreme elements of Mix{Qi : i ∈ E} is a subset of {Qi : i ∈ E}.
Notice that this argument uses barycenter convexity; indeed, for sets that are
convex in this stronger sense the classical notion of extreme points (not a non-
trivial finite affine combination of other points of the set) and the barycentric
version (not representable in the sense of (14) by some Ξ that is not concentrated
at one point) are the same.

For noncentral chi-squared distributions we have the following result.
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Theorem 10. (a) The representation (12) for the subfamily {χ2
1(θ) : θ ≥ 0} is

not minimal, i.e.

Mix{χ2
1(θ) : θ ≥ 0} � Mix{χ2

1+2k : k ∈ N0}.

Further, each χ2
1(η), η ≥ 0, is extremal in Mix{χ2

1(θ) : θ ≥ 0}, and a minimal
discrete mixture representation of {χ2

1(θ) : θ ≥ 0} does not exist.
(b) The representation (12) of the family {χ2

k(θ) : θ ≥ 0, k ∈ N} is minimal,
i.e.

Mix{χ2
k(θ) : θ ≥ 0, k ∈ N} = Mix{χ2

k : k ∈ N}.

(c) If k, l ∈ N have different parities, i.e. if |k − l| is odd, then

Mix{χ2
k(θ) : θ ≥ 0} ∩Mix{χ2

l (θ) : θ ≥ 0} = ∅.

The proof of the first part implies that the family Mix{χ2
1(θ) : θ ≥ 0} is a

simplex, where again the notion refers to general barycenters.
We next consider the situation in Theorem 1, with E = {(k2m, (k + 1)2m) :

k,m ∈ Z} and

Q(p,q) = unif(p, q) for all (p, q) = (k2m, (k + 1)2m) ∈ E.

Again, absolutely continuity refers to the Lebesgue measure l.

Theorem 11. (a) The set Mix{Q(p,q) : (p, q) ∈ E} has no extreme elements.
(b) Let μ be a probability measure on (R,B). If μ is absolutely continuous

with a density that is Riemann integrable on all compact intervals, then μ is an
element of Mix{Q(p,q) : (p, q) ∈ E}.

(c) There exists a probability measure on (R,B) that is absolutely continuous
and that is not an element of Mix{Q(p,q) : (p, q) ∈ E}.

The above approach can be used to obtain similar results for other families of
distributions. For example, in Mix{unif(0, θ) : θ > 0} the mixing distributions
are extreme, and the family contains the family F of all distributions on (0,∞)
with a weakly decreasing density. Obviously, unif(0, θ) ∈ F . Taken together this
shows that F , which has a discrete mixture representation by Theorem 4, does
not have a minimal discrete mixture representation.

With respect to the general approach in this section we point out that, in
contrast to the classical functional-analytic results on convexity and associated
representations, see e.g. [20], we have not used any topological concepts (other
than those for the real line that are inherent in the Lebesgue integral). Never-
theless, it is interesting to compare mixture families to the closed convex hull
of the mixing distributions. This set of course depends on the topology in use.
For example, with Mix{unif(0, θ) : θ > 0, θ ∈ Q} and total variation norm (or,
equivalently, the L1-norm for the respective densities), the closed convex hull
is strictly larger than the mixture family itself. Part (a) of Theorem 11 may
also be of interest in this connection; see also the corresponding remarks in the
introduction.
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Finally, we briefly consider what happens if we drop the assumption that
the mixing coefficients are nonnegative. For example, what is the closure of the
linear span of the shifted Cauchy distributions in the space L1? A famous result
from functional analysis, see e.g. Theorem 9.5 in [21], states that this set is
the whole of L1 if the characteristic function (Fourier transform of the density)
has no zeroes. In the Cauchy case, this is the function x �→ e−|x|, so that the
condition is satisfied. Clearly, the corresponding mixture family is much smaller.

5. Statistical aspects

The structural decomposition given by a mixture representation is closely re-
lated to the statistical concept of sufficiency. As in (2) let (E, E) and (S,S) be
measurable spaces and let Q be a Markov kernel from (E, E) to (S,S). For any
probability measure τ on (E, E) we may define the probability measure τ ⊗ Q
on the product space (E × S, E ⊗ S) by

τ ⊗Q(A×B) =

∫
A

Q(y,B) τ(dy) for all A ∈ E , B ∈ S. (16)

Let T and X be the projections (y, x) �→ y and (y, x) �→ x and suppose that D
is a non-empty subset of the set M1(E, E) of probability measures on (E, E). By
construction, T is then sufficient for the set {τ ⊗Q : τ ∈ D}, and {Pτ : τ ∈ D}
with Pτ = (τ ⊗ Q)X is the corresponding set of distributions for the second
component X, with Pτ as in (2). This shows that, given a mixture representa-
tion, it is possible to enlarge the sample space such that a sufficient statistic
appears. Of course, this is also quite evident from the two-stage interpretation
of mixture experiments. Also, we noted in the remarks following (2) that a mix-
ture representation always exists if we take Q(y, ·) = δy. Here this corresponds
to the statement that X itself is a sufficient statistic.

Conversely, suppose that we have a set of probability measures {Pτ : τ ∈ D}
on (S,S), indexed by τ ∈ D ⊂ M1(E, E)}, with the property that on an enlarged
space (E × S, E ⊗ S) there is a family {Rτ : τ ∈ D} of probability measures
such that for each τ ∈ D the push-forward RX

τ of the projection X on the
second coordinate is Pτ , the push-forward RT

τ of the projection T on the first
coordinate is τ , and T is sufficient for {Rτ : τ ∈ D}. Then if (S,S) is a Borel
space, there exists a Markov kernel Q from (E, E) to (S,S) such that (2) holds
for all τ ∈ D; for more details see [15].

In applications, D is often a suitably parametrized set of distributions, say
D = {τθ : θ ∈ Θ}. Then putting Pθ = Pτθ the mixture representation of the
parametric family {Pθ : θ ∈ Θ} is obtained in the usual parametric form

Pθ(·) =
∫

Q(y, ·) τθ(dy), θ ∈ Θ.

From this point of view we may rephrase our quest for a discrete mixture
representation as the search for a discrete sufficient statistic on a possibly en-
larged base space. Such an enlargement may indeed be necessary: If T : S → E
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is sufficient for a family {Pθ : θ ∈ Θ} of distributions on (S,S) dominated
by some σ-finite measure ν, and if E is countable, then the Neyman criterion
implies that for θ1, θ2 ∈ Θ with θ1 	= θ2 the ratio x �→ pθ1(x)/pθ2(x) of the as-
sociated ν-densities has only countably many values. In the classical case, with
Pθ = χ2

1(2θ) for θ > 0, this ratio is a continuous function, and we would obtain
a contradiction to the intermediate value theorem.

A discrete mixture representation such as (1) connects the statistical exper-
iments E = (E, E , {Wθ : θ ∈ Θ}), with Wθ again given by Wθ({i}) = wθ(i) for
all i ∈ E, and F = (S,S, {Pθ : θ ∈ Θ}) and also leads to an embedding of the
parametric experiment F into the nonparametric experiment

M =
(
S,S,

{∑
i∈E

piQi : pi ≥ 0 for all i ∈ E,
∑
i∈E

pi = 1
})

.

Further, with the notation introduced above, we obtain the experiment

R =
(
E × S, E ⊗ S, {Wθ ⊗Q : θ ∈ Θ}

)
.

After a short subsection on the connection to nonparametric Bayesian inference
we investigate various statistical aspects that relate the experiments E, F, M
and R. In the context of comparing experiments the connection between ge-
ometry and statistics can be seen as an underlying thread, a connection that
currently receives much attention under the heading ‘information geometry’.
The classical case is the use of the Hilbert space Pythagorean theorem in the
proof of the Cramér-Rao lower bound, which plays a role in Subsection 5.3. Also,
concepts from differential geometry are increasingly used in statistics, with [1]
and [6] being two early influential contributions. A specific aspect of this influ-
ence is the interpretation of Fisher information as curvature. In the situation
considered here this leads to an interpretation of the results in Subsection 5.2
as a reduction of curvature (‘flattening’) in the transition from E to F. Finally,
convexity considerations in the context of sufficiency are basic themes in [14]
and [5].

5.1. Priors on sets of probability measures

We refer the reader to the recent textbook [9] for a general introduction to
nonparametric Bayesian inference.

As in Section 4 let M be a subset of the set M1(S,S) of all probability mea-
sures on (S,S) and letM be the σ-field onM generated by the maps P �→ P (A),
A ∈ S. The data x ∈ S are regarded as a realization of a random variable X, and
M is the set of potential distributions for X. Our prior knowledge is formalized
by a probability Ξ on (M,M), the prior distribution. An important problem of
nonparametric Bayesian inference is the construction of a set of such measures Ξ
that is flexible in the sense that the transition to posterior distributions is man-
ageable and does not leave the set, and that the Bernstein-von Mises theorem
applies. In his seminal paper, Ferguson [8] puts special emphasis on Dirichlet
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processes for the case that M is the set of all probability measures on (S,S).
These priors satisfy the above requirements, but they are concentrated on the
set of discrete distributions.

Hoff [12] points out the relevance of mixture representations for the con-
struction of prior probabilities on convex sets of probability measures. There,
a necessary first step is the construction of a suitable mixture representation;
see [12, Section 4] for an interesting variety of worked examples. Here we start
with a mixture representation. For example, in the statistical experiment M we
have

M =
{∑
i∈E

piQi : pi ≥ 0 for all i ∈ E,
∑
i∈E

pi = 1
}
,

and the construction of probability measures on M is essentially equivalent
to the construction of probability measures on M1(E,P(E)). In the classical
situation and in many other cases of interest, E = N0, and the latter problem
can be approached via a stick-breaking procedure. The detour via a discrete
mixture representation means that the posterior distribution obtained from the
prior and the data would still be absolutely continuous with respect to any
measure dominating M (in fact, even smoothness properties of the densities
would be retained).

An important alternative to Dirichlet processes are tree-based priors. To see
the connection to discrete mixture representations we assume, as at the begin-
ning of Section 2, that S is generated by the union of σ-fields Fn, n ∈ N, where
(Fn)n∈N is a filtration and each Fn, n ∈ N, is generated by a finite partition
{Fn,1, . . . , Fn,kn}. This structure leads to a tree with node set (n, k), n ∈ N,
k = 1, . . . , kn, and edges between (n, k) and (n+ 1, j) whenever Fn,k ⊃ Fn+1,j .
A suitable assignment of probabilities p(n,k),(n+1,j) to these edges then defines

a probability P on (S,S), with P
(
En+1,j

∣∣En,k

)
= p(n,k),(n+1,j) for all edges

{(n, k), (n + 1, j)}. Choosing random assignments leads to tree-based priors Ξ,
such as tail-free processes and Pólya trees.

Conversely, choosing the weights via the conditional probabilities provides a
tree-based representation for a given distribution P . The approximation Pn that
results if the conditional probabilities of the nodes are multiplied up to depth n
is simply the restriction of P to the σ-field Fn. For discrete mixture representa-
tion, however, we need a sequence of approximations that is increasing. Such a
sequence of subprobability measures can be obtained via a dominating measure,
as explained at the beginning of Section 2.

5.2. Fisher information

We first consider the experiments E and F defined above, where the parameter
set Θ is assumed to be an open subset of Rd. In what follows we confine ourselves
to giving the definition of the Fisher information matrix for the experiment F.
Let f(·, θ) be the density of the distribution Pθ with respect to some σ-finite
measure on (S,S). We denote by θ1, . . . , θd the components of the column vector
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θ ∈ Θ. Under suitable standard regularity conditions, see, e.g. [16], the integrals

iF;jk(θ) =

∫
∂

∂θj
log f(x, θ)

∂

∂θk
log f(x, θ)Pθ(dx), 1 ≤ j, k ≤ d, (17)

exist and it is iF(θ) = (iF;jk(θ))1≤j,k≤d a symmetric positive definite d×dmatrix
which is called the Fisher information matrix associated with the experiment F.
Assuming that the corresponding standard conditions hold for the experiment
E, there is a Fisher information matrix iE(θ) associated with E as well. The
experiments E and F are related in the sense that there is Markov kernel Q from
(E, E) to (S,S) such that (1) holds. Following Le Cam [15], the experiment F is
then said to be reproducible from the experiment E (or, equivalently, E is said
to be better than F). Notice that the standard terminology that E is sufficient
for F is not adopted by Le Cam. Under certain regularity conditions it then
follows that

iE(θ)− iF(θ) is positive semidefinite for each θ ∈ Θ; (18)

see [10] or [23]. The latter author deals with the one-dimensional case d = 1.
Then (18) reduces to

iE(θ) ≥ iF(θ) for each θ ∈ Θ.

It is of interest to quantify iE(θ) − iF(θ), which can be viewed as the loss of
information when switching from E to F. We tackle this problem in the special
case arising with the mixture representation

χ2
1(2θ) =

∞∑
k=0

Po(θ)({k})χ2
2k+1, θ ∈ (0,∞). (19)

The above conditions for (17) are then satisfied for the experiments E and F

that are specified in the following result.

Proposition 12. In the special case of the experiments

E =
(
N0,P(N0), {Po(θ) : θ ∈ (0,∞)}

)
and

F =
(
R>0,B>0, {χ2

1(2θ) : θ ∈ (0,∞)}
)

it holds that

iF(θ) =
1

2θ

∫ ∞

0

x tanh2
(
(2θx)1/2

)
g1,θ(x) dx − 1. (20)

In particular, with r(θ) := θiF(θ) for all θ > 0,

lim
θ→0

r(θ) = 0, lim
θ→∞

r(θ) =
1

2
, (21)

and r is strictly increasing. Finally,

iF(θ) ≤ 1

2
iE(θ) for all θ > 0. (22)
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It follows from (22) that the transition from E to F causes a loss of information
of more than fifty percent, and (21) implies that this bound is asymptotically
tight as θ → ∞.

For a general discussion of estimation procedures for estimating the unknown
parameter θ based on observations of X we refer to [13].

5.3. MSE reduction

A quantitative comparison of F andR, the original and the enlarged experiment,
can be obtained through the reduction of the mean squared error (MSE) of
estimators by conditioning on the sufficient statistic, a procedure sometimes
called ‘Rao-Blackwellization’. In the classical case (19), with Θ = (0,∞) and
Pθ = χ2

1(2θ), the enlargement leads to the product space (N0 × R>0,P(N0) ⊗
B>0), with the distributions Rθ specified by Rθ({k}×A) = Po(θ)({k})·χ2

2k+1(A)
for all k ∈ N0, A ∈ B>0. Again, T and X are the canonical projections on N0

and R>0 respectively, and T is sufficient for {Rθ : θ ∈ Θ}. In this situation,

θ̂ := (X − 1)/2 is an unbiased estimator for the unknown parameter θ, and

conditioning on the sufficient statistic leads to the estimator θ̃ = Eθ[θ̂|T ] = T .
The MSE reduction may be given explicitly in this situation:

MSEθ(θ̃) = θ <
1

2
+ 2θ = MSEθ(θ̂).

We note that, in view of the Cramér-Rao lower bound for the variance of an
unbiased estimator, the formula for MSEθ(θ̂) can also be used to obtain a lower
bound for the Fisher information iF considered in the previous subsection. In
fact, inspecting the geometric argument in the proof of the bound it is not
difficult to show that the inequality is strict, so that the result of the previous
subsection may be augmented as follows,

1

2 + 1/(2θ)
< θiF(θ) <

1

2
for all θ > 0, (23)

see also Figure 1 where the integral in (20) has been computed numerically.
Note that (23) leads to an alternative proof of the second limit relation stated

in (21). Further, standard arguments show that var(θ̂) > iF(θ)
−1 implies that

the estimator θ̂ is not asymptotically efficient and thus inferior to the maximum
likelihood estimator; see also Subsection 5.4.

As another, somewhat less straightforward example we consider the family of
uniform distributions Pθ = unif(0, θ), θ ∈ Θ := (0, 1), on (S,S) = ((0, 1),B(0,1))
together with the mixture representation in Remark 2. In order to carry out Rao-
Blackwellization for the moment estimator θ̂ = 2X, X ∼ Pθ, we use the binary
representation: For a given θ ∈ Θ, letK(θ), jk(θ) and ak(θ) be as in (7). Let E :=
Θ∩Qbin, and for t ∈ E let d(t) := 2−K(t) where K(t) is obtained from the binary
representation of t. Given θ ∈ Θ we assign the weight wθ(am(θ)) = d(am(θ))/θ
to each am(θ), m = 1, . . . ,K(θ), and put wθ(t) = 0 otherwise. Further, with
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Fig 1. The function θ �→ θiF(θ) (red) and its bounds, see (23).

each t ∈ E we associate the mixing distribution Q(t, ·) = unif(t− d(t), t). Then
the discrete mixture representation (7) may be written as

Pθ = unif(0, θ) =
∑
t∈E

wθ(t) unif (t− d(t), t) .

For example, if θ = 3/4 then K(θ) = 2, a1(θ) = 1/2, a2(θ) = 3/4, d(a1(θ)) =
1/2, d(a2(θ)) = 1/4, wθ(1/2) = 2/3, wθ(3/4) = 1/3, and we arrive at

unif
(
0,

3

4

)
=

2

3
unif

(
0,

1

2

)
+

1

3
unif

(1
2
,
3

4

)
.

On the product space (E× (0, 1),P(E)⊗B(0,1)) we obtain the probability mea-
sures Rθ specified by

Rθ({t} ×A) = wθ(t) unif (t− d(t), t) (A), t ∈ E, A ∈ B(0,1).

With T and X the canonical projections on E and (0, 1) respectively, T is

sufficient for {Rθ : θ ∈ Θ}. For the moment estimator θ̂ = 2X conditioning on

the sufficient statistic now leads to the estimator θ̃ := Eθ[θ̂|T ] = 2T − d(T ). As
in Proposition 12 we first give a general formula and then derive some properties
of the function of interest.

Proposition 13. (a) With the notation as introduced above, the mean squared
error of the conditioned moment estimator θ̃ = 2T − d(T ) is given by

MSEθ(θ̃) = varθ(θ̃) =
1

θ

K(θ)∑
m=1

am(θ)am−1(θ)
(
am(θ)− am−1(θ)

)
. (24)

(b) The function θ �→ φ(θ) := varθ(θ̃) is continuous on Θ \ E, and on E it is
right continuous and has left hand limits. Moreover,

φ(θ)− φ(θ−) = − 1

7q
2−2L+1 (25)

if θ is a binary rational of the form θ = q2−L, with L, q ∈ N and q odd.
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Fig 2. Mean squared errors associated with θ̂ (blue) and θ̃ (red)

The property ‘right continuous, with left hand limits’ is often abbreviated to
‘càdlàg’.

For the unconditioned estimator θ̂ we have varθ(θ̂) = θ2/3. Both estimators

are unbiased. Figure 2 shows the variances (mean squared errors) of θ̂ and θ̃ for θ
an integer multiple of 2−12, with the interpolation justified by Proposition 13 (b).
The figure suggests a self-similarity property: Indeed, as X ∼ Pθ/2 and 2X ∼ Pθ

are equivalent, it follows that both variance functions have the scaling property
φ(θ/2) = φ(θ)/4. Further, if θ = 2−m for some m ∈ N then the variance is zero,
as the distribution of T is degenerate for such values of the parameter.

5.4. An asymptotically efficient estimator for the mean functional

We consider the classical case (19). In the corresponding mixture model we then
have

Θ =
{
p = (pk)k∈N0 : pk ≥ 0 for all k ∈ N0,

∞∑
k=0

pk = 1
}
,

and the statistical experiment M is based on the family

P =
{
Pp : Pp =

∞∑
k=0

pkχ
2
2k+1, p ∈ Θ

}

of mixture distributions parametrized by p ∈ Θ. The family
{
χ2
1(2θ) : θ > 0

}
underlying F is a subfamily of P .

Our aim is to show that the moment estimator for the mean functional, which
we know from the previous subsections to not be efficient in the context of F,
is asymptotically efficient at each Pp ∈ P that has non-vanishing mixing coef-
ficients with finite variance. We refer the reader to [24, Sections 1.2, 2.1 and
3.1] for an exposition of the general theory needed here. In comparison with the
situation in Proposition 12 there are three main differences: First, instead of a
parametric family with a parameter θ specifying the distribution, we now have
a one-dimensional parameter function κ : P → R, where κ(P ) does not fully
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characterize P . Secondly, instead of the variance of an estimator θ̂ for θ we now
consider the variance of the limiting normal distribution in an associated central
limit theorem for a sequence of estimators for κ(P ). The third point requires
some machinery. The basic idea is to consider dominated one-dimensional sub-
models {Pt : 0 ≤ t < ε} ⊂ P with P0 = P and then use the derivative at t = 0,
in analogy to (17). This leads to a tangent set, where the geometry is that of
a Hilbert space of square integrable functions. Again speaking somewhat infor-
mally, a lower bound can then be obtained from the supremum of the associated
second moments. Finally, an estimator sequence is said to be asymptotically ef-
ficient at P for the parameter function κ if asymptotic variance and lower bound
are the same for this P .

Let P0 be the subset of distributions Pp ∈ P with p = (pk)k∈N0 satisfying the
moment condition

∑∞
k=0 k

2pk < ∞ and also the condition that pk > 0 for each
k ∈ N0. Consider the mean functional κ : P0 → R defined by

κ(Pp) =
∞∑
k=0

kpk, Pp ∈ P0.

LetX1, . . . , Xn, . . . be a sequence of independent and identically distributed ran-
dom variables with distribution Pp ∈ P0 which is assumed to be unknown. Then,
generalizing the moment estimator that already appeared in Subsection 5.3,

Tn :=
1

2

(
Xn − 1

)
=

1

2

( 1
n

n∑
i=1

Xi − 1
)

leads to a sequence (Tn)n∈N of unbiased estimators for κ(Pp), and the central
limit theorem shows that, as n → ∞,

√
n (Tn − κ(Pp))

D−→ N
(
0, v(Pp) + κ(Pp) +

1

2

)
, (26)

where v(Pp) =
∑∞

k=0 (k − κ(Pp))
2
pk.

Theorem 14. For estimating κ(Pp), the estimator sequence (Tn)
∞
n=1 is asymp-

totically efficient at each Pp ∈ P0.

If Pp = χ2
1(2θ) then v(Pp) = κ(Pp) = θ so that the variance of the limit

distribution of
√
n (Tn − κ(Pp)) is equal to 2θ+ 1

2 , in accordance with the value
found in Subsection 5.3.

5.5. NPMLE and EM

As we pointed out in the introduction a distribution Pθ with the mixture rep-
resentation Pθ =

∑
i∈E wθ(i)Qi may be seen as the distribution of the outcome

X in a two-stage experiment: First, choose Y in E with distribution (mass func-
tion) wθ, then, if Y = i, choose X according to Qi. In a sample x1, . . . , xn of
size n from Pθ we may then think of the corresponding y1, . . . , yn as hidden
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(or latent) variables, or as missing covariates, see [18, Sect. 1.3.5 and 1.3.6]. A
non-parametric generalization leads to the problem of estimating the mixing
probabilities pi, i ∈ E, in a representation P =

∑
i∈E pi Qi of the unknown

distribution P , with the Qi known, from the data x1, . . . , xn. We may of course
regard the sequence p = (pi)i∈E as a parameter, where the parameter space is
now the probability simplex on E, as in the previous subsection.

The EM algorithm, see [4] and [18, Sect. 3.4] can be used to obtain a sequence
p(l), l = 1, 2, . . . of approximations to the corresponding non-parametric maxi-
mum likelihood estimator (NPMLE). We give the details for the classical case,
where E = N0 and Qk is the central chi-squared distribution with 2k+1 degrees
of freedom, with continuous density gk. The log-likelihood function LX is then
given by

LX(p) =

n∑
i=1

log
( ∞∑
k=0

pk gk(xi)
)
. (27)

With the corresponding y-values known, the log-likelihood function would be

LX,Y (p) =

n∑
i=1

log
(
pyi gyi(xi)

)
=

n∑
i=1

log pyi + r(x1, . . . , xn; y1, . . . , yn), (28)

where the function r does not depend on p. In the EM algorithm, we obtain
the next approximation p(l + 1) for the NPMLE from the current value p(l) as
the argmax (M-step) of the conditional expectation (E-step) of LX,Y (p) given
x1, . . . , xn.

The E-step boils down to the calculation of Ep(l)

[
log pYi |Xi = xi

]
. Under

Pp(l) the joint distribution of Xi and Yi has density (x, k) �→ pk(l)gk(x) with
respect to the product of Lebesgue measure on R+ and counting measure on
N0, so that the conditional probability of Yi = k given Xi = x becomes

hx(k) =
pk(l) gk(x)∑∞
j=0 pj(l) gj(x)

, x > 0, k ∈ N0.

The M-step then requires maximization of the function

p �→
∞∑
k=0

qn(k) log pk, with qn(k) :=
1

n

n∑
i=1

hxi(k).

As qn is a probability mass function, Gibbs’ inequality can be used to show that
the desired argmax is given by p(l + 1) = qn. Using this in (28) we arrive at

pk(l + 1) =
1

n

n∑
i=1

pk(l) gk(xi)∑∞
j=1 pj(l) gj(xi)

for all k ∈ N0. (29)

For chi-squared mixing distributions the factors e−x/2 cancel in (29) and, more
importantly, the infinite sums can be truncated to the range from 0 to

K := K(x1, . . . , xn) :=
⌈
(1 + max{x1, . . . , xn})/2

⌉
.
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Fig 3. Simulation results (see text)

To see this we note that

gk−1(x)

gk(x)
=

2 Γ(k + 1/2)

x Γ(k − 1/2)
=

2k − 1

x
for all x > 0, k ∈ N.

Hence, if some k > K appears in (27), then the corresponding mass pk can be
shifted to the left without decreasing the value of LX .

The left part of Figure 3 shows the results of four simulation experiments,
each with n = 10000 observations, where the base distribution is a noncentral
chi-squared with one degree of freedom and noncentrality parameter θ = 2.
The vertical red lines represent the probability mass pk of the true mixing
distribution, which is Poisson with parameter 2, at the positions k = 0, 1, . . . , 7.
The four estimates of these masses are computed numerically by using the EM
algorithm and are shown in blue slightly to the right.

For noncentral distribution families the nonparametric version incorporates
a variant of the deconvolution problem [18, Sect. 1.3.19]: In the chi-squared
case, we regard the data as realizations of random variables X = (Y +Z)2 with
Y, Z independent, Y standard normal, and an unknown distribution μ for Z.
The procedure outlined above can be applied and leads to an estimator for the
mixed Poisson distribution associated with μ. This in turn can then be used to
obtain an estimator for μ, by combining NPMLE and EM again, for example.

The right hand part of Figure 3 shows the results of four simulation exper-
iments where Z = 2

√
W with W exponentially distributed with parameter 1.

The corresponding mixed Poisson distribution is the geometric distribution on
N0 with parameter 1/2. Again, the vertical red lines represents the true mixing
distribution, the four estimates are slightly to the right and in blue, and each
simulation is based on n = 10000 observations. We should point out that a
rather large number n of observations is required in order to obtain estimators
with small mean squared error.

Given a sequence X1, . . . , Xn, . . . of independent and identically distributed
random variables with distribution Pp =

∑∞
k=0 pkχ

2
1+2k, where the parameter

p = (pk)k∈N0 in the probability simplex on N0 is unknown, the non-parametric
maximum likelihood estimator pNPMLE,n of p based on X1, . . . , Xn exists. Using
the general consistency statement given in [19, Theorem 5.3] we deduce that the
sequence (pNPMLE,n)n∈N is strongly consistent for p.
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6. Summary and outlook

We have investigated geometrical and statistical aspects, and their interaction,
in the context of discrete mixture representations. It turned out that there are
connections to a variety of theoretical and applied topics, including

– tree-based constructions of probability measures, with connections to non-
paramnetric Bayesian inference (Theorem 1, Section 5.1),

– the view of mixture representations as curves in an infinite-dimensional
space (Section 3),

– Dynkin’s barycentric approach to convexity (Section 4),
– the effect of mixing on Fisher information (Section 5.2) and mean squared

error (Section 5.3), and
– algorithmic aspects, notably the use of the EM algorithm (Section 5.5).

We have almost exclusively considered the one-dimensional case, i.e. families
of probability distributions on the real line, leaving multivariate situations to a
future paper. Another aspect that seems to be worth a separate investigation
is the structure of the family {Qi : i ∈ E} of mixing distributions in a rep-
resentation such as (1). In the classical case (12), with noncentral chi-squared
distributions, these are the convolution powers of one specific probability mea-
sure, and we noted in Remark 3 that the mixing distributions in Theorem 1
constitute a location-scale family of a specific type. Taken together, the mul-
tivariate case and the structure of the mixing family are also of interest for
applications in the general area of stochastic processes, with relations to the
Dynkin isomorphism (see [2, Section 4.2]). In an applied context it would cer-
tainly be interesting to remove the assumption in Section 5.5 that the mixing
family is known. This would lead to a statistical inverse problem, and structural
assumptions could be used, if applicable, to reduce its complexity.
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Appendix: Proofs

Proof of Theorem 1. Consider the infinite rooted binary tree where each node
has one left and one right descendant. Any x ∈ (0, 1) that is not a binary rational
defines a unique infinite path through this tree, starting at the root node, and
moving to the left or right descendant if the next digit in its binary expansion
is 0 or 1 respectively. With x = 1/3, for example, we would move to the left
and to the right in odd and even steps alternatingly. Our first aim is to obtain
a decomposition of (a, b) ⊂ (0, 1) into intervals with binary rational endpoints.
For this we label the nodes of tree by appropriately chosen intervals, using (4),
and then collect these along the paths given by a and b.
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In order to carry this out formally, let a, b ∈ R \ Qbin, 0 < a < b < 1,
be given, with binary expansions a =

∑∞
k=1 ak2

−k, b =
∑∞

k=1 bk2
−k where

ak, bk ∈ {0, 1} for all k ∈ N. Let j1 < j2 < · · · be the positions of the digit 1

in the expansion of b. The corresponding partial sums b(l) :=
∑jl

k=1 bk2
−k,

l ∈ N, then provide a strictly increasing sequence of binary rational numbers
with limit b. By construction, 2jl+1

(
b(l+1)− b(l)

)
= 1, 2jl+1b(l+1)− 1 is even,

and
(
2jl+1b(l + 1)− 1 + 2

)
2−jl+1 = b(l + 1) + 2−jl+1 > b.

Similarly, and now writing j1 < j2 < · · · for the positions of the digit 0 in
the expansion of a, and with a(l) := 2−jl +

∑jl
k=1 ak2

−k, l ∈ N, we obtain a
strictly decreasing sequence (a(l))l∈N ⊂ Qbin with limit a and the property that
2jl+1a(l+1) is odd, and

(
2jl+1a(l + 1)− 1

)
2−jl+1 = a(l+1)− 2−jl+1 < a for all

l ∈ N.
Let K := min{k ∈ N : ak = 0, bk = 1}. Clearly, K < ∞ as a < b. With

a(K) :=
∑K

k=1 ak2
−k, b(K) :=

∑K
k=1 bk2

−k, we have (a(K), b(K)) ∈ C(a, b),(
a(l+1), a(l)

)
∈ C(a, b) for all l with jl(a) ≥ K,

(
b(l), b(l+1)

)
∈ C(a, b) for all

l with jl(b) ≥ K, and we finally arrive at the interval decomposition

(a, b) =
(
a(K), b(K)

)
�

⊔
{l: jl(b)≥K}

(
b(l), b(l+ 1)

)
�

⊔
{l: jl(a)≥K}

(
a(l+ 1), a(l)

)
� N,

with N countable. This implies

(b− a) unif(a, b) = (b(K)− a(K)) unif(a(K), b(K))

+
∑

{l: jl(b)≥K}
(b(l + 1)− b(l)) unif(b(l), b(l + 1))

+
∑

{l: jl(a)≥K}
(a(l)− a(l + 1)) unif(a(l + 1), a(l)).

It remains to remove the restrictions on a and b. For elements of Qbin the
binary representation is not unique, but if we agree to choose the representation
with a finite number of digits 1 in the case of b and a finite number of digits 0 in
the case of a then the only change in the above argument is that the respective
sequence of j-values would be finite.

In order to remove the assumption 0 < a, b < 1 we first describe the way in
which the representation interacts with affine transformations T : R → R of the
form T (x) = 2kx + r, with k ∈ Z and r ∈ Qbin. Such functions are bijections,
and their inverse is of the same type. Further, they leave E invariant, if applied
to the components of the pair, and it is easy to check that

(
T (p), T (q)

)
∈ C

(
T (a), T (b)

)
⇐⇒ (p, q) ∈ C(a, b)

for all (a, b) ∈ Θ, (p, q) ∈ E. Hence (5) would imply that

unif
(
T (a), T (b)

)
=

∑
(p,q)∈E

w(T (a),T (b))(p, q) unif(p, q), (30)
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which means that the representation then also holds for
(
T (a), T (b)

)
. Any pair

(a, b) ∈ Θ can be transformed by such T ’s into the unit interval, so the desired
representation holds for all (a, b) ∈ Θ.

Proof of Theorem 4. It is well-known and follows easily from Shepp’s theo-
rem [7, p. 158] that a probability measure P on the positive half-line with
weakly decreasing density f (which we may take to be left continuous) may be
written as a mixture of uniform distributions on the intervals [0, y], y > 0. For
completeness we give a simple and direct argument: First, a σ-finite measure ρ
on (R+,B+) can be defined via ρ([y,∞)) = f(y) for all y > 0. Then let ν be
the measure with density y �→ y with respect to ρ. Is it easy to check that ν has
total mass 1. Also, for all x > 0,

f(x) =

∫
[x,∞)

1

y
ν(dy) =

∫
(0,∞)

1

y
1[x,∞)(y) ν(dy) =

∫
(0,∞)

1

y
1[0,y](x) ν(dy),

and the integrand in the last expression is a density for unif(0, y).
With μ and f as in the statement of the theorem we may write μ = 1

2 (μ0+μT
0 )

with T (x) = −x, and with μ0 a distribution that is concentrated on the positive
half-line and has a weakly decreasing density there. Using the first part, we get

μ =

∫
(0,∞)

unif(−y, y) ν(dy), (31)

where ν is the mixing measure for μ0.
We now apply the general principles represented by (8) (repeated mixtures)

and (9) (behaviour under push-forwards): First, if X has distribution μ and Qθ

is the distribution of X + θ, representation (31) implies that

Qθ =

∫
(0,∞)

unif(θ − y, θ + y) ν(dy). (32)

Thus, the family {Qθ : θ ∈ R} has a discrete mixture representation in terms
of the countable set of uniform distributions on intervals with binary rational
endpoints introduced in connection with Theorem 1. The transfer argument for
push-forwards, with T (x) = |x| or T (x) = x2, now completes the proof.

Proof of Proposition 6. Assume without loss of generality that E = N. Let C :=
supk∈N ‖Qk‖. Then, for all η, θ ∈ Θ,

‖Pθ − Pη‖ = lim
K→∞

∥∥∥ K∑
k=0

wθ(k)Qk −
K∑

k=0

wη(k)Qk

∥∥∥
≤ C lim

K→∞

K∑
k=0

∣∣wθ(k)− wη(k)
∣∣

≤ C ‖wθ − wη‖1.
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Proof of Theorem 10. (a) Suppose that μ ∈ Mix{χ2
1+2k : k ∈ N0} has two

mixture representations,

μ =

∞∑
k=0

pkχ
2
1+2k and μ =

∞∑
k=0

qkχ
2
1+2k,

with pk, qk ≥ 0 and
∑

pk =
∑

qk = 1. Then the respective densities must be
equal almost everywhere, so that the continuous versions agree on (0,∞). This
gives

∞∑
k=0

pk

Γ
(
k + 1

2

)
2k+

1
2

xk− 1
2 e−x/2 =

∞∑
k=0

qk

Γ
(
k + 1

2

)
2k+

1
2

xk− 1
2 e−x/2 for all x > 0.

Multiplying both sides by x
1
2 ex/2 and using the uniqueness of the coefficients in

a power series representation we get pk = qk for all k ∈ N0. Hence the mixture
representation of elements of Mix{χ2

1+2k : k ∈ N0} is unique.
Now suppose that μ is a mixture of noncentral chi-squared distributions with

one degree of freedom and mixing measure ν on the parameter space Θ = [0,∞).
The classical representation (12) with n = 1 then gives

μ =

∞∑
k=0

pkχ
2
1+2k with pk =

∫
e−λλ

k

k!
ν(dλ) for all k ∈ N0,

so that the mixing coefficients are the probabilities of a mixed Poisson distribu-
tion. In order to prove the strict subset relation it is therefore enough to name
a distribution on N0 that is not a mixed Poisson distribution—such as δ1. In
particular,

χ2
3 ∈ Mix{χ2

1+2k : k ∈ N0} \Mix{χ2
1(θ) : θ ≥ 0}.

To finish the proof of part (a) we use the uniqueness of the representation to
show that each χ2

1(η), η > 0, is an extreme element of the convex set Mix{χ2
1(θ) :

θ ≥ 0}. Indeed, suppose that χ2
1(η) = αμ1 + (1 − α)μ2, and that ν1, ν2 are the

parameter distributions for μ1, μ2. But then χ2
1(η) would itself be a mixture of

the distributions χ2
1(θ), θ ≥ 0, with mixing measure ν := αν1 + (1− α)ν2. The

uniqueness now implies that ν is concentrated at η, so that μ1 and μ2 are equal.
This shows that the set of extreme elements of Mix{χ2

1(θ) : θ ≥ 0} is un-
countable, in contrast to the set of extreme elements of Mix{χ2

1+2k : k ∈ N0}.
(b) We know from (12) that each χ2

k(θ), θ ≥ 0 and k ∈ N, has a representation
in terms of central chi-squared distributions, so that, by the mixture-of mixtures
property (8), the left set is contained in the set on the right side of the assertion.
However, χ2

k = χ2
k(0), which means that the mixing distributions are elements

of the left set, hence so are their mixtures.
(c) Any element μ of both sets Mix{χ2

k+2n : n ∈ N0} and Mix{χ2
l+2n : n ∈

N0} must have two representations of the form

μ =

∞∑
n=0

pnχ
2
k+2n and μ =

∞∑
n=0

qnχ
2
l+2n.
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As in the proof of (a) above, this would lead to

∞∑
n=0

pn

Γ
(
n+ k

2

)
2n+

k
2

xn+ k
2−1e−x/2 =

∞∑
n=0

qn

Γ
(
n+ l

2

)
2n+

l
2

xn+ l
2−1e−x/2

for all x > 0. Multiplication by x
1
2 ex/2 and substituting x = y2 then gives

∞∑
n=0

pn

Γ
(
n+ k

2

)
2n+

k
2

y2n+k−1 =

∞∑
n=0

qn

Γ
(
n+ l

2

)
2n+

l
2

y2n+l−1 for all y > 0.

If k and l have different parities then the coefficients of y vanish for all odd
powers on one side of the equation, and for all even powers on the other.

Proof of Theorem 11. (a) On general grounds, the set of extreme elements of
Mix{Q(p,q) : (p, q) ∈ E} is a subset of {Q(p,q) : (p, q) ∈ E}. For an arbitrary
(p, q) = (k2m, (k + 1)2m) ∈ E we have

(
k2m, (k + 1)2m

)
=

∞⊔
r=1

(
(2r+1k + 1)2m−r−1, (2r+1k + 2)2m−r−1

)
� N

with N countable, so that Q(p,q) may be written as

Q(p,q) =

∞∑
r=1

2−runif
(
(2r+1k+1)2m−r−1, (2r+1k+2)2m−r−1

)
=

1

2
μ1 +

1

2
μ2,

where μ1 := unif
(
(4k + 1)2m−2, (4k + 2)2m−2

)
and

μ2 :=

∞∑
r=2

2−(r−1)unif
(
(2r+1k + 1)2m−r−1, (2r+1k + 2)2m−r−1

)

are two different elements of Mix{Q(p,q) : (p, q) ∈ E}.
(b) Let f be a density of μ that is Riemann integrable on all compact intervals.

For a fixedM ∈ Z consider the partition of the compact interval IM = [M,M+1]
into intervals IM,m,k, k = 1, . . . , 2m, of length 2−m. As these partitions are
nested, the step functions gM,m, m ∈ N, given by

gM,m :=

2m∑
k=1

aM,m,k1IM,k
with aM,m,k := inf

{
f(x) : x ∈ IM,m,k

}

are increasing; let gM,∞ be their supremum. Then 0 ≤ gM,∞ ≤ f , and

∫
IM

gM,∞ dl =

∫ M+1

M

f(x) dx =

∫
IM

f dl

as f is Riemann integrable on IM . For each of the intervals D = IM,m,k the
function l(D)−11D is a density of unif(D), which is an element of Mix{Q(p,q) :
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(p, q) ∈ E} by Theorem 1. Further, the differences gM,m+1 − gM,m are linear
combinations with nonnegative coefficients of the indicators of IM,m+1,k, k =
1, . . . , 2m+1. Taken together this shows that gM,∞/μ(IM ) is the density of an
element of Mix{Q(p,q) : (p, q) ∈ E} whenever μ(IM ) > 0. As μ itself is a mixture
of these, an appeal to the repeated mixture property (8) completes the proof
of (b).

(c) We start with a familiar construction from measure theory, see e.g. [3,
Problem 2.5 b), p. 65]. Let qk, k ∈ N, be an enumeration of the rational numbers
in the interval (0, 1). Choose for each k ∈ N some nk ∈ N, nk > k+1, such that

Ik :=
(
qk − 2−nk , qk + 2−nk

)
⊂ (0, 1).

Then the union A :=
⋃∞

k=1 Ik is a non-empty open subset of [0, 1], the Lebesgue
measure α := l(A) of which is

0 < α ≤
∞∑
k=1

l(Ik) ≤ 2

∞∑
k=1

2−nk <

∞∑
k=1

2−k = 1.

The set A is dense in [0, 1]. Let μ be the uniform distribution on the complement
[0, 1] \A of A, with density f := (1− α)−1(1− 1A). The support of μ does not
contain any interval of positive length, in contrast to the support of the elements
of Mix{Qi : i ∈ E}.

Proof of Proposition 12. Denote by gn,θ the continuous density of the χ2
n(2θ)

distribution, i.e.,

gn,θ(x) =

∞∑
k=0

e−θ θ
k

k!
f2k+n(x), x > 0.

Then

d

dθ
log g1,θ(x) =

g3,θ(x)− g1,θ(x)

g1,θ(x)
,

and therefore

iF(θ) =

∫ ∞

0

(
d

dθ
log g1,θ(x)

)2

g1,θ(x) dx =

∫ ∞

0

(
g3,θ(x)

g1,θ(x)
− 1

)2

g1,θ(x) dx

=

∫ ∞

0

(
g3,θ(x)

g1,θ(x)

)2

g1,θ(x) dx− 1.

For ν ∈ (−1,∞) let

Iν(x) = (x/2)ν
∞∑
k=0

(x/2)2k

k!Γ(ν + k + 1)
, x > 0,
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be the modified Bessel function of the first kind of order ν. Using

g1,θ(x) =
1

2
exp(−θ − x/2)(x/2θ)−1/4I−1/2

(
(2θx)1/2

)
,

g3,θ(x) =
1

2
exp(−θ − x/2)(x/2θ)1/4I1/2

(
(2θx)1/2

)
,

see, e.g., [22], we get

iF(θ) =

∫ ∞

0

x

2θ

(
I1/2

(
(2θx)1/2

)
I−1/2

(
(2θx)1/2

)
)2

g1,θ(x) dx− 1.

Finally, from I−1/2(x) = (2/(πx))
1/2

coshx and I1/2(x) = (2/(πx))
1/2

sinhx,
x > 0, we deduce that

iF(θ) =
1

2θ

∫ ∞

0

x tanh2
(
(2θx)1/2

)
g1,θ(x) dx− 1

<
1

2θ

∫ ∞

0

xg1,θ(x) dx− 1 =
1

2θ
.

The Fisher information in E is known to be iE(θ) = 1/θ for θ > 0.
To prove the properties of the function r we write

r(θ) =
1

2

∫ ∞

0

x tanh2
(
(2θx)1/2

)
g1,θ(x) dx− θ

=
1

2
(1− s(θ)) ,

with

s(θ) =

∫ ∞

0

x
(
1− tanh2

(
(2θx)1/2

))
g1,θ(x) dx.

Noticing that

1− tanh2
(
(2θx)1/2

)
= 4

exp
(
−2(2θx)1/2

)
(
1 + exp

(
−2(2θx)1/2

))2 ≤ 4 exp
(
−2(2θx)1/2

)

and

g1,θ(x) = (2πx)−1/2e−θe−x/2 cosh
(
(2θx)1/2

)
≤ (2πx)−1/2e−θe−x/2 exp

(
(2θx)1/2

)
we deduce that

0 ≤ x
(
1− tanh2

(
(2θx)1/2

))
g1,θ(x) ≤ 4(2π)−1/2e−θx1/2e−x/2.

Therefore,

0 ≤ s(θ) ≤ 4(2π)−1/2e−θ

∫ ∞

0

x1/2e−x/2 dx = 4e−θ,
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so that limθ→∞ s(θ) = 0. Additionally, due to

lim
θ→0

x
(
1− tanh2

(
(2θx)1/2

))
g1,θ(x) = xf1(x) for each x > 0,

by dominated convergence, we have that limθ→0 s(θ) =
∫∞
0

xf1(x) dx = 1.
Finally, let 0 < θ1 < θ2 < ∞. To show that s(θ1) > s(θ2) we write

s(θ1) =

∫ ∞

0

1− tanh2
(
(2θ1x)

1/2
)

1− tanh2
(
(2θ2x)1/2

)
× g1,θ1(x)

g1,θ2(x)
x
(
1− tanh2

(
(2θ2x)

1/2
))

g1,θ2(x) dx. (33)

Due to

1− tanh2
(
(2θ1x)

1/2
)

1− tanh2
(
(2θ2x)1/2

) =
exp

(
−2(2θ1x)

1/2
) (

1 + exp
(
−2(2θ2x)

1/2
))2

(
1 + exp

(
−2(2θ1x)1/2

))2
exp

(
−2(2θ2x)1/2

)
and

g1,θ1(x)

g1,θ2(x)
= exp(θ2 − θ1)

cosh
(
(2θ1x)

1/2
)

cosh
(
(2θ2x)1/2

)
it holds that

1− tanh2
(
(2θ1x)

1/2
)

1− tanh2
(
(2θ2x)1/2

) g1,θ1(x)

g1,θ2(x)
= exp(θ2 − θ1)

cosh
(
(2θ2x)

1/2
)

cosh
(
(2θ1x)1/2

) > 1

for each x > 0. Thus, by (33), s(θ1) > s(θ2).

Proof of Proposition 13. (a) Let θ ∈ Θ be given. We first assume thatK(θ) = ∞
and suppress the dependence on θ where convenient. In terms of the sequences
(jk)k∈N and (am)m∈N0 we have

Rθ(T = am) =
am − am−1

θ
=

1

θ2jm
for all m ∈ N

and Rθ(T = t) = 0 for all other elements t of E. Conditionally on T = am, X
is uniformly distributed on the interval (am−1, am]. With these definitions we
obtain

Eθ θ̃ =

∞∑
m=1

Rθ(T = am)E[2X|T = am] =
1

θ

∞∑
m=1

(am − am−1)(am + am−1)

=
1

θ
lim

M→∞
a2M = θ,

which, of course, is also immediate from the tower property of conditional ex-
pectations. Similarly,

θ Eθ θ̃
2 =

∞∑
m=1

(am − am−1)(am + am−1)
2

=

∞∑
m=1

(a3m − a3m−1) +

∞∑
m=1

amam−1(am − am−1).
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From the above expression for Eθ θ̃ we get limm→∞ a3m = θ3, which completes
the proof of (24) in the case that K(θ) = ∞. For binary rational parameter
values the same arguments apply, only that the sums are now finite and no
limits are needed.

(b) We first consider the function Ψ(θ) = wθ that maps Θ to the set of prob-
ability measures on N together with the total variation distance or, equivalently
via probability mass functions, to the space (	1(N), ‖ · ‖1). Clearly, Ψ = Φ1 ◦Φ2

where Φ2 maps θ =
∑∞

k=1 bk2
−k to the sequence b(θ) = (bk)k∈N ∈ {0, 1}N of

digits in the binary expansion that has infinitely many 0’s, and Φ1(b)({k}) =
bk2

−k/θ, k ∈ N. On the intermediate space of 0-1 sequences we consider the
product topology, where a sequence of sequences converges if the respective
components converge, which here means that the components do not change
from some sequence index onwards (which may depend on the index of the
component; informally, all components eventually ‘freeze’).

The outer function Φ1 is continuous in view of Scheffé’s lemma. For any
θ ∈ Θ \ E there are infinitely many 0’s (and 1’s) in b(θ). If bk(θ) = 0 and
bk+1(θ) = 1 then θ is strictly inside a binary rational interval of length 2−k.
Hence, if θn → θ then θn is also contained in this interval from some n0 onwards,
which in turn implies that the first k digits remain constant. This shows that
the inner function Φ2 is continuous on Θ\E. In a similar fashion we obtain that
Φ2 is right continuous on E, and that in E its left hand limits exist.

The conditioned estimator θ̃ = 2T − d(T ) is bounded. Hence Lebesgue’s
dominated convergence theorem can be applied, so that we finally obtain that
θ �→ varθ(θ̃) is càdlàg and fully continuous in those parameter values that are
not binary rationals.

It remains to prove the formula for the jumps of φ in binary rationals. Using
the notation from the first part of the proof it is clear that θφ(θ) is the finite

sum
∑K

m=1 amam−12
−jm , where j1, . . . , jK = L are the successive positions of

the digit 1 in the (finite) binary expansion of θ = q2−L. Similarly, θφ(θ−) is the
infinite sum

∑∞
m=1 a

′
ma′m−12

−j′
m based on the sequence (j′m)m∈N with j′m = jm

for m < K, and j′K−1+m = L + m for all m ∈ N. In particular, a′m = am for
m < K, and we get

a′K−1+m = a′K−1+2−L−1+· · ·+2−L−m = aK−1+2−L(1−2−m) for all m ∈ N0,

which leads to
∞∑

k=K

a′ka
′
k−1(a

′
k − a′k−1) =

∞∑
m=0

a′K+m a′K+m−1 2
−j′

K+m

=

∞∑
m=0

(
aK−1 + 2−L(1− 2−m−1)

)(
aK−1 + 2−L(1− 2−m)

)
2−L−m−1

= a2K−1

∞∑
m=0

2−L−m−1

+ aK−1

∞∑
m=0

(
2−L(1− 2−m−1) + 2−L(1− 2−m)

)
2−L−m−1
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+

∞∑
m=0

2−L(1− 2−m−1) 2−L(1− 2−m) 2−L−m−1

= a2K−1 2
−L + aK−1 2

−2L +
2

7
2−3L,

hence

θ φ(θ−) =

K−1∑
k=1

akak−1(ak − ak−1) + a2K−1 2
−L + aK−1 2

−2L +
2

7
2−3L.

From (24) we know that

θ φ(θ) =

K−1∑
k=1

akak−1(ak − ak−1) + aKaK−1(aK − aK−1).

Using aK = θ and aK − aK−1 = 2−L we now obtain (25) after a short calcula-
tion.

Proof of Theorem 14. Fix Pp ∈ P0. Denote by Θd the subset of elements q =
(qk)k∈N0 in Θ with finitely many non-zero mixing coefficients qk. For q =
(qk)k∈N0 in Θd, 0 ≤ a < ∞ and 0 ≤ t < min(1, 1/a) let

Pp,q;a,t = Pp + at(Pq − Pp).

We consider the submodel

Pp,q;a =
{
Pp,q;a,t : 0 ≤ t < min(1, 1/a)

}
⊂ P0.

Then vp =
∑∞

k=0 pkf2k+1 is a density of Pp, and

vp,q;a,t = vp + at

∞∑
k=0

(qk − pk)f2k+1

is a density of Pp,q;a,t, both with respect to the Lebesgue measure l+ on the
Borel subsets of the positive half-line. The partial derivative

v̇p,q;a,t =
∂

∂t
vp,q;a,t = a

∞∑
k=0

(qk − pk)f2k+1

does not depend on t, hence t → v
1/2
p,λ;a,t is continuously differentiable on the

interval [0,min(1, 1/a)). Note that

cp,q := max

(
1,

qk
pk

, k ∈ N0

)
< ∞,
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because only finitely many of the qk are non-zero. Due to

v̇2p,q;a,t
vp,q;a,t

= a2
(
∑∞

k=0 qkf2k+1 −
∑∞

k=0 pkf2k+1)
2

(1− at)
∑∞

k=0 pkf2k+1 + at
∑∞

k=0 qkf2k+1

≤ a2

(∑∞
k=0

qk
pk
pkf2k+1 +

∑∞
k=0 pkf2k+1

)2

(1− at)
∑∞

k=0 pkf2k+1 + at
∑∞

k=0 qkf2k+1

≤ a2
(1 + cp,q)

2

1− at

∞∑
k=0

pkf2k+1(x),

dominated convergence can be applied and it follows that the function t →∫ v̇2
p,q;a,t

vp,q;t
dl+ is continuous. Thus, t → Pp,q;a,t is a differentiable path with score

function

gp,q;a =
∂

∂t
log vp,q;a,t

∣∣∣
t=0

= a

[∑∞
k=0 qkf2k+1∑∞
k=0 pkf2k+1

− 1

]
,

meaning that∫ [
v
1/2
θ,q;a,t − v

1/2
p

t
− 1

2
gp,q;a v

1/2
p

]2

dl+ → 0 as t → 0,

see [24, Lemma 1.8]. The tangent set

ṖPp = {gp,q;a : q ∈ Θd, a ≥ 0}

of the model P0 at Pp is a convex cone. Regarding this cone as a subset of
L2(Pp), we claim that κ̃Pp defined by

κ̃Pp(x) =
1

2
(x− 1)− κ(Pp), x > 0,

is an element of the closed linear span linṖPp of ṖPp . To see this, we first note
that with

(2k − 1)!! =

{
1 if k = 0,

(2k − 1) · (2k − 3) · · · 3 · 1 if k ∈ N,

it holds that

f2k+1(x) =
1

(2k − 1)!!
xkf1(x), k ∈ N0.

Thus, for each r ∈ N0, and δr = (δrk)k∈N0 with δrr = 1 and δrk = 0 otherwise,

gp,δr ;1(x) =

1
(2r−1)!!x

r∑∞
k=0

1
(2k−1)!!pkx

k
− 1, x > 0.
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Putting

a0 = −
(
κ(Pp) +

1

2

)
p0,

ak =
1

2
(2k − 1)pk−1 −

(
κ(Pp) +

1

2

)
pk, k ∈ N,

it follows that

κ̃Pp(x) =

∞∑
k=0

akgp,δk;1(x), x > 0,

where the series converges pointwise and in L2(Pp). Therefore, as asserted, κ̃Pp ∈
linṖPp . Due to

κ(Pp,q;a,t)− κ(Pp) = t

∫
κ̃Pp gp,q;a dPp

for each q ∈ Θd, each a ≥ 0 and each 0 ≤ t < min(1, 1/a), the functional
κ is differentiable at Pp relative to the tangent cone ṖPp . Hence κ̃Pp is the
efficient influence function for estimating the functional κ at Pp. By (26) and
Lemma 2.9 in [24], the sequence of estimators (Tn)

∞
n=1 for estimating κ is thus

asymptotically efficient at Pp.
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