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ON THE RATIONALITY OF
QUADRIC SURFACE BUNDLES

by Matthias PAULSEN

Abstract. — For any standard quadric surface bundle over P2, we show that
the locus of rational fibres is dense in the moduli space.
Résumé. — Pour tout faisceau de surface quadrique standard sur P2, nous mon-

trons que le lieu des fibres rationnelles est dense dans l’espace des modules.

1. Introduction

In [14], Hassett, Pirutka, and Tschinkel gave the first example of a family
X → B of smooth complex projective varieties such that for a very general
b ∈ B, the fibre Xb is not stably rational, while the locus of b ∈ B where
Xb is rational is dense in B for the Euclidean topology. Specifically, they
considered the family of smooth complex hypersurfaces in P2×P3 defined by
a homogeneous polynomial of bidegree (2, 2). Their result is remarkable as
it shows that rationality of the fibres is in general not a closed property on
the base. In particular, rationality is not deformation invariant in smooth
families.
In order to prove stable irrationality of a very general member, they used

the specialization method of Voisin [26] and Colliot-Thélène–Pirutka [7],
which allowed to disprove stable rationality in several other families as well,
see e. g. [27] for an overview.

Subsequently, other smooth families containing both rational and stably
irrational fibres were identified, for example in [1, 12, 13, 15, 18, 19]. Typi-
cally, it is easy to provide certain rational members in the studied families.

Keywords: Hodge loci, rationality problem, quadric surface bundles.
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98 Matthias PAULSEN

However, this does not exclude that the locus of rational fibres is contained
in a proper closed subset of the base. In only a few cases, it was shown that
the locus of rational fibres is dense in the moduli space.
The fourfolds considered in [14] and [15] are (birational to) quadric sur-

face bundles over P2 of types (2, 2, 2, 2) and (0, 2, 2, 4), respectively. Here, a
quadric surface bundle of type (d0, d1, d2, d3) for integers d0, d1, d2, d3 > 0
of the same parity is given by an equation of the form

(1.1)
∑

06i,j63
aijyiyj = 0

where aij = aji is a homogeneous polynomial of degree 1
2 (di + dj) in the

three coordinates of P2 and y0, y1, y2, y3 denote local trivializations of a split
vector bundle E on P2 of rank 4, see Section 3 for a more precise definition.
The quadric surface bundle X ⊂ P(E) over P2 defined by equation (1.1)
is also called a standard quadric surface bundle. Apart from the examples
in [14] and [15], many other fourfolds are birational to standard quadric
surface bundles. For instance, a hypersurface in P5 of degree d + 2 with
multiplicity d along a plane for some integer d > 1 is birational to a quadric
surface bundle of type (d, d, d, d+ 2), see e. g. [19, Lemma 23].
The smooth quadric surface bundles of fixed type (d0, d1, d2, d3) are

parametrized by a non-empty Zariski open subset B ⊂ P(V ) in the projec-
tivization of the complex vector space

(1.2) V =
⊕

06i6j63
H0 (P2,OP2

( 1
2 (di + dj)

))
.

We may then consider the universal family X → B of smooth quadric
surface bundles over P2 of type (d0, d1, d2, d3).
Using his improvement [19] of the specialization method, Schreieder

proved in [18] that a very general quadric surface bundle of type (d0, d1, d2,

d3) is not stably rational except for the two cases (1, 1, 1, 3) and (0, 2, 2, 2)
(up to reordering) which remain open and for trivial cases where the quadric
surface bundle always has a rational section and is hence rational. This
vastly generalizes the irrationality results of [14] and [15] to a natural class
of families of quadric surface bundles over P2.
The aim of this article is to prove the corresponding density assertion

for any standard quadric surface bundle over P2, thus showing that in this
large class of families the locus of rational fibres is never contained in a
proper closed subset of the moduli space. Concretely, we will prove the
following:
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ON THE RATIONALITY OF QUADRIC SURFACE BUNDLES 99

Theorem 1.1. — Let d0, d1, d2, d3 > 0 be integers of the same parity
and let X → B ⊂ P(V ) be the family of smooth quadric surface bundles
over P2 of type (d0, d1, d2, d3) as above. Then the set

{b ∈ B | Xb is rational}

is dense in B for the Euclidean topology.

The first case where such a density result was proven was for type
(0, 2, 2, 4) and is due to Voisin [25, Section 2], see also [19, Proposition 25].
The case of type (2, 2, 2, 2) was shown in [14]. In particular, Theorem 1.1
generalizes their density result to hypersurfaces in P2×P3 of bidegree (d, 2)
for arbitrary d > 0. Our result also gives an affirmative answer to the ques-
tion raised in [19, Remark 49].
In order to prove Theorem 1.1, we follow Voisin’s approach that has

later been used in [14, Section 6] and [13, Section 2.3]. Using a theorem of
Springer [20] and the fact that the integral Hodge conjecture is known in
codimension two for quadric bundles over surfaces [8, Corollaire 8.2], we
obtain a Hodge theoretic criterion guaranteeing the rationality of smooth
quadric surface bundles over P2. This leads to the study of a Noether–
Lefschetz locus in the variation of Hodge structure associated to the family
X → B in question. In [23, Proposition 5.20], Voisin stated an infinites-
imal condition for the density of such loci, based on Green’s proof in [5,
Section 5] of an analogous density result in the context of the Noether–
Lefschetz theorem. In our case, the criterion asks for a class λ ∈ H2,2

van(Xb)
at some base point b ∈ B such that the infinitesimal period map evaluated
at λ

∇b(λ) : TB,b → H1,3
van(Xb)

is surjective.
Since a standard quadric surface bundle over P2 is a toric variety, we

can apply [2, Theorem 10.13] to describe ∇b(λ) as a multiplication map
in a homogeneous quotient of a bigraded polynomial ring. Therefore, the
desired density result reduces to an elementary statement about polynomi-
als. This problem was solved in [14] and [13] with explicit computations. Of
course, a different technique is required to handle a whole class of families
rather than a specific one. The main contribution of this paper consists
thus in solving this problem to which Theorem 1.1 reduces to via gen-
eral arguments. An important ingredient of our proof is a result about
the strong Lefschetz property of certain complete intersections which was
proven in [11, Proposition 30].

TOME 71 (2021), FASCICULE 1



100 Matthias PAULSEN

Green’s and Voisin’s infinitesimal density criterion has been employed in
many different situations since its first use in [5, Section 5]. For instance,
Voisin used it in [24] when proving the integral Hodge conjecture for (2, 2)-
classes on uniruled or Calabi–Yau threefolds. More recently, a real analogue
of the criterion was applied in [3] to prove that sums of three squares are
dense among bivariate positive semidefinite real polynomials.
There exist different strategies for verifying the surjectivity of the infin-

itesimal period map. While [3] follows the approach of [6] by constructing
components of the Noether–Lefschetz locus of maximal codimension, Kim
gave in [16, Theorem 2] a new proof of the density theorem from [5, Sec-
tion 5] by proving a statement about the Jacobian rings appearing in the
description of ∇b(λ). The most general arguments are due to Voisin, for
example in [22] and [24].
We use the method of computing the infinitesimal period map explicitly,

as done in [16]. However, we solve the underlying algebraic problem in a
different manner than in [16, Section 3]. Our approach involving the strong
Lefschetz property, the use of which seems to be new in this area, further
allows to give a short proof for the density of the original Noether–Lefschetz
locus for surfaces in P3, thus simplifying the arguments of [16] considerably.

The article is structured as follows. In Section 2, we relate the rational-
ity of smooth quadric surface bundles over P2 to the cohomology group
H2,2 and explain how Green’s and Voisin’s infinitesimal density criterion
applies in our situation. In Section 3, we interpret standard quadric surface
bundles as toric hypersurfaces in order to give an explicit representation
of ∇b(λ). This cumulates in Proposition 3.1, where we formulate a non-
trivial statement concerning a bigraded polynomial ring which is sufficient
for showing Theorem 1.1. In Section 4, we provide some tools for studying
the surjectivity of polynomial multiplication maps and demonstrate their
power by giving a simple proof for the density of the classical Noether–
Lefschetz locus. Finally, in Section 5 we use the previous preparations in
order to prove Proposition 3.1, from which our main result follows.

Unless otherwise stated, we always work over the field of complex num-
bers. A variety is defined to be an integral separated scheme of finite type
over a field. A quadric surface bundle over P2 is a complex projective variety
X together with a flat morphism π : X → P2 such that the generic fibre Xη

is a smooth quadric surface over the function field C(P2). If X is a smooth
complex projective variety and Z ⊂ X is a subvariety of codimension k, we
denote by [Z] ∈ Hk,k(X,Z) the Poincaré dual of the homology class of Z.

ANNALES DE L’INSTITUT FOURIER
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2. A Density Criterion

Let us consider a smooth quadric surface bundle π : X → P2. Since P2 is
rational, X is rational (over C) as soon as the generic fibre Xη is rational
over the function field k = C(P2). It is well known that this follows from
the existence of a k-point on the smooth quadric surface Xη. Now we can
use the following theorem of Springer [20]:

Proposition 2.1 (Springer). — Let Q be a quadric hypersurface over
a field k and let K/k be a finite field extension of odd degree. If Q has a
K-point, then Q has a k-point.

It therefore suffices to find a K-point on Xη for some field extension K/k
of odd degree. This can be achieved through an odd degree multisection of
π, i. e. a surface Z ⊂ X such that [Z]∪π∗[p] ∈ H4,4(X,Z) ∼= Z is odd where
[p] ∈ H2,2(P2,Z) ∼= Z denotes the cohomology class of a closed point, since
the function field K = C(Z) is such a field extension then.
The integral Hodge conjecture was proven for (2, 2)-classes on quadric

bundles over surfaces by Colliot-Thélène and Voisin [8, Corollaire 8.2]. We
use the following special case:

Proposition 2.2 (Colliot-Thélène–Voisin). — Let π : X → P2 be a
smooth quadric surface bundle. Then the integral Hodge conjecture holds
for H2,2(X,Z), i. e. any integral Hodge class α ∈ H2,2(X,Z) is an integral
linear combination α =

∑
ni[Zi] for surfaces Zi ⊂ X.

This allows us to transform the assertion of π having an odd degree
multisection into a Hodge theoretic condition (see also [14, Proposition 6]):

Corollary 2.3. — Let π : X → P2 be a smooth quadric surface bun-
dle. ThenX is rational if there exists an integral Hodge class α ∈ H2,2(X,Z)
such that α ∪ π∗[p] is odd.

Now let us consider the family X → B of smooth quadric surface bundles
over P2 of type (d0, d1, d2, d3) for fixed integers dj > 0 of the same parity.

TOME 71 (2021), FASCICULE 1



102 Matthias PAULSEN

In order to prove Theorem 1.1, it is enough by Corollary 2.3 to show that
the Noether–Lefschetz locus

{b ∈ B | ∃ α ∈ H2,2(Xb,Z) : α ∪ π∗b [p] ≡ 1 (mod 2)}

is dense in B for the Euclidean topology, where πb : Xb → P2 denotes the
quadric bundle structure on the fibre Xb.
Since it is easier to compute, we consider instead the vanishing cohom-

ology

H4
van(Xb,C) = {α ∈ H4(Xb,C) | α ∪ ι∗β = 0 ∀ β ∈ H4(P(E),C)}

where the map ι∗ : H4(P(E),C) ↪→ H4(Xb,C) is induced by inclusion and is
injective by the Lefschetz hyperplane theorem, provided that not all dj are
simultaneously zero(1) . This construction is also applicable to the Hodge
groups Hp,q and gives a decomposition

H4
van(Xb,C) =

⊕
p+q=4

Hp,q
van(Xb) .

We then want to show that the possibly smaller locus

(2.1) {b ∈ B | ∃ α ∈ H2,2
van(Xb,Z) : α ∪ π∗b [p] ≡ 1 (mod 2)}

is dense in B for the Euclidean topology. To achieve this, we utilise a variant
of Voisin’s description in [23, Proposition 5.20] of an infinitesimal density
criterion due to Green [5, Section 5].
On B we consider the holomorphic vector bundle H with fibre Hb =

H4
van(Xb,C) at b ∈ B. By Ehresmann’s lemma, H is trivial over any con-

tractible open subset of B. The vector bundle H is flat with respect to the
Gauß–Manin connection ∇ : H → H⊗ΩB . Since H4,0

van(Xb) = H0,4
van(Xb) = 0

for all b ∈ B, each fibre of H has a Hodge filtration of weight 2. It is well
known that the Hodge filtration on the fibres of H induces a filtration

F 2H ⊂ F 1H ⊂ F 0H = H

by holomorphic subbundles. These satisfy Griffiths’ transversality condition

∇
(
F pHk

)
⊂ F p−1Hk ⊗ ΩB

for all p and hence ∇ gives rise to an OB-linear map

∇ : H1,1 → H0,2 ⊗ ΩB

(1) If dj = 0 for all j, Theorem 1.1 is trivial because a quadric surface bundle of type
(0, 0, 0, 0) is the product of P2 with a quadric surface in P3 and hence rational.
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on the quotients Hp,2−p = F pH/F p+1H. Fibrewise, we obtain by adjunc-
tion the infinitesimal period map

∇b : TB,b → Hom
(
H1,1
b ,H0,2

b

)
for all b ∈ B. Note that we may identify Hp,qb with Hp+1,q+1

van (Xb) for
p+ q = 2.
Let HR be the real vector bundle on B with fibre HR,b = H4

van(Xb,R) at
b ∈ B. Then we have Hb = HR,b ⊗R C for all b ∈ B. Similarly, for the real
vector subbundle

H1,1
R = HR ∩ F 1H ⊂ HR

with fibre H1,1
R,b = H2,2

van(Xb,R) at b ∈ B we have H1,1
b
∼= H1,1

R,b ⊗R C for all
b ∈ B. The last identification is given by the restricted projection

p : H1,1
R ⊂ F 1H → F 1H/F 2H = H1,1 .

For all b ∈ B, let us consider the discrete subset

DHb = {α ∈ H4
van(Xb,Z) | α ∪ π∗b [p] ≡ 1 (mod 2)} ⊂ HR,b .

Since DHb is defined by a topological property of Xb which is compatible
with the local trivializations of X from Ehresmann’s lemma (it does in
particular not depend on the Hodge filtration on Hb), we obtain a fibre
subbundle DH ⊂ HR which is trivial over any contractible open subset of
B. Note that the locus (2.1) is precisely the image of the projection map
DH ∩ H1,1

R → B. Our variant of [23, Proposition 5.20] can now be stated
as follows:

Proposition 2.4 (Green–Voisin). — Suppose there exists b ∈ B and
λ ∈ H1,1

b such that the infinitesimal period map evaluated at λ

∇b(λ) : TB,b → H0,2
b

is surjective. Then the projection of DH ∩ H1,1
R is dense in B for the Eu-

clidean topology.

Proof. — We first observe that the surjectivity condition is a Zariski
open property on λ ∈ H1,1 = H1,1

R ⊗RC. Hence, the condition is fulfilled on
a dense open subset of the real classes p(H1,1

R ) ⊂ H1,1. Therefore, it suffices
to show the statement locally around b ∈ B where λ = p(λ) satisfies the
hypothesis for some λ ∈ H1,1

R,b. By shrinking B, we may assume that the
vector bundleHR is trivial over B, i. e.HR ∼= B×HR,b. By [23, Lemma 5.21],
the composed map

φ : H1,1
R ↪→ HR ∼= B ×HR,b → HR,b

TOME 71 (2021), FASCICULE 1



104 Matthias PAULSEN

obtained via inclusion, isomorphism and projection is a submersion at λ ∈
H1,1

R . As shown in [19, Lemma 20], there are smooth quadric surface bundles
Xu of type (d0, d1, d2, d3) which admit a rational section and hence DHu 6=
∅. Since B is connected, it follows that DHb 6= ∅. By definition, DHb is a
coset of a subgroup of H4

van(Xb,Z) of index 2. Therefore, R∗DHb is dense in
HR,b = H4

van(Xb,Z)⊗R. Since φ is a submersion, the preimage φ−1(R∗DHb)
is dense around λ ∈ H1,1

R . But this precisely means (R∗DH)∩H1,1
R is dense

in H1,1
R around λ. Hence, its projection is dense around b ∈ B. But the

projections of DH ∩H1,1
R and (R∗DH) ∩H1,1

R agree because H1,1
R is a real

vector bundle. �

Actually, the above proof works for any fibre bundle DH ⊂ HR, trivial
over contractible open subsets of B, such that R∗DHb is dense in HR,b for
some b ∈ B. This leads to a more general version of Proposition 2.4, which
can be found in [17, Section 3.3].

3. Computation of the Cohomology

We first give a more precise definition of standard quadric surface bundles
over P2, following [19, Section 3.5]. Let

E =
3⊕
j=0
OP2(−rj)

be a split vector bundle on P2 for integers rj > 0 and let q : E → OP2(d) be
a quadratic form for some integer d > 0, i. e. a global section of Sym2 E∨⊗
OP2(d). Let us assume that the quadratic form qη at the generic point
η ∈ P2 is non-degenerate and that qs 6= 0 for all s ∈ P2. Then the zero
set X ⊂ P(E) of q is a quadric surface bundle over P2. Since the vec-
tor bundle Sym2 E∨ ⊗ OP2(d) only depends on the integers dj = 2rj + d

for j ∈ {0, 1, 2, 3}, we call X a standard quadric surface bundle of type
(d0, d1, d2, d3). Conversely, quadric surface bundles of type (d0, d1, d2, d3)
for given integers dj > 0 exist whenever d0, d1, d2, d3 are of the same par-
ity(2) . Since

H0(P2,Sym2 E∨ ⊗OP2(d)
) ∼= ⊕

06i6j63
H0(P2,OP2(ri + rj + d)

)
= V

where V was defined in (1.2), X can be described by an equation of the
form (1.1) where yj is a local trivialization of OP2(−rj).

(2)One can always ensure d ∈ {0, 1}, but this is not needed in our arguments.
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We now aim to interpret (1.1) differently as a global equation inside the
polynomial ring

S = C[x0, x1, x2; y0, y1, y2, y3]

endowed with a non-standard bigrading. By [9, Example 7.3.5], the total
space P(E) is a toric variety associated to a fan Σ in R2 × R3 and has
coordinate ring S. If u1, u2 and v1, v2, v3 denote the standard basis vectors
of R2 and R3, respectively, then the seven 1-dimensional cones of Σ are
generated by u0, u1, u2, v0, v1, v2, v3 where

u0 = −
2∑
k=1

uk +
3∑
j=1

(rj − r0)vj and v0 = −
3∑
j=1

vj .

Further, the maximal cones of Σ are given by

〈u0, . . . , ûk, . . . , u2, v0, . . . , v̂j , . . . , v3〉 , k ∈ {0, 1, 2} , j ∈ {0, 1, 2, 3} .

By [2, Definition 1.7], we have Cl(Σ) ∼= Z7/ ImC where

C =



−1 −1 r1 − r0 r2 − r0 r3 − r0
1 0 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


∈ Hom(Z5,Z7) .

It is easy to see that the surjection

Z7 → Z2

(m0,m1,m2, n0, n1, n2, n3) 7→
( 2∑
k=0

mk −
3∑
j=0

njrj ,

3∑
j=0

nj

)

has kernel ImC. Hence, this map descends to an isomorphism Cl(Σ) ∼= Z2

and endowes the coordinate ring S with the non-standard bigrading

deg xk = (1, 0) , deg yj = (−rj , 1)

for k ∈ {0, 1, 2} and j ∈ {0, 1, 2, 3}. For m,n ∈ Z, we denote by S(m,n) the
subspace of homogeneous polynomials of bidegree (m,n) in S. This gives
a decomposition

S =
⊕
m,n∈Z

S(m,n)

into finite dimensional C-vector spaces.

TOME 71 (2021), FASCICULE 1



106 Matthias PAULSEN

A quadratic form q : E → OP2(d) corresponds to an element in S(d, 2). In
this way, the local description (1.1) of the zero set of q can be seen globally
as a defining equation for a toric hypersurface X ⊂ P(E).
This allows us to compute the middle cohomology groups of a smooth

quadric surface bundle π : X → P2 of type (d0, d1, d2, d3) defined by a
polynomial f ∈ S(d, 2) via the method of [2, Theorem 10.13], which gener-
alizes the work of Griffiths [10] to toric hypersurfaces. We have canonical
isomorphisms

H1,3
van(X) ∼= R(t, 4) and H2,2

van(X) ∼= R(t− d, 2)

where
t = 4d− 3 + r0 + r1 + r2 + r3

and where R denotes the Jacobian ring of f , i. e. the quotient of S by all
partial derivatives of f .

Now we return to the family X → B of smooth quadric surface bundles
of type (d0, d1, d2, d3). If we identify TB,b ∼= (S/fS)(d, 2) where f ∈ S(d, 2)
is the defining equation of Xb for some b ∈ B, then the infinitesimal period
map

∇b : TB,b ⊗H2,2
van(Xb)→ H1,3

van(Xb)
is given, up to a sign, as the multiplication map

(S/fS)(d, 2)⊗R(t− d, 2)→ R(t, 4) .

This was first shown for hypersurfaces in projective space by Carlson and
Griffiths [4], see also [23, Theorem 6.13]. In order to show that the assump-
tion of Proposition 2.4 holds and thus to prove Theorem 1.1, it therefore
suffices to provide polynomials f ∈ S(d, 2) and g ∈ S(t − d, 2) such that
the quadric surface bundle {f = 0} ⊂ P(E) is smooth and the composed
map S(d, 2) → R(t, 4) given by multiplication with g followed by projec-
tion is surjective. By Bertini’s theorem, the hypersurface {f = 0} ⊂ P(E)
is smooth for a general polynomial f ∈ S(d, 2). The surjectivity part is
equivalent to claiming that the ideal generated by g and all partial deriva-
tives of f contains all polynomials in S(t, 4). Consequently, we reduced
Theorem 1.1 to the following statement:

Proposition 3.1. — For general polynomials f ∈ S(d, 2) and g ∈
S(t− d, 2), the ideal in S generated by the polynomials

∂f

∂x0
,

∂f

∂x1
,

∂f

∂x2
,

∂f

∂y0
,

∂f

∂y1
,

∂f

∂y2
,

∂f

∂y3
, g

contains all polynomials in S(t, 4).
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ON THE RATIONALITY OF QUADRIC SURFACE BUNDLES 107

The remaining part of the paper is devoted to the proof of this proposi-
tion.

4. Preparations

The property that a homogeneous ideal in a bigraded polynomial ring (or
more generally, an arbitrarily graded C-algebra) contains all polynomials
of a certain bidegree is, as we now show, a Zariski open condition on its
generators if their bidegrees are fixed.

Lemma 4.1. — Let G be an Abelian group and let A be a G-graded
C-algebra whose homogeneous components A(m) are finite dimensional C-
vector spaces for all m ∈ G. Let m0, . . . ,mk ∈ G. Then the set

{(f1, . . . , fk) ∈ A(m1)⊕ · · · ⊕A(mk) | A(m0) ⊂ f1A+ · · ·+ fkA}

is Zariski open.

Proof. — The condition on (f1, . . . , fk) is equivalent to saying that the
C-linear map

A(m0 −m1)⊕ · · · ⊕A(m0 −mk)→ A(m0)
(g1, . . . , gk) 7→ f1g1 + · · ·+ fkgk

is surjective. This map is represented by a matrix B with r = dimCA(m0)
rows, whose entries are linear polynomials in the coefficients of f1, . . . , fk.
The locus in A(m1)⊕ · · · ⊕ A(mk) where this linear map is not surjective
is precisely where the determinants of all (r × r)-submatrices of B vanish
(in particular, it is the whole affine space if B has less than r columns) and
thus Zariski closed. Therefore, the set in question is open for the Zariski
topology. �

Since taking partial derivatives is a linear and hence Zariski continuous
map between the respective Z2-graded pieces of S, Lemma 4.1 shows that
the desired condition in Proposition 3.1 is Zariski open on f and g.
Apart from S, we will often apply Lemma 4.1 to the polynomial ring

C[x0, x1, x2] together with its usual grading. In this situation, we can give
sufficient criteria whether three or four polynomials satisfy the Zariski open
condition in the lemma. More generally, for n > 0 we can give such criteria
for n+ 1 and n+ 2 polynomials in the graded polynomial ring

Pn = C[x0, . . . , xn] =
⊕
m>0

Pn(m) .
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Lemma 4.2. — If f0, . . . , fn ∈ Pn form a complete intersection, i. e. they
have no common zero in Pn, then

Pn(m) ⊂ f0Pn + · · ·+ fnPn

for all m > m0 + · · ·+mn − n where fj ∈ Pn(mj) for j ∈ {0, . . . , n}.

Proof. — This immediately follows from Macaulay’s Theorem (see for
example [23, Section 6.2.2]) which tells us that the quotient of Pn by the
ideal generated by f0, . . . , fn is a graded Gorenstein ring with socle degree∑

(mj − 1), and hence its m-th graded piece is zero-dimensional for all
m >

∑
mj − n. �

To state a sufficient criterion whether n+ 2 polynomials in Pn belong to
the Zariski open set in Lemma 4.1, we use the so called strong Lefschetz
property, see e. g. [21]. A quotient Q of Pn by homogeneous polynomials
f0, . . . , fn ∈ Pn is said to have the strong Lefschetz property if there exists
a linear homogeneous polynomial ` ∈ Pn(1) such that the map Q(m) →
Q(m+ i) given by multiplication with `i has maximal rank for all m, i > 0.
The polynomial ` is then called a strong Lefschetz element for the system
f0, . . . , fn.

Lemma 4.3. — If f0, . . . , fn ∈ Pn form a complete intersection hav-
ing the strong Lefschetz property and fn+1 ∈ Pn is a power of a strong
Lefschetz element for f0, . . . , fn, then

Pn(m) ⊂ f0Pn + · · ·+ fn+1Pn

for all m > 1
2 (m0 + · · · + mn+1 − n − 1) where fj ∈ Pn(mj) for j ∈

{0, . . . , n+ 1}.

Proof. — As in Lemma 4.2, the quotient Q of Pn by f0, . . . , fn is a graded
Gorenstein ring with socle degree s =

∑
(mj − 1). Macaulay’s Theorem

also shows that dimCQ(i) = dimCQ(s − i) for all i ∈ Z. Because of the
strong Lefschetz property, dimCQ(i) needs to be increasing for i 6 s

2 and
decreasing for i > s

2 . The claimed statement is equivalent to saying that the
map Q(m−mn+1)→ Q(m) given by multiplication with fn+1 is surjective.
Since fn+1 is a power of a strong Lefschetz element, it suffices to show
dimCQ(m − mn+1) > dimCQ(m). This is clear if m − mn+1 > s

2 . For
m−mn+1 6 s

2 , we have dimCQ(m) = dimCQ(s−m) 6 dimCQ(m−mn+1)
because s−m 6 m−mn+1 holds due to the given bound on m. �

To make use of Lemma 4.3, it is convenient to have a rich source of
complete intersections enjoying the strong Lefschetz property. The follow-
ing important result, proved in 1980 by Stanley [21] and independently in
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1987 by Watanabe [28], was the starting point for the theory of Lefschetz
properties:

Proposition 4.4 (Stanley–Watanabe). — A monomial complete inter-
section xm0

0 , . . . , xmn
n in Pn with m0, . . . ,mn > 0 has the strong Lefschetz

property for all n > 0.

Stanley’s proof goes as follows: If we interpret the graded quotient Q =⊕
m>0 Q(m) of Pn by the monomials xm0

0 , . . . , xmn
n as the cohomology ring

in even degree H2•(X,C) of the Kähler manifold X = Pm0−1×· · ·×Pmn−1,
the linear polynomial ` = x1 + · · ·+xn corresponds to the cohomology class
of a Kähler form on X and the strong Lefschetz property for ` precisely
translates into the hard Lefschetz theorem for X, hence also the name of
this condition.
It is known for n 6 1 and conjectured for n > 2 that actually all complete

intersections in Pn have the strong Lefschetz property. For n = 2, the
following partial result proven in [11, Proposition 30] satisfies our needs for
the proof of Proposition 3.1:

Proposition 4.5 (Harima–Watanabe). — If f0, f1, f2 ∈ C[x0, x1, x2]
form a complete intersection such that f0 is a power of a linear polynomial,
then f0, f1, f2 has the strong Lefschetz property.

As a motivating example, we show how Lemmas 4.2 and 4.3 can be used
to give a short proof for the density of the classical Noether–Lefschetz locus
for surfaces in P3. For this, we do not need Proposition 4.5, but only the
earlier result stated in Proposition 4.4. Since the setup here is a lot easier
than in the case of standard quadric surface bundles, this will also be a
good preparation for the more involved arguments in Section 5.

Theorem 4.6 (Ciliberto–Harris–Miranda–Green). — For d > 4, let
X → B ⊂ P(P3(d)) be the universal family of smooth surfaces in P3 of
degree d. Then the Noether–Lefschetz locus

{b ∈ B |Pic(Xb) ) Z · OP3(1)|Xb
} =

{
b ∈ B

∣∣H1,1
van(Xb,Z) 6= 0

}
,

i. e. those surfaces containing curves which are no complete intersections,
is dense in B for the Euclidean topology.

Proof. — By Green’s and Voisin’s infinitesimal density criterion, it suf-
fices to show that there exists a point b ∈ B and a class λ ∈ H1,1

van(Xb) such
that

∇b(λ) : TB,b → H0,2
van(Xb)
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is surjective. For a surface X ⊂ P3 defined by a polynomial f ∈ P3(d),
Griffiths [10] has shown that

H0,2
van(X) ∼= R(3d− 4) and H1,1

van(X) ∼= R(2d− 4)

where R denotes the Jacobian ring of f , i. e. the quotient of P3 by the
partial derivatives of f . If we identify TB,b ∼= (P3/fP3)(d) where f ∈ P3(d)
is the defining equation of Xb for some b ∈ B, Carlson and Griffiths [4]
proved that the infinitesimal period map

∇b : TB,b ⊗H1,1
van(Xb)→ H0,2

van(Xb)

is given, up to a sign, as the multiplication map

(P3/fP3)(d)⊗R(2d− 4)→ R(3d− 4) .

Therefore, it suffices to find polynomials f ∈ P3(d) and g ∈ P3(2d−4) such
that the surface {f = 0} ⊂ P3 is smooth and the ideal generated by g and
the partial derivatives of f contains the whole of P3(3d− 4).
One can achieve this with the smooth Fermat surface defined by

f = xd0 + xd1 + xd2 + xd3 ,

which was also used in [16, Section 3]. Since the complete intersection
consisting of the partial derivatives of f has the strong Lefschetz property
by Proposition 4.4, we can take g to be a power of a corresponding strong
Lefschetz element and obtain via Lemma 4.3

P3(m) ⊂ xd−1
0 P3 + xd−1

1 P3 + xd−1
2 P3 + xd−1

3 P3 + gP3

for all m > 1
2 (4(d− 1) + 2d− 4− 4) = 3d− 6. Since 3d− 4 > 3d− 6, this

finishes the proof. �

5. Proof of Proposition 3.1

Without loss of generality, let r0 6 r1 6 r2 6 r3. Let us recall from
Section 3 that dj = 2rj + d for j ∈ {0, 1, 2, 3} and t = 4d − 3 +

∑
rj . By

Lemma 4.1, the property stated in Proposition 3.1 is Zariski open on f and
g. Hence, it suffices to show the existence of polynomials f ∈ S(d, 2) and
g ∈ S(t− d, 2) such that the homogeneous ideal I ⊂ S generated by

∂f

∂x0
,

∂f

∂x1
,

∂f

∂x2
,

∂f

∂y0
,

∂f

∂y1
,

∂f

∂y2
,

∂f

∂y3
, g

contains all polynomials in S(t, 4). Let

f = f0y
2
0 + f1y

2
1 + f2y

2
2 + f3y

2
3 ∈ S(d, 2)
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where fj ∈ S(dj , 0) are general for j ∈ {0, 1, 2, 3}. Further let

g = g11y
2
1 + g33y

2
3 +

∑
06i<j63

gijyiyj ∈ S(t− d, 2)

where gij ∈ S(t− d+ ri + rj , 0) are general for i, j ∈ {0, 1, 2, 3}. Instead of
proving directly that S(t, 4) ⊂ I, we will consider the homogeneous ideal

J =
⊕
m,n∈Z

{r ∈ S(m,n) | rS ∩ S(t, 4) ⊂ I} ,

and aim to show J = S. One can think of J as all relations which hold
if a polynomial of bidegree (t, 4) is considered modulo I. Since I ⊂ J , the
following congruences hold:

fjyj ≡ 0 (mod J) , j ∈ {0, 1, 2, 3} ,(5.1)
∂f0

∂xk
y2

0 + ∂f1

∂xk
y2

1 + ∂f2

∂xk
y2

2 + ∂f3

∂xk
y2

3 ≡ 0 (mod J) , k ∈ {0, 1, 2} ,(5.2)

g11y
2
1 + g33y

2
3 +

∑
06i<j63

gijyiyj ≡ 0 (mod J) .(5.3)

It suffices to show S(t, 4) ⊂ J . For this it is enough to prove the following
four claims for all permutations σ of {0, 1, 2, 3}:

yσ(0)yσ(1)yσ(2) ∈ J , y3
σ(0)yσ(1) ∈ J , y2

σ(0)y
2
σ(1) ∈ J , y4

σ(0) ∈ J .

The proof of each of these claims will constitute one of the four steps 5.1,
5.2, 5.3, and 5.4 below. In each step, it suffices to show that any monomial
of bidegree (t, 4) containing the specified variables yj can be reduced to 0
modulo J using the congruences (5.1), (5.2), (5.3), and the previous steps.
In fact, the assertion r0 6 r1 6 r2 6 r3 and the congruence (5.3) will not
be used in the first two steps, so we are allowed to restrict ourselves to the
case σ = id in these two steps.

5.1. First step

We have yσ(0)yσ(1)yσ(2) ∈ J for all permutations σ of {0, 1, 2, 3}.
Proof. — Without loss of generality, let σ = id. We first note that

(5.4) S(d0 + d1 + d2 − 2, 0) ⊂ f0S + f1S + f2S .

This follows from Lemmas 4.1 and 4.2 because there are complete intersec-
tions f0, f1, f2 in

P2 = C[x0, x1, x2] =
⊕
m>0

S(m, 0) .
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Now let us take a monomial hy0y1y2yj ∈ S(t, 4) where j ∈ {0, 1, 2, 3} and
h ∈ S(t+r0 +r1 +r2 +rj , 0). We may assume that rj > 0 or d > 0, since for
dj = 2rj+d = 0 we have yj ≡ 0 (mod J) by (5.1) and hence hy0y1y2yj ≡ 0
(mod J). In view of (5.1) and (5.4), it suffices to show that

t+ r0 + r1 + r2 + rj > d0 + d1 + d2 − 2 .

This is equivalent to

2r0 + 2r1 + 2r2 + r3 + rj + 4d− 3 > 2r0 + 2r1 + 2r2 + 3d− 2

or just r3 + rj + d > 1, which is true because rj > 0 or d > 0. �

5.2. Second step

We have y3
σ(0)yσ(1) ∈ J for all permutations σ of {0, 1, 2, 3}.

Proof. — Without loss of generality, let σ = id. Multiplying (5.2) with
y0y1 and using step 5.1 yields

(5.5)
(
∂f0

∂xk
y2

0 + ∂f1

∂xk
y2

1

)
y0y1 ≡ 0 (mod J) , k ∈ {0, 1, 2} .

We introduce the new polynomial ring T = C[x0, x1, x2; z0, z1] with the
bigrading

deg xk = (1, 0) , deg zj = (−dj , 1)
for k ∈ {0, 1, 2} and j ∈ {0, 1}.

Claim. — We have

(5.6) T (d0 + d1 − 3, 1)

⊂ f0T + f1T +
(
∂f0

∂x0
z0 + ∂f1

∂x0
z1

)
T +

(
∂f0

∂x1
z0 + ∂f1

∂x1
z1

)
T .

Proof of the claim. — The claim is true if d0 = 0 or d1 = 0 because
f0 or f1 is a unit then. If d0, d1 > 0, setting f0 = (x0 + x1)d0 + xd0

2 and
f1 = (x0 − x1)d1 + xd1

2 yields(
∂f0

∂x0
z0 + ∂f1

∂x0
z1

)
+
(
∂f0

∂x1
z0 + ∂f1

∂x1
z1

)
= 2d0(x0 + x1)d0−1z0 .

Since (x0 + x1)d0−1, f0, f1 form a complete intersection in

P2 = C[x0, x1, x2] =
⊕
m>0

T (m, 0) ,
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Lemma 4.2 implies that the right-hand side of (5.6) contains all polynomials
in T (d0 + d1 − 3, 1) of type hz0 where h ∈ T (2d0 + d1 − 3, 0). Similarly,(

∂f0

∂x0
z0 + ∂f1

∂x0
z1

)
−
(
∂f0

∂x1
z0 + ∂f1

∂x1
z1

)
= 2d1(x0 − x1)d1−1z1

and (x0 − x1)d1−1, f0, f1 are again a complete intersection, so all polyno-
mials in T (d0 + d1 − 3, 1) divisible by z1 are contained in the right-hand
side of (5.6) as well. Hence, the claim follows from Lemma 4.1 applied the
polynomial ring T , since the coefficients of the four polynomials which are
supposed to generate T (d0 + d1 − 3, 1) depend linearly and thus Zariski
continuously on those of the general polynomials f0 and f1. �

Now let us take a monomial hy3
0y1 ∈ S(t, 4) where h ∈ S(t+ 3r0 + r1, 0).

We have

t+3r0 +r1 = 4r0 +2r1 +r2 +r3 +4d−3 > 4r0 +2r1 +3d−3 = 2d0 +d1−3 .

Therefore, as a consequence of (5.6) we obtain

hz0 = h0f0 + h1f1 + h2

(
∂f0

∂x0
z0 + ∂f1

∂x0
z1

)
+ h3

(
∂f0

∂x1
z0 + ∂f1

∂x1
z1

)
for certain homogeneous polynomials h0, h1, h2, h3 ∈ T . Substituting zj by
y2
j for j ∈ {0, 1} and multiplying with y0y1, we get by (5.1) and (5.5)

hy3
0y1 = h̃0f0y0y1 + h̃1f1y0y1

+ h2

(
∂f0

∂x0
y2

0 + ∂f1

∂x0
y2

1

)
y0y1 + h3

(
∂f0

∂x0
y2

0 + ∂f1

∂x0
y2

1

)
y0y1

≡ h̃0y1 · 0 + h̃1y0 · 0 + h2 · 0 + h3 · 0 ≡ 0 (mod J)

where h̃0 and h̃1 denote the results of the substitution inside h0 and h1. �

5.3. Third step

We have y2
σ(0)y

2
σ(1) ∈ J for all permutations σ of {0, 1, 2, 3}.

Proof. — Multiplying (5.3) with yiyj for 0 6 i < j 6 3 and using the
previous steps, we obtain

(5.7) gijy
2
i y

2
j ≡ 0 (mod J) .

For the following definition, we assume d0 > 0 at first. For j ∈ {0, 1, 2, 3},
let Âj be the (3× 3)-matrix where we leave out the j-th column (counted
from 0) of the matrix (

∂fj
∂xk

)
k∈{0,1,2}
j∈{0,1,2,3}

.
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A straightforward calculation shows that (5.2) implies

(5.8)
(
det Âj

)
y2
i ≡ εij

(
det Âi

)
y2
j (mod J) , i, j ∈ {0, 1, 2, 3}

where det Âj ∈ S(d0 + d1 + d2 + d3 − dj − 3, 0) for j ∈ {0, 1, 2, 3} and
εij ∈ {±1} is a sign depending on i, j ∈ {0, 1, 2, 3}.
For d0 = 0, both sides of (5.8) would be zero since ∂f0

∂xk
= 0 for k ∈

{0, 1, 2}. Therefore, in the case d0 = 0 we define the matrix Âj for j ∈
{1, 2, 3} to be the (2 × 2)-matrix where one leaves out the j-th column
(counted from 1) of the matrix(

∂fj
∂xk

)
k∈{0,1}
j∈{1,2,3}

.

Because (5.1) implies y0 ≡ 0 (mod J) in this case, one can still conclude
from (5.2) that

(5.9)
(
det Âj

)
y2
i ≡ εij

(
det Âi

)
y2
j (mod J) , i, j ∈ {1, 2, 3}

where det Âj ∈ S(d1 + d2 + d3 − dj − 2, 0) for j ∈ {1, 2, 3} and εij ∈ {±1}
may be different for i, j ∈ {1, 2, 3}.
Let us first suppose that {σ(0), σ(1)} = {1, 2}. Multiplying (5.3) with y2

2
and using steps 5.1 and 5.2 yields

(5.10) g11y
2
1y

2
2 + g33y

2
2y

2
3 ≡ 0 (mod J) .

Let us consider the polynomial ring U = C[x0, x1, x2; z1, z3] with the bi-
grading

deg xk = (1, 0) , deg zj = (−dj , 1)

for k ∈ {0, 1, 2} and j ∈ {1, 3}. We claim that

(5.11) U(t− d+ 2r2, 1) ⊂ K ,

where K denotes the ideal in U generated by

f1z1 , f2 , f3z3 , g12z1 , g23z3 , g11z1 + g33z3 ,(
det Â3

)
z1 − ε13

(
det Â1

)
z3 .

Since the coefficients of these seven polynomials in U depend algebraically
on those of f0, f1, f2, f3, g11, g12, g23, g33, Lemma 4.1 with A = U shows
that it is enough to provide a special choice for the general polynomials
fj , gij ∈ C[x0, x1, x2] making (5.11) true.
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Claim. — This can be achieved in the following way, where µ, ν ∈ U(1, 0)
denote suitable strong Lefschetz elements of complete intersections that will
be specified later:

f0 = xd0
0 g11 = xt−d+2r1

2

f1 = xd1
0 g12 = νt−d+r1+r2

f2 = xd2
0 + xd2

1 g23 = µt−d+r2+r3

f3 = xd3
0 + xd3

2 g33 = µt−d+2r3

Proof of the claim. — The claim is obvious for d2 = 0, so we may assume
d2 > 0 in the following. As in the case of the ideal I, we consider instead
the larger homogeneous ideal

L =
⊕
m,n∈Z

{r ∈ U(m,n) | rU ∩ U(t− d+ 2r2, 1) ⊂ K}

and we want to show that U(t− d+ 2r2, 1) ⊂ L (or equivalently, L = U).
This will be done by proving first z1 ∈ L and then z3 ∈ L. Since K ⊂ L,
we have

0 ≡ g11z1 + g33z3 = g11z1 + µr3−r2g23z3 ≡ g11z1 (mod L) .

By Proposition 4.5, the complete intersection f1, f2, g11 in C[x0, x1, x2] pos-
sesses the strong Lefschetz property. We may thus assume that ν is a strong
Lefschetz element for f1, f2, g11. Lemma 4.3 then implies

z1U(m, 0) ⊂ f1z1U + f2z1U + g11z1U + g12z1U ⊂ L

for all m > 1
2 (d1 + d2 + t− d+ 2r1 + t− d+ r1 + r2 − 3). In order to show

z1 ∈ L, we thus need to check that

2(t− d+ 2r2 + d1) > d1 + d2 + t− d+ 2r1 + t− d+ r1 + r2 − 3 .

This is equivalent to

4r2 + 2d1 > d1 + d2 + 3r1 + r2 − 3 ,

which simplifies to r2 > r1 − 3. The last inequality is obviously true.
Next we show z3 ∈ L. If d0 > 0, we have

det Â1 = det


d0x

d0−1
0 d2x

d2−1
0 d3x

d3−1
0

0 d2x
d2−1
1 0

0 0 d3x
d3−1
2

 = d0d2d3x
d0−1
0 xd2−1

1 xd3−1
2 .
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Together with K ⊂ L and z1 ∈ L, this implies

0 ≡ (d0d2d3)−1x1x2
(
det Â1

)
z3

= xd0−1
0 xd2

1 x
d3
2 z3

≡ xd0+d2+d3−1
0 z3 (mod L) .

Similarly, for d0 = 0 we have

det Â1 = det
(
d2x

d2−1
0 d3x

d3−1
0

d2x
d2−1
1 0

)
= −d2d3x

d3−1
0 xd2−1

1

and thus

0 ≡ (d2d3)−1x1
(
det Â1

)
z3 = −xd3−1

0 xd2
1 z3 ≡ xd0+d2+d3−1

0 z3 (mod L)

as well. By Proposition 4.5, the complete intersection xd0+d2+d3−1
0 , f2, f3

has the strong Lefschetz property. Hence, we may assume that µ is a strong
Lefschetz element for xd0+d2+d3−1

0 , f2, f3. Lemma 4.3 implies

z3U(m, 0) ⊂ xd0+d2+d3−1
0 z3U + f2z3U + f3z3U + g23z3U ⊂ L

for all m > 1
2 (d0 +d2 +d3−1+d2 +d3 + t−d+r2 +r3−3). It thus remains

to check

2(t− d+ 2r2 + d3) > d0 + d2 + d3 − 1 + d2 + d3 + t− d+ r2 + r3 − 3

or

2r0 + 2r1 + 6r2 + 6r3 + 8d− 6 > 3r0 + r1 + 6r2 + 6r3 + 8d− 7 .

This reduces to r1 > r0 − 1, which is clearly true. This finishes the proof
of (5.11). �

Now let us take a monomial hy2
1y

2
2 ∈ S(t, 4) where h ∈ S(t+2r1 +2r2, 0).

We have hz1 ∈ U(t− d+ 2r2, 1) and thus

hz1 = h1f1z1 + h2f2 + h3f3z3 + h4g12z1 + h5g23z3

+ h6(g11z1 + g33z3) + h7
((

det Â3
)
z1 − ε13

(
det Â1

)
z3
)

for certain homogeneous polynomials h1, . . . , h7 ∈ U . Substituting zj by y2
j

for j ∈ {1, 3} and multiplying with y2
2 , we get

hy2
1y

2
2 = h1f1y

2
1y

2
2 + h̃2f2y

2
2 + h3f3y

2
2y

2
3 + h4g12y

2
1y

2
2 + h5g23y

2
2y

2
3

+ h6
(
g11y

2
1y

2
2 + g33y

2
2y

2
3
)

+ h7
((

det Â3
)
y2

1 − ε13
(
det Â1

)
y2

3
)
y2

2

≡ h1y1y
2
2 · 0 + h̃2y2 · 0 + h3y

2
2y3 · 0 + h4 · 0 + h5 · 0 + h6 · 0 + h7y

2
2 · 0

≡ 0 (mod J)
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where we used the congruences (5.1), (5.7), (5.8), (5.9), and (5.10), and
where h̃2 denotes the result of the substitution inside h2. This concludes
the proof of y2

1y
2
2 ∈ J .

At this point, we are ready to handle the general case of {σ(0), σ(1)}.
For this, we show the following claim:

Claim. — If τ is a permutation of {0, 1, 2, 3} such that τ(3) < τ(2), then
any multiple of y2

τ(0)y
2
τ(1) in S(t, 4) can be replaced modulo J by a multiple

of y2
τ(0)y

2
τ(2) in S(t, 4).

Proof of the claim. — In view of (5.1), (5.7), (5.8), and (5.9), it suffices
to show that

S(t+ 2rτ(0) + 2rτ(1), 0) ⊂ fτ(0)S + fτ(1)S + gτ(0)τ(1)S +
(
det Âτ(2)

)
S .

This will follow from Lemma 4.1 once we provide a special choice for the
general polynomials fτ(0), fτ(1), fτ(3), gτ(0)τ(1) satisfying this property. Let
a = dτ(0), b = dτ(1), and c = dτ(3). We may assume a, b > 0 because
otherwise we would already have y2

τ(0)y
2
τ(1) ≡ 0 (mod J) by (5.1). We take

fτ(0) = xa0 + xa1 , fτ(1) = xb0 + xb2 , fτ(3) = xc0 .

If also c > 0, we have

det Âτ(2) = ±det

axa−1
0 bxb−1

0 cxc−1
0

axa−1
1 0 0
0 bxb−1

2 0

 = ±abcxc−1
0 xa−1

1 xb−1
2 .

Therefore, we get

xa+b+c−1
0 ∈ fτ(0)S + fτ(1)S +

(
det Âτ(2)

)
S .

If c = 0, it follows that d0 = 0. Since a, b > 0 and τ(3) < τ(2), only τ(3) = 0
is possible. Then we have

det Âτ(2) = ±det
(
axa−1

0 bxb−1
0

axa−1
1 0

)
= ∓abxb−1

0 xa−1
1

und thus again

xa+b+c−1
0 = xa+b−1

0 ∈ fτ(0)S + fτ(1)S +
(
det Âτ(2)

)
S .

In either case, the complete intersection xa+b+c−1
0 , fτ(0), fτ(1) has the strong

Lefschetz property by Proposition 4.5, so we may pick for gτ(0)τ(1) an ad-
equate power of a strong Lefschetz element and obtain via Lemma 4.3

S(m, 0) ⊂ fτ(0)S + fτ(1)S + gτ(0)τ(1)S +
(
det Âτ(2)

)
S
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for all m > 1
2 (a+ b+ c− 1 + a+ b+ t− d+ rτ(0) + rτ(1) − 3). Therefore, it

remains to prove that

2(t+ 2rτ(0) + 2rτ(1)) > a+ b+ c− 1 + a+ b+ t− d+ rτ(0) + rτ(1) − 3 .

This simplifies to

6rτ(0)+6rτ(1)+2rτ(2)+2rτ(3)+8d−6 > 6rτ(0)+6rτ(1)+rτ(2)+3rτ(3)+8d−7

or just rτ(2) > rτ(3) − 1, which holds because τ(3) < τ(2). �

With this result at hand, we proceed as follows: We start with a monomial
of degree (t, 4) divisible by y2

σ(0)y
2
σ(1) and repeatedly apply transitions of

the form
y2
τ(0)y

2
τ(1)  y2

τ(0)y
2
τ(2)

with τ(3) < τ(2) for a suitable permutation τ until we arrive at a polyno-
mial divisible by y2

1y
2
2 , for which we have already shown that it vanishes

modulo J . The fact that such a sequence of transitions always exists can
be most easily seen from the following diagram:

{0, 1}
2<3 ,,

2<3

��

{1, 3}

0<2

��

0<2

��
{0, 3}

1<2 ,,
{2, 3}

0<1 ,,
{1, 2}

{0, 2}

1<3

KK

1<3

88

The arrows are labeled with the inequalities τ(3) < τ(2) which hold for
the employed permutations τ . For every possible subset {σ(0), σ(1)} ⊂
{0, 1, 2, 3}, there exists at least one directed path ending in {1, 2}. This
completes the proof of step 5.3. �

5.4. Fourth step

We have y4
j ∈ J for all j ∈ {0, 1, 2, 3}.

Proof. — Let us take a monomial hy4
j where h ∈ S(t + 4rj , 0). If dj =

0, we are done by (5.1). Otherwise, multiplying (5.2) with y2
j and using

step 5.3 produces
∂fj
∂xk

y4
j ≡ 0 (mod J) , k ∈ {0, 1, 2} .
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First suppose j < 3. By Lemmas 4.1 and 4.2, we have

S(3dj − 5, 0) ⊂ ∂fj
∂x0

S + ∂fj
∂x1

S + ∂fj
∂x2

S

since the partial derivatives of fj = x
dj

0 + x
dj

1 + x
dj

2 form a complete in-
tersection. Therefore, it remains to show that t + 4rj > 3dj − 5. This is
equivalent to

r0 + r1 + r2 + r3 + 4rj + 4d− 3 > 6rj + 3d− 5 ,

which in turn is equivalent to

r0 + r1 + r2 + r3 + d+ 2 > 2rj .

The last inequality is true because j 6 2 implies r2 + r3 > rj + rj .
Now let j = 3. If we multiply (5.3) with y2

3 and use all previous steps,
we obtain

g33y
4
3 ≡ 0 (mod J) .

We claim that

S(t+ 4r3, 0) ⊂ ∂f3

∂x0
S + ∂f3

∂x1
S + ∂f3

∂x2
S + g33S .

By Lemma 4.1, it is enough to give one working example for f3 and g33.
If we take again f3 = xd3

0 + xd3
1 + xd3

2 , the complete intersection given by
the partial derivatives of f3 has the strong Lefschetz property by Proposi-
tion 4.5, so we may choose for g33 a power of a strong Lefschetz element
and obtain via Lemma 4.3 that

S(m, 0) ⊂ ∂f3

∂x0
S + ∂f3

∂x1
S + ∂f3

∂x2
S + g33S

for all m > 1
2 (3d3 − 3 + t− d+ 2r3 − 3). Therefore, we are finished if

2(t+ 4r3) > 3d3 − 3 + t− d+ 2r3 − 3 .

This simplifies to

2r0 + 2r1 + 2r2 + 10r3 + 8d− 6 > r0 + r1 + r2 + 9r3 + 6d− 9 ,

or equivalently,
r0 + r1 + r2 + r3 + 2d+ 3 > 0 .

The last statement is clearly true. �

Since every monomial in S(t, 4) is divisible by an element handled in one
of the four steps above, we obtain S(t, 4) ⊂ J as desired. This finally ends
the proof of Proposition 3.1.
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Remark 5.1. — It was crucial in the choice of g to leave out the terms g00
and g22, i. e. the ones belonging to the smallest and second-largest values
among the degrees d0, d1, d2, d3. With any other two indices, the above
proof would not work. Furthermore, if we would also set g33 = 0, the proof
of step 5.3 would be much simpler, but then step 5.4 would work out only
if d3 6 d0 +d1 +d2 + 4. And if we would instead set g11 = 0, step 5.4 could
be left untouched, but step 5.3, though it would be simpler, would turn out
right only if d3 6 d2 + 6. It is also worth to mention that the properties of
J we are proving in each of the four steps are in general not open on the
polynomials fj and gij , thus an argument where one specializes to g33 = 0
in one step but not in another one does not succeed.
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