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ABSTRACT
The far-field patterns of atoms diffracted from a classical light field or from a quantum one in a photon-number state are identical. On
the other hand, diffraction from a field in a coherent state, which shares many properties with classical light, displays a completely different
behavior. We show that in contrast to the diffraction patterns, the interference signal of an atom interferometer with light-pulse beam splitters
and mirrors in intense coherent states does approach the limit of classical fields. However, low photon numbers reveal the granular structure
of light, leading to a reduced visibility since welcher-Weg (which-way) information is encoded into the field. We discuss this effect for a single
photon-number state as well as a superposition of two such states.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0048806., s

I. INTRODUCTION
During the last decades, the interaction of atoms with quan-

tized light fields1 has led to landmark experimental achievements,
such as the one-atom maser2,3 or the generation of Schrödinger-cat
states.4 At the same time, light-pulse atom interferometers5 have
become unique instruments for precision measurements. In this
article, we analyze the interference signal of a Mach–Zehnder atom
interferometer where we have replaced the classical light creating
the beam splitters and mirrors by quantum fields. Our analysis also
shines some light on a surprising fact:6 The underlying mechanism
of diffraction of an atom from a standing wave leads to identical
momentum distributions for classical light and a photon-number
state. However, the most classical state, that is, a coherent state,
causes a momentum distribution that is utterly different. We study
whether such a behavior also transfers to the interference signal
observed in atom interferometers7 generated from light pulses.8

A. Classical vs quantum field
Atom interferometry5 offers a powerful tool not only for a

wealth of applications such as gravimetry, inertial sensing, and
metrology9 but also for fundamental tests of physics such as the Ein-
stein equivalence principle.10,11 These schemes usually rely on the
diffraction from intense classical light pulses.12

However, optical cavities represent a promising route to
enhance13,14 the sensitivity of an atom interferometer. Indeed, con-
figurations based on cavities offer major experimental advantages
such as higher intensities, a reduction of wave-front distortions,
and clearer mode profiles. Moreover, diffraction in cavities can
be employed for the generation of entanglement15,16 or squeezed
atomic states17 and for quantum non-demolition measurements.18,19

In light of such developments, it seems natural to study the influ-
ence of quantized light on atom interferometry, even though these
implementations are yet far away from the quantized regime.

J. Chem. Phys. 154, 164310 (2021); doi: 10.1063/5.0048806 154, 164310-1

© Author(s) 2021

 20 M
arch 2024 09:11:59

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0048806
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0048806
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0048806&domain=pdf&date_stamp=2021-April-29
https://doi.org/10.1063/5.0048806
https://orcid.org/0000-0002-6304-6183
https://orcid.org/0000-0002-6257-8815
https://orcid.org/0000-0002-9693-8882
https://orcid.org/0000-0002-1126-6352
mailto:fabio.di-pumpo@uni-ulm.de
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0048806


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Atomic diffraction from a classical standing wave in the
Raman–Nath regime20,21 leads to the momentum distribution6,21,22

W(℘) = J2
℘(Θ), (1)

where Js(κ) is the Bessel function of first kind of order s and argu-
ment κ and ℘ ≡ p/(h̵k) denotes the momentum in units of the
momentum transfer h̵k with the wave vector k of the light field. Here,
Θ describes the pulse area determined by the intensity of the classical
field and the duration of the interaction.

Surprisingly, also for a photon-number state, that is, a Fock
state, even though highly non-classical, one finds exactly the same
diffraction pattern, where the intensity is given by the photon
number.6

In contrast, for a coherent state, which shares many properties
with classical light, the momentum distribution

W(℘) =
∞
∑
n=0

Wn J2
℘(Θ
√

n
n̄
) (2)

involves an average of Eq. (1) over the Poissonian photon
distribution

Wn ≡
∣α∣2n

n!
e−∣α∣

2

(3)

FIG. 1. Classical vs quantum. A classical electromagnetic field and a field in the
most non-classical state, that is, a Fock state, cause identical far-field diffraction
patterns and identical Rabi oscillations. However, the corresponding curves for the
most classical state, that is, a coherent state, are substantially different. The left
side shows the momentum distribution W (℘) of an atom after diffraction from a
standing wave as a function of the dimensionless momentum ℘ ≡ p/(h̵k) for the
pulse area of Θ = 8π. For classical light as well as for Fock states (top), the distri-
bution is given by a Bessel function with oscillations of perfect contrast. However,
for a coherent state (bottom), with the mean photon number n̄ = ∣α∣2 = 6, the
interference pattern is washed out due to the average over the photon distribution.
The right side shows the probability Pg of the undiffracted momentum for atomic
Bragg or Raman diffraction as a function of Θ. For classical light and Fock states
(top), we observe perfect Rabi oscillations. Conversely, for a coherent state with
n̄ = ∣α∣2 = 6, a collapse and a revival emerge caused by the average. For suf-
ficiently large |α|2, the collapse and initial dephasing are well described by the
approximation of Eq. (12) (red dashed line). In such a case or for small pulse
areas, Pg approaches the Rabi limit, where dephasing effects are negligible. The
vertical line denotes the pulse area Θ = π used for mirror pulses.

of the coherent state with ∣α∣2 = n̄. Figure 1 shows that the inter-
ference pattern of the Bessel function is washed out and therefore
displays a behavior that is completely different from that of classical
fields and Fock states.

We now transfer these observations to the Bragg regime where
higher diffraction orders are suppressed.23–25 As a consequence, the
field drives Rabi oscillations between momentum states of the atom,
encoded in a transition probability Pg . Similar to the diffraction
pattern in the Raman–Nath regime, the transition probabilities Pg

induced by classical light fields as well as Fock states behave alike,6

i.e., we observe the oscillations depicted on the top right of Fig. 1.
However, as can be seen from the bottom right of the figure, a
coherent state leads to a collapse and revival of the oscillations.26–29

These observations have direct consequences for the atom-
optical elements in light-pulse atom interferometry since beam split-
ters and mirrors are usually performed in the Bragg regime. To ana-
lyze such effects, we utilize a model based on Raman diffraction5

with running light waves instead of standing ones.

B. Overview and outline
In this article, we demonstrate that (i) the phase of a coher-

ent state contributes to the phase of a Mach–Zehnder interfer-
ometer in the same way as the phase of classical light. (ii) The
visibility of the interference signal generated by diffraction from
coherent states approaches the limit of diffraction from classical
light pulses for high average photon numbers.30 (iii) However, for
diffraction from a Fock state, the visibility vanishes,31 since com-
plete welcher-Weg12,32–35 information can be inferred. (iv) Even
for a superposition of two Fock states in every light field, we
observe a significant loss of visibility. In addition, the interferomet-
ric phase differs from the one obtained by diffraction from classical
fields.

Our article is organized as follows: In Sec. II, we summarize
the essential ingredients of atomic diffraction from quantized light
fields. In particular, we establish the corresponding scattering oper-
ator that plays a central role throughout our analysis and compare
and contrast the atomic diffraction as well as the Rabi oscillations
due to a coherent state and a Fock state. We then turn in Sec. III
to our description of a Mach–Zehnder interferometer where the
beam splitters as well as the mirrors are either classical or in an
arbitrary quantum state. With the help of the scattering operator,
we express the unitary time evolution along the two paths of the
interferometer by two operator sequences that differ in their order
and derive an expression for the interference signal. In Sec. IV, we
illustrate the results of Sec. III for the cases of a coherent state, a
single Fock state, and a superposition of two Fock states. We con-
clude in Sec. V by summarizing our main results and by providing an
outlook.

II. ATOMIC DIFFRACTION
The atom-optical analogs to beam splitters and mirrors are light

pulses that diffract the atom and generate superpositions of different
momenta. In this section, we present an elementary extension36 of
the Jaynes–Cummings model,26 taking into account the center-of-
mass (COM) motion of the atom. We then analyze the effect of a
photon distribution on the Rabi oscillations.
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A. Scattering operator
Even though atomic Raman diffraction is a two-photon pro-

cess37–39 stimulated by two counterpropagating light fields, it can be
modeled by an effective two-level system36,37 coupled to a single run-
ning wave.40 In contrast to the conventional semiclassical treatment,
we consider in this article a quantized light field.

For monochromatic plane-wave fields and short pulses, we
describe41,42 the resonant diffraction process from a single mode by
the effective scattering operator

Ŝ ≡ cn̂+1 ∣e⟩⟨e∣ − i ei (k ẑ+θ) â
sn̂
√

n̂
∣e⟩⟨g∣

− i e−i (k ẑ+θ) sn̂
√

n̂
â†
∣g⟩⟨e∣ + cn̂ ∣g⟩⟨g∣. (4)

Here, the photonic annihilation and creation operators â and â†

obey the conventional bosonic commutation relation

[â, â†
] = 1. (5)

The associated momentum transfer ±h̵k is represented by the
displacement operator exp(±ikẑ), where ẑ is the COM position of
the atom. In general, the coupling constant between the atom and
the light field is complex, leading to a phase θ.

Additionally, we have introduced the following abbreviations:

cn̂ ≡ cos
⎛

⎝

Θ
2

√
n̂
n̄
⎞

⎠
(6a)

and

sn̂ ≡ sin
⎛

⎝

Θ
2

√
n̂
n̄
⎞

⎠
, (6b)

where Θ is the pulse area defined by the mean photon number n̄ and
n̂ ≡ â†â represents the number operator of the field.

The scattering operator Ŝ defined by Eq. (4) exhibits a rather
intuitive structure. We first note that it involves three quantum
degrees: (i) the two internal energy levels |g⟩ and |e⟩ of the atom, (ii)
the electromagnetic field characterized by the annihilation and cre-
ation operators â and â†, and (iii) the COM motion of the atom given
by the position operator ẑ and entering into Ŝ as the displacement
operator in momentum.

Moreover, we note that Ŝ consists of two distinct parts describ-
ing two types of unitary evolution: (i) The atom remains in its origi-
nal state |g⟩ or |e⟩ represented by the projection operators |g⟩⟨g| and
|e⟩⟨e|. In this case, the trigonometric operators cn̂ and cn̂+1 associated
with the Rabi oscillations appear, but no creation or annihilation
operator changes the overall photon number. Moreover, the COM
motion remains unaffected due to the absence of the displacement
operator.

(ii) The atom makes a transition from the ground to the excited
state given by |e⟩⟨g| or from the excited to the ground state corre-
sponding to |g⟩⟨e|. In both cases, the transition is due to Rabi oscil-
lations and involves the trigonometric operators sn̂/

√
n̂. However,

going into the excited state requires the absorption of a photon as
expressed by the appearance of the annihilation operator â, whereas
the transition to the ground state is associated with emission and thus
with the creation of a photon as reflected by â†.

Due to momentum conservation, these processes lead to a
momentum exchange ±h̵k between the photon and the COM of the
atom, where k is the wave vector of the photon. Hence, the light–
matter interaction influences the atomic trajectory and allows for the
creation of spatial superpositions. Indeed, the displacement oper-
ators originating from the plane electromagnetic wave decrease or
increase the momentum of the atom by h̵k due to the elementary
relation

e±ikẑ
∣p⟩ = ∣p ± h̵k⟩, (7)

where |p⟩ denotes an eigenstate of the momentum operator.
It is interesting to note that the prefactor (−i) in front of the

transition terms is a consequence of the imaginary unit appearing in
the Schrödinger equation. Indeed, because Ŝ constitutes a solution
of the Schrödinger equation, it is a unitary operator. This unitarity
is also the reason why the order of the two operators sn̂/

√
n̂ and â or

â† is reversed on the off-diagonal.

B. Rabi oscillations
The effective scattering operator Ŝ given by Eq. (4) represents

the unitary time evolution of a given quantum state and allows us to
evaluate quantum mechanical expectation values. For example, for
an atom initially in the ground state, the quantity

Pg = ⟨c2
n̂⟩ (8)

describes the ground state population.
For a classical field, we find the familiar Rabi oscillations

Pg = cos2
(Θ/2) (9)

shown on the top right of Fig. 1.
If the light field is initially in a highly non-classical Fock state,3

we can simply replace n̂ by n̄ and find exactly the same probability.
However, for a coherent state |α⟩, which is a good approxima-

tion of laser light, the probability

Pg = ⟨α∣c2
n̂∣α⟩ =

∞
∑
n=0

Wn cos2
(
Θ
2

√
n
n̄
) (10)

involves an average over the photon distribution from Eq. (3). The
scattering operator, in general, entangles the light field and the atom.
However, the average in Eq. (10) is a consequence of the trace over
the photonic system, which, in principle, leads to decoherence.

The result of such a procedure is depicted on the bottom right
of Fig. 1, where this average leads to a dephasing and finally to a
revival of the transition probability.26–29,43 Obviously, this behavior
differs significantly from the one caused by a Fock state or a classical
field.

In order to gain some insight into the collapse, we replace26,27

in the limit of |α|2
≫ 1 the Poissonian photon distribution of the

coherent state by a Gaussian and the discrete sum by an integral.
Moreover, we expand the square root

¿
Á
ÁÀ1 +

n − ∣α∣2

∣α∣2
≅ 1 +

n − ∣α∣2

2∣α∣2
(11)

in the argument of the trigonometric function.
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The averaging can then be carried out analytically, and the
resulting transition probability26

Pg ≅
1
2
[1 + exp(−

Θ2

8 ∣α∣2
) cosΘ] (12)

shows no longer a revival due to the continuous approximation. Yet,
it still captures the initial dephasing by the Gaussian damping of the
oscillation.

However, for constant Θ and increasing |α|2, this effect
becomes less important. Consequently, when the exponential
approaches unity, we recover from Eq. (12) the Rabi limit

Pg ≅ cos2
(Θ/2). (13)

In this regime, highlighted, for example, by a π-pulse indicated on
the right column of Fig. 1 by the vertical line, the diffraction pro-
cesses induced by a Fock state and a coherent state behave sim-
ilarly. Indeed, most atom-optical or atom-interferometric experi-
ments5,44–46 rely on diffraction from intense classical light fields so
that the Rabi limit suffices to describe them.

III. MACH–ZEHNDER ATOM INTERFEROMETER
In Sec. II, we have set up the formalism of atom diffraction

from a single quantized light field and have analyzed the associated
Rabi oscillations. We now employ these techniques to determine
the interference signal of a Mach–Zehnder atom interferometer with
quantum fields.

This closed light-pulse atom interferometer shown in Fig. 2
consists of a π/2-pulse (beam splitter), which creates a superposition
of the COM motion and internal states. A subsequent free prop-
agation leads to two spatially separated branches before a π-pulse
(mirror) redirects them. After a second free propagation, a final π/2-
pulse mixes the branches, and the interference signal is encoded in
the ground-state population of the atom measured by the detector of
Fig. 2.

Hence, we find in one exit port the signal

I =
A
2
(1 + V cosΦ) (14)

with amplitude A, visibility V, and a phase difference Φ accumulated
between both branches upon propagation.

In the presence of an external gravitational field or a rotation,
this phase carries information about them and serves as a sensor.
However, in order to bring out most clearly the influence of the
quantized fields on the interference signal, we focus in this article
on the interferometer in the absence of external potentials.

Moreover, we neglect effects from off-resonant (detuned)
diffraction or velocity selectivity.38,39 This treatment is justified when
light shifts are compensated47–49 and for experiments that work with
sufficiently short pulses or sufficiently cold atom clouds with narrow
momentum distributions, either generated by velocity selection50 or
by utilizing Bose–Einstein condensates.51

A. Classical light fields
A conventional Mach–Zehnder interferometer employs atom-

optical elements generated by classical laser pulses. Under the
assumptions discussed above, we find A = V = 1. Because the

FIG. 2. Spacetime diagram of a closed Mach–Zehnder atom interferometer in the
absence of external potentials. The atom initially in the ground state |g⟩ (black) is
brought into an internal and a COM superposition by an interaction with a first light
pulse that induces a π/2-pulse. After diffraction, the atom evolves for a time interval
T in a superposition of two different branches: The upper branch is associated
with the excited state |e⟩ (green), while the remaining ground-state population
evolves along the lower branch. A central π-pulse redirects both branches and
swaps both internal states. Moreover, this pulse leads, in general, to particle losses
due to a distribution of photon numbers in the pulse area. Such losses are indicated
by dotted lines and will not be observed by the detector. After the mirror pulse,
both branches evolve freely for another time interval T. Finally, they are mixed
by a final π/2-pulse, giving rise to an interference signal I. This signal, depicted
on the right side of the figure, can be measured by postselecting on the ground
state, indicated by the detector symbol. In this exit port, we observe interference
fringes with visibility V and amplitude A, leading to a measurement of the phase
difference Φ.

scheme is symmetric in time, as sketched in Fig. 2, and we assume
no external potential acting on the COM motion, the only surviving
phase contribution is a three-point sampling

Φ = φ2 − 2φ1 + φ0 (15)

of the phases φℓ for each classical laser pulse ℓ = 0, 1, and 2. This laser
phase contribution is of the form of a discrete second derivative.

B. Quantized light fields
We now replace the three laser pulses by quantized light fields

and introduce the creation and annihilation operators â†
ℓ and âℓ with

ℓ = 0, 1, and 2 describing the ℓth pulse. Since these operators act in
different Hilbert spaces, we find the commutation relation

[âℓ, â†
ℓ′] = δℓ,ℓ′ (16)

and define for each field the photon number n̂ℓ ≡ â†
ℓâℓ.

Since the interferometer consists of a sequence of three pulses,
we add a superscript to the scattering operator of Eq. (4) so that Ŝ(ℓ)

describes the action of the ℓth pulse on the atom. It involves only the
photonic operators âℓ, â†

ℓ, and n̂ℓ. Moreover, we denote the pulse
area by Θℓ, the mean photon number by n̄ℓ, and the phase of the
coupling constant by θℓ.

As in the case of classical light fields, the pulse areas are chosen
as Θ1 = π (mirror) and Θ0 = Θ2 = π/2 (beam splitters). However,
the operator-valued prefactors cn̂ℓ

and sn̂ℓ
corresponding to the Rabi

oscillations still depend on the photon number operator n̂ℓ. Thus,
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although the pulse areas are fixed, the difference between n̂ℓ and n̂ℓ+
1 in these prefactors is only negligible for large n̄ℓ. Note that low
photon numbers would require a strong coupling because we have
assumed short pulse durations.

As indicated in Fig. 2 by dotted lines, this difference in the
photon number leads to a particle loss at the mirror and imperfect
(unbalanced) beam splitters. In such a situation, we expect a drop of
the amplitude A and visibility V of the interference signal.

The operator sequence

ÛMZ ≡ Ŝ
(2)

ÛŜ(1)ÛŜ(0) (17)

describing the unitary time evolution of the atom on its path through
the Mach–Zehnder interferometer consists of the three scattering
operators Ŝ(ℓ) corresponding to the three fields, as well as the free
propagation

Û ≡ exp[−i(
p̂2

2mh̵
+

2

∑
ℓ=0

ωn̂ℓ + ωa∣e⟩⟨e∣)T] (18)

for a time duration T between the pulses. Here, p̂ denotes the
momentum operator of the atom of mass m, and all light fields have
the same frequency ω, whereas the energy difference between the
two internal states is h̵ωa.

For an atom initially in the ground state and detected in the
same state, we postselect on the matrix element Ûgg

MZ = ⟨g∣ÛMZ∣g⟩.
Moreover, since the detector is placed at a specific location, there is
an additional implicit postselection of the COM motion, and we can
disregard the spurious paths denoted by dotted lines in Fig. 2.

Thus, the detection measures only the two relevant branches
shown in Fig. 2, and we find the representation

Ûgg
MZ = Ôl + Ôu, (19)

where Ôl and Ôu describe the evolution along the lower and upper
branch, respectively.

Hence, the interference signal

I ≡ ⟨Ûgg†
MZÛgg

MZ⟩ (20)

reads

I = ⟨Ô†
l Ôl + Ô†

uÔu + Ô†
l Ôu + Ô†

uÔl⟩. (21)

Here, the first two terms determine the amplitude A/2 and thus
particle losses due to imperfect Rabi oscillations. Conversely, the
last two terms lead to the interferometer phase Φ and the visibil-
ity V determined by the overlap between the propagation along both
branches.

Next, we derive explicit expressions for Ôl and Ôu. For this pur-
pose, we note that since the Mach–Zehnder geometry without any
external potential is fully symmetric, we can neglect all kinetic terms
in the time evolution along each path as they do not lead to any
additional interferometer phase. A similar argument applies to the
phases that arise from the energy splitting of the atom, which oscil-
late with ωa, as well as to the phases that arise from the evolution of
the light fields, oscillating with ω.

Therefore, we obtain from the operator sequence of the Mach–
Zehnder interferometer from Eq. (17) the operators

Ôu = ei(θ0−θ1)cn̂2 ⊗
sn̂1
√

n̂1
â†

1 ⊗ â0
sn̂0
√

n̂0
(22a)

and
Ôl = ei(θ1−θ2) sn̂2

√
n̂2

â†
2 ⊗ â1

sn̂1
√

n̂1
⊗ cn̂0 , (22b)

which exhibit a rather intuitive picture.
We first note that they only involve the field operators of three

modes since the internal states and the COM motion have factored
out. Indeed, on the upper path reaching the detector in Fig. 2 marked
|g⟩, the atom makes a total of two transitions that occur in the first
beam splitter and the mirror. On the lower path, the two transitions
occur at the mirror and the second beam splitter. Hence, the final
momentum states of the two paths are identical, especially because
no external potential acts on the atom.

Moreover, the sequence of field operators on the upper path
corresponds to the absorption of a photon from the first beam split-
ter, emission at the mirror, and no transition at the second beam
splitter corresponding to the operators â0 sn̂0/

√
n̂0, sn̂1/

√
n̂1 â†

1 , and
cn̂2 . The absorption and emission lead to the appearance of the
difference θ0–θ1 of the two phase factors.

On the lower path, we have no deflection at the first beam split-
ter but absorption and emission at the mirror and the second beam
splitter giving rise to the appearance of the terms cn̂0 , â1 sn̂1/

√
n̂1, and

sn̂2/
√

n̂2 â†
2 . Again, the absorption and emission of the photon lead

to the phase difference θ1–θ2.
When we substitute Eq. (22) for Ôl and Ôu into Eq. (21) that

describes the interference signal and recall the relation

f (n̂ℓ)â
†
ℓ = â†

ℓ f (n̂ℓ + 1), (23)

we obtain the building blocks

Ô†
l Ôu = eiΔθâ2

sn̂2 cn̂2
√

n̂2
⊗ (

sn̂1
√

n̂1
â†

1)

2

⊗ cn̂0 â0
sn̂0
√

n̂0
, (24a)

Ô†
uÔu = c2

n̂2 ⊗ s2
n̂1+1 ⊗ s2

n̂0 , (24b)

Ô†
l Ôl = s2

n̂2+1 ⊗ s2
n̂1 ⊗ c2

n̂0 . (24c)

The overlap operator Ô†
l Ôu includes the phase difference

Δθ ≡ θ2 − 2θ1 + θ0 (25)

that has the same structure as the one obtained from classical light
fields. However, Δθ originates from the coupling constant, which
is usually assumed to be constant over the whole experiment, forc-
ing Δθ to vanish. Any additional phase difference measured by the
interferometer must result from the quantum states of the light
fields.

Moreover, we observe that at each beam splitter, a photon is
absorbed due to the appearance of the annihilation operator âℓ,
whereas the mirror contributes with two-photon creations (â†

ℓ)
2. In

contrast, the contributions Ô†
uÔu and Ô†

l Ôl leading to the amplitude
only include the number operator, thus triggering particle losses and
unbalanced beam splitters.
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Comparing Eqs. (21) and (24) to the interference signal of
Eq. (14), we find the visibility V and the interferometer phase Φ from
the decomposition

VeiΦ
=

2⟨Ô†
l Ôu⟩

⟨Ô†
l Ôl + Ô†

uÔu⟩
. (26)

Here, we defined the amplitude A ≡ 2⟨Ô†
l Ôl + Ô†

uÔu⟩.
We emphasize that we always include phases that are encoded

in the states of the light fields into the phase Φ, whereas V may take
negative values if the sign of the trigonometric operators sn̂ℓ

and cn̂ℓ

flips.

IV. EXAMPLES OF QUANTUM LIGHT
We now apply the result of Sec. III B to calculate the inter-

ference signal for different initial states of the light fields. In par-
ticular, we observe that the visibility obtained from coherent states
approaches unity for high mean photon numbers. Moreover, the
measured phase includes the phases of the coherent states in com-
plete analogy to classical fields. For decreasing mean photon num-
bers, however, intricate effects arise from the quantized nature of the
field.

We then analyze the signal of two highly non-classical states:
Fock states lead to a situation where full welcher-Weg (which-way)
information is encoded into the light fields. As a consequence, the
interference vanishes. Although this effect is less pronounced for
superpositions of two Fock states, the visibility is still significantly
reduced.

A. Coherent state in each pulse
We start our discussion by addressing the situation where all

fields are in coherent states. With the help of the eigenvalue equation

âℓ∣αℓ⟩ = ∣αℓ∣eiϕℓ ∣αℓ⟩ (27)

of a coherent state |αℓ⟩, we can evaluate the expectation value
⟨Ô†

l Ôu⟩ of Eq. (24a) and find that the individual phases ϕℓ of each
coherent state contribute to the interferometer phase

Φ = Δθ + Δϕ, (28)

where

Δϕ ≡ ϕ2 − 2ϕ1 + ϕ0. (29)

Hence, the phase Φ obtained from classical light fields corresponds
to the sum of the phase difference Δθ of the coupling constant and
the phase difference Δϕ of the coherent states. We emphasize that
this result is independent of the mean photon number and leads to
exactly the same structure of the interferometer phase as classical
laser fields. However, the visibility is influenced by the intensities
n̄ℓ = ∣αℓ∣2.

In order to bring out this point most clearly, we numerically
calculate the amplitude

A = 2
∞
∑

n2 ,n1 ,
n0=0

Wn2 Wn1 Wn0(c
2
n2 s2

n1+1s2
n0 + s2

n2+1s2
n1 c2

n0) (30)

and the visibility

V =
∞
∑

n2 ,n1 ,
n0=0

4Wn2 Wn1 Wn0 ∣α2∥α1∣
2
∣α0∣sn2+1cn2+1sn1+2sn1+1sn0+1cn0

A [(n2 + 1)(n1 + 2)(n1 + 1)(n0 + 1)]1/2
(31)

from Eq. (26) in the Fock basis.
Each of the three Poissonian photon distributions Wnℓ from

Eq. (3) has the corresponding mean value |αℓ|2, and we have chosen
|α0|2 = |α2|2 = |α1|2/2 ≡ |α|2 to account for the higher intensity of the
π-pulse. Even though the Rabi oscillations are damped as shown in
Fig. 1, we find for the visibility the classical limit V→ 1 for |α|2

→∞,
as shown in Fig. 3(a).

FIG. 3. Visibility V of a Mach–Zehnder interferometer with all light fields in a coher-
ent state (a) or in a superposition of two Fock states (b) as a function of the mean
photon number n̄: (a) For coherent states with ∣α0∣

2 = ∣α2∣
2 = ∣α1∣

2/2 ≡ n̄,
the visibility tends to unity (upper red dotted line) for large n̄. Conversely, it drops
significantly when the mean photon number decreases. For n̄ < 1, even phase
jumps occur, indicated by the oscillations around zero in the inset, and V = 0
for n̄ = 0 as expected. (b) For light fields in a superposition of two Fock states,
V→ 1/8 (lower red dotted line) for high values of n̄0 = n̄2 = n̄1/2 ≡ n̄. Moreover,
V is bounded by 1/4 (upper red dotted line), which is below the classical limit of
unity.
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This result is to be expected from the discussion of Eq. (12).
Indeed, if the pulse area Θ is constant but |α|2 increases, the damping
becomes less important and is negligible in this limit, similar to the
diffraction from classical fields. In particular, the initial dephasing
becomes less important for fixed pulse areas of π or π/2. Such transi-
tions from quantum to classical fields have previously been studied
experimentally30 in a Ramsey sequence consisting of two π/2-pulses
and without COM motion.

However, for small mean photon numbers |α|2 when only a
few Fock states are relevant, we observe a significant difference to
the interference obtained with classical light fields. Indeed, in this
regime, the visibility drops and displays small-amplitude oscillations
around zero so that even phase jumps of π occur, as shown in the
inset of Fig. 3(a). Consequently, in this limit, the discrete nature of
the photon distribution is relevant.

To study such effects in more detail, we analyze in the follow-
ing the interference signal for Fock states and superpositions of two
Fock states in each light field.

B. Fock state in one pulse
For a Fock state in one of the three light fields, we find the

expectation value

⟨nℓ∣Ô
†
l Ôu∣nℓ⟩ = 0 (32)

due to the orthogonality of the Fock basis. Indeed, according to the
expression for Ô†

l Ôu from Eq. (24a), at least one creation or anni-
hilation operator acts on every light field, leading to a vanishing
visibility.

As a consequence, no phase measurement is possible as long as
at least one field is in a Fock state. Additionally, this result makes
the question of the phase of a Fock state irrelevant in such an
experiment.

From a more fundamental point of view, this result can be
interpreted as having welcher-Weg information of the particle.
When measuring the photon number of the field that was initially in
a Fock state, one knows whether the atom was diffracted or not and
on which branch it propagated. As such, this result displays an illu-
minating example of the duality between welcher-Weg information
and interference.31

In an alternative interpretation, the COM motion of the atom is
maximally entangled with the light field after the interaction with a
Fock state. Tracing out the light field therefore leads to a completely
mixed state of the atom, preventing any spatial interference experi-
ment. In the subspace of the atom, this loss of contrast can be seen
as a decoherence due to the coupling to the Fock state.

C. Superposition of two Fock states in each pulse
To avoid the encoding of complete welcher-Weg information,

we now consider a superposition of two Fock states in each light field.
Hence, up to a global phase factor, we write the state |Ψ⟩ of the initial
fields in the form

∣Ψ⟩ ≡ ∣ψ0⟩⊗ ∣ψ1⟩⊗ ∣ψ2⟩, (33a)

where

∣ψℓ⟩ ≡ γℓe−iδℓ/2∣mℓ⟩ + ηℓeiδℓ/2∣nℓ⟩. (33b)

Here, δℓ is the relative phase between the two Fock states, and γℓ and
ηℓ are real parameters with γ2

ℓ + η2
ℓ = 1.

To obtain a non-vanishing visibility, the structure of Ô†
l Ôu in

Eq. (24a) suggests the choice m0 = n0 − 1, m1 = n1 − 2, and m2 = n2
− 1, which yields the expression

⟨Ô†
l Ôu⟩ = eiΦcn2 sn2 sn1−1 sn1 cn0−1 sn0

2

∏
ℓ=0

γℓηℓ, (34)

with the interferometer phase

Φ = Δθ + Δδ, (35)

where

Δδ ≡ δ2 − δ1 + δ0. (36)

Similar to the phase Φ of an interferometer with coherent states
given by Eq. (28), the coupling constant contributes with Δθ. How-
ever, even though the phases δℓ between the individual Fock states
enter, the structure of Δδ is different from the one in δϕ defined in
Eq. (29) for coherent states: The mirror pulse only contributes with
the phase δ1, whereas the phase of a coherent state contributed with
a factor of two. Thus, no three-point sampling akin a second dis-
crete derivative occurs, and the phase does, in general, not resemble
the one obtained from classical light.

Equation (34) suggests the optimal visibility for equal superpo-
sitions γℓ = ηℓ = 1/

√
2. For this choice, we show in Fig. 3(b) the

visibility defined by Eq. (26) for different values n̄0 = n̄2 = n̄1/2 ≡ n̄.
For large mean photon numbers n̄, the visibility has the lower limit
V → 1/8 and the amplitude tends to A → 1. In this limit, the
trigonometric functions approach classical Rabi oscillations or per-
fect pulses, as the difference between n̂ and n̂ + 1 becomes negligi-
ble and the visibility is solely determined by the product ∏2

ℓ=0 γℓηℓ
= 1/8.

However, we can optimize the individual pulses also for low
photon numbers, for example, through the first pulse by cn0−1 sn0

yielding almost unity for n̄ = 1/2, as depicted in Fig. 3(b). Never-
theless, the visibility has then still an upper bound of V < 1/4, which
arises from the following two conditions:

(i) The inequality

cn2 sn2 ≤ 1/2 (37)

arises because both trigonometric functions have identical
arguments.

(ii) Moreover, the bound

sn1−1 sn1 cn0−1 sn0 < 1 (38)

emerges because the trigonometric functions have different
arguments. Together with all other prefactors in the visibility,
we are therefore left with 1/4 as an upper limit.

This result indicates that a complete information transfer from
the atom to the light field is not possible with a superposition of
Fock states. Hence, we expect that for superpositions of an increas-
ing number of Fock states, the visibility increases as well, until finally
reaching unity.
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V. CONCLUSIONS
We have determined the interference signal of a Mach–

Zehnder atom interferometer taking into account the quantized
nature of the light fields interacting with the atoms. In contrast to
classical fields, averaging the Rabi oscillations over the correspond-
ing photon distributions leads to unbalanced beam splitters and
mirrors causing particle loss, with implications on the interference
signal.

In the case of coherent states in the three light fields, the inter-
ferometer phase is identical to that for classical fields but only for
large mean photon numbers does the visibility approach the clas-
sical limit of unity. This behavior is a consequence of the dephasing
caused by the averaged Rabi oscillations, where the familiar damping
becomes less dominant when the mean photon number increases for
a fixed pulse area.

However, in the limit of low mean photon numbers, the quan-
tized nature of the coherent state leads to a significant drop in the
visibility. To highlight the characteristic features of this regime, we
have first studied a situation where one of the three fields is in a
Fock state. In this case, the light field contains complete welcher-Weg
information after diffraction, and no interference can be observed.
As an alternative interpretation, the light field and the COM state of
the atom are maximally entangled after the diffracting process.

For a superposition of two Fock states in all three light fields,
we regain a non-vanishing visibility V. However, it is bounded by
V < 1/4, and the pulse areas and states can be optimized to reach
this upper bound.

In addition, also the interferometer phase differs from the one
obtained from coherent states: Even superpositions of Fock states
with large photon numbers are not sufficient to restore the phase
structure of classical light fields. Conversely, the expected three-
point sampling akin a second discrete derivative does, in general,
not occur.

Our results underline that the interference observed in light-
pulse atom interferometers depends on the quantum nature of the
diffracting light pulses. In contrast to diffraction patterns governed
by the photon distribution, atom interferometers highlight the simi-
larity between classical light and coherent states, although, in gen-
eral, the interference pattern strongly depends on the quantum
nature of the field.

Building on recently explored cavity schemes13,14 for atom
interferometry and ideas to generate entangled COM states,16,18,19

our analysis brings out additional effects of quantum light on atom
interferometers.

Throughout this article, we have not considered the influence
of entanglement between the three quantum fields on the interfer-
ence signal. Since entanglement affects the diffraction of atoms,15 it
must reflect itself in the interference signal. Therefore, we will study
in our future work the possibility of enhancing the visibility using
entangled light fields.
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