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Abstract: Various sectors of the economy such as transport and renewable energy have 
shown great interest in sea bed models. The required measurements are usually carried 
out by ship-based echo sounding, but this method is quite expensive. A relatively new 
alternative is data obtained by airborne lidar bathymetry. This study investigates the 
accuracy of these data, which was obtained in the context of the project ‘Investigation 
on the use of airborne laser bathymetry in hydrographic surveying’. A comparison to 
multi-beam echo sounding data shows only small differences in the depths values of 
the data sets. The IHO requirements of the total horizontal and vertical uncertainty for 
laser data are met. The second goal of this paper is to compare three spatial interpolation 
methods, namely Inverse Distance Weighting (IDW), Delaunay Triangulation (TIN), and 
supervised Artifi cial Neural Networks (ANN), for the generation of sea bed models. The 
focus of our investigation is on the amount of required sampling points. This is analyzed 
by manually reducing the data sets. We found that the three techniques have a similar 
performance almost independently of the amount of sampling data in our test area. 
However, ANN are more stable when using a very small subset of points.

Keywords: Airborne Lidar Bathymetry, interpolation, neural networks, inverse 
distance weighting, Delaunay triangulation

1. Introduction

In recent years, we have seen increased request for 3D data, which evolved not only 
in the direction of improving the accuracy and collecting a greater amount of data, 
but also in shortening the time of their acquisition. Traditionally, sea bed models are 
based on data obtained from single- or multi-beam echo-sounder measurements. An 
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alternative to conventional data acquisition is airborne laser bathymetry (ALB), which 
is a promising technique of surveying the sea bed. ALB sensors use a green laser of 
532 nm wavelength which can penetrate the water column. It is often combined with 
an infrared laser of 1064 nm wavelength, which is refl ected at the water surface. The 
depth is determined by the two-way runtime between the refl ections from the water 
surface and the solid ground underneath. Especially the pulse repetition rate and, thus, 
the point density have been signifi cantly increased with the state-of-the-art sensors. 
Good results under optimal conditions were reported (Costa et al., 2009; Steinbacher 
et al., 2012). However, there are many limiting factors like water turbidity, waves, 
and refl ectance conditions of the sea bed.

In order to guarantee the quality of the hydrographic data and hence to ensure 
the safe navigation of ships, the International Hydrographic Organization (IHO) 
published the Standards for Hydrographic Surveys S-44 (International Hydrographic 
Organization, 2008). The quality demands are categorized into four classes. Three 
of them describe the shallow water requirements in depth less than 100 m. The 
penetration depth of ALB is limited to only a few metres in the Baltic Sea due to 
turbidity. Correspondingly, these data must at least meet the constraints defi ned in 
Order 1b to be used for an operational application in hydrographic surveying. To fulfi l 
this category at least one Lidar spot located in a 5×5 m grid cell is required, whereas 
the detection of obstacles is not necessary.

An increase of human activities in shelf and coastal water areas such as gas pipeline 
or offshore wind turbines comes along with the requirement of a better understanding 
of the sea bed variability. For this reason, the interest on accurate sea bed models 
increases. Nowadays, depth measurements are usually performed by acoustic systems 
mounted on the ship (Brouwer, 2008). However, in particular the very shallow water 
regions are not accessible for ships resulting in data gaps in the transition zone 
between land and water. Common interpolations methods have problems with the 
interpolation of sparsely distributed data points. Therefore, improved methods are 
required. In case of topographic terrain modelling, Gumus et al. (2013) demonstrated 
that artifi cial neural networks are particularly suitable to handle data sets with variable 
point distributions. An artifi cial neural network is a powerful framework which has 
been shown to provide good results in many applications such as pattern recognition, 
clustering, function approximation, and optimization tasks (Jain et al., 1996). Due to 
these advantages we introduce neural networks for the generation of sea bed models 
in this paper. Bathymetric data is often irregularly distributed or shows some small 
data gaps. For this reason, an experiment was conducted in which the amount of 
sampling points in the point clouds was randomly reduced.

2. Methodology

The main goal of this paper is to compare three interpolation methods with respect 
to their applicability of generating digital sea bed models from varying ALB point 
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cloud densities. This investigation comprises the supervised artifi cial neural networks, 
on one hand, and the two conventional approaches of inverse distance weighting as 
well as Delaunay triangulation, on the other hand. They are described shortly in the 
following subsections.

2.1. Artifi cial neural network (ANN)

In general, an artifi cial neural network is a computing system made up of a number of 
simple, highly interconnected units, which process information by their dynamic state 
response to external inputs (Caudill, 1989). The original inspiration for such a structure 
was the central nervous systems of animals, in particular the brain. Each artifi cial 
neural network works as system of interconnected neurons which send messages to 
each other. The connections between neurons have weights that are determined in an 
iterative training phase. Based on Fig. 1 the functionality of the technique as well as 
the important terms of artifi cial neural networks are explained:

X

Y
Z

Input Layer Two Hidden Layers Output Layer  

Fig. 1. Layout of the proposed artifi cial neural network

A multilayer feed-forward back propagation (MLBP) network is popular and 
often used for classifi cation and pattern recognition tasks (Jain et al., 1996; Duda et 
al., 2000). The network consists of multiple (adaptive) layers of units, and it is not 
allowed to have cycles from later layers back to earlier layers (Bishop, 2007). The 
neurons are arranged in layers and a neuron of one layer is fully connected only with 
every neuron of the next layer, but not to any of the same layer, i.e., there are no 
intra-layer connections. The input layer distributes the input to the hidden layers and 
communicates with the external environment (Karsoliya, 2012). This layer represents 
the condition for which we train the neural network and every input neuron represents 
one independent variable. The output of the fi rst layer is propagated through the 
hidden layer(s) of the net (Stefko, 2008), which are neither input nor output units, 
and their activations are not directly “seen” by the external environment (Duda et al., 
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2000). The activation function is the process that happens after the input is presented 
to the neuron. The results determine the value of the next neuron in the following 
layer in the network (Bell, 2014). The hidden layer is the collection of neurons which 
have the activation function applied and the value of each neuron is multiplied by the 
weight. The resulting weight values are added and the weighted sum is transferred to 
the output layer, which accepts weights and adjusts them.

As shown in Fig. 1, our neural network has two hidden layers with two input units 
represented by the x- and y-coordinates of the ALB data. A subset of the point cloud 
is used for training data to generate a grid model of the sea bed. It is trained with the 
Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963; Hagan et al., 
1994; Duda, 2000) and the adaptive learning rate is gradient descent with momentum 
weight and a bias learning function (Bai et al., 2009). The mean-square error is used 
as a criterion of the network training. The calculations are made with the software 
MatLab.

2.2. Inverse Distance Weighting (IDW)

IDW is a type of interpolation method calculating the height information of unknown 
points with a weighted average of the values available at the known points (Azpurua 
et al., 2010). The basic assumption is that close points have a greater infl uence on the 
interpolation than more distant points. Hence, the weights are a function of distances 
from a single ALB point to the interpolation points. The z-value can be calculated by 
the following equation

 = 1  ,  (1)

where di is a distance between the unknown and known data points, and zi is the 
observed elevation value of point i. The parameter p is a control rate that models, to 
check how rapidly the weights decrease with increasing distance. It is typically set to 
p = 2 (Bagheri et al., 2014). Calculations concerning this part were made in SagaGis 
2.1.4 (64-bit).

2.3. Delaunay Triangulation

Delaunay triangulation is another popular interpolation method, which represents the 
data by a triangulated irregular network (TIN). Thus, the results obtained by this 
method are denoted by ‘TIN’ in this paper. It creates a surface formed by triangles 
connecting the nearest neighbour points in order to determine the unknown height 
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value. It has been shown that TIN models are a good way to regularly sample data for 
terrain reconstruction (Zhong et al., 2008). The algorithm of Delaunay Triangulation 
was described by de Berg et al. (2008). The z-value of point i in the triangle abc can 
be calculated by the following equation (Hu et al., 2009)

 = + + ,  (2)

where a + b + c = 1, a, b, c > 0. The weights a,b,c are the areal proportions 
of the sub-triangles constructed using i. Let s be the total area of the triangle abc, 
and sa,sb,sc be the areas of the sub-triangles, then the proportions result to a= sa/s, 
b = sb/s, c= sc/s. In our project the Delaunay Triangulation was executed in SagaGis 
2.1.4 (64-bit).

3. Experiments

The aims of our investigations are: (1) to analyze the vertical accuracy of ALB data, 
(2) to generate sea bed elevation models from these data of varying point density 
using neural networks, and (3) to compare the quality of neural networks to common 
interpolations methods. A model created from multi-beam data serves as a ground 
truth for the accuracy assessment of the individual results. This section presents 
the experiments to evaluate the performance of our research. The study area is 
characterized in Section 3.1. Section 3.2 is dedicated to the evaluation of the vertical 
depth accuracy of the collected ALB data. Section 3.3 presents the comparison and 
the results of the three different interpolation method s.

3.1. Data

The data used for our research was obtained in the project ‘Investigation on the use 
of airborne laser bathymetry in hydrographic surveying’, carried out in the frame of 
a cooperation of the Federal Maritime and Hydrographic Agency (BSH) of Germany 
and the Institute of Photogrammetry and GeoInformation, Leibniz Universität 
Hannover (Germany). The test site for this study is located in the Baltic Sea, about 
25 km North of Rostock (Germany), and comprises the artifi cial reef Rosenort (Fig. 2) 
at a depth of approx. 6 m. The area of the test region is 38,555 m2

 and 99,446 sea bed 
points were recorded. The airborne laser bathymetry data acquisition was conducted 
by TopScan GmbH in September 2013 with an AHAB Chiroptera sensor in an altitude 
of 400 m. The sensor works with a combination of a green laser (λ=532 nm) and an 
infrared laser (λ=1064 nm). As specifi ed by the manufacturer, a typical measurement 
ranges to one and a half Secchi depth under good conditions, and the pulse repetition 
rate was set to 35 kHz (AHAB, 2013). The Secchi depth is the maximum depth at 
which the human eye can detect a test object (disk) in water and is related to its 
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turbidity. In addition to the ALB data also multi-beam data was gathered by the BSH 
Rostock in September 2013. They provided a DTM of 1 m resolution, which is used 
as a reference in our investigation.

In the test area four groups of obstacles are located on the sea bed, namely the 
parts of the artifi cial reef Rosenort consisting of various stony materials. Unfortunately, 
there are gaps in the ALB data exactly at the positions of the obstacles, and hence 
almost no 3D information about these objects could be inferred by ALB in this case. 
The four gaps with a length of 10-15 m and a width of 5-10 m each can be detected 
easily in the point cloud (Fig. 3A). This problem could be caused by the underwater 
vegetation growing on the top of the obstacles, leading to insuffi cient refl ections 
of the laser signal. Another possible explanation could be that the echoes from the 
objects were incorrectly identifi ed as noise and thus they were eliminated in the post-
processing. These observations are already mentioned in Niemeyer et al. (2014). We 
will focus on this problem in our future work to identify the reasons.

Fig. 2. Test area (OpenStreetMap) 
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3.2. Depth accuracy

The accuracies of each interpolation method are carried out by calculating the 
differences of the z-values between each grid model and the multi-beam data. The 
error can be determined by using the RMSE (root-mean-square error) rate, which is 
expressed as follows:

 = ( )
 

 (3)

where zALB are the interpolated z-values of the ALB data, zMB are the height values 
from multi-beam grid, and n is the number of grid cells in the models (which is 
identical for the multi-beam and the interpolated ALB models).

As explained above, airborne laser bathymetry must meet the requirements of 
IHO S-44 Order 1b. The maximum allowable total horizontal uncertainty (THU) and 
the total vertical uncertainty (TVU) are defi ned by

 = 5 + 5% depth,  (4)

 = (0.5 ) + (0.013 ) .  (5)

For each parameter a 95 % confi dence level must be fulfi lled.
The evaluation of the depth accuracy of the collected ALB data is an important 

task for further analysis presented in this paper. Therefore, only the points classifi ed 
as sea bed are investigated. In our case the IHO requirements of the total horizontal 
and vertical uncertainty for laser data are 5.25-5.37 m (THU) and about 0.5 m 
(TVU), respectively, according to equations 4 and 5. However, in the present work 
the accuracy assessment was focused only on TVU, because there was not suffi cient 
structure in the data to validate also the horizontal accuracy. The ALB data (Fig. 3A) 
are compared to the multi-beam echo sounding data (Fig. 3B) by computing the depth 
difference for each ALB sea bed point and its nearest echo sounding grid point.

The results of the differences between the laser point cloud and the reference 
DTM reveal that both techniques ALB and echo sounding lead to comparable results. 
They are depicted in Fig. 3. The majority (99.9 %) of the laser points satisfy the total 
vertical uncertainty threshold which is ±0.5 m. This shows that both data sets match 
well and hence the ALB points have a good vertical accuracy.
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Fig. 3. A) Airborne laser bathymetry point cloud of the sea bed;
B) Grid model of the sea bed from multi-beam measurements;

C) difference between ALB data and multi-beam data with the corresponding histogram
 of the vertical differences. CS-1 and CS-2 show the positions of the 2D profi les used for Fig. 4 and 5.
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3.3. A nalysis of results

The fi rst experiment showed a good vertical accuracy of the laser points, enabling 
the next step of our investigation: the comparison of three different methods for 
the generation of a sea bed DTM. In this section the accuracy of the different 
approaches with respect to varying point densities is analyzed. For that purpose, 
random subsets of 50%, 25%, 10%, 5%, and 1% of all points in the point cloud 
are drawn to form data sets with reduced point densities, which are summarized 
in Table 1:

Table 1. Point densities of input point clouds

Point cloud size 100 % 50 % 25 % 10 % 5 % 1 %

Point density (pts/m²) 2.58 1.29 0.64 0.26 0.13 0.03

These artifi cially reduced point clouds are then used to analyze the infl uence 
of the point densities on the investigated interpolation methods. They serve as 
training data for the neural network approach (to learn the weights) as well as 
input data for the unsupervised methods Inverse Distance Weighting and Delaunay 
triangulation. For each density level the same subsampled point cloud is used 
for all three interpolation methods to generate a new sea bed raster model of 1 m 
resolution in order to enable a convincing comparison. After that, each model is 
compared to the multi-beam elevation model with 1 m grid size, which was provided 
by the BSH.

The results of all interpolation methods show that they are almost similar for 
all models, independent of the point densities. For each data set the RMSE is 
approximately 0.1 m, the mean difference is about 0.01 m. In the case of the TIN 
interpolation a restriction has to be taken into account. Due to the distribution 
of the randomly selected points it may appear that not all pixels of the sea bed 
model are covered by a triangle of the TIN. Consequently, it is not possible to 
interpolate a depth value for these pixels and hence they have to be ignored in 
the evaluation of the comparison with the multi-beam model. The number of 
ignored pixels increases from 55 to 1922 with a decreasing amount of Lidar points 
because the covered area of the generated TIN triangles is likely to be reduced 
in this case.

In addition, for a better presentation of the properties of the resulted models, two 
elevation profi les are shown in Fig. 4 and 5. The fi rst profi le is generated from models 
based on all points and comprises the two obstacles (Fig. 3C, CS-1) on the sea bed. 
There are almost no ALB points located on the obstacles. Therefore, the interpolation 
is based only on points which are situated next to an obstacle leading to non-realistic 
results. However, in case of the method TIN, a small peak of approximately 20% 
of the object’s height can be observed at the corresponding locations in Fig. 4. The 
reason is, that the heights of all samples are directly used to perform the triangulations 
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between the points. In this case some (few) points located on the edges of the obstacles 
were actually detected and thus taken into account for the interpolation with TIN. The 
other two methods ANN and IDW also perform a smoothing of the data. This effect 
leads to an elimination of the small remaining peaks of the obstacles. Note that the 
oceanic relief in the study area is quite fl at and does not show much undulation of 
the ground despite of the obstacles. In future works, test sites with more variation in 
depth will be investigated.

Fig. 4. Profi le CS-1 of DTMs obtained by all methods showing the underwater obstacles
 based on the interpolation of 100% of the points. MBeam- multibeam data,

ANN- Artifi cial neural network, IDW- Inverse Distance Weighting,
TIN- Delaunay Triangulation

The second cross-section profile (Fig. 5) shows a randomly sampled 
location (Fig. 3C, CS-2) on the sea bed. The model was defi ned on only 1 % of 
the points. In this case, the traditional interpolation methods are unstable and 
generate many peaks in both directions of the z-axis. In contrast to that the model 
generated by the ANN is more stable with only smooth changes, and the surface 
is close to that of the multi-beam data. Although the ANN simplifi ed edges, it is 
a sophisticated predictor of the curvature of the sea bed. An advantage of ANN 
compared to TIN and IDW is that the input data are unrelated to the interpolated 
data (the result only depends on the weights of the neurons) and therefore the 
ANN-model is smooth. This effect is positive when having data of varying 
quality.
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Fig. 5. Profi le CS-2 of DTMs obtained by all methods showing a randomly
sampled location based on the interpolation of only 1 % of the points

4. Conclusion and outlook

This paper investigates the vertical accuracy of the sea bed point cloud obtained by 
airborne laser bathymetry (ALB), on the one hand. It appears that the data acquired by 
the Sensor AHAB Chiroptera meet the international demands in terms of the vertical 
accuracy for the small test site with a water depth of about 6 m. On the other hand, 
three techniques for the interpolation of terrain models describing the sea bed are 
analyzed with respect to a reference model generated from multi-beam echo-sounding 
data. For this study a new application of the artifi cial neural networks (ANN) is 
presented. The resulting DTM is compared to those obtained by the two traditional 
interpolation methods Inverse Distance Weighting and Delaunay triangulation. Also 
an experiment with a varying amount of input data for the three methods is carried 
out. We found that ANN are more stable in the case of relatively few points. The 
elevations of this model are close to those of the multi-beam model, and hence it 
can be used as a basis for further applications. Furthermore, a comparison depicted 
that both, the amount of training data as well as the interpolation method, do not 
have a great impact on the accuracy of the interpolated model in our fl at test study. 
We aim to carry out a similar comparison in areas with more changes of the sea bed 
topography to yield more expressive results.

The detection of underwater obstacles was challenging in the tests because the 
laser pulses were refl ected only weakly when they illuminated objects leading to 
gaps in the data. In further work we want to concentrate on this issue and analyze 
the full waveforms to extract more points describing the underwater obstacles on 
the sea bed.
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