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Abstract
Qualitative uncertainties are a key challenge for the further industrialization of additive manufacturing. To solve this chal-
lenge, methods for measuring the process states and properties of parts during additive manufacturing are essential. The 
subject of this review is in-situ process monitoring for material extrusion additive manufacturing. The objectives are, first, 
to quantify the research activity on this topic, second, to analyze the utilized technologies, and finally, to identify research 
gaps. Various databases were systematically searched for relevant publications and a total of 221 publications were analyzed 
in detail. The study demonstrated that the research activity in this field has been gaining importance. Numerous sensor 
technologies and analysis algorithms have been identified. Nonetheless, research gaps exist in topics such as optimized 
monitoring systems for industrial material extrusion facilities, inspection capabilities for additional quality characteristics, 
and standardization aspects. This literature review is the first to address process monitoring for material extrusion using a 
systematic and comprehensive approach.

Keywords  Material extrusion · Fused deposition modeling · Process monitoring · Quality assurance · Sensor technology · 
Research gaps

1  Introduction

Additive manufacturing is already an accepted technology 
for special applications and prototype production. However, 
it has considerable potential for further expansion in the 
future [1]. Examples of future applications are small-batch 
productions in the automotive [2] and aerospace [3] sectors 
as well as the production of customized medical devices 
[4]. Additive manufacturing can further be used in the jew-
elry [5] and construction industries [6]. Niche applications 
include mouthpieces for musical instruments [7] or textiles 
for clothing [8].

Solving the challenge of qualitative uncertainties in terms 
of materials, processes, and products, as well as process 
knowledge deficits, is vital to further incorporate additive 

manufacturing in the industry [9, 10]. Therefore, providing 
tools for comprehensive quality management is essential [11, 
12]. Means of measuring process states and part properties 
during additive manufacturing are particularly relevant to 
achieving this aim [9, 13–15].

Process monitoring enables the assessment of whether 
a product satisfies certain requirements. In-situ inspection 
techniques fundamentally increase customer confidence in 
a product and reduce costs due to rejection, because pro-
cess anomalies are detected immediately after they occur. 
Furthermore, information from process monitoring is the 
basis for implementing a closed-loop quality control [16]. A 
significant challenge for testing technologies in the field of 
additive manufacturing is the complex geometries of parts 
that contain infill structures and process-specific defects [17, 
18]. This review aims to identify and analyze the existing 
literature on in-situ process monitoring for material extru-
sion (MEX), as it is one of the most widely used additive 
process categories [1, 19].

Former reviews, specifically on the additive manufactur-
ing of metal parts, have already been published [17, 20, 21]. 
Their focus lies on monitoring techniques for powder bed 
[22] fusion and directed energy deposition [16, 23–27]. The 
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results of these studies are not directly transferable to MEX 
because additive process categories are significantly differ-
ent due to dissimilar processing principles being applied 
[9]. However, a number of reviews which comprise a wider 
range of additive process categories have been published: 
Vora and Sanyal [28] investigated the usability of different 
conventional inspection techniques for process monitoring 
in additive manufacturing. Their focus was the analysis of 
general functional principles. Process monitoring in MEX 
was merely minimally addressed. Charalampous et al. [29] 
discussed the research on sensor-based quality monitoring 
before, during, and after the additive manufacturing process. 
They presented nine different projects on MEX in-situ pro-
cess monitoring. Controlling the additive processes using 
sensor technologies was the focus of a study [30] that listed 
commercially available solutions in addition to research 
work. It included eleven references regarding MEX. Lu and 
Wong  [14] presented fundamental challenges and developed 
principles for monitoring with thermography, and acoustic 
emissions. However, MEX was only considered to a very 
limited extent. A review on ultrasonic testing by Honar-
var and Varvani-Farahani [31] discussed two MEX projects. 
Furthermore, applications of machine learning have already 
been discussed in various publications [32–34]. One of their 
topics was process monitoring, but the presentation of MEX 
projects was marginal.

In summary, the studies on hand provide only a rather 
limited insight into the subject matter of MEX in-situ pro-
cess monitoring. A comprehensive and systematic analysis 
of the state of knowledge has yet to be conducted. Therefore, 
the aim of this study is to compile and structure the current 
state of research using an approach that is as objective and 
comprehensive as possible. The following three central ques-
tions will be answered:

•	 How much activity is involved in the field of process 
monitoring?

•	 What methods and technologies are used for the process 
monitoring of which quality characteristics?

•	 What are the research gaps?

After an overview of the fundamentals of MEX in Sect. 2, 
the methodology for the literature search and analysis is 
introduced in Sect. 3. Subsequently, in Sects. 4, 5, and 6 the 
results are presented and discussed, structured according to 
the abovementioned questions. Finally, Sect. 7 summarizes 
the main conclusions of the study.

2 � Material extrusion

In MEX, a feedstock is extruded and deposited in beads by 
the relative movement between a nozzle and a substrate. 
During extrusion, the material is in a semi-solid state and 
solidifies when it reaches its final position and shape [19, 
35]. Various sub-categories are grouped under the MEX pro-
cess category. They differ in the type of extruder (plunger, 
gear, or screw), form of feedstock (filaments, rods, or pel-
lets) [36], and kinematic design (Cartesian, polar, delta, or 
robot arm) [37].

The advantages of MEX are the simplicity of the process, 
relatively low costs [9] and a large variety of feedstock mate-
rials [38]. In addition to standard plastics, fiber-reinforced 
polymers can also be processed [39]. Furthermore, it is pos-
sible to produce parts from concrete [6], metals, ceramics, 
and multiple materials [36]. Because of the high material 
deposition rates that can be achieved [40], special MEX sys-
tems can be used for large-format additive manufacturing 
(build volumes of over 1 m3) [41]. MEX can compete with 
conventional manufacturing processes in terms of cost per 
unit for small and medium batch sizes [42]. An example of 
an application in this batch size range is polymer compo-
nents for the aircraft industry [43].

Numerous influencing variables (e.g., process parameters 
and material properties) affect the mechanical and geomet-
ric properties as well as the surface characteristics of the 
parts produced by MEX [39, 44, 45]. Depending on the 
application, the requirements for the parts differ. Therefore, 
only certain quality characteristics related to the respective 
requirements are the target of process monitoring. Examples 
of quality characteristics are the geometric dimensions and 
density of parts [46]. Owing to the complex interactions 
among different influencing variables, various process faults 
that can negatively affect the quality of parts may occur. A 
selection of typical part defects is listed in Table 1.

3 � Materials and methods

This study can be considered as a state-of-the-art review 
based on the classification of different review types by 
Grant and Booth [56]. The focus is on the presentation of 
the current status as well as the identification of research 
gaps. During the literature search step, as many themati-
cally congruent publications as possible are identified using 
a systematic and reproducible search methodology. There 
is no evaluation and selection of publications based on the 
relevance of the study results and the quality of the study 
design. An aggregative approach is used to synthesize the 
identified sources by collecting and interpreting empirical 
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data. In addition, a primary purpose is to provide an under-
standing of relevant research directions and topics [57].

The process of literature search shown in Fig.  1 
included, as a first step, a literature search of nine differ-
ent popular databases in February 2020. Each database 
was searched multiple times. The searches corresponded 
to the keyword (“fused deposition modeling” OR “fused 
deposition modelling” OR “fused filament fabrication” 
OR “material extrusion” OR “fused layer modeling” OR 
“filament freeform fabrication”) AND (“process” OR 
“quality” OR “defect” OR “error” OR “fault” OR “condi-
tion”) AND (“assurance” OR “control” OR “detection” 
OR “inspection” OR “measurement” OR “metrology” 
OR “monitoring” OR “sensor”). Single search operations 

contained only one term for naming the additive manufac-
turing process (first operand for the Boolean AND opera-
tors). Therefore, six individual searches were performed to 
query the keyword completely. In each database, the entire 
record was searched, but the number of exported hits was 
limited to 500 per single search operation. If the database 
supported a limitation of the search to titles, abstracts, 
and keywords of the publications, an additional search in 
these categories was performed without limitation on the 
number of exported hits.

After removing the duplicates with the aid of the litera-
ture management software Citavi (Swiss Academic Soft-
ware GmbH), the dataset contained 9176 entries. To analyze 
relevant sources only, inclusion and exclusion criteria were 

Table 1   Typical part defects in material extrusion

Defect Cause Outcome References

Bubbles and bulges Moisture bound in the material evaporates 
explosively during processing

Compromised mechanical properties, 
impaired surface quality

[47, 48]

Incorrect bead deposition position Faults in the kinematic structure, printing of 
unsupported overhangs

Geometric deviations [49–51]

Overfill Incorrect process parameters, errors in 
motion control

Increased bead width, bump formation [50, 52, 53]

Scars Nozzle grinds over the previously printed 
layer

Impaired surface quality [50]

Stringing Printing temperature too high, incorrect fila-
ment retraction settings

Material oozes out of the nozzle of the mov-
ing extruder, even though no extrusion is 
intended

[50, 54]

Underfill Faults in the kinematic structure, clogged 
nozzle, incorrect process parameters

Voids, reduced bead width, stopped mate-
rial extrusion, compromised mechanical 
properties

[50, 52, 53, 55]

Warpage and shrinkage Temperature gradients in the part Delamination, cracking, part deformation [50, 51]

Fig. 1   Process of systematic 
search and criteria-based filter-
ing with the specification of the 
number of considered records 
(n) in each step

Records identified through database search
(n = 18,300)

Records after duplicates removed (n = 9176)

Inclusion and exclusion criteria applied to title 
and abstract (n = 9176) Records excluded (n = 8326) 

Inclusion and exclusion criteria applied to full 
text (n = 850) Records excluded (n = 721)

Studies included in the review based on 
database search (n = 129)

Searching citations of already identified studies 
based on inclusion and exclusion criteria:
• Include cited references based on searching 

the reference list (n = 15)
• Include citing references based on analysis 

with Google Scholar (n = 77)

Exports from databases using keyword search:
• Bielefeld Academic Search Engine (n = 1301)
• Google Scholar (n = 2266)
• IEEE Xplore (n = 619)
• Science Direct (n = 2304)
• Scopus (n = 3657)
• SpringerLink (n = 1811)
• Web of Science (n = 1675)
• WorldCat (n = 1680)
• WorldWideScience (n = 2987)

Studies included in the review based on 
database and citation search (n = 221)
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defined and applied to the dataset. The inclusion criteria 
were:

•	 one of the sub-categories of MEX is treated;
•	 central aim is in-situ process monitoring for quality 

assurance (assessing the status of 3D printer components 
or parts in production);

•	 contribution is original research (peer-reviewed), disser-
tation or active patent.

The exclusion criteria were:

•	 process monitoring is included but not for the purpose 
of quality assurance (e.g., sensor system to validate a 
simulation of the MEX process);

•	 not in English or German;

•	 older than 2013.

A total of 221 elements comprise the dataset for the 
review. The approach to analyze the identified publications, 
as well as the paper’s corresponding sections, is presented 
in Fig. 2.

4 � How much activity is involved in the field 
of process monitoring?

The analysis of the publication dates of the contributions in 
Fig. 3 shows that publication activity is growing steadily, 
and the research activity in the field of process monitoring 
has been gaining importance. Growth rates since 2013 have 
at least been in the same range as those found by Vyavahare 

Fig. 2   Approach to analyze the 
identified publications
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et al. [15] for the MEX research area in general. It should be 
noted that the value for the year 2020 cannot be interpreted 
directly because the process of searching the literature had 
been completed midyear.

The publication activity varies in the different sub-
categories of MEX. The majority of the identified studies 
can be assigned to the field of monitoring techniques for 
fused deposition modeling [35]. The other sub-categories 
addressed are large-format MEX [58–63], bioprinting [64], 
and direct ink writing [65–68]. In addition to the processing 
of conventional filaments, some studies have examined man-
ufacturing processes for continuous fibers [69, 70], pastes 
[71], and pellets [60, 62, 63, 72, 73]. Publications address-
ing MEX machines with delta [74–88] and robot arm [58, 
72, 73, 89–92] kinematics are exceptions to the considered 
Cartesian systems.

Some monitoring systems have been published several 
times and sometimes, several systems have been described in 
one publication. The grouping of sources according to pro-
ject affiliation indicated that the dataset involved 145 differ-
ent MEX monitoring systems. The criteria for grouping the 
sources according to project affiliation were research group 
membership and sensor technology.

For further characterization of the dataset, Fig. 4 illus-
trates which levels of functionalities of a process monitoring 
system have been addressed by the publications and in which 
development stage they are. The sensor system (F1) is a pure 
hardware setup. In the level that builds on it, data are pro-
cessed and extracted (F2), e.g., for visualization. The third 
functionality level describes the automated data evaluation 
(F3) for the detection of anomalies. A closed-loop control 
(F4) represents the maximum possible functionality level 
of a monitoring system. Note that these categories progress 
in a typical order (F1→F2→F3→F4), where the latter cat-
egories necessitate accomplishment of the prior categories. 
Publications are placed in the highest category that their 
content represents. The stage of development is described 

with the following classifications: patent (P), preliminary 
studies (D1), and realized solution (D2).

Figure 4 shows that the current focus of research is in 
F3 since the maximum number of D1 and D2 occurs on 
this level of functionality. However, the conspicuously high 
number of patents in F4 indicates that an economic benefit 
is seen particularly for this level of functionality. In the long 
term, therefore, further research activity can be expected in 
this area.

5 � What methods and technologies are 
used for the process monitoring of which 
quality characteristics?

5.1 � Sensor technology groups and inspected 
elements

Various sensor technologies are used for process monitoring. 
Figure 5 displays the percentage shares of sensor technology 
groups in the total number of sensors used. The grouping is 
based on the measured physical quantities. The respective 
share of each sensor technology that is used simultaneously 
with another is represented by the “sensor fusion” section 
of the bar. Furthermore, all sensor technologies that have a 
share of less than 2% in the “one sensor technology” sec-
tion and cannot be assigned to the other groups are collected 
under “other.”

Figure 6 depicts a statistical analysis of which elements 
of the additive manufacturing process are directly monitored 
by which sensor technology groups. On one hand, it is pos-
sible to monitor the components of the MEX machine that 
have an influence on the part quality. According to the main 
functional components of the MEX machine [19, 35, 45], 
the following are distinguished:

Fig. 4   Functionality of the 
examined monitoring systems 
depending on the stage of 
development
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•	 extrusion head (EH), including the extrusion nozzle and 
feedstock delivery mechanism;

•	 feeding system (FS), for feedstock transport to the extru-
sion head;

•	 build chamber (BC), including the housing and frame;
•	 build platform (BP); and
•	 axis system (AS), including the motors.

On the other hand, the part can be directly monitored. 
The following are distinguished depending on the area of 
monitoring:

•	 entire part (P);
•	 layers (L), equivalent to the build surfaces in the major-

ity of cases; and
•	 sidewalls of part (S).

Figure  6 shows that the measurement of vibration, 
acoustic and electrical signals, as well as force and pres-
sure, is primarily used to monitor the components of the 

MEX machine. The part is inspected primarily using 
vision technologies. The focus is on monitoring the extru-
sion head and individual layers.

The following subsections describe the identified pub-
lications sorted by sensor technology groups and project 
affiliations. The general functional principles are intro-
duced, and selected monitoring systems are explained pre-
cisely. For detailed descriptions of the treated sensor types 
and their general advantages and disadvantages, the reader 
can refer to Vora and Sanyal [28].

5.2 � 2D vision

In Table 2, the projects identified within the field of 2D 
vision are listed, along with their associated references. The 
projects were sorted based on the following priority: (1) used 
sensors (column “Sensors”), (2) inspected elements (column 
“Ele”), (3) project level of functionality (column “Fun”), 
and (4) stage of development (column “Dev”). The column 
“Data handling” provides a brief description of the methods 

Fig. 5   Percentage of sensor 
technologies in the total number 
of sensors
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Table 2   Summary of publications on 2D vision

References Sensors Ele Data handling Quality characteristics Fun Dev

[93] Camera EH Convolutional neural network Offset nozzle height F3 D2
[94] Camera AS Comparison with G-code Area of layer F3 D2
[95] Camera AS Comparison with ideal process Voids F3 D2
[96] Camera P Cascade classifiers, comparison with 

simulated reference image
Geometric deviations F3 D1

[97] Camera P Principal component analysis and 
support vector machine, convolu-
tional neural network

Defective part F3 D2

[98] Camera P Deep learning Defective process F3 D2
[99] Camera L Image visualization Layer surface F2 D1
[100] Camera L Contour detection Geometric deviations F2 D2
[101] Camera L Visualizing in mixed reality Not applicable (n.a.) F2 D2
[102, 103] Camera L Comparison with reference Infill structure, part position F3 D1
[89] Camera L Comparison with reference Geometric deviations F3 D1
[104–106] Camera L Naive Bayes classifier, decision 

trees, random forest, k-nearest 
neighbors, anomaly detection, 
cyber-physical alert correlation

Infill structure voids F3 D2

[107] Camera L Comparison with STL file Geometric deviations F3 D2
[108] Camera L Random forest Infill structure voids F3 D2
[58] Camera L Data fusion, measurements Bead thickness/intersections/ align-

ment, geometry
F3 D2

[65] Camera L Comparison with G-code Voids, bead shape F3 D2
[109, 110] Camera L Statistical process control Layer contour, overfill, underfill F3 D2
[111] Camera L Comparison with tolerance range Geometric deviations F4 P
[112] Camera L Convolutional neural network Overfill, underfill F4 D2
[113] Camera S Differential imaging, blob detection Detachment, geometric deviations, 

stopped material flow
F3 D2

[114, 115] Camera S Image mining Part quality F3 D2
[88, 116] Camera S Neural network Blobs, voids, thick beads, crack, 

misalignment
F3 D2

[92] Camera S Comparison with ideal, deep rein-
forcement learning

Geometric deviations F4 D2

[117] 1/multiple cameras S Comparison with ideal Geometric deviations F4 P
[118] 1/multiple cameras L, S Comparison with CAD model Parts geometry/position F3 P
[119–126] 5 cameras S Comparison with reference Extrusion stop, material color F3 D2
[127] Camera, illumination P Comparison with CAD model Geometric deviations F3 D2
[128] Camera, illumination P Comparison with reference Warping, detachment, extrusion stop F3 D2
[129] Camera, illumination L Comparison with STL file Geometric deviations F3 D1
[130] Camera, illumination L Texture analysis Layer surface irregularities, geomet-

ric deviations
F3 D1

[131–133] Camera, illumination L Statistical process control Layer contour F3 D2
[134] Camera, illumination L Comparison with ideal part, support 

vector machine
Defective parts F3 D2

[59] Camera, illumination S Fourier analysis Layer height F3 D1
[75] Camera, illumination S Comparison with STL file Geometric deviations F3 D2
[135] Camera, illumination S Comparison with reference Layer shifting F3 D2
[90, 91] Camera, illumination S Measurements, comparison with 

theoretical model
Voids, shape contour F3 D2

[136] 1/multiple cameras, illumination P Comparison with G-code Detachment, extrusion stop, geomet-
ric deviations

F3 P

[66, 67] 2/3 cameras, illumination EH, L Various measurements Bead structures, deposition area 
characteristics

F3 D2
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used for sensor data processing. “Quality characteristics” are 
the features checked by the monitoring system. If the publi-
cations on a project do not contain certain information, this 
is indicated in the corresponding cell with the phrase “not 
applicable” (“n.a.”).

The generic term 2D vision is used in this paper to 
describe all sensor technologies that acquire two-dimen-
sional images of an object in the visible wavelength range. 
Seven of the 23 patents identified in this work exclusively 
addressed 2D vision [111, 117, 136–138, 163]. Therefore, 
the potential of the sensor technology for MEX process 
monitoring is considered high by the industry.

The 2D vision technology is often used for the sequen-
tial inspection of layers. One technical variant includes 
mounting the sensor on the extrusion head [58, 65–67, 89, 
104–106, 111, 112, 159–162]. For example, Liu et al. [160, 
161] investigated overfill and underfill defects using two 
digital microscopes, which were attached to the extrusion 
head to continuously analyze the layer surface in a small 
area next to the nozzle (Fig. 7). For the extraction of fea-
tures, a texture analysis method in which the layer surface 

was described with a gray-level co-occurrence matrix was 
used. Subsequently, the layer surface was divided into five 
classes using the k-nearest neighbors algorithm. The mate-
rial flow rate and speed of the cooling fan on the extrusion 
head were adjusted using a proportional-integral-deriv-
ative (PID) controller according to the classification to 
increase the layer quality.

In addition to projects that include mounting vision sen-
sors on the extrusion head, another relevant approach is the 
stationary mounting of the camera with a view on the build 
platform. In this scenario, the entire layer is captured in one 
image acquisition [100, 101, 104–110, 129–134]. In one of 
the projects [131–133], statistical process control is used 
to evaluate the quality of the layer contours. Significant 
changes in the process caused by the exceedance of tolerance 
limits were displayed on quality control charts. In contrast, 
Delli et al. [134] compared images of a defect-free part with 
the actual manufactured part and used both a simple thresh-
old method and a support vector machine to classify the part 
into one of two categories: good or bad.

Table 2   (continued)

References Sensors Ele Data handling Quality characteristics Fun Dev

[137] Multiple cameras, illumination P Comparison with CAD model, 
hidden Markov models, Bayesian 
inference, neural network

Outer surface of part F4 P

[138] Line scan camera, illumination L n.a Defective process F3 P
[139–155] Camera, flatbed scanner S Texture analysis for feature extrac-

tion
Surface quality F3 D1

[156] Flatbed scanner L Distortion adjustment Layer contour F1 D1
[157, 158] Digital microscope EH Measurements, filament feed speed 

control
Feeding gear slippage, material flow 

rate
F4 D2

[159] Digital microscope L Image visualization Voids, bead shape F1 D2
[160–162] 2 digital microscopes, illumination L Texture analysis, k-nearest neigh-

bors, naive Bayes classifier, linear 
discriminant analysis, support vec-
tor machine, PID controller

Overfill, underfill F4 D2

[163] Optical sensor FS n.a Material flow rate F4 P

Fig. 7   Investigation of layer 
surface quality using two digital 
microscopes. Adapted from 
[160], copyright 2019, with 
permission from The Society of 
Manufacturing Engineers underfill

digital microscope part

extrusion
head

digital 
microscope

normal 
extrusion

nozzle tip

closed-loop 
control

Experimental setup Captured layer surface images
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Aside from process monitoring of individual layers, 2D 
vision sensors may also be used for the exclusive inspection 
of the sidewalls of parts. In this technical variant, the camera 
axis is often perpendicular to the normal vector of the build 
platform. Baumann et al. [113] used this approach to detect 
deformations on printed objects, detachments from the build 
platform, and lack of material flow. Because the 3D printer 
is a desktop device with an open housing, the camera can 
be placed in front of the 3D printer to capture images of one 
side of the part.

The use of a camera to inspect sidewalls in large-for-
mat additive manufacturing was investigated by MacDon-
ald et al. [59]. Fourier analysis was used to determine the 
variation in layer heights from the image data. Due to the 
large size of the beads, they can be easily distinguished from 
one another with an algorithm. Especially in large-format 
MEX with pellet feedstock, the extrusion process is highly 
sensitive to parameter variations. The authors demonstrated 
that the resulting slumping of beads or small irregularities 
protruding from the sidewalls could be detected with the 
monitoring system.

In a series of publications, Straub [119–126] presented 
a sensor system consisting of five cameras arranged around 
the build platform. For data acquisition, the printing process 
is stopped, and the build platform is moved to a predefined 
position. Besides the use of multiple cameras, mobile solu-
tions to move the camera around the object to be printed 
have been proposed in further studies [88, 90, 117]; thus, the 
sidewalls of the part can be fully captured. Figure 8 shows 
this as an example with a camera attached to the extrusion 
head of a robot MEX system using a special mount.

In addition to the inspection of manufactured parts, some 
systems also use 2D vision to monitor the mechanical com-
ponents of a 3D printer. Greeff et al. [157, 158] utilized a 
digital microscope to inspect the filament delivery mecha-
nism in an extrusion head. The speed and width of the fila-
ment were measured to calculate the volume flow. Moreover, 
the speed of the feeding gear was determined and compared 
with that of the filament to calculate slippage effects.

5.3 � Temperature monitoring

Since materials are melted because of heat during MEX, 
the acquisition of temperature data is a practical method 
for evaluating the condition of the manufacturing process. 
Table 3 summarizes the corresponding publications. Tem-
perature sensors for measuring and controlling the tempera-
ture of the build platform, extruder, and ambient air in the 
build chamber are conventionally installed in many MEX 
systems [178]. However, aside from sensors that are in con-
tact with the measured surface, a large portion of the identi-
fied publications involve temperature determination via ther-
mography. Thermography is an imaging technique used to 
display the surface temperature of objects. The intensity of 
the infrared radiation serves as a measure of the temperature.

Thermal cameras are often used to determine the temper-
ature of the layers. Borish et al. [60] developed a method for 
calculating the average temperature of a layer in large-format 
MEX. They paused the printing process until the tempera-
ture decreases below a certain value. When this condition 
is attained, the next layer can be processed. The thermal 
camera is attached to a movable arm that is pneumatically 
driven. The study shows that temperature measurements are 
particularly relevant for large-format additive manufacturing 
since in rapid printing processes cooling times are some-
times insufficient and parts collapse under their own weight.

Monitoring the sidewall of a part with a thermal camera, 
Ferraris et al. [171] determined a correlation between the 
characteristic temperature curves and the size of the bonding 
surfaces between adjacent beads. Using a similar hardware 
setup, the tensile strength of samples was predicted in a work 
by Bartolai et al. [173, 174].

5.4 � Vibration monitoring

Vibration can be measured at many of the mechanical com-
ponents of the 3D printer (Table 4). A key issue is the moni-
toring of extrusion head vibrations. Tlegenov et al. [181, 
182] attached an accelerometer to an extruder to determine 

Fig. 8   Camera attached to the 
extrusion head of a robotic 
MEX system for continu-
ous multi-view inspection of 
sidewalls. Adapted from [90], © 
Emerald Publishing Limited all 
rights reserved, with permis-
sion from Emerald Publishing 
Limited

robot

part

nozzle tip

image
processing

extrusion
head

camera

detected
defects

Experimental setup Captured sidewall image
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the effective nozzle diameter, which was used as a meas-
ure for nozzle clogging conditions. They observed that 
the amplitude of the vibration increased nonlinearly with 
decreasing effective nozzle diameter. The results of an ana-
lytical model for the theoretical determination of the ampli-
tude exhibited good agreement with those of the experiments 
using both Bowden and direct extruders. In another research 
work [185] sensors were attached to both the extrusion head 
and build platform. This enabled the detection of part defor-
mations and defective extruder conditions. The detection of 
defects in mechanical components of the MEX machine was 
solely investigated by Yen and Chuang [87].

5.5 � 3D vision

The advantage of 3D vision compared to 2D vision is that 
height information can be captured. Table 5 indicates that 
nearly all of the publications address the monitoring of indi-
vidual layers, in which comparison with different types of 
digital reference information was used for error detection.

If structured light or stereoscopic imaging systems are 
used, the sensors are rigidly aligned to the build platform 
[75, 76, 100, 186–191, 193]. Holzmond and Li [193] for 
example, used two five-megapixel cameras to create a ste-
reoscopic imaging system. The viewing axes of the cameras 
were aligned perpendicular to the layers. To capture images 
of the layers, the extrusion head was moved out of the view-
ing axis by making it print a waste part parallel to the target 
part. After each layer, the extrusion head moved to the waste 

Table 3   Summary of publications on temperature monitoring

References Sensors Ele Data handling Quality characteristics Fun Dev

[164] Thermal camera EH Temperature control methods Polymer melt temperature F4 D2
[165] Thermal camera L Spatial and time-domain data processing Layer temperature F2 D2
[166–168] Thermal camera L Sensing with limited sensor data Layer temperature F2 D2
[169, 170] Thermal camera L Rules of knowledge, support vector 

machine
Nozzle clogging, warping, underfill, 

geometric deviations
F3 D2

[60] Thermal camera L Process temperature data, control layer 
start time

Short layer build times F4 D2

[171] Thermal camera S Spatial and time domain data processing Surface temperature, bond shape between 
beads

F2 D2

[61] Thermal camera S Spatial domain data processing Temperature profiles F2 D2
[172] Thermal camera S Correct temperature measurements Surface temperature F2 D2
[173, 174] Thermal camera S Analytical prediction model Temperature of weld interface, part tensile 

strength
F3 D2

[175] Infrared EH n.a Irregular material flow F4 P
[176, 177] 2 thermistors EH Feed-forward control Temperature of nozzle/heater block F4 D2
[178] 3 thermistors EH, BC, BP PID controller Local temperatures F4 D1
[179] 3 thermocouples L Time domain data processing Local layer temperature F2 D2
[180] Infrared, ther-

mocouple, 
thermistor

EH, BP, L Neural network, support vector machine, 
linear regression, PID controller

Distortion F4 D2

Table 4   Summary of publications on vibration monitoring

References Sensors Ele Data handling Quality characteristics Fun Dev

[181, 182] Accelerometer EH Analytical model, frequency and time domain 
analysis

Nozzle clogging F2 D2

[183] Accelerometer AS Logistic regression, support vector machine, 
random forest

Warping, extrusion stop F3 D2

[184] Accelerometer n.a Frequency and time domain analysis, comparison 
with ideal working status

Various defects F3 D1

[162] 2 accelerometers EH, BP Statistical process control Voids F3 D2
[185] 2 accelerometers EH, BP Support vector machine, neural network Filament jam, warpage, material leakage F3 D2
[87] 5 accelerometers BC, AS Neural network Mechanical failure, axle failure F3 D2
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part, creating a time window for image acquisition. A ref-
erence point cloud was generated from the G-code, which 
could be compared with the captured point cloud to detect 
defects. The approach was limited in that the system could 
only inspect materials with naturally textured surfaces.

In contrast, laser triangulation sensors record single 
height profiles. Therefore, a relative movement between the 
inspection object and sensor should be attained to generate 

a 3D point cloud from a large number of height profiles. 
Hence, the laser triangulation system is attached to the extru-
sion head of the MEX machine and can be moved over the 
layer surface [62, 64, 72, 73, 195–197].

Table 5   Summary of publications on 3D vision

References Sensors Ele Data handling Quality characteristics Fun Dev

[186] Camera, structured light L Extracting sub-region features, comparison 
with CAD model

Holes, bumps, curling F3 D2

[187] 2 cameras, structured light L Deep learning Process shifts F3 D2
[100, 188–191] 2 cameras, structured light L Comparison with G-code Geometric deviations F3 D2
[154, 155] 2 cameras, structured light S Texture analysis Surface quality F3 D1
[192] Camera, illumination L Comparison with reference, artificial intel-

ligence control
Various defects F4 P

[193] 2 cameras, illumination L Comparison with G-code Geometric deviations, holes, blobs F3 D2
[75, 76] 3 × 2 cameras, illumination S Comparison with STL file Geometric deviations F3 D2
[194] 3D camera P Comparison with reference Geometric deviations F4 P
[195] Laser triangulation L Comparison with CAD model, measurement 

of defects
Underfill, overfill F3 D2

[196] Laser triangulation L Visualizing sensor data Bead shape F4 D1
[62] Laser triangulation L Comparison with G-code Underfill, overfill F4 D2
[72, 73] Laser triangulation L Comparison with nominal layer height, re-

slicing
Layer height, bead width F4 D2

[64] Laser triangulation L Comparison with reference, generating 
modified path

Spatial bead position F4 D2

[197] 2 laser triangulation L 2D comparison with G-code Geometric deviations, voids F3 D2
[198] n.a L Comparison with reference Geometric deviations F3 P

Table 6   Summary of publications on acoustic emission monitoring

References Sensors Ele Data handling Quality characteristics Fun Dev

[199] Acoustic emission EH Feature-based time domain analysis Filament breakage F2 D2
[200] Acoustic emission EH Frequency domain analysis Extruder state F2 D2
[201] Acoustic emission EH Clustering by fast search and finding of 

density peaks
Extruder state F3 D2

[202, 203] Acoustic emission EH Hidden semi-Markov model, support 
vector machine

Extruder state F3 D2

[74, 204] Acoustic emission BP Hidden semi-Markov model, support vec-
tor machine, acoustic emission hits

Curling, detachment F3 D2

[205, 206] Acoustic emission BP k-means clustering, neural network First layer defects F3 D2
[207] Audio recorder EH, AS Gradient boosting regression, logistic 

regression classifier
Geometric deviations F3 D2

[208] Microphone EH, AS Audio classifier for comparison with ideal 
process

Infill pattern, fill density F3 D2

[209] Microphone EH, BC, AS Neural network Nozzle offset height, fan activity, 3D 
printer activity, door opening/closing, 
axes movements

F3 D2

[210] Smartphone EH, AS Comparison with ideal process Malicious modified G-code F3 D2
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5.6 � Acoustic emission monitoring

Acoustic emission monitoring can be used because various 
actuators and mechanical components of the 3D printer gen-
erate noise (Table 6). If anomalies occur, they will cause 
changes in the acoustic emissions. Many studies have used 
this sensor technology to monitor extrusion heads. For exam-
ple, Wu et al. [203] attached an acoustic emission sensor to 
an extruder with vacuum grease. The mounting arrangement 
is depicted in Fig. 9. The state of the extruder was classi-
fied into the following using a hidden semi-Markov model: 
extruding without material, material loading/unloading, idle, 
and normal extruding. In validation experiments, a classifi-
cation accuracy of more than 90% was achieved.

In another study [205, 206], a sensor mounted on the 
build platform next to the part could detect detachment of the 
part from the build platform and deformations. The defec-
tive part came into contact with the nozzle, which resulted 
in altered acoustic emissions. Moreover, recording devices 
can be placed next to the 3D printer [207–210]. Using this 
setup, Chhetri et al. [207] reconstructed the geometry of lay-
ers based on the acoustic emissions of the axes and motors. 
By comparing the reconstructed geometry with the original 
G-code, they were able to identify cyberattacks. Evaluation 
experiments demonstrated that a modified geometry of a 
quadcopter baseplate was detectable.

5.7 � Electrical quantities monitoring

Table 7 lists all identified sources in the field of monitoring 
electrical quantities. The sensors used are often for monitor-
ing motor currents. For example, the currents of the motors 
to push the filament through the extrusion head or to move 
the axes are measured. Nozzle blockages or incorrect axis 
movement cause changes in the motor current and can be 
evaluated. Kim et al. [211–213] observed that the motor cur-
rent of an extruder is correlated with the level of extrusion 
pressure. The extrusion pressure depends on the size of the 
nozzle outlet and the distance between the nozzle and sub-
strate. If the part is deformed and the distance to the nozzle 
outlet is reduced, or if a foreign object prevents the material 
from exiting, the pressure will increase and changes in the 
motor current will occur.

5.8 � Force and pressure monitoring

Hitherto publications on force and pressure measure-
ments focused on investigations of extrusion head elements 
(Table 8). Klar et al. [71] showed that the extrusion force 
in a piston-based extrusion device for processing ceramic, 
silicone, and acrylic pastes can be measured using a load 
cell. Force variations were directly related to the flow char-
acteristics of the material. Other than the extrusion forces, 

Fig. 9   Installation of an acous-
tic emission sensor attached to 
the extrusion head. Adapted 
by permission from Springer 
Nature: Springer Int. J. Adv. 
Manuf. Technol. [203], copy-
right 2016

Experimental setup Delivery mechanism in error state

feeding 
motor

filament

extrusion 
nozzle

feeding 
gear

broken 
filament

acoustic 
emission 
sensor

fan

Table 7   Summary of publications on electrical quantities monitoring

References Sensors Ele Data handling Quality characteristics Fun Dev

[211–213] Current EH Graphical frequency 
and time domain 
analysis

Extrusion pressure, foreign objects, deformation F2 D2

[214] Current EH Analytical model Nozzle clogging conditions F3 D2
[215] Current EH, AS Similarity measure 

with defect-free 
reference

Sabotage attacks in G-code F3 D2

[216, 217] Capacitive P n.a Number of layers, holes F1 D1
[108] Power EH, AS Random forest Infill structure voids, extrusion temperature F3 D2
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forces acting at the nozzle tip owing to the external effects of 
substrate defects can also be measured [219]. Furthermore, 
in the MEX of continuous fibers, fibers that are not fed at a 
sufficient rate by the delivery mechanism result in analyzable 
changes in forces. Exceedingly high forces, in turn, cause 
fiber pull-out and shearing [69].

5.9 � Other sensor technologies

In this section, different sensor technologies with small 
numerical shares of publication in the literature are sum-
marized (Table 9). In some publications, fiber Bragg grat-
ing sensors are presented as possible means of measuring 
strains. In such a system, the printing process is inter-
rupted at a certain point and optical fibers are placed on the 

Table 8   Summary of publications on force and pressure monitoring

References Sensors Ele Data handling Quality characteristics Fun Dev

[71] Load cell EH n.a Piston force F1 D2
[218] Load cell FS Digital-twin, threshold 

for defect detection
Filament amount in storage F3 D2

[219] Force EH n.a Contact force against the nozzle F3 P
[69] Force/torque EH Visualization, threshold 

for defect detection
Fiber pullout/shearing F3 D2

[220] Pressure EH n.a Pressure in the liquefier, material flow rate F4 P

Table 9   Summary of publications on other sensor technologies

References Sensors Ele Data handling Quality characteristics Fun Dev

[221, 222] Fiber Bragg grating P Analysis of wavelength changes Strain F2 D2
[223–225] Fiber Bragg grating P Analysis of wavelength changes Strain F2 D2
[226] Fiber Bragg grating P Analysis of wavelength changes Strain F2 D2
[227] 1/2 fiber Bragg grating P n.a Strain, temperature F1 D2
[228] Optical backscatter reflectometry P Analysis of frequency shifts Strain, voids F2 D2
[229] Ultrasonic P n.a Infill structure F1 D1
[230, 231] 1/2 ultrasonic P n.a Fiber-scale print errors, bonding 

strength, orientation of beads
F1 D2

[232, 233] 4 ultrasonic P Comparison with ideal part, con-
trol feedback

Delamination, geometry F4 D1

[234] Ultrasonic, laser Doppler vibro-
meter

L Data visualization Foreign objects, holes F1 D2

[235, 236] Optical encoder FS Calculation of filament movement Filament blockage/speed, lack of 
filament

F3 D2

[237] Linear encoder AS Proportional-integral control Position of axes F4 D2
[238] Laser displacement L Comparison with CAD model Geometric deviations F2 D2
[239] Interferometry BP Calculation of surface curvature Deformations F2 D2
[240] Vibroacoustic BP Discrete wavelet transform First layer adhesion F2 D2
[93] 2 strain gauges BP Threshold analysis Warping F3 D2
[208] Gyroscopic AS Real-time visualization Infill pattern, fill density F2 D2
[241] Coordinate measuring machine P Comparison with reference, adjust 

process
Geometric deviations F4 P

[242] Split ring resonator probe P Generate 3D map of part Relative dielectric permittivity, 
dimensions

F2 D2

[243] Velocimetry EH, FS Controller Extrudate flow rate, filament feed 
rate

F4 P

[244] Magnetic FS, BC, AS n.a Door access, motor step losses, 
build platform level, material 
transport

F1 D2

[245] n.a L Re-slicing Various defects F4 P
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unfinished part. Subsequently, these are overprinted with 
additional material (Fig. 10). If deformations of the part and 
consequently of the optical fiber occur, they can be detected 
and analyzed [221–227]. Since the placement of the optical 
fibers as well as the properties of the surrounding material 
have an impact on the accuracy of the measurements, Fal-
cetelli et al. [246] discussed and investigated different fiber 
embedding strategies.

Some research groups used ultrasonic sensors to analyze 
the part structures. Reflections of high-frequency pulses 
exerted onto the part were analyzed based on the dura-
tion until detection [229–233]. Another relevant approach 
is the use of encoders to determine the axis positions and 
to implement closed-loop control of the axis movement. 
This approach is considered state of the art within the NC 
machine industry [237]. It is also present in some MEX 
machines available for purchase [30].

The heterogeneity of monitoring systems prevented the 
further formation of clusters with similar functional princi-
ples. Therefore, the authors refer to individual publications 
for additional information.

5.10 � Sensor fusion technologies

The fusion of data from multiple sensor technologies is a 
powerful method for monitoring a large number of features. 
Table 10 and Fig. 5 show that 2D vision and 3D vision are 
rarely used in combination with other sensor technologies. 
This is presumably due to the large information volume of 
the measurement data of the optical inspection systems. 
Additionally, optical measurement techniques are commonly 
used to inspect the quality characteristics of a part. In con-
trast, measurements that describe the condition of the 3D 
printer must be obtained via various routes to characterize 
the heterogeneous components of the machine.

An effective grouping of the identified monitoring sys-
tems is not possible. As an example, a monitoring system 
consisting of six thermocouples for temperature measure-
ments at the extruder, at the build platform, and in ambient 

air is presented here. Furthermore, two sensors were used 
to measure the vibrations of the build platform and extru-
sion head. An infrared sensor measured the temperature of 
the build surface near the nozzle at the location at which 
the material was deposited. The authors explained that no 
additional benefit could be expected from using the ther-
mocouples; therefore, only vibration and infrared sensors 
were used for process monitoring. The dimensional accu-
racy, surface roughness, and underfills could be determined 
[276–278]. The underfills were classified as “normal opera-
tion,” “stringy extrusion,” and “nozzle clogged.” When pro-
ducing a standard test artifact, the system achieved an accu-
racy of 97% for classifying into these three categories [276].

6 � What are the research gaps?

6.1 � Key topics for sensor technology and data 
processing

In a workshop of the National Institute of Standards and 
Technology, USA, the measurement science roadmap for 
polymer-based additive manufacturing was elaborated. Said 
roadmap specifies developments concerning measurement 
science required for the industrialization of additive manu-
facturing. For process monitoring, four prioritized roadmap 
topics (RT) were identified [13]:

•	 RT1: new in-situ imaging modalities
•	 RT2: real-time process measurement at required spatial 

and temporal resolution
•	 RT3: in-situ control and model integration
•	 RT4: big data analytics

A comparison of RT1 with the identified literary sources 
shows that the current research activity likewise focuses on 
the development of imaging modalities. From an industrial 
perspective, approaches that address the inspection of layers 
are particularly promising. Here, a single sensor module can 

Fig. 10   Process monitoring 
with embedded optical fiber and 
schematic view of the cross-sec-
tion. Left figure adapted from 
[224], copyright 2013, with 
permission from Elsevier. Right 
figures redrawn and adapted 
from [221], copyright 2016, 
with permission from Elsevier 
(Creative Commons license. 
https://​creat​iveco​mmons.​org/​
licen​ses/​by-​nc-​nd/4.0)

Experimental setup Cross-section of fiber and beads

beads

holding
fixture

extrusion
head

optical fiber

part

optical fiber

vertical
alignment

parallel 
alignment

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
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be utilized to inspect both the outer walls and inner struc-
tures of parts. Geometries and surface characteristics can be 
effectively inspected using 2D vision and 3D vision. Optical 
temperature measurements can be used to verify the thermal 
material properties. In addition to imaging techniques, moni-
toring of extrusion head conditions should be prioritized in 
future research because it is a key element of MEX systems. 
Measurements of current, vibrations, and acoustic signals 
are advantageous because the sensors can be installed with 
minimal effort. In contrast, force and pressure measurements 
require modifying the mechanical extrusion head compo-
nents. However, this enables precise determination of the 
polymer melt conditions.

Regardless of the sensor technology, there is a fundamen-
tal necessity for research on integrating sensors into indus-
trial MEX systems. New and improved sensor concepts that 
are designed for high ambient temperatures and large build 
volumes are required. Furthermore, efficient sensor modules, 
which can be realized in MEX machines despite restrictions 
due to moving machine parts and frame structures, must be 
developed.

The large number of patents on closed-loop control in 
Fig. 4 indicates that this topic is considered to be fundamen-
tally important in the industry. High-performance measure-
ment technology (RT2) is a prerequisite for these control 
loops (RT3). For the resolution of acquired data and speed 
of data processing, satisfactory results have already been 
achieved for some specific measurement tasks. This is dem-
onstrated by the first controlled systems that adjust process 
parameters in sufficiently short periods and with adequate 
accuracy [63, 160, 180]. However, these systems require 
much improvement. For example, sensor technologies for 
detecting small voids or part contours in large-area, high-
resolution layer images at high speeds are not yet available. 
Furthermore, classifying monitoring systems use only a 
few classes; therefore, they have low resolutions. Moreover, 
the current closed-loop control is based on simple causal 
relationships. Mathematical models that describe complex 
relationships between several process parameters, control 
variables, and part properties have not yet been sufficiently 
researched.

Large and complex datasets generated by different sensor 
technologies and assignable to the field of big data analytics 
(RT4) were not used in the identified publications. There-
fore, datasets with heterogeneous sensor data from several 
varying print jobs must be generated in the future to train 
robust inspection algorithms. The analysis of the literature 
has confirmed the significance of this subject by demonstrat-
ing that, owing to the complexity of the inspection task, only 
multi-sensor approaches enable comprehensive monitoring 
of the MEX process.
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6.2 � Rarely examined quality characteristics

Aside from the specific wear-prone components of the 3D 
printer, all properties of the parts are, in principle, relevant 
to MEX monitoring. The requirements for a part can be 
divided into mechanical and geometrical requirements, sur-
face requirements, and requirements for feedstock materials 
[280].

The focus of the current research is on part geometries 
and surface properties in terms of overfill and under-
fill. However, measurements of surface roughness were 
addressed by only two research projects [267, 276–278]. 
The measurement of mechanical properties is another 
important aspect that was investigated by merely two works 
as well: Bartolai et al. [173, 174] and Zhang et al. [271, 
272] addressed the prediction of tensile strengths. Means of 
inspecting material characteristics were not considered in 
any publication. The monitoring of these quality character-
istics, which the current research only addresses to a limited 
extent, represents a gap for future research.

6.3 � Variety and complexity of monitored parts

A challenge with MEX monitoring is the required flexibility 
[14]. Varying and often complex part geometries are manu-
factured in very small batches. Furthermore, many different 
materials can be processed. Therefore, the extent to which 
the flexibility of the MEX is reflected in the reviewed moni-
toring systems was investigated. The properties of parts 
manufactured in projects with the aim of process monitor-
ing for quality assessment were analyzed considering the 
aspects listed below:

•	 complexity of geometries (simple or complex),
•	 number of different geometries,
•	 materials used, and
•	 number of different materials used.

The analysis showed that 19.3% of the projects con-
tained an investigation of complex part geometries, 55.9% 
monitored simple geometries, and 24.8% did not specify 
the geometry. Simple geometries include, among others, 
cuboids, cylinders, or single material beads. In contrast, the 
complex geometries describe a prosthesis or valve hous-
ing, for example. For the number of different geometries 
per project, the authors observed that 47.6% of the projects 
investigated one geometry, 12.4% two geometries, and 7.6% 
three geometries. More than three geometries were analyzed 
in only 8.3% of the projects, while 24.1% did not specify the 
geometry.

40.7% of works did not specify the material. Polylac-
tide (PLA) and acrylonitrile butadiene styrene (ABS) were 
used in 34.5% and 26.9% of the projects, respectively. 

Composite materials were used in 6.2%, polycarbonate in 
2.1%, and ceramic materials in 1.4% of the projects. Other 
materials had a proportion of < 1% each. In 74.4% of the 
projects that specify the material, only one type of mate-
rial was investigated, while 19.8% of the projects used two, 
4.7% three, and 1.2% four different materials. Projects that 
employed more than one material consistently produced 
different parts separately from just one material each. Only 
one publication [252] stated that the part was made from 
PLA and one additional support material.

The results show that projects with high complexity 
and variation in part geometries and materials are strongly 
underrepresented in the dataset. The analyzed monitor-
ing systems tend to monitor manufacturing processes for 
simple geometries and small numbers of varying parts. 
Regarding the materials used, ABS and PLA dominate 
the research projects, the number of different materials 
per project is oftentimes low and multiple material parts 
are only considered to a minor extent. However, complex 
geometries and cost-intensive materials (e.g., metal-filled 
or fiber-reinforced plastics) are particularly suitable for 
process monitoring, because this is where the economic 
efficiency of the inspection system is most easily achieved. 
Therefore, there is considerable potential for further 
research regarding the monitoring of various complex 
parts.

6.4 � Standardization

Owing to the novelty of the technology and the diversity 
of the topic, standardization in the field of additive manu-
facturing is still in its early stages. There are only a limited 
number of standards for the specification of part properties 
and non-destructive testing methods [14, 28]. Analysis of 
the identified publications has also shown that no consist-
ent definitions are used for quality characteristic names, 
feature specifications, and tolerance limits.

As a first step towards standardization, ISO/ASTM 
52901 [281] basically describes how part characteristics, 
tolerances, and test methods are to be defined between the 
customer and the supplier. With regard to process monitor-
ing, the decision of whether a process variation represents 
a defect or not is particularly crucial [282]. Future projects 
can use the draft standard ISO/ASTM DIS 52924 [46] to 
specify these tolerance limits, as the document defines the 
quality levels of MEX plastic parts in terms of relative part 
density, dimensional accuracy, and mechanical properties 
for an entire part. However, to analyze small defects with 
high spatial resolution, MEX-specific characteristics must 
be considered. For example, unsupported bridging results 
in changes in geometric tolerances.
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For the description of part characteristics, general 
standards such as the geometrical product specification 
matrix model [283] are applicable. Here, surface imper-
fections in the layer structure can be characterized accord-
ing to the ISO 8785 standard, which specifies the nomen-
clature and characteristics of these irregularities [284]. 
Furthermore, standards for conventional non-destructive 
testing methods can be adapted to the process monitoring 
of MEX [14].

7 � Conclusion

Monitoring of MEX during the manufacturing process is 
crucial for the industrial use of this technology. The publi-
cation activity in this field is increasing. This clearly indi-
cates that the subject is significant. The wide range of sen-
sor technologies used and quality characteristics monitored 
demonstrate that the existing monitoring systems have been 
researched at many functional levels. However, for the wide-
spread utilization of monitoring systems, further optimiza-
tion is required.

The strength of this review is in its systematic approach 
to the literature search and the large dataset used. The state 
of knowledge is presented comprehensively, and research 
gaps are identified. Limitations exist because of the possibil-
ity that the literature evaluation and identification of future 
priorities are affected by the individual perspectives of the 
authors. For a highly differentiated analysis of the publica-
tions, future reviews may also include more systematic and 
detailed assessments of the results and quality of studies.
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