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1 Introduction

The presence of impurities in physical systems is an issue of great consequence, especially

when dealing with more realistic models, and confronting experimental data. Along this

spirit, integrability offers a framework where impurities may be naturally incorporated

in a controllable manner. Although there have been numerous recent advances in both

quantum [1]–[12], and classical [13]–[26] models with integrable defects, many questions

still remain open. In the present investigation, we restrict our attention on quantum spin

chains in the presence of a single integrable defect and extract the physical information

concerning scattering processes within such models, directly from the Bethe ansatz equa-

tions. Our approach thus aims at complementing and enhancing the picture described in

earlier works [5] in the context of integrable field theories.

The algebraic frame describing the presence of a point-like defect in a discrete inte-

grable theory is by now well established through the quantum inverse scattering method

(QISM) [27–31]. The formulation is based on the existence of a defect Lax operator that

satisfies the same quadratic quantum algebra as the bulk monodromy matrix. In general,

let us consider a one dimensional (N + 1)-site theory with a point like defect on the nth

site. In this case the modified monodromy matrix of the theory reads as

T (λ) = L0N+1(λ) L0N (λ) . . . L̃0n(λ−Θ) . . . L01(λ) , (1.1)
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where L corresponds to the “bulk” theory, L̃ corresponds to the defect and Θ is an arbitrary

constant corresponding to the “rapidity” of the defect. Both Lax operators satisfy the same

quadratic algebra

R12(λ1 − λ2) L1(λ1) L2(λ2) = L2(λ2) L1(λ1) R12(λ1 − λ2) , (1.2)

where theR-matrix is a solution of the Yang-Baxter equation (see e.g. [29–31] and references

therein). The monodromy matrix of the theory T (λ), naturally satisfies (1.2), guaranteeing

the integrability of the model. The Hamiltonian of any generic system with a point-like

defect is given by

H ∝ −

(

N+1
∑

n,n−16=j=1

˙̌Rjj+1(0)+
˙̃Ln+1n(0) L̃

−1
n+1n(0)+L̃n+1n(0)

˙̌Rn−1n+1(0) L̃
−1
n+1n(0)

)

(1.3)

the “dot” denotes the derivative with respect to the spectral parameter. We focus here

on the situation where L(λ) ≡ R(λ), also define Ř = PR, P is the permutation operator.

Recall that the R matrix reduces to the permutation operator at λ = 0.

Note that here we are going to focus on the anti-ferromagnetic regime of the XXX and

XXZ models. The derivation of the Bethe ansatz equations (BAE) is straightforward in the

case where highest weight states exist. Amongst others, the thermodynamic limit of the

BAE provides us with the scattering information for the given model, which we exploit in

order to derive our results. Generalization of our results in the presence of multiple defects

is straightforward within the QISM frame.

In the subsequent sections, we investigate the interaction between the particle like ex-

citations displayed in the XXX and XXZ spin chains and the defect. These interactions are

described by generic transmission matrices, that satisfy the quadratic algebra (1.2) with

an overall physical factor, which is explicitly computed by means of the BAE. The XXZ

model with a defect is studied in both the attractive and the repulsive regime. In the latter

the formation of bound states between solitons and anti-solitons, called breathers, is al-

lowed. After describing the scattering process for the breathers, we derive the transmission

amplitude between a breather and the defect of the theory. We also compare our findings

with earlier results, reaching complete agreement. Finally, the appendices contain several

technical points and physical checks that further confirm our results.

2 The isotropic case: XXX model

We begin our analysis considering the isotropic XXX spin chain in the presence of a single

defect (see also e.g. [32]–[36] and references therein). Let us first recall the quantum Lax

operators for the bulk model, L, and the for the defect L̃. The generic defect matrix is

given by

L̃(λ) =

(

λ+ iSz + i
2 iS−

iS+ λ− iSz + i
2

)

, (2.1)

where the algebraic objects Sz, S± are the generators of the su2 algebra,
[

Sz, S±
]

= ±S±,
[

S+, S−
]

= 2Sz. (2.2)
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The bulk L-matrix is actually the R-matrix of the model, which corresponds to the spin-12
representation of the su2, that is the following identifications are implemented in (2.1):

Sz 7→
σz

2
, S± 7→ σ± . (2.3)

As usual, σz, σ± denote the familiar 2 × 2 Pauli matrices. In the finite case, for the

n = 2S + 1 dimensional representation of spin S, the algebraic objects Sz and S± are

represented by n× n matrices defined as

Sz =
n
∑

k=1

αk ekk, S+ =
n−1
∑

k=1

Ck ekk+1, S− =
n−1
∑

k=1

Ck ek+1k , (2.4)

where we define the matrix elements: (eij)kl = δik δjl and

αk =
1

2
(n + 1− 2k), Ck =

√

k(n− k) . (2.5)

This choice may be thought of as the isotropic analogue of the type-II defect studied in [5],

which will be analyzed in the subsequent sections within the XXZ spin chain context.

The findings of this section may be seen as the quantum discrete analogues of the results

on the Landau-Lifshitz model [26]. Classical scattering in the context of the Landau-

Lifshitz model should be considered and comparison with our findings should provide a

more concrete correspondence between the classical and quantum models in the presence

of defects. The Hamiltonian of the model is given by (1.3), where ˙̃L(0) = I,

˙̌Rjj+1(0) =
1

2

(

σxj σ
x
j+1 + σyj σ

y
j+1 + σzjσ

z
j+1 + IjIj+1

)

,

L̃n+1n(0) =
i

2

(

Sx
nσ

x
n+1 + Sy

nσ
y
n+1 + 2Sz

nσ
z
n+1 + InIn+1

)

. (2.6)

The generic defect matrix as well as the bulk L-matrix possess highest weight states

(S+ |+〉 = 0), thus the typical algebraic Bethe variation may be applied and the corre-

sponding Bethe ansatz equations (BAE) are immediately obtained1

ey(λi −Θ) eN1 (λi) = −
N
∏

j=1

e2(λi − λj), y = 2S, (2.7)

where Θ is the rapidity associated to the defect, and we also define:

ek(λ) =
λ+ ik

2

λ− ik
2

. (2.8)

Having the Bethe ansatz equations at our disposal, we are now in a position to derive the

physical quantities which describe the scattering processes on the chain.

1The BAE are valid for any S 6= 0 real number.
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2.1 The transmission matrix

Before we proceed with our analysis we shall recall that in the thermodynamic limit the

solutions of the BAE may be expressed as “strings” with a real and an imaginary part.

This is based on the so called “string hypothesis”, stating that the Bethe roots may be

cast as

λ(n,j) = λ0 +
i

2
(n+ 1− 2j), j ∈ {1, . . . , n} . (2.9)

Recall also that the total spin of a state may be obtained through the asymptotic behavior

of the transfer matrix, and is given by the following familiar expression:

Sz =
N

2
+ S −M . (2.10)

The spin Sz of the state should be non-negative, thus the restrictionM ≤ N
2 +S is manifest

(below the “equator”), while the rest of the states can be obtained by starting from a

reference state, which is a “lowest weight” state (S− |−〉 = 0). The energy and momentum

may be also explicitly expressed in terms of the Bethe roots {λj} (for more details on the

Bethe ansatz formulation and relevant physical expressions see also e.g. [27, 28, 37, 38]).

As is well known, the anti-ferromagnetic ground state is a “filled Fermi sea” with real

solutions, i.e. 1-string configurations. It is easy to check that the ground state has an overall

non zero spin Sz = S̃, where S̃ ≡ S − 1
2 is the “shifted” spin, which naturally emerges

through the Bethe ansatz approach, as will be transparent subsequently when deriving the

transmission matrix. Implementation of suitable string configurations can “correct” the

spin, i.e. provide a total spin zero, without modifying the state’s energy. In general, it is

straightforward to show that in the presence of an n-string the spin becomes

Sz = S̃ − (n− 1) , (2.11)

while the energy and the momentum of the configuration are left intact.

A generic state contains m particle-like excitations, which are interpreted as m holes

in the “filled Fermi sea”. The density of the state may be obtained then, here we follow

the standard formulation [27, 28, 39] for the derivation. Starting from the Bethe ansatz

equations, and after taking the logarithm and differentiating, we define the density of the

state in the presence of m holes in the filled Fermi sea as:

σ(λ) = a1(λ) +
1

N
ay(λ−Θ)−

∫ ∞

−∞

dλ′ a2(λ− λ′) σ(λ′) +
1

N

m
∑

j=1

a2(λ− λ̃j) , (2.12)

where we have defined

an(λ) =
i

2π

d

dλ
ln
(

en(λ)
)

. (2.13)

Passing to the thermodynamic limit, we have exploited the following basic formula in the

presence of m holes, with associated rapidities λ̃j :

1

N

M
∑

j=1

f(λj) →

∫ ∞

−∞

dλ f(λ) σ(λ)−
1

N

m
∑

j=1

f(λ̃j) . (2.14)
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The Fourier transform of an is needed subsequently, and is given by2

ân(ω) = e−n
|ω|
2 . (2.16)

For our purposes here, we shall focus on the case where m = 2 (N is assumed to be

odd), in order to derive the “kink” scattering matrix, as well as the transmission matrix.

Using the machinery described above, the density may be expressed in a compact form as

σ(λ) = σ0(λ) +
1

N

(

2
∑

k=1

rs(λ− λ̃k) + rt(λ−Θ)

)

, (2.17)

with σ0(λ) being the density of the ground state. The Fourier transforms of the latter

quantities have been computed

σ̂0(ω) =
1

2 cosh(ω2 )
, r̂s(ω) =

e−
|ω|
2

2 cosh(ω2 )
, r̂t(ω) =

e−(y−1)
|ω|
2

2 cosh(ω2 )
. (2.18)

Recall also that

σ0(λ) = ε(λ), and ε(λ) =
1

2π

dp(λ)

dλ
, (2.19)

with ε and p being the energy and the momentum of the hole excitation (kink), respectively.

Recall also that

σ(λ) =
1

N

dh(λ)

dλ
(2.20)

h(λ) is the so-called counting function and h(λ̃i) = Ji, where Ji are integer numbers.

In order to identify the scattering amplitude between two holes as well as the hole-defect

transmission amplitude, we compare the expression providing the density of the state (2.17)

with the so called quantization condition, with respect to the hole with rapidity λ̃1:
(

eiNp(λ̃1) S(λ̃1, λ̃2,Θ)− 1
)

|λ̃1, λ̃2〉 = 0 , (2.21)

where S = eiΦ, and p(λ̃1) is the momentum of the respective hole. Comparison of the

quantization condition with the state’s density (2.17) would provide the “kink-kink” scat-

tering amplitude as well as the transmission amplitude, given that the factorization of

the scattering is evident (see also [40]). More precisely, the study of the one-hole state

would simply provide the transmission amplitude, which physically describes the inter-

action between the particle-like excitation and the defect, thus factorization of the type:

S(λ̃1, λ̃2,Θ) = Ss(λ̃1, λ̃2) T (λ̃1,Θ), in the case of the two-hole state is manifest. Keeping

these considerations in mind, the kink-kink amplitude as well as the transmission amplitude

for the XXX model with a single defect can be derived then as

Ss(λ) = exp

[

−

∫ ∞

−∞

dω

ω
e−iωλr̂s(ω)

]

, T (λ̂) = exp

[

−

∫ ∞

−∞

dω

ω
e−iωλ̂r̂t(ω)

]

, (2.22)

where λ ≡ λ̃1 − λ̃2 and λ̂ ≡ λ̃1 −Θ.

2We have considered the following conventions for the Fourier transformations:

f(λ) =
1

2π

∫
dω e

−iωλ
f̂(ω) , f̂(ω) =

∫
dλ e

iωλ
f(λ) . (2.15)
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Taking now into account the following useful identity

1

2

∫ ∞

0

dω

ω

e−
µω

2

cosh ω
2

= ln
Γ(µ+1

4 )

Γ(µ+3
4 )

, (2.23)

the familiar expression for the XXX kink-kink scattering amplitude [27, 28, 41] is repro-

duced in terms of Γ-functions

Ss(λ) =
Γ(− iλ

2 + 1
2) Γ(

iλ
2 + 1)

Γ(− iλ
2 + 1) Γ( iλ2 + 1

2)
. (2.24)

This is the first eigenvalue of the scattering matrix and it is three-fold degenerate due to

the underlying su2 symmetry. There is one more eigenvalue corresponding to the singlet

state, which may be derived by considering the state with two holes and one 2-string with

a real center:

λ0 =
λ̃1 + λ̃2

2
. (2.25)

The second eigenvalue may be identified then, and turns out to be

S2(λ)

Ss(λ)
=
iλ− 1

iλ+ 1
. (2.26)

The S-matrix, which satisfies the Yang-Baxter equation, may be then cast as:

S(λ) =
Ss(λ)

iλ+ 1











iλ+ 1

iλ 1

1 iλ

iλ+ 1











, (2.27)

which is the familiar XXX scattering matrix [27, 28]. Unitarity and crossing are also

explicitly checked and are satisfied by the extracted S-matrix (see appendix A).

The transmission factor may be also identified through expression (2.22), and is found

to be given by

T (λ̂, S̃) =
Γ( iλ̂2 + S̃

2 + 3
4) Γ(−

iλ̂
2 + S̃

2 + 1
4)

Γ( iλ̂2 + S̃
2 + 1

4) Γ(−
iλ̂
2 + S̃

2 + 3
4)
. (2.28)

The spin associated to this state is identified through the BAE, and is given as: Sz =

S̃ + 1
2 , (S̃ = S − 1

2), corresponding to the highest spin Sz eigenvalue (appendix A). Notice

the “shift” of the spin which naturally emerges through the Bethe ansatz process. We have

been able so far to identify the first eigenvalue of the transmission matrix. As shown in the

appendix A, there are only two distinct (ñ = 2S̃+1)-fold degenerate eigenvalues associated

to the generic transmission matrix.

As already pointed out, in order to identify the transmission amplitude, it is sufficient to

consider the state with one hole (N even) (see also e.g. [42]). The other distinct eigenvalue

may be found using suitable string configurations that modify the spin, but leave the energy

of the sate intact. Considering n-strings, suitably positioned with respect to λ̃1 and Θ,

one may determine each eigenvalue corresponding to the appropriate spin Sz eigenvalue

– 6 –
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Sz ∈
{

Sz
min, . . . , S̃ + 1/2

}

. The rest of the negative spins may be obtained starting from

a reference state, which is a “lowest” weight state (see also appendix A). For instance, it

is easy to identify the spin Sz eigenvalue of a state with one hole of rapidity λ̃1, and one

n-string: n ∈
{

2, . . . , n0

}

, where we define

n0 = S̃ +
3

2
⇒ Sz

min = 0, S̃ half-integer

n0 = S̃ + 1 ⇒ Sz
min =

1

2
, S̃ integer. (2.29)

The spin turns out then to be

Sz = S̃ +
1

2
− (n− 1) . (2.30)

The real center of the n-string is positioned at

λ0 =
x− 1

x
λ̃1 +

Θ

x
, x =

2S

n− 1
. (2.31)

The position of the n-string is determined using suitable quantum numbers, which char-

acterize the state. We shall not give the technical details of the proof here, however the

interested reader is referred to [38] for more details. Given the arguments above, the second

eigenvalue of the transmission matrix can be derived for such a state:

T2(λ̂, S̃)

T (λ̂, S̃)
=
iλ̂− S̃ − 1

2

iλ̂+ S̃ + 1
2

, (2.32)

corresponding to the spin eigenvalue (2.30).

Having the eigenvalues of the transmission matrix at hand, and bearing in mind that

for purely transmitting defects the following quadratic algebra is satisfied [1, 2]

S12(λ1 − λ2) T1(λ1) T2(λ2) = T2(λ2) T1(λ1) S12(λ1 − λ2) , (2.33)

where S is given in (2.27), we conclude that

T(λ̂, S̃) =
T (λ̂, S̃)

iλ̂+ S̃ + 1
2

(

iλ̂+ Sz + 1
2 S−

S+ iλ̂− Sz + 1
2

)

. (2.34)

This is the generic matrix associated this time to the spin S̃ = S− 1
2 representation of su2.

The “shift” of the spin via the Bethe ansatz process, is once more pointed out.

The findings of this paragraph can be further confirmed by checking the basic require-

ments of unitarity and crossing symmetry, and of course by recalling that the transmission

matrix has to satisfy (2.33). The transmission matrix presented above clearly satisfies the

fundamental algebraic relation due to its structure. Unitarity and crossing symmetry have

been also checked by inspection and confirmed for the transmission matrix (2.34) (see ap-

pendix B for details). In addition to the derivation of the transmission matrix eigenvalues

via the BAE, there exist strong physical and algebraic arguments, as well as various checks

regarding the validity of (2.34) as is manifest from the discussion above. It is also worth

noting that this is the first time to our knowledge that such expressions are computed in

the context of the XXX spin chain with a defect from the Bethe ansatz equations, and

expressions (2.28), (2.34) are as far as we can tell novel.

– 7 –
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3 The anisotropic case: XXZ model

Our investigation on the defects is carried on with the anisotropic XXZ spin chain. Based

on the analysis of this model we shall be able to make contact with relevant results extracted

in the context of the sine-Gordon model. We shall focus in the present study on the so

called type-II defects [5]. Let us first introduce the general defect L̃-matrix [43]:

L̃(λ) =





sinh
(

µ(λ+ iSz + i
2)
)

sinh(iµ) S−

sinh(iµ) S+ sinh
(

µ(λ− iSz + i
2)
)



 , (3.1)

where we define q = eiµ, measuring the anisotropy of the model as ∆ ≡ cosh iµ. The bulk

L-matrix is basically the R-matrix of the XXZ model, that is the spin 1
2 representation of

the latter expression, i.e. one simply implements in (3.1) the identifications (2.3).

The L̃-matrix is the typical solution of the quadratic algebra associated to Uq(sl2),

which reads as:
[

Sz, S±
]

= ±S± ,
[

S+, S−
]

=
q2S

z
− q−2Sz

q − q−1
. (3.2)

In the finite case, which will be considered here, the generators are represented by n × n

(n = 2S + 1), matrices as:

Sz =

n
∑

k=1

αk ekk , S+ =

n−1
∑

k=1

C̃k ekk+1 , S− =

n−1
∑

k=1

C̃k ek+1k , (3.3)

where we define

αk =
1

2
(n + 1− 2k) , C̃k =

√

[k]q[n− k]q , [x]q =
qx − q−x

q − q−1
. (3.4)

Note that in [5] the L̃-matrix (3.1) is also used, but an infinite dimensional representation

is employed; nevertheless, the structure of the defect matrices as well as the extracted

physical quantities presented in [5] are similar to our expressions, as will be evident later in

the text. The Hamiltonian of the model is given by (1.3), where ˙̃L(0) = µ diag
(

cosh iµ(Sz+
1
2), cosh iµ(−S

z + 1
2)
)

,

˙̌Rjj+1(0) =
µ

2

(

σxj σ
x
j+1 + σyj σ

y
j+1 + cosh(iµ)σzjσ

z
j+1 + cosh(iµ)IjIj+1

)

L̃n+1n(0) =
sinh(iµ)

2
(Sx

nσ
x
n+1 + Sy

nσ
y
n+1)

+ cosh

(

iµ

2

)

sinh(iµSz
n)σ

z
n+1 + sinh

(

iµ

2

)

cosh(iµSz
n)In+1.

The generic defect matrix and the bulk L-matrix possess highest weight states, thus

as in the isotropic case the typical algebraic Bethe variation may be applied and the cor-

responding Bethe ansatz equations are immediately obtained3 having the following stan-

dard form

ey(λi −Θ) eN1 (λi) = −
N
∏

j=1

e2(λi − λj) , y = 2S , (3.5)

3The BAE are valid for any S 6= 0 real number.
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with Θ being again the rapidity of the defect, and we also introduce the notation

en(λ) =
sinh(µ(λ+ in

2 ))

sinh(µ(λ− in
2 ))

. (3.6)

We may now proceed with the derivation of the transmission matrix distinguishing two

regimes, the repulsive and the attractive, depending on the value of the coupling constant.

Bear in mind that we wish to compare our findings with similar results in the context of the

sine-Gordon model. Therefore, it is useful to provide the relation between the sine-Gordon

coupling constant β2, and the anisotropy parameter µ of the XXZ model (see also e.g. [44]

for a more detailed discussion):

β2 = 8(π − µ) , 4π < β2 < 8π repulsive regime,

β2 = 8µ , 0 < β2 < 4π attractive regime. (3.7)

Note that in the attractive regime the formulation of bounds states between solitons and

anti-solitons of zero spin (topological charge), the so called “breathers” is allowed.

3.1 The repulsive regime; the transmission matrix

We shall first consider the repulsive regime, and derive the corresponding transmission

matrix. In this regime the antiferromagnetic ground state is a filled Fermi sea with real

strings (N odd), as in the isotropic case. For our purposes, it suffices to consider here the

state with two holes. The density associated to this state is obtained in the thermodynamic

limit by following the logic described in the previous section

σ(λ) = a1(λ) +
1

N
ay(λ−Θ)−

∫ ∞

−∞

dλ′ a2(λ− λ′) σ(λ′) +
1

N

2
∑

j=1

a2(λ− λ̃j) , (3.8)

where the basic formula in the presence of two “holes” of rapidities λ̃j (2.14) was exploited.

Note that an(λ) is defined again as in (2.13), whereas its Fourier transformation is given by

ân(ω) =
sinh((ν − n)ω2 )

sinh(νω2 )
, ν =

π

µ
, 0 < n < 2ν . (3.9)

In the present subsection, we restrict ourselves to the values 0 < y < 2ν. Results on generic

values of y are presented in appendix C.

As in the isotropic case, the density may be expressed in a compact form as

σ(λ) = σ0(λ) +
1

N

(

2
∑

k=1

rs(λ− λ̃k) + rt(λ−Θ)

)

. (3.10)

The Fourier transforms of the latter quantities have been explicitly determined

σ̂0(ω) =
1

2 cosh(ω2 )
, r̂s(ω) =

sinh((ν − 2)ω2 )

2 sinh((ν − 1)ω2 ) cosh(
ω
2 )
,

r̂t(ω) =
sinh((ν − y)ω2 )

2 sinh((ν − 1)ω2 ) cosh(
ω
2 )
. (3.11)
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Relations (2.19) for the energy and momentum of the particle-like (“soliton”) excitation

are also valid here.

In order to identify the scattering amplitude between two holes, we compare the expres-

sion providing the density of the state with the quantization condition (2.21), with respect

to the excitation of rapidity λ̃1. We are now in the position to compute the soliton-soliton

scattering amplitude, as well as the transmission amplitude for the XXZ model using the

expressions (2.22). Taking into account the following useful identity

1

4

∫ ∞

0

dx

x

e−µx

sinhx sinhβx
= ln

∞
∏

k=0

Γ

(

µ

2
+
β

2
+ kβ +

1

2

)

, (3.12)

we may easily reproduce the well known expression for the sine-Gordon soliton-soliton

scattering (see also [5, 45]),

Ss(λ, γ) =
∞
∏

k=0

Γ(z + 2(k + 1)γ) Γ(z + 2kγ + 1)

Γ(z + (2k + 1)γ) Γ(z + (2k + 1)γ + 1)

×
Γ(−z + (2k + 1)γ) Γ(−z + (2k + 1)γ + 1)

Γ(−z + 2(k + 1)γ) Γ(−z + 2kγ + 1)
, (3.13)

where we now define

z = iγλ , γ =
1

ν − 1
. (3.14)

Suitable configurations corresponding to soliton/anti-soliton states may be formulated, so

that all the S-matrix eigenvalues may be identified. We shall not give the details of such

a derivation here, however we refer the interested reader to e.g. [44, 46] and references

therein for a more detailed analysis. The S-matrix, solution of the Yang-Baxter equation,

is structurally similar to the “bare” R-matrix, and is given by

S(λ) =
Ss(λ, γ)

a(λ, γ)











a(λ, γ)

b(λ, γ) c(γ)

c(γ) b(λ, γ)

a(λ, γ)











, (3.15)

where

a(λ, γ) = sin(πγ(iλ+ 1)) , β(λ, γ) = sin(iπγλ) , c(γ) = sin(πγ) . (3.16)

Note that the S-matrix is essentially a renormalized R-matrix, given that both the spectral

parameter as well as the anisotropy parameter are renormalized, as is clear from the ex-

pressions above. The S-matrix is in agreement with the results on the sine-Gordon model

(see also [5, 44–46]).

Recalling expressions (2.22) we can also extract the transmission amplitude. Based on

the state described above, as well as the factorization argument, we find the first eigenvalue

of the transmission matrix

T (λ̂, γ, S̃) =
∞
∏

k=0

Γ(ẑ + γS̃ + γ
2 + (2k + 1)γ) Γ(ẑ − γS̃ − γ

2 + (2k + 1)γ + 1)

Γ(ẑ + γS̃ + γ
2 + 2kγ) Γ(ẑ − γS̃ − γ

2 + 2(k + 1)γ + 1)
(3.17)

×
Γ(−ẑ + γS̃ + γ

2 + 2kγ) Γ(−ẑ − γS̃ − γ
2 + 2(k + 1)γ + 1)

Γ(−ẑ + γS̃ + γ
2 + (2k + 1)γ) Γ(−ẑ − γS̃ − γ

2 + (2k + 1)γ + 1)
,
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where ẑ = iλ̂γ and S̃ = S − 1
2 is the “shifted” spin. As already mentioned, in order to

derive the transmission amplitude it is sufficient to consider the state with one hole. In

this case, the corresponding spin eigenvalue is computed explicitly and turns out to be

Sz =
ν

ν − 1

(

S̃ +
1

2

)

. (3.18)

One immediately observes an overall renormalization factor ν
ν−1 , which is equal to the

ratio of the bare anisotropy parameter ν over the renormalized one ν − 1; the physical

(renormalized) spin reduces then to the expected one: Sz
ph. = S̃ + 1

2 .

Alongside the S-matrix (3.15), the transmission matrix T satisfies the quadratic alge-

bra (2.33). We conclude that the transmission matrix may be cast then as

T(λ̂, γ, S̃) =
T (λ̂, γ, S̃)

sin(πγ(iλ̂+ S̃ + 1
2))

(

sin(πγ(iλ̂+ Sz + 1
2)) sin(πγ) S−

sin(πγ) S+ sin(πγ(iλ̂− Sz + 1
2))

)

, (3.19)

where qS
z
, S± correspond to the spin S̃ representation of Uq(sl2), where now q = eiπγ .

We should point out that the transmission matrix is essentially a renormalized defect

matrix, as is manifest from the structure of T and L̃-matrices. Having said this, it is

straightforward to verify that T is indeed a solution of the fundamental algebra (2.33).

Moreover, based on the analysis presented in appendix A, we have checked by inspection

that the transmission matrix satisfies unitarity and crossing symmetry, hence its validity is

completely confirmed. As in the isotropic case, appropriate string configurations suitably

positioned with respect to λ̃1, Θ provide the various eigenvalues of the transmission matrix.

However, in the trigonometric case this is a highly intricate task, and will be left for separate

investigations. It is also worth noting that this is the first time as far as we know that

such expressions are computed via the Bethe ansatz formulation in the trigonometric case.

A detailed comparison with earlier results on the transmission matrix of the sine-Gordon

model will be given in the next subsection.

3.2 The attractive regime

3.2.1 The soliton transmission matrix

We shall now focus on the attractive regime; in this regime bound states between soli-

tons and anti-solitons, the so-called “breathers”, exist. Thus the scattering between the

breathers and the defect may be also investigated. As was shown in earlier studies, the

ground state in the attractive regime consists of the so-called negative parity strings (see

also e.g. [44] and references therein)

λ(−) = λ+
iπ

2µ
. (3.20)

The BAE are modified then as follows

gy(λi −Θ) gN1 (λ) = −
M
∏

j=1

e2(λi − λj) , (3.21)
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where we define

gn(λ) =
cosh(µ(λ+ in

2 ))

cosh(µ(λ− in
2 ))

. (3.22)

A generic state with two particle excitations (two holes in the filled Fermi sea of

negative parity strings) is considered and the density associated to this state may be derived

based on the standard formulation [27, 28, 39]. It turns out that the derived state density

is given by the following expression

− σ(λ) = b1(λ) +
1

N
by(λ−Θ)−

∫ ∞

−∞

dλ′ a2(λ− λ′) σ(λ′) +
1

N

2
∑

j=1

a2(λ− λ̃j) , (3.23)

where the formula (2.14) in the presence of two “holes” of rapidities λ̃j has been exploited.

The Fourier transformation of an is given in (3.9), whereas the Fourier transform for bn is

found to be

b̂n(ω) = −
sinh(nω2 )

sinh(νω2 )
, 0 < n < ν ,

b̂n(ω) = −
sinh((n− 2ν)ω2 )

sinh(νω2 )
, ν < n < 2ν . (3.24)

For the sake of simplicity, we consider here the case 0 < y < ν. Results regarding generic

values of y are presented in appendix C. Similarly to the previous sections, the density is

compactly expressed as

σ(λ) = σ0(λ) +
1

N

(

2
∑

k=1

rs(λ− λ̃k) + rt(λ−Θ)

)

, (3.25)

whereas the Fourier transforms of the latter quantities are given by

σ̂0(ω) =
1

2 cosh((ν − 1)ω2 )
, r̂s(ω) = −

sinh((ν − 2)ω2 )

2 sinh(ω2 ) cosh((ν − 1)ω2 )
,

r̂t(ω) =
sinh(y ω

2 )

2 sinh(ω2 ) cosh((ν − 1)ω2 )
. (3.26)

Note also that relations (2.19) also hold for the energy and momentum of the particle-

like excitation.

Comparison of the expression providing the density of the state (3.25) with the quan-

tization condition (2.21), with respect to the excitation of rapidity λ̃1, leads to the deriva-

tion of the soliton-soliton scattering as well as the transmission amplitude, given by (2.22).

Taking into account the identity (3.12) we reproduce the well known expression for the

sine-Gordon soliton-soliton scattering in the attractive regime (compare for instance with

the notation used in [5]), which is given by (3.13), but now we define

z = iλ , γ = ν − 1 . (3.27)

– 12 –
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Soliton anti-soliton configurations leading to all the S-matrix eigenvalues may be identi-

fied [44, 46]. The S-matrix, solution of the Yang-Baxter equation as well, is structurally

similar to the “bare” R-matrix, and is given as (3.15), where we now define

a(λ, γ) = sinπ(iλ+ γ) , β(λ, γ) = sin iπλ , c(γ) = sinπγ . (3.28)

In a similar fashion, we also identify the transmission matrix, which describes the

interaction between the soliton and the defect. Based on the state described above, as well

as the factorization argument, we extract the first eigenvalue of the transfer matrix, which

is expressed as

T (λ̂, γ) =
∞
∏

k=0

Γ(ẑ − ξ + 2(k + 1)γ + 1
2) Γ(ẑ + ξ + 2kγ + 1

2)

Γ(ẑ − ξ + (2k + 1)γ + 1
2) Γ(ẑ + ξ + (2k + 1)γ + 1

2)

×
Γ(−ẑ − ξ + (2k + 1)γ + 1

2) Γ(−ẑ + ξ + (2k + 1)γ + 1
2)

Γ(−ẑ − ξ + 2(k + 1)γ + 1
2) Γ(−ẑ + ξ + 2kγ + 1

2)
, (3.29)

where

ẑ = iλ̂ , ξ = S +
γ

2
. (3.30)

The transmission matrix T satisfies the quadratic algebra (2.33) together with the S-

matrix derived above. We conclude that the transmission matrix T may be then cast as

(set iλ̂
γ
= iu)

T(u, γ, S̃) =
T (u, γ, S̃)

sin(πγ(iu+ S̃ + 1
2))

(

sin(πγ(iu+ Sz + 1
2)) sin(πγ) S−

sin(πγ) S+ sin(πγ(iu− Sz + 1
2))

)

. (3.31)

The elements Sz, S± form now the spin S̃ = 0 representation of Uq(sl2) with q
iπγ , which

is an infinite dimensional representation. Notice that here we have used the fact that:

sin(πγ(iu + 1
2 −

S+ 1

2

γ
)) = ± sin(πγ(iu + 1

2)) or ± cos(πγ(iu + 1
2)) given that S + 1

2 is an

integer or half-integer. Computation of the spin of the state with one hole via the Bethe

ansatz equations leads to Sz = ν
2 , i.e. the renormalized spin is 1

2 (ν is the renormalization

factor in the attractive regime), which is basically the spin of the hole, denoting that the

defect spin is effectively zero, confirming the relevant result (S̃ = 0) through the derivation

of the transmission matrix.

To efficiently compare with earlier relevant results from the Sine-Gordon model [5], it

is convenient to introduce some useful notation; first we shift λ such that

iλ̂→ iλ̂+ Λ, (3.32)

where Λ is an arbitrary constant. Also define the following quantities:

zj = −iλ̂−
iγ

π
ηj , η1 =

iπ

γ
(Λ + ξ), η2 =

iπ

γ
(Λ− ξ), j ∈ {1, 2}. (3.33)

The transmission factor is then expressed in terms of z1, z2 as

T (z1, z2) =
sinπ(z2 +

1
2)

π
ρd(z1, z2) , (3.34)
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where the overall physical factor ρd is given by

ρd(z1, z2) = Γ

(

1

2
− z1

)

Γ

(

1

2
− z2

) ∞
∏

k=1

Γ(z1 + (2k − 1)γ + 1
2) Γ(z2 + (2k − 1)γ + 1

2)

Γ(z1 + 2kγ + 1
2) Γ(z2 + 2kγ + 1

2)

×
Γ(−z1 + 2kγ + 1

2) Γ(−z2 + 2kγ + 1
2)

Γ(−z1 + (2k − 1)γ + 1
2) Γ(−z2 + (2k − 1)γ + 1

2)
. (3.35)

The latter expression is identical to the one extracted in [5] for the type-II defects, taken

into account the identifications (3.33). Having determined the soliton transmission matrix

we now proceed with the derivation of the breather transmission matrix.

3.2.2 The breather transmission amplitude

The breathers are in general identified within the Bethe ansatz frame by suitable string

configurations. To fully describe this scattering process for the breathers it is necessary

to take into consideration two sets of Bethe ansatz equations; the first set describes the

negative parity one-strings, while the second one describes the breather itself. The second

set of BAE is necessary in order to derive the energy and momentum of the breather,

and also compare with the quantization condition with respect to the breather (for more

details on breathers and their interactions we refer the interested breather to [44] and

references therein).

A state with two light breathers with rapidities λ̄1, λ̄2 will be considered. We shall

basically deal with the lightest breathers for simplicity; a generalization of the results

concerning higher breathers is then straightforward [44], and is given at the end of the

subsection. The lightest breather is described by one positive parity (real) string with

rapidity λ̄i, then the BAE for the state with two breathers are expressed as:

gy(λi −Θ) gN1 (λi) = −
M
∏

j=1

e2(λi − λj)
2
∏

j=1

g2(λi − λ̄j). (3.36)

There is a second set of BAE describing the breather with rapidity λ̄1

ey(λ̄1 −Θ) eN1 (λ̄1) = −
M
∏

j=1

g2(λ̄1 − λj) e2(λ̄1 − λ̄2). (3.37)

As already mentioned the second set is necessary for our purposes here, given that it

facilitates the computation of the energy and momentum of the breather as well as the

formulation of the corresponding quantization condition.

From the first set of BAE (3.36) the following density regarding the negative parity

strings arises,

σ(λ) = σ0(λ) +
1

N

(

B(λ−Θ) +
2
∑

j=1

R(λ− λ̃j)

)

, (3.38)

where we define the Fourier transforms of R, B as

R̂(ω) = −
cosh(ω2 )

cosh((ν − 1)ω2 )
, B̂(ω) =

sinh(yω2 )

2 sinh(ω2 ) cosh((ν − 1)ω2 )
(3.39)
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The second set (3.37) leads to the density describing the breather

σ̄(λ) = σ̄0(λ) +

(

tb(λ−Θ) +
2
∑

j=1

rb(λ− λ̄j)

)

, (3.40)

where the corresponding Fourier transforms read as

ˆ̄σ0(ω) =
cosh((ν − 2)ω2 )

cosh((ν − 1)ω2 )
, r̂b(ω) = −

cosh((ν − 3)ω2 )

cosh((ν − 1)ω2 )
, t̂b(ω) =

cosh((ν − y − 1)ω2 )

cosh((ν − 1)ω2 )
.

(3.41)

Moreover, it may be shown as in the soliton case that

σ̄0(λ) = ε̄(λ), ε̄(λ) =
1

2π

dp̄(λ)

dλ
(3.42)

where ε̄ and p̄ are the energy and momentum of the lightest breather respectively.

Similarly, a quantization condition for the breather may be formulated

(

eip̄(λ1)N S̄(λ̄1, λ̄2,Θ)− 1
)

|λ̄1, λ̄2〉 = 0, (3.43)

due to the factorization of the scattering process S̄(λ̄1, λ̄2,Θ) = S
(1,1)
b (λ̄1, λ̄2) T

(1)
b (λ̄1,Θ).

Comparison of the latter formula with σ̄ leads to the expressions for the breather scattering

amplitude as well as the corresponding breather transmission amplitude:

S
(1,1)
b (λ) = exp

[

−

∫ ∞

−∞

dω

ω
e−iωλr̂b(ω)

]

, T
(1)
b (λ̂) = exp

[

−

∫ ∞

−∞

dω

ω
e−iωλ̂t̂b(ω)

]

(3.44)

λ = λ̄1 − λ̄2, λ̂ = λ̄1 −Θ.

Bearing in mind (3.41), (3.44) as well as the useful identity (2.23) we conclude that

the breather scattering amplitude is given by the following hyperbolic ratios,

S
(1,1)
b (θ) = −

sinh( θ2 − iπ
2γ ) sinh( θ2 + iπ

2γ + iπ
2 )

sinh( θ2 + iπ
2γ ) sinh( θ2 − iπ

2γ − iπ
2 )
, (3.45)

where we define: θ = πλ
γ
. The scattering amplitude coincides of course with the familiar

sine-Gordon breather quantity, and for the lightest breather, which we consider here this

corresponds to the scattering amplitude of the scalar sinh-Gordon field [5, 44, 45].

Similarly, through (3.44) the breather transmission amplitude may be derived as

T
(1)
b (θ̂) = −

sinh( θ̂−η1
2 − iπ

4 ) sinh( θ̂−η2
2 − iπ

4 )

sinh( θ̂−η1
2 + iπ

4 ) sinh( θ̂−η2
2 + iπ

4 )
(3.46)

θ̂ = πλ̂
γ
, the constants ηi have been defined in (3.33), and it is clear that our expression (3.46)

for the breather transmission amplitude coincides with the one identified in [5].

The results on the scattering and transmission amplitudes may be generalized for

higher n-breathers, which are represented by n-positive parity strings with real centers λ̄j .
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More precisely, it is straightforward to see (see e.g. [44]) that the scattering between two

generic n1, n2 breathers may be expressed as:

S
(n1,n2)
b (λ) =

n1
∏

l1=1

n2
∏

l2=1

S
(1,1)
b

(

λ+
i

2
(n1 − n2 − 2l1 + 2l2)

)

, (3.47)

while the transmission amplitude of an n-breather is

T
(n)
b (λ̂) =

n
∏

l=1

T
(1)
b

(

λ̂+
i

2
(n+ 1− 2l)

)

. (3.48)

The spin of the one n-breather state in the presence of the defect can be also evaluated,

and turns out to be Sz = 0. The spin of the breather is as expected zero, recall that in

the attractive regime as pointed out in the previous subsection the “effective” defect spin

is zero. With this we conclude our analysis on the transmission matrices for the kinks

(solitons) and breathers in the (an)isotropic Heisenberg models.

4 Discussion

We have studied in the present article one-dimensional (an)isotropic Heisenberg chains in

the presence of a single impurity. We have recalled the construction of the kink S-matrix

and have produced the transmission amplitudes through the Bethe ansatz equations. We

have also been able to derive the breather’s transmission matrix in the attractive regime

of the XXZ chain. Our findings in the attractive regime of the XXZ model coincide with

earlier results obtained in the context of the sine-Gordon model [5], implying that the

picture is consistent. Our findings in the XXX case as well as in the repulsive regime of the

XXZ model are novel as far as we can tell and involve finite representations of the sl2 and

Uq(sl2). As a further check, comparison with relevant results at the classical level should

be made, especially with studies in the Landau-Lifshitz [26], and sine-Gordon models [23].

Some comments on future directions are in order here. We have based our formu-

lation here on finite representations of sl2, Uq(sl2). More precisely, we have restricted

our analysis on defect matrices, that correspond to finite representations, thus the alge-

braic Bethe ansatz formulation may be applied. The chosen representations possess highest

weight states, and therefore the algebraic Bethe ansatz variation can be successfully applied.

However, infinite dimensional representations of sl2, Uq(sl2) for the defect matrix, can be

also considered. In this case local gauge (Darboux) transformations in the spirit described

in [47, 48] should be employed in order to extract the associated spectrum and BAE.

Moreover, there exist several open issues to be resolved; it is an intriguing task to

determine the string configurations as well as the positions of the real centers of the n-

strings within the XXZ model, in order to extract all the eigenvalues of the trigonometric

transmission matrix from the BAE. A natural generalization would also be to extend our

analysis in the case of higher rank (deformed) algebras. Finally, depending on the values of

the coupling constant it is possible to consider the formation of bound states between the

particle-like excitations and the defect. This analysis may be achieved via the investigation

of the poles appearing in the overall physical factor of the transmission matrix. All the

above are significant issues, which hopefully will be addressed in the near future.
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A Eigenvalues & eigenstates of the defect matrix

In the present appendix we identify the eigenvalues and the corresponding eigenstates of

the defect matrix. Note that the spin operator shares essentially the same set of eigenstates.

We begin with writing the defect matrix as

L̃(λ) =

n
∑

m=1

(

Am e
(2)
11 ⊗ e(n)mm +Dm e

(2)
22 ⊗ e(n)mm

)

+
n−1
∑

m=1

(

Bm e
(2)
12 ⊗ e

(n)
m+1m + Cm e

(2)
21 ⊗ e

(n)
mm+1

)

, (A.1)

L̃(λ) ∈ End
(

C
2⊗C

n[λ]
)

, n = 2S+1. We consider the following ansatz for the eigenstates:

|ψ0〉 = ê
(2)
1 ⊗ ê

(n)
1 , |ψn〉 = ê(2)n ⊗ ê(n)n

|ψk〉 = fk ê
(2)
1 ⊗ ê

(n)
k+1 + fk+1 ê

(2)
2 ⊗ ê

(n)
k , k = 1, · · · , n− 1 , (A.2)

where ê
(d)
k is a d-dimensional column vector with zero elements everywhere, and the unit

at the k-th position.

Acting with L̃ on the vector, according to the rule e
(d)
ab ê

(d)
c = δbc ê

(d)
a , we find

L̃(λ) |ψ0〉 =

(

λ+
in

2

)

|ψ0〉, L̃(λ) |ψn〉 =

(

λ+
in

2

)

|ψn〉 , (A.3)

and

L̃(λ) |ψk〉 = . . . = fk ê
(2)
1 ⊗ ê

(n)
k+1(Ak+1 + Bk yk) + fk+1ê

(2)
2 ⊗ ê

(n)
k (Dk + Cky

−1
k ) = ǫn,k |ψk〉 ,

(A.4)

where we have defined yk ≡
fk+1

fk
. In order for |ψk〉 to be an eigenvector we require the

following relation to hold

Ak+1 + Bkyk = Dk + Cky
−1
k ,

or equivalently,

Bk y
2
k + yk (Ak+1 −Dk)− Ck = 0 .

Solving this algebraic equation provides us directly with the eigenvalues of the defect op-

erator, which would have the generic expression

ǫ
(1,2)
n,k = Ak+1 + Bk y

(1,2)
k .

Rational case: let us first define the following functions in the rational case

Ak = λ+ iαk +
i

2
, Bk = Ck = iCk, Dk = λ− iαk +

i

2
. (A.5)

Substituting the corresponding functions for the rational case leads to the following values

of yk

y
(1)
k =

√

k

n− k
= −

1

y
(2)
k

,
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implying that the corresponding eigenvalues are

ǫ
(1,2)
n,k = λ±

in

2
.

It is interesting that the eigenvalues are k-independent, thus the generic spin-S defect

matrix possesses only two distinct eigenvalues, each one being n-fold degenerate.

Trigonometric case: the relevant functions in this case are:

Ak =
1

2
(eµ(λ+

i
2
)qαk − e−µ(λ+ i

2
)q−αk), Bk = Ck =

1

2
(q − q−1)C̃k,

D =
1

2
(eµ(λ+

i
2
)q−αk − e−µ(λ+ i

2
)qαk). (A.6)

After some calculations, we find that the eigenvalues in the trigonometric case are much

more complicated, and given by the following expression

ǫ
(1,2)
n,k = cos

[

µ

2
(n− 2k)

]

sinh(λµ) (A.7)

±
1

2

[

− 1− cos[µ(2k − n)] + 2 cos(nµ) + cosh 2λµ(−1 + cos[µ(n− 2k)])
] 1

2

.

Spin eigenvalues: we may also compute the total spin Sz
T associated to the defect matrix

Sz
T =

σz

2
⊗ In + I2 ⊗ Sz, (A.8)

where Sz is given by the n×n matrix (2.4) corresponding to the spin S representation, and

Im are the m-dimensional unit matrices. As noted already, the states found above (A.2)

are also the Sz eigenstates. The spin eigenvalue problem reads then as

Sz
T |ψ0〉 =

(

S +
1

2

)

|ψ0〉 ,

Sz
T |ψk〉 =

(

S +
1

2
− k

)

|ψk〉, k ∈
{

1, . . . , n− 1
}

Sz
T |ψn〉 =

(

− S −
1

2

)

|ψn〉 . (A.9)

We end up with 2n eigenstates and eigenvalues. Each eigenvalue S−k+ 1
2 , k ∈

{

1, . . . , n−1
}

is 2-fold degenerate, so that in total there are n + 1 distinct eigenvalues, as expected from

the spin summation rules, which take the familiar values: Sz
T ∈

{

− S − 1
2 , . . . , S + 1

2

}

.

B Unitarity, crossing symmetry & Casimir operators

In this appendix we present the unitarity and crossing symmetry properties of the transmis-

sion matrix, and confirm the findings of the present investigation by exploiting these basic

requirements together with the fact that the transmission matrix satisfies the quadratic

– 18 –
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algebra (2.33). The unitarity and crossing symmetry are given by the following expres-

sions respectively

T12(λ) T12(−λ) = I,

T
t1
12(−λ+ i) M1 T

t1
12(λ+ i) M1 = I , (B.1)

where t1 denotes transposition on the first vector space. In both the isotropic and

anisotropic case in the principal gradation, which are considered here, M = I.

Rational case: let us first consider the XXX isotropic case. Recall the expression found

for the transmission matrix associated to the spin S representation:

T(λ, S) =
T (λ, S)

iλ+ S + 1
2

M(λ, S)

M(λ, S) =

(

iλ+ Sz + 1
2 S−

S+ iλ− Sz + 1
2

)

, (B.2)

where T (λ) is defined in (2.28).

The requirement for unitarity leads to:

T (λ, S) T (−λ, S) = I , (B.3)

whereas the crossing symmetry condition provides:

T (λ+ i, S) T (−λ+ i, S)
(iλ+ S + 1

2) (−iλ+ S + 1
2)

(iλ+ S − 1
2) (−iλ+ S − 1

2)
= I. (B.4)

To obtain the relations above we have used the following

M12(λ, S) M12(−λ, S) = M
t1
12(λ+ i, S) Mt1

12(−λ+ i, S)

= (λ2 + C)I =

(

iλ+ S +
1

2

)(

− iλ+ S +
1

2

)

I (B.5)

C is the Casimir operator of sl2, and one may easily show for the spin S representation

that

C = (Sz)2 +
1

2

{

S−, S+
}

+
1

4
=

(2S + 1)2

4
. (B.6)

The latter is valid even for any generic real S. A discussion on the spin S (any real)

representation of sl2 expressed in terms of differential operators may be found in e.g. [37]

and references therein. It is easily confirmed by inspection that T defined in (2.28) satisfies

relations (B.3), (B.4) emanating from the basic properties.

Trigonometric case: similarly for the anisostropic XXZ chain recall the transmission

matrix associated to the spin S representation of the deformed algebra

T(λ, µ, S) =
T (λ, S)

sin(µ(iλ+ S + 1
2))

M̃(λ, µ, S)

M̃q(λ, µ, S) =

(

sin(µ(iλ+ Sz + 1
2)) sin(µ) S−

sin(µ) S+ sin(µ(iλ− Sz + 1
2))

)

(B.7)

µ = πγ, T (λ, S) defined in (3.17), (3.31).
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As in the isotropic case the unitarity and crossing-unitarity conditions lead to:

T (λ, µ, S) T (−λ, µ, S) = I,

T (λ+ i, µ, S) T (−λ+ i, µ, S)
sin(µ(iλ+ S + 1

2)) sin(µ(−iλ+ S + 1
2))

sin(µ(iλ+ S − 1
2)) sin(µ(−iλ+ S − 1

2))
= I (B.8)

Again confirmation of the findings regarding the anisotropic case is easily done

by inspection.

The latter relation were obtained using the fact that:

M̃12(λ, µ, S) M̃12(−λ, µ, S) = M̃
t1
12(λ+ i, µ, S) M̃t1

12(−λ+ i, µ, S)

=

(

−
1

2
cos(2µiλ) +

1

4
Cq

)

I (B.9)

= sin

(

µ

(

iλ+ S +
1

2

))

sin

(

µ

(

− iλ+ S +
1

2

))

I

Cq is the associated q-deformed Casimir operator of the Uq(sl2) algebra (q = eiµ), and one

may easily show for the spin S representation that

Cq = qq2S
z

+ q−1q−2Sz

+ (q − q−1)2 S− S+

= qq−2Sz

+ q−1q2S
z

+ (q − q−1)2 S+ S− = 2 cos(µ(2S + 1)). (B.10)

The results for both rational and trigonometric cases are valid for any real values S of the

representation. In this case the representation may be expressed in terms of differential

operators (see e.g. [37] and references therein).

C The XXZ model: generic values of the spin

In the main text we have computed the transmission matrices given that the spin param-

eter takes values in a restricted interval. We generalize here our results for generic spin

values. It is clear that these generalizations are due to the periodicity of the involved

trigonometric functions.

Repulsive regime: let us introduce the Fourier transform of ay for generic values

of y = 2S:

ây(ω) =
sinh

(

((2m+ 1)ν − y)ω2

)

sinh(ν ω
2 )

, 2 m ν < y < 2 (m+ 1) ν. (C.1)

The effect of the latter generalization has the following effects in our computations in the

repulsive regime of the XXZ model: the new “shifted” spin becomes

S̃ = S −m−
1

2
(C.2)
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whereas the expression for the transmission matrix is again given by (3.19), where

T (λ̂, γ, S̃) =
∞
∏

k=0

Γ(ẑ + γS̃ −m+ γ
2 + (2k + 1)γ) Γ(ẑ − γS̃ +m− γ

2 + (2k + 1)γ + 1)

Γ(ẑ + γS̃ −m+ γ
2 + 2kγ) Γ(ẑ − γS̃ +m− γ

2 + 2(k + 1)γ + 1)

×
Γ(−ẑ + γS̃ −m+ γ

2 + 2kγ) Γ(−ẑ − γS̃ +m− γ
2 + 2(k + 1)γ + 1)

Γ(−ẑ + γS̃ −m+ γ
2 + (2k + 1)γ) Γ(−ẑ − γS̃ +m− γ

2 + (2k + 1)γ + 1)
,

ẑ = iλ̂γ.

Attractive regime: first we introduce the generalized Fourier transform for by

b̂y(ω) = −
sinh((y − 2mν)ω2 )

sinh(ν ω
2 )

, m ν < y < (m+ 1) ν. (C.3)

Then the transmission matrix in the attractive regime is given by (3.31), where

T (λ̂, γ, S̃) =
∞
∏

k=0

Γ(ẑ − ξ+m(γ+1)+2(k+1)γ+ 1
2) Γ(ẑ+ξ −m(γ+1)+2kγ+ 1

2)

Γ(ẑ − ξ+m(γ+1)+(2k+1)γ+ 1
2) Γ(ẑ+ξ −m(γ+1)+(2k+1)γ+ 1

2)

×
Γ(−ẑ − ξ+m(γ+1)+(2k+1)γ+ 1

2) Γ(−ẑ+ξ −m(γ+1)+(2k+1)γ+ 1
2)

Γ(−ẑ − ξ+m(γ+1)+2(k+1)γ+ 1
2) Γ(−ẑ+ξ −m(γ+1)+2kγ+ 1

2)

where

ẑ = iλ̂, ξ = S +
γ

2
, S̃ = m. (C.4)
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