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Ensuring generalized fairness 
in batch classification
Manjish Pal 1, Subham Pokhriyal 2, Sandipan Sikdar 3* & Niloy Ganguly 1

In this paper, we consider the problem of batch classification and propose a novel framework for 
achieving fairness in such settings. The problem of batch classification involves selection of a set of 
individuals, often encountered in real-world scenarios such as job recruitment, college admissions etc. 
This is in contrast to a typical classification problem, where each candidate in the test set is considered 
separately and independently. In such scenarios, achieving the same acceptance rate (i.e., probability 
of the classifier assigning positive class) for each group (membership determined by the value of 
sensitive attributes such as gender, race etc.) is often not desirable, and the regulatory body specifies 
a different acceptance rate for each group. The existing fairness enhancing methods do not allow for 
such specifications and hence are unsuited for such scenarios. In this paper, we define a configuration 
model whereby the acceptance rate of each group can be regulated and further introduce a novel 
batch-wise fairness post-processing framework using the classifier confidence-scores. We deploy our 
framework across four real-world datasets and two popular notions of fairness, namely demographic 
parity and equalized odds. In addition to consistent performance improvements over the competing 
baselines, the proposed framework allows flexibility and significant speed-up. It can also seamlessly 
incorporate multiple overlapping sensitive attributes. To further demonstrate the generalizability of 
our framework, we deploy it to the problem of fair gerrymandering where it achieves a better fairness-
accuracy trade-off than the existing baseline method.

Machine learning algorithms are being increasingly deployed for decision-making in critical situations which 
can have a profound impact on society and human lives. It is hence important to ensure that the decisions are 
not biased toward particular groups characterized by sensitive attributes such as gender, ethnicity, disability etc. 
Recent years have witnessed significant progress in terms of designing both methods for enhancing fairness as 
well as metrics for evaluating fairness, with fair classification1–15, fair ranking16–20 and fair subset selections21–23 
as important subtasks. For fair classification methods, the goal is to not only achieve high accuracy on the test 
set, but also fairness measured in terms of metrics such as demographic parity and equalized odds24. While 
demographic parity ensures that the acceptance rates (i.e., probability of the classifier assigning positive class) 
are the same for all subgroups, equalized odds requires the same in terms of true positive rates (TPR) and false 
positive rates (FPR). Both fair ranking and fair subset selection problem involve selecting a set of candidates 
from a large pool such that the overall utility is maximized while ensuring fairness. Fair ranking additionally 
requires the obtained set to be ordered by decreasing utility.

Batch classification
For a large class of problem settings like recruitment, college admission etc., a set of agents (candidates) are 
selected simultaneously; we refer to this problem as batch-classification. This paradigm is different from the term 
batch-wise classification has been discussed in papers like25 in which it is defined to mean samples in the same 
batch are learned and classified collectively. We perform the task of classifying and ensuring the fairness of an 
entire batch together during test time. More specifically, we consider batch classification as a post-processing step 
where the entire test set is provided and the classification needs to be performed collectively over the entire test 
set. This is contrary to traditional classification set-up which typically is a point-wise task where each element 
in the test set is labelled independently of other elements in the test set. There are DNN based algorithms like7,10 
that rely on batch-wise training, however, here we are talking about batchwise inference during test time. Despite 
the apparent similarities to classification, ranking and subset selection, batch classification does not require the 
relevance/utility score required by ranking and subset selection algorithms.
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Limitations of existing methods
 The general notion of fairness inherently assumes similar acceptance rates across groups. We posit that fair-
ness is a concept bounded by social conditions, e.g. in societies where female representation is minimal, a law 
ensuring (say) 30% participation of women in public positions can be considered fair and progressive. Hence, 
any fairness-enhancing framework needs to be independent of any underlying ‘social’ assumption and should 
be able to take the social constraints as input. To the best of our knowledge, most of the existing frameworks are 
unsuited for such a scenario.

Goals and approach
 Consequently, in this paper, we consider the problem of fair batch classification, where the acceptance rate of 
each group is taken as input from the user. The goal is to come up with a classification that achieves the desired 
acceptance rate for each group. To this aim, we first define the configuration model whereby the desirable 
acceptance rate for each group can be provided as input to the algorithm. We further demonstrate that the two 
popular metrics for evaluating fairness – demographic parity and equalized odds – can be reformulated in terms 
of acceptance rates. In order to deal with the configuration model, we consider each group as a set and develop a 
linear programming based solution which minimizes demographic parity and equalized odds while maintaining 
accuracy. The proposed framework can also seamlessly incorporate multiple overlapping sensitive subgroups. 
We illustrate our framework in Fig. 1.

Results and contributions
 We perform experiments on several real-world datasets with both demographic parity and equalized odds as 
fairness criteria. Our proposed framework consistently outperforms the state-of-the-art fair classification, ranking 
and subset selection methods across several real-world and synthetic datasets. Beyond decent performance gains, 
our framework can also adapt to any given configuration and is capable of dealing with multiple overlapping 
subgroups. To further demonstrate its wider applicability, we deploy our framework to a related problem of fair 
gerrymandering. where it outperforms the existing baseline.

Prior and related works
The fair classification algorithms in the existing literature can be broadly classified into three groups: pre-pro-
cessing, in-processing and post-processing based algorithms.

Pre‑processing
The goal is to pre-process the training data such that any classification algorithm trained on this data would 
generate unfairness-free outcomes. This is usually done by generating fair representations as is done by Feldman 
et al.2, Dwork et al.26, Kamiran and Calders1, Edwards and Storkey27, Madras et al.28, Beutel et al.29, Ruoss et al.8 
Rodriguez et al.30 and Zhao et al.31.

In‑processing
Here the idea is to add constraints for fairness as regularizer to the training objective function for optimization; 
examples—Calders and Verwer32, Kamishima et al.33, Bechavod and Ligett34 Bilal Zafar et al.6, Agarwal et al.5, 
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Figure 1.   The proposed framework for fair batch classification. We are given a text set X. X consists of 
subgroups - S1 , S2 and S3 representing a particular value of a certain sensitive attribute. For example, S1 can 
represent all individuals with gender male, S2 could represent all black people etc.. Any item a in X can belong 
to one or more subgroups. We are also provided with a configuration [β] = [β1,β2,β3] representing the 
acceptance rate corresponding to the subgroups S1 , S2 and S3 . In the first step (1), we deploy a classifier model to 
obtain a labeling ( χ ′ ) for each item in the test set. (2) We then deploy a linear programming based framework 
(LPCA/LPCEO) which takes as input χ ′ and [β] to obtain another labeling χ which achieves a configuration 
[β

′

1,β
′

2,β
′

3] such that ∀i,β ′

i ≈ βi . To ensure low demographic disparity we would like all βi ’s to be same.
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Wu et al.35, Padala and Gujar36, Zhang et al.37, Yurochkin et al.38, Celis et al.15, Roh et al.39, Yang et al.14, Cho 
et al.10, Romano et al.13, Mary et al.11.

Post‑processing
The third and final strategy consists of first running a standard classifier like SVM or Logistic-regression on the 
training data and then using the model to mitigate unfairness in the test data. This approach has been used by 
Hardt et al.12; Corbett-Davis et al.40; Agarwal et al.5 Narasimhan41 and Wei et al.42.

From the perspective of fair ranking algorithms, relevant algorithms include Celis et al.20, Singh et al.18, Zeh-
like et al.17 and Zehlike et al.16. While the last one is an in-processing learning to rank algorithm, others are re-
ranking algorithms without a train-test data. Fair subset selection, although has been predominantly studied in 
the streaming setting, there are some algorithms which have focussed on the static setting like Mehrotra et al.23. 
The Greedy-fair algorithm mentioned in the paper is based on an old paper by Nemhauser et al.43, that has been 
revisited, in the context of demographic parity, in Halabi et al.44. Since fair batch classification has not been 
studied per se in the literature, we compare our algorithms with best performing fair classification algorithms, 
fair ranking and subset selection algorithms. From the very definition of fair batch classification, it is clear that 
any fair classification algorithm is also a fair batch classification algorithm. Hence, we can consider any fair clas-
sification algorithm as a baseline for comparison. In contrast, fair ranking and subset selection algorithms need 
to be adapted to make meaningful comparison with our batch classification algorithms.

Distinction from other post‑processing algorithms
 We would like to emphasize that our algorithms (LPCA and LPCEO) despite being linear program (LP) based 
post-processing, are quite different from other randomized post-processing algorithms like Agarwal et al.5 and 
Hardt et al.12 which apply linear constraints for ensuring DP and EO. In Agarwal et al., the authors use a constant 
(independent of the size of training and test data) dimensional linear constraint space to find a threshold τ that 
can be used on the class probabilities (referred to as confidence-scores) of the base classifier to predict classes. 
The overall optimization problem is not linear, and it relies on cost sensitive classification algorithm paradigm. 
In a similar vein, the LP used by Hardt et al.12 is also low dimensional (4 variables and 3 constraints for binary 
sensitive attribute) and finds a threshold to decide the classes. In contrast, our batch classification algorithms are 
deterministic (not considering the base classifier) and LPs are of size n×m where n is the number of examples 
in the test set and m is the total number of subpopulations in the dataset (e.g. m = 2 for single binary sensitive 
attribute). We use the class probabilities of the base classifier only for the test set. There are also post-processing 
algorithms which transform the confidence score of a base classifier42, but their optimization problem is not 
linear and makes several theoretical assumptions on the datasets. Finally, unlike the algorithms discussed above, 
the results generated by our algorithm are not sensitive to changes in the distribution of sensitive attributes in 
the training data.

Method
Fairness evaluation metrics
We first provide a brief overview of two fairness metrics - demographic parity (DP) and equalized odds (EO) 
which we use for our study. These are the two most widely used metrics in the literature and represent two dif-
ferent categories of fairness metrics, namely independence and separation24. We also formally introduce the 
configuration model. We further reformulate DP and EO in terms of the configuration model.

Demographic parity
Demographic parity is originally defined considering that the positive group selection rate (which we will refer 
to as acceptance rate) needs to be the same across the two groups of a binary sensitive attribute. This measure is 
also referred to as statistical parity in the literature.

Let the population size be n, then in case of single binary sensitive attribute, the set of subpopulations cor-
responding to each sensitive value can be represented as S = {S1, S2} where S1 ∩ S2 = φ and S1 ∪ S2 = n . Ŷ = 0, 1 
represents the inferred labels. Demographic Disparity (DDP) [Single] can be accordingly defined as

and the system is deemed to have demographic parity when the value is close to zero. The P[Ŷ = 1] refers to the 
probability of being selected in the positive group.

The definition can further be extended to multi-attribute and multivalued case. Let there be k attributes, with 
the ith attribute assuming mi values, then m (= 

∑k
i=1 mi ) is the total number of sensitive values the population 

can assume. Correspondingly, S = {S1, S2 . . . Sm} is the set of subpopulations each representing a sensitive value. 
Unlike in the previous case, here the subpopulations are not mutually exclusive. Here Demographic Disparity 
(DDP) [Multiple] can be defined as6,7.

Equalized odds
Hardt et al.12 propose the notion of equalized odds for single binary sensitive attribute S = {S1, S2} and ground-
truth labeling Y = {0, 1} based on which we define Difference of Equalized Odds (DEO) [Single] as follows:

DDPS =
∣

∣P[Ŷ = 1|S = S2] − P[Ŷ = 1|S = S1]
∣

∣,

DDPM =
∣

∣max
j

P[Ŷ = 1|S = Sj] −min
j

P[Ŷ = 1|S = Sj]
∣

∣.
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This definition essentially stipulates that the True Positive Rate ( TPRi = P[Ŷ = 1|Y = 1, S = Si] ) and the False 
Positive Rate ( FPRi = P[Ŷ = 1|Y = 0, S = Si] ) be the same across all the subpopulations ( {S1, S2} ) of a given 
sensitive attribute S. To generalize the definition of difference of equalized odds to multiple sensitive attributes 
we define Difference of Equalized Odds (DEO) [Multiple] for multiple sensitive attributes as follows

Let DTPRM = (max
j

TPRj −min
j

TPRj) be the Difference of TPR and DFPRM = (max
j

FPRj −min
j

FPRj) be 

the Difference of FPR, then DEOM = DTPRM + DFPRM . We can easily observe that there is a trivial solution 
to achieve zero DEOM . Simply assign label 1 to all the records. But this trivial solution may lead to very low 
accuracy. Similarly a uniformly random 0/1 labelling also leads to zero DEOM on expectation. Instead, we are 
looking for labellings that lead to low DEOM and high accuracy.

Configuration model
A configuration (‘config’ in short) refers to the acceptance rates [ β ] = {β1,β2 · · ·βm} corresponding to each 
subpopulation. Normally, it is assumed the acceptance rate is same for all sub-population. However, in real life 
this may not be the case; in many cases policymakers may decide to have different acceptance rates for different 
subpopulation.

Connection to demographic parity.   We can assume that there is a desirable [ β ] which is taken as input by an 
algorithm and the algorithm outputs a [ β ′].

We can assume that there is a desirable [ β ] which is taken as input by an algorithm and the algorithm outputs 
a [ β ′ ] which is achieved. The Demographic DisParity [Configuration] in such a setting can be defined as

The equation measures how much deviation a particular configuration has gone through w.r.t. the desirable 
condition. Under certain constraints, one can establish a relation between DDPM and DDPC

Lemma 1  Given a configuration [ β ] in which the acceptance rates across all the subpopulation is same and equal 
to β , one can show DDPM([β ′])/2 ≤ DDPC([β ], [ β ′ ]) where [ β ′ ] = {β ′

1,β
′
2, . . . ,β

′
m} is an arbitrary configuration 

and β ∈ [min
j

β ′
j , max

j
β ′
j ].

Proof  Under the condition that β ∈ [min
j

β ′
j , max

j
β ′
j ] , we can write DDPM(β ′) = max

j
β ′
j −min

j
β ′
j = (max

j
β ′
j

−β)+ (β −min
j

β ′
j ) ≤ 2 ·max

j
|β ′

j − β| = 2DDPC([β], [β
′]).

Connection to equalized odds.   If one dissect the definition of Equalized Odds, it has the notion of configura-
tion inbuilt in the definition. According to configuration model, we had defined βj = P[Ŷ = 1|S = Sj] . Using 
Bayes rule of conditional probability we can show the dependence of TPRj and FPRj on βj as

where �j =
P[Y=1|Ŷ=1,S=Sj]

P[Y=1|S=Sj]
 . and Ŵj =

P[Y=0|Ŷ=1,S=Sj]

P[Y=0|S=Sj]
 Similarly we can write the FPRj in terms of βj as well and 

hence can write DEOM as

The linking of a configuration with DEOM allows us to compare two competing algorithms whereby we measure 
the DEOM and accuracy achieved by two algorithms at the same configuration [ β ]. In the above formulation, 
unlike DDP, we use βj ’s only as a tool to compare baselines wherein we use a particular configuration and meas-
ure the corresponding DEO and accuracy. and hence we do not address the issue of input and output (from an 
algorithm) configurations and assume them to be the same. Note that fixing a configuration [ β ] and minimiz-
ing DEOM doesn’t necessarily mean that we are trying to satisfy both DP and EO criteria together (which are 
otherwise known to be incompatible45).

Batch classification
Objective
 Given a test set X with |X| = n , and a collection S = {S1, S2, . . . , Sm} of subsets of X, representing subpopulations 
across the sensitive attributes and a configuration [β] = (β1,β2, . . . ,βm) , obtain a labeling χ = {0, 1} of the items 

DEOS = (P[Ŷ = 1|Y = 1, S = S1] − P[Ŷ = 1|Y = 1, S = S2])

+ (P[Ŷ = 1|Y = 0, S = S1] − P[Ŷ = 1|Y = 0, S = S2])

DEOM =

(

max
j

TPRj −min
j

TPRj

)

+

(

max
j

FPRj −min
j

FPRj

)

.

(1)DDPC([β], [β
′]) = �[β] − [β ′]�∞ = max

j
|βj − β ′

j |.

P[Ŷ = 1|Y = 1, S = Sj] =P[Ŷ = 1|S = Sj] ·�j

P[Ŷ = 1|Y = 0, S = Sj] =P[Ŷ = 1|S = Sj] · Ŵj

DEOM =(max
j

βj ·�j −min
j

βj ·�j)+ (max
j

βj · Ŵj −min
j

βj · Ŵj).
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in X such the configuration [β] could be realized for all the m (possibly overlapping) subsets. While acceptance 
rates directly maps to demographic parity (lemma 1), for DEO additional constraints on TPR and FPR for each 
subset is provided as input that needs to be satisfied along with the configuration.

Decidability problem
As a first step, we investigate the simpler decidability version of the above objective. Formally, decision problem 
corresponding to demographic disparity and equalized odds can be defined as:

Problem 1  (Demographic Disparity) Let X be a universal set with |X| = n . Given a collection S = {S1, S2, · · · Sm} 
of subsets of X as the set of all subpopulations across the sensitive attributes and a configuration [ β ] 
= (β1,β2, . . . βm) , decide whether there exists a 0/1 labelling of elements of the universal set X such that the 
configuration [ β ] can be realized for all the m (possibly overlapping) sets.

Problem 2  (Equalized Odds) Let X be a universal set with |X| = n , such that each element x ∈ X has a tag 
r(x) ∈ {0, 1} . Given a collection S = {S1, S2, · · · Sm} of subsets of X as the set of all subpopulations across the 
sensitive attributes, a configuration [ β ] = (β1,β2, . . . βm) and (tpr, fpr), decide whether there exists a 0/1 label-
ling of the elements of X such that the configuration can be realized with the given tpr and fpr for all the m sets 
w.r.t the given tags r(.) .

In certain formulations of the problem of ensuring fairness when posed as a ranking and set-selection 
problem20,22,23, the problem is known to be NP-hard. Due to the possibly non-polynomial time solutions to 
these problems, we now proceed to devise a more practical LP solution of the original objective of obtaining a 
labeling of the elements in a test set that achieves the provided configuration as well as satisfying any additional 
fairness constraints.

Linear programming based solution
In this section, we step-by-step propose the LP solution. At first we assume that the data is untagged (i.e. without 
ground truth label) and propose an LP to reduce DDP. This LP can’t be used to reduce DEO as the EO criterion 
inherently needs data to be tagged. Next, we consider the data to be tagged (with ground truth label) and write 
an LP that can be used to reduce the DDP and DEO while ensuring high accuracy.

Batch classification of items without tag.   In this setting, we consider a setting where the ground-truth labels 
of the elements to be classified are not known. Formally, given a test dataset X with |X| = n items, the set of 
subpopulations belonging to all the sensitive attributes S = {S1, S2 . . . Sm} , find a 0/1 labelling χ of the items such 
that the positive (label 1) fraction for the subpopulation Sj be βj , where βj ∈ [β] , is a given configuration.

We propose an LP-solution to solve the above problem as LPC. In LPC (Linear Programming framework 
with Configuration), χ(a) represents the labelling of the item a and when the LP is feasible it will ensure that the 
acceptance rates of all values of the sensitive attributes be between βj − ε and βj + ε . According to this notation, 
χ : X → {0, 1} is a function and we treat χ(a) as a variable in the linear program. As per the configuration model 
[ β ] = {β1,β2, . . . ,βm} is input to the LPC, and [ β ’] = {β ′

1 = β1 + ε̂1,β
′
2 = β2 + ε̂2, . . . ,β

′
m = βm + ε̂m} is the 

output. The max
j

ε̂j = ε represents DDPC . With the above formulation, we deploy a standard solver (PuLP) to 
obtain a solution i.e., a labeling of the elements χ which satisfies the configuration constraint.

Batch classification of items with tag.  While LPC achieves the provided configuration, for a more realistic 
setting the elements are tagged with a ground-truth class and a model needs to satisfy additional performance 
and fairness constraints based on the ground-truth. Formally, given a test dataset X ( |X| = n ) with each item 
xi associated with a ground-truth y(xi) ∈ {0, 1} and classifier prediction ŷ(xi) ∈ {0, 1} , a set of subpopulations 
belonging to all the sensitive attributes S = {S1, S2 . . . Sm} , find a 0/1 labeling χ of the items ensuring - (1) the 
accuracy 1n

∑

i χ(xi)y(xi) is maximized, (2) the given configuration [β] is achieved, and (3) TPRj ( FPRj ) w.r.t. y(.) 
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are same for all subpopulations Sj ∈ S (DEO constraint). In the following, we describe a LP based solution to this 
problem and describe in detail how the above three constraints are ensured.

We propose LPCA (Linear Programming framework with Configuration and Accuracy) and LPCEO (Linear 
Programming framework with Configuration and Equalized Odds), presented in Fig. 2, which try to satisfy 
the two constraints (in case of DDP) and equalized odds constraints (in case of DEO). Note that achieving the 
same acceptance rate for all the subpopulations is equivalent to achieving DDP which makes DDP a special case 
of configuration model. The basic structure of LPCA and LPCEO is given below. LPCA is the linear program 
that doesn’t contain the constraints corresponding to tpr, fpr variables. If we add the constraints that involve the 
variables tpr and fpr, we obtain LPCEO that can be used to ensure the equalized odds fairness constraint. The 
proposed LP can be considered to be a generalization of the LP relaxation studied by Mehrotra et al.23. 

1.	 Maximizing Accuracy. Each element in the set is assigned a binary {0, 1} label. Hence to attain higher accuracy 
while choosing members of one group (say female), primarily those members who have acceptance tags 
( y(xi) = 1 ) need to be chosen. However, note the ground truth y is not known while the selection is made. 
So the tags are estimated (predicted) using a classifier, better the classifier, better the estimation. The classi-
fier besides inferring the class (tag) of each point also returns a confidence value, we leverage the under-
standing that the classification error would minimize if one chooses the items which have been classified 
with higher confidence values1,46 to maximize the accuracy. More specifically, we derive a weight wj(a) from 
the confidence value (rank) for every item a in the test data that depends on the subpopulation j (like male, 

black etc.) and minimize 
m
∑

j=1

∑

a∈Sj

χ(a)wj(a) . We put wj(a) = rj i.e. the rank (in descending order of confidence 

values predicted by the classifier, in the subpopulation Sj ) of the element a. To bring in uniformity wj(a) is 
normalized with the size of the group, hence wj(a) = αj ·

rj
|Sj |

 , where αj is a hyperparameter and |Sj| is the 
number of elements present in that group.

2.	 Achieving the desired configuration. We provide [ β ] as a hard constraint along with a small value ε as a relaxa-
tion. (Again experimental results show that in most of the cases, the output deviation from [ β ] is smaller than 
ε .) Note that unlike LPC, in LPCA and LPCEO, we put the single sided error, it represents the two-sided 
phenomenon if we assume β̂j is equal to βj − ε/2.

Figure 2.   In the proposed framework, LPCA is the LP between dotted lines defined on the test records a ∈ X 
with inputs as, target configuration (with zero disparity): β̂ , initial configuration: [β initial

i ] , fairness tuning 
parameter: α and weights derived from confidence scores on test data: w(a), sensitive subpopulations Si in the 
test set and variables as χ(a) . The entire linear program, LPCEO has additional inputs as classifier labels on 
test data: r(a), the number of positives (negatives) in the population Sj according to the classifier: Ŝi(Ŝ′i) , error 
allowed in TPR (FPR): δ1(δ2) and variables as tpri , fpri which can also be user defined.
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3.	 Achieving Low DEOM . In LPCEO  the variables tpri , fpri correspond to the TPR and FPR of the subpopulation 
Si and Ŝi(Ŝ′i) is an approximate number of 1s (0s) in the test data in the subpopulation Si (based on classifier’s 
prediction). Since we do not have access to y(.), we use r(.) that is the tag returned by a chosen classifier as a 
proxy to y(.). Here δ1, δ2 are tunable parameters which control the DEOM of the output configuration [βχ ] . 
More specifically, DEOM([βχ ]) ≤ δ1 + δ2.

The accuracy of LPCA and LPCEO depends on the performance of the underlying classifier. In this paper, we 
assume the base classifier to be a Random Forest (RF) and provide our results according to its confidence scores. 
Similar results are obtained with Logistic Regression, SVM or a DNN based classifier. All results in which com-
parison with certain baselines was made are obtained using a fixed 70% / 30% train / test split of all datasets. We 
show the robustness of our results We again deploy PuLP to obtain a solution to the LPs.

Time complexity.   As mentioned before our batch processing algorithms are post-processing hence they 
involve two steps, a classifier training step and then a post processing step. Thus the overall convergence time of 
the algorithm can be written as Tclassifier + TLP where Tclassifier is the running time of the chosen classifier and TLP 
is the complexity of our batch processing step. If there are m overall sub-populations and the size of the test set is 
n, then for both LPCA and LPCEO  using the best known theoretical LP solvers will lead to a convergence time 
of Tclassifier + Õ(

√
m(mn+m2))47 where Õ hides polylogarithmic factors. Since for most practical scenarios, the 

number of subpopulations m is a small constant, the convergence time can be rewritten as Tclassifier + Õ(n) . Thus 
the running time of our algorithms is dominated by the classifier’s training time.

Results
Experimental setup
In this section, we describe the experimental setup that includes a description of various datasets, baselines, 
performance metrics and configuration generation to compare with baselines.

 Datasets
In our study we have used four real datasets namely Adult48, Bank49, COMPAS (ProPublica Recidivism)50, 
German51 and a synthetic dataset for evaluating the performance of the algorithms. The number of instances and 
classes in each attribute is written within the bracket below. First we describe the real world datasets as follows:

Adult (48,842 examples) Here the task is to predict whether someone makes more than $50k per year, with 
gender(2) and race(5) as the protected attribute.

Bank (41,188 examples) Each example has 20 features and the target variable is whether the client has sub-
scribed to the term deposit service or not. We have taken age group(2) and marital status(4) (MS) as the sensitive 
attributes.

ProPublica recidivism  (7,918 examples) In ProPublica’s COMPAS recidivism data, the task is to predict 
recidivism from someone’s criminal history, jail and prison time, demographics, and COMPAS risk scores, with 
race(2) and gender(2) as the protected attributes.

German (1,000 examples) The German credit dataset contains attributes such as personal status and sex, credit 
score, credit amount, housing status etc. It can be used in studies about gender inequalities on credit-related 
issues. The sensitive attribute being gender(2) and age(2).

Synthetic Datasets (8,000 examples) We generate datasets using a Python function called sklearn.datasets.
make_classification52 with n_samples=8000, n_features=20, n_classes=2. We use the last k features as 
sensitive attributes where k is varied from 2 to 10, by converting them to 0/1 based on the condition (≤ 0)/(> 0) . 
The natural positive rates vary across groups and produce non-zero DDP for all the sensitive features.

Baselines
We compare our proposed method with existing fair classification, fair ranking and fair subset selection methods. 
In specific, we consider methods that aim to achieve demographic parity and equalized odds in classification, 
ranking and subset selection setting.

Demographic parity.   When selecting appropriate fair classification baselines, we particularly consider those 
that can tackle both multiple as well as multivalued sensitive attributes. These include - (a). Agarwal et al.5, (b). 
Zafar et al.6, (c). Padala et al.36, (d). Yang et al,14 and (e) Madras et al.53 [The algorithms of Madras et al. only 
work for single binary sensitive attribute]. Similarly, for ranking DELTR16 (Disparate Exposure in Learning to 
Rank) and for subset selection LP-relaxation studied in Mehrotra et al.23 and the Greedy-Fair algorithm in fair 
submodular maximization described in Halabi et al.44 are chosen as baselines [Certain adjustments had to be 
made in order to adopt these methods to our setting.].

Equalized odds.   We only include classification baselines as the existing ranking or subset selection methods 
are not designed for equalized odds - (a). Agarwal et al.5, (b). Zafar et al.6, (c). Padala et al.36, (d). Romano et al.13, 
(e) Cho et al.10, (f) Mary et al.11 and (g) Hardt et al.12.

Performance metrics
Besides measuring the fairness metrics (here DDP and DEO), one of the standard metrics used to measure the 
performance is accuracy. However, we can further divide the performance with respect to the groups which 
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gain or loss due to the fair batch classification process. Therefore, an important metric would be precision, that 
is the fraction of elements chosen with a positive tag in the accepted set if the number of positive (tag) elements 
present is more than the accepted elements. Similarly, if the number of elements to be accepted is more than 
the total number of positive (tag) elements present, then one needs to consider recall, that is, the efficacy of an 
algorithm depends upon the fraction of the positive elements being accepted. Since, the definition of EO has 
the notion of TPR (recall) and FPR (that is in turn related to precision) inbuilt in it, we don’t consider precision, 
recall comparisons in case of EO.

Given a particular [β] = {β1,β2, . . . ,βm} , there will be a subset of subpopulation [S+] whereby the natural 
acceptance rate (say βnatural

j  ) of a subpopulation Sj ∈ [S+] be more than βj and likewise, for the complemen-
tary subset of subpopulation [S−] , it would be less. We need to calculate the precision (recall) of individual 
subpopulations in the set [S+] ([S−] ). However, to avoid generating too many values, we propose the notion 
of weighted precision and weighted recall. Let [S+] = {S1, S2, . . . , Sk} be the subpopulations whose popu-
lations are n1, n2, . . . , nk and individual precisions are p1, p2, . . . , pk , we define weighted precision of [ S+ ] as 
∑

t ptnt/
∑

t nt . Analogously we can define the notion of weighted recall.

Deriving a configuration
While for LPC, LPCA and LPCEO, any arbitrary configuration can be specified as input, this is not the case for 
the baseline algorithms where the goal is to achieve a configuration where the acceptance rates of the subpopula-
tions are equal. Additionally, the acceptance rates achieved by the baselines need not be same as the ones speci-
fied as input. To make more fair comparison with baselines and to ensure user flexibility, we propose to deploy 
a tunable parameter α to generate configurations. Let’s assume that there is an initial configuration [β initial ] 
which can be any arbitrary input provided by the user and the acceptance rates of the subpopulations need not 
be same. β̂ be a target configuration (e.g., achieved by a baseline algorithm) where the acceptance rates are same 
for all the subpopulations. We deploy α to downward interpolate the acceptance rate of a subpopulation for 
which the acceptance in [β initial ] is higher than β̂ and vice versa. In LPCA  the DDP at certain α can be written 
as DDPM([βα]) = αDDPM([β initial ]) and DDPC([βα], [β̂]) = αDDPC([β

initial ], [β̂]) . In case of LPCEO, we 
can write DEOM([βα]) = αDEOM([β initial ])+ (1− α) · β̂ ·� where � depends on [β̂].

Configurations for baselines.   Similarly, we observe that all the baseline algorithms have some tunable param-
eters changing which we can generate different configurations with varying DDPs. These parameters are: multi-
plicative covariance factor f ∈ [0, 1] (Zafar et al.), difference-bound ∈ [0, 1] (Agarwal et al.), Lagrangian multiplier 
� ∈ [0,B1] (Padala et al.) and primal-dual parameter δ ∈ [0,B2] (Yang et al.). For each of these parameters, we 
divide its range into three equal parts and take the end points to generate four different configurations. For 
example, we take f = 0, 0.33, 0.66, 1 to generate configurations of Zafar et al. The least DDPM configuration is 
attained at one of the end-points of the range of these parameters. For instance, it is attained at f = 1 for Zafar 
et al., difference-bound = 0 for Agarwal et al. etc.. However, we must reiterate that we cannot input any arbitrary 
configuration in these cases.

We also generate configurations from the equalized-odds implementation of the various baselines by tuning 
parameters namely : DCCP parameters ( τ ,µ > 0 ) (Zafar et al.), difference-bound (Agarwal et al.), Lagrangian 
multiplier (Padala et al.), varying random seeds (Cho et al., Romano et al., Hardt et al.), varying epochs (Mary 
et al.). We compare configuration-wise DEOM and accuracy of LPCEO with these baselines discussed in next 
section.

Experimental evaluation
To demonstrate the effectiveness of our proposed approach, we deploy it across different datasets and compare 
it with the existing baseline algorithms.

Configuration based demographic parity
We first investigate if LPC is able to achieve a provided configuration. To this aim, given a dataset, we consider 
three different configurations. However, for a given configuration [β] = c , the acceptance rates of all the sub-
populations are chosen to be same (i.e., ∀βi ∈ [β],βi = c ). In Table 1, we report ε ( DDPC ), the minimum error 
(i.e., deviation from the given configuration [β] ) as achieved by LPC for various datasets and multiple sensitive 
attributes for both real-world and synthetic datasets. LPC achieves low ε values for all the real-world datasets. 

Table 1.   ε ( DDPC ) that leads to feasibility of LPC for various datasets and acceptance rates ( β). For Synthetic 
datasets results shown for different number of sensitive groups (k) and acceptance rates ( β ). In synthetic 
dataset each of the synthetic attributes are considered binary. So k = 20 implies that there are 20 sensitive 
attributes and in all 40 possible subpopulations.

Datasets β = 0.1 β = 0.25 β = 0.4 Synthetic β = 0.1 β = 0.25 β = 0.35

Adult 0.004 0.0025 0.0045 k = 2 0.0005 0.0007 0.0004

COMPAS 0.002 0.002 0.0005 k = 6 0.0006 0.0006 0.0007

Bank 0.0004 0.0005 0.0006 k = 10 0.001 0.001 0.001

German 0.009 0.0025 0.008 k = 20 0.1809 0.0236 0.0177
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For synthetic data, we observe an increase in ε as the number of sensitive attributes increases for different values 
of β . The feasibility of the LP for larger number of constraints requires a larger value of ε , however, still LPC 
achieves low ε even with ten sensitive attributes.

Comparison with baselines ( DDPM)
We consider two setups for our experiments. In the first setup (Minimum DDPM ), given a dataset, we compare 
the minimum DDP and the corresponding accuracy achieved by the baseline algorithms and LPCA. For LPCA, 
we iterate over different configurations in the range [0, 1] (acceptance rates are same for all subpopulations) and 
consider the one for which the accuracy is maximized. In the second setup, we deploy LPCA across different 
configurations generated utilizing the method proposed in Sect. "Deriving a configuration". This allows us to 
demonstrate the stability of the results and makes for a fairer comparison.

Minimum  DDPM.  We here present a comparative analysis of the lowest DDPM values and the corresponding 
accuracies achieved by the baselines and LPCA in Table 2. The lowest value is achieved by tuning the individual 
parameters as mentioned in the Sect. "Deriving a configuration". We find that LPCA outperforms almost all the 
algorithms (performing on multiple overlapping subpopulations) by one or two order of magnitude in terms of 
attaining minimum DDPM . Among the baselines, Yang performs the best and produces the best result in the 
Bank Dataset. Since DELTR and Greedy-fair are implemented on single binary sensitive attribute, their least 
DDP values are better than that of LPCA in Table 2. Also for the case of DDPM , the framework of Mehrotra is 
same as that of LPCA except the choice of w(a), hence we observe results close to that of LPCA . The accuracies 
are comparable across baselines, with LPCA performing marginally better. For LPCA the least DDPM obtained 
corresponds to α = 0, β̂ = 0.2, 0.05, 0.45 and 0.7 for Adult, Bank, COMPAS and German datasets respectively.

Different configurations.   For each baseline algorithm, we generated four configurations by regulating a tun-
able parameter (Sect. "Deriving a configuration"). Subsequently, taking those four configurations as input, we 
run LPCA and obtain the results. We resort to this as any arbitrary configuration cannot be generated by base-
lines, and hence for fair comparison, results need to be generated at only feasible (for baselines) configurations.

For this particular set of four configurations, we also compute the average of the difference between accuracy, 
weighted precision and weighted recall and show it in Table 3. We can see that for most of the cases, LPCA per-
forms better than the baselines (positive numbers). Only in two cases LPCA’s recall is worse. In all the instances, 
LPCA always performs better than its competitor in at least two of the three metrics. However, there is clearly 
no second best, showing the maturity of the field where several algorithms achieve similar performance. Note 
that ‘NA’ in Table 3 indicates that for all the four configurations, the average acceptance rate is lower (higher) 
than the natural acceptance rate of the lowest (highest) class. Noticeably, most of the algorithms fail to minimize 
DDPM keeping the average acceptance rate constant; we would also like to point that to assess the performance 
of an algorithm, a clear reporting of both DDPM and β is needed.

Comparison with baselines ( DEOM)
We perform configuration based comparison of DEOM with various baselines. For each of the baselines that can 
cater to equalized odds criteria of fairness, we find the configurations [β] corresponding to their final output 
and use that [β] in LPCEO to return output configurations [β ′] and compare DEOM of the baseline and that 
of LPCEO. Note that LPCEO ensures that DDPC([β], [β ′]) ≤ ε for all the cases. We consider four different 
configurations for each baseline and observe that none of the baselines except Agarwal et al. and Yang et al. can 
cater to multiple overlapping sensitive attributes. Among the chosen baselines, the algorithms of Zafar et al., 
Romano et al. and Padala et al. can only deal with single binary sensitive attribute while the rest can cater to 

Table 2.   The minimum DDPM achieved by various baselines along with the corresponding test accuracies 
for various datasets. Significant values are in bold. In almost all the datasets, the least DDPM and the highest 
accuracy in that configuration is achieved by LPCA. The results of DELTR (ranking) and Greedy-fair (subset-
selection) are obtained for single (binary) sensitive attribute their values and hence are not compared with 
other algorithms performing on multi-attribute case.

Baseline

Adult Bank COMPAS German

DDPM Accuracy DDPM Accuracy DDPM Accuracy DDPM Accuracy

Zafar 0.1074 0.8357 0.0656 0.9027 0.0668 0.6559 0.0841 0.74

Agarwal 0.0711 0.8035 0.0335 0.9049 0.0251 0.6344 0.0895 0.75

Yang 0.018 0.7812 0.0069 0.8935 0.0356 0.5580 0.0655 0.7333

Padala 0.0658 0.8031 0.02 0.8735 0.0154 0.6256 0.0396 0.69

Mehrotra 0.0049 0.8061 0.0198 0.9044 0.0028 0.63 0.0025 0.7066

Madras 0.0332 0.8358 0.0403 0.9075 0.0403 0.6616 0.0534 0.7200

DELTR 0.0034 0.6529 0.0048 0.8291 0.0049 0.4981 0.0312 0.6066

Greedy-Fair 0.0004 0.56 0.0688 0.68 0.0014 0.5033 0.0073 0.4733

LPCA 0.0049 0.8444 0.008 0.908 0.0009 0.6723 0.0075 0.7533
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single sensitive attribute with multiple subpopulations. Thus, in our comparisons, we use binary and non-binary 
sensitive attributes according to the ability of the baselines. In Table 4, we show the average difference (over 4 
configurations) of DEOM and accuracy between LPCEO and other baselines.

In the multiple overlapping subpopulations case, we observe that Agarwal et al. can achieve marginally 
better DEOM (at cost of accuracy) in the datasets except Adult whereas LPCEO performs better w.r.t DEOM 
when compared with Yang et al. in datasets other than Adult. In case of single sensitive attribute with multiple 
subpopulations, Mary et al. performs better on Adult whereas LPCEO performs better than Cho et al. and Hardt 
et al. in terms of DEOM . In the case of single binary sensitive attribute, LPCEO performs better than Zafar et al, 
Padala et. al. and Romano et al. w.r.t. DEOM . In almost all cases, LPCEO performs better in terms of test accuracy, 
although the improvement is modest.

Performance wrt DDPM , DEOM and ˆβ
Demographic parity.   We perform experiments to show the way precision, recall, accuracy changes as we 
change the user tunable parameter α defined in Sect. "Deriving a configuration" and the desired acceptance rate 
(of all the subpopulations) β̂ > 0 to provide an idea about the relationship among these metrics and parameters. 
In Fig. 3a we observe the behavior of weighted precision, weighted recall and accuracy with varying DDPM on 
the configs generated by LPCA (as we vary α for Adult dataset). The acceptance rates of various classes output by 
the RF ([β RF ]) classifier is considered as [β initial ] . In the plot we observe an increase in accuracy and decrease 
in precision and recall as the DDPM value increases. This happens because as DDPM increases, the system moves 

Table 3.   Difference in average weighted precision (of higher acceptance class), weighted recall (of lower 
acceptance class) and overall accuracy over the 4 configurations, with LPCA for different datasets. Positive 
values mean LPCA is better. DELTR, Greedy-Fair and Madras perform on single binary sensitive attributes.

Baseline DAcc DPrec DRecall Baseline DAcc DPrec DRecall

Adult

Agarwal 0.0346 0.0306 -0.025 Madras 0.0002 0.0288 0.1416

 Zafar 0.0013 0.0677 0.0497 Yang 0.0347 0.221 NA

Padala 0.0173 0.0669 NA Mehrotra 0.0196 0.0349 0.1214

DELTR 0.1849 0.5333 0.6093 Greedy-Fair 0.1716 0.3582 0.5372

Bank

Agarwal 0.0042 0.060 NA Madras 0.0019 − 0.028 0.2695

 Zafar 0.0042 0.0664 NA Yang 0.0043 0.0733 NA

Padala 0.0119 0.0193 NA Mehrotra 0.0024 0.0095 0.1222

DELTR 0.083 0.5724 NA Greedy-Fair 0.0904 0.578 0.4461

COMPAS

Agarwal 0.0039 NA 0.0102 Madras 0.0015 0.0078 0.0575

 Zafar 0.0013 0.0046 -0.008 Yang 0.0697 0.1103 0.1060

Padala 0.0028 NA 0.0018 Mehrotra 0.0101 0.0168 -0.0035

DELTR 0.1717 0.2804 0.1806 Greedy-Fair 0.14 0.0714 0.144

German

Agarwal 0.0232 0.0098 0.0377 Madras 0.0015 0.0078 0.0575

 Zafar 0.0199 0.0162 0.0022 Yang 0.0244 0.0158 0.0173

Padala 0.055 0.0378 0.0417 Mehrotra 0.0300 0.0278 -0.0026

DELTR 0.1434 NA 0.1044 Greedy-Fair 0.3278 0.0522 NA

Table 4.   Average Difference (over 4 configurations) of DEOM and Accuracy between various baselines 
and LPCEO. Positive values imply that LPCEO is performing better. Zafar, Padala and Romano can handle 
only single binary sensitive attributes. NA entries refer to a scenario in which the baseline is giving trivial 
classification as output (all 1’s or all 0’s) that results in DEOM = 0 and hence LPCEO also attains the same 
accuracy and DEOM at that configuration.

Adult Bank COMPAS German

Baseline DDEOM
DAcc DDEOM

DAcc DDEOM
DAcc DDEOM

DAcc

Zafar 0.1239 0.0354 0.3199 0.2866 0.083 0.0197 0.0695 − 0.0022

Agarwal 0.0678 0.0332 − 0.0992 0.0068 − 0.0284 − 0.0181 0.0360 0.0183

Padala 0.06281 0.0282 NA NA 0.0089 0.0085 0.0165 0.0078

Yang − 0.081 0.0448 0.2817 0.0031 0.0893 − 0.0032 0.0649 0.0167

Romano 0.1175 0.0360 0.1430 0.015 − 0.0109 0.0052 0.0726 0.0092

Mary 0.0387 − 0.0048 0.0602 0.0652 0.0224 0.0227 0.041 0.0025

Cho 0.0883 0.005 NA NA 0.0311 0.0167 NA NA

Hardt 0.0389 0.0071 NA NA − 0.04 0.014 0.0003 0.0092
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more towards [β initial ] , hence increasing the accuracy. Since higher classes begin to get a higher fraction of allo-
cation, less confident points get a higher chance to be chosen, hence the dip in precision; the fall in recall can be 
explained similarly. In Fig. 3b we run LPCA on increasing values of β̂ and observe that (a) the accuracy reaches 
a maxima at around β̂ = 0.20 that is due to the symmetry of this metric w.r.t. ‘natural’ average acceptance rate of 
the system, (b) as the value of β̂ changes the precision/ recall curves go through seven event points correspond-
ing to β initial

j  of each class wherein as β̂ increases, at each event point a particular class flips its participation from 
precision to recall calculation. Thus a temporary reverse trend was observed at those points.

Equalized odds.   Similar to the case of DDPM , for a fixed β̂ = 0.2 we vary α to generate configs with various 
DEOM in LPCEO and plot the corresponding weighted precision, recall and accuracy in Fig. 3c by taking the 
same [β initial ] . We also plot in Fig. 3d the DEOM and the difference of TPR and FPR with varying α , keeping 
β̂ = 0.2 and varying β̂ keeping α = 0 . We observe that for a fixed β̂ = 0.2 as we vary α , both DEOM and DTPRM 
are in general non-monotonic w.r.t. DDPM and reach a minimum at a particular α = α0 ∈ (0, 1) . Because of this 
non-monotonic relation the accuracy, weighted precision and recall also show an oscillating behavior when 
plotted against DEOM , although the overall trends of the curves are similar to that of DDPM plot. In Fig. 3e, the 
value of DEOM attains a maximum at β̂ = 0.2 , that is due to the fact that this value of β̂ is the point of maximum 
accuracy and essentially corresponds to selecting a lot of people in a big population class (like ’male’); over less 
populated groups hence leading to larger DTPR.

Robustness
We further investigate whether the results obtained by the proposed algorithms are sensitive to train/test data 
splits. More specifically, in Table 5 we perform 10 random 70/30 splits of the data in two types of experiments 
and report the average DDPM ,DEOM and accuracy. For the case of LPCA for each dataset we fix a β̂ with α = 0 
and report the average DDPM and accuracy. In the case of LPCEO for each dataset we fix a particular configura-
tion [β] with α = 1 and report the average DEOM and accuracy over the 10 random splits. In general, we observe 
that the statistics only change in the third digit after the decimal, if we take the average over 10 random splits 
and hence we do not show the results for other performance metrics. These results indicate that the proposed 
algorithms are robust and not sensitive to data splits.

Computational efficiency of methods
Next, we discuss the computational efficiency of different algorithms in terms of the average time taken (in sec-
onds) for a fixed train-test split of the datasets, over 10 different values of the model parameter of the algorithms. 

Figure 3.   The variation of different performance metrics on configs generated by LPCA and LPCEO on Adult 
dataset with (a) increasing DDPM and fixed β̂ = 0.2 , (b) increasing DEOM , (c) increasing β̂ . The seven vertical 
lines correspond to the initial configuration of acceptance rates of each of the seven subpopulations and fixed 
β̂ = 0.2 . The variation of DEOM on configurations generated by LPCEO with (d) increasing DDPM by varying α 
and ˆβ = 0.2 , (e) increasing β̂ and α = 0.
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Experiments are performed across all the algorithms that can handle the multi-attribute case for each dataset and 
the results are presented in Table 6. For Zafar, we use the parameter multiplicative covariance factor, for Agarwal 
difference bound and for Yang the parameters for the PLUGIN approach. The ranges of these values have been 
mentioned in Sect. "Deriving a configuration". Since these parameters regulate the output configuration of 
these algorithms, taking an average over these gives us an estimate of the effect of the strength of the fairness 
constraints on the running time of baselines. Similarly, for our methods LPCA and LPCEO we vary the target 
configuration β̂ ∈ [0, 1] with α = 0 as the parameters in LPCA and LPCEO for all datasets. The time reported 
in this table (in seconds) is the addition of training and testing times. The experiments are performed on Intel 
Xeon CPU (2.2 GHz) with 13GB of RAM. Overall, LPCA and LPCEO achieve comparable performance in terms 
of computational costs with respect to the baseline methods.

Fair gerrymandering
The problem of fair gerrymandering proposed by Kearns et al.54 demonstrates that there could be large hidden 
subgroups in a particular data for which fairness may not naturally flow even if the overall system is fair. This 
problem, although mentioned by Zafar et al.6, was further explored in detail by Yang et al.14 who construct these 
gerrymandering subgroups and realize low DDPM . For the case of two sensitive attributes (which is the case with 
most of our datasets) S1 and S2 containing k1 and k2 subpopulations respectively, the number of gerrymandering 
groups according to the definition of Yang is k1 · k2 + k1 + k2 . Thus, in all there are 17, 14, 8 and 8 gerryman-
dering groups for Adult, Bank, COMPAS and German datasets respectively of which only 13 and 10 have been 
considered for the Adult and Bank datasets respectively due to the small size of other groups. By regulating the 
tunable parameters of the algorithm, we are able to generate several configurations with varying DDPM . These 
configurations are considered as input and LPCEO deployed to them. LPCEO is able to realize all the configura-
tions, and we compare the performance of LPCEO in terms of accuracy and DEOM with Yang et al. and present 
the result in Table 7. We find that for the same DDPM , LPCEO (LPCA) has a much better accuracy. The DEOM 
results are evenly distributed with LPCEO performing particularly well for COMPAS.

Dependence on training distribution
As batch-wise post-processing frameworks, LPCA and LPCEO have a additional advantage of being invariant 
to training distribution of the sensitive attributes. This also allows for dealing with situations where the sensitive 
attributes are noisy which is often the case in real-world scenarios like online social media where the sensitive 

Table 5.   For LPCA the average values of accuracy and DDPM obtained for 10 random 70/30 splits 
are reported for α = 0 and ˆβ = 0.2 (Adult), ˆβ = 0.17 (Bank), ˆβ = 0.47 (COMPAS) and ˆβ = 0.84 
(German).  For LPCEO we fix α = 1 and a particular configuration [ β ] for every dataset and 
report the average DEOM and accuracy over 10 splits. The configurations used for the datasets 
for LPCEO are [ β ] = [0.2542, 0.1854, 0.2445, 0.1360, 0.2277, 0.1533, 0.1130] (Adult), [ β ] = 
[0.2468, 0.0592, 0.0611, 0.0887, 0.0477, 0.1851] (Bank), [ β ] = [0.3091, 0.5610, 0.4785, 0.3828] (COMPAS), [ β ] 
= [0.7330, 0.6170, 0.7137, 0.6153] (German).

Dataset

LPCA LPCEO

Accuracy DDPM Accuracy DEOM

Adult 0.8387 ± 0.0028 0.0054 ± 0.002 0.8523 ± 0.0012 0.256 ± 0.0235

Bank 0.8905 ± 0.0017 0.0294 ± 0.0139 0.9134 ± 0.0006 0.4396 ± 0.0566

COMPAS 0.6535 ± 0.008 0.0013 ± 0.0008 0.6681 ± 0.0033 0.0.4193 ± 0.0046

German 0.764 ± 0.0227 0.0046 ± 0.0025 0.7533 ± 0.0057 0.1802 ± 0.0133

Table 6.   The average running time (in seconds) of baselines that can cater to the multiple sensitive attributes 
for the 4 datasets.  For the case of demographic parity Zafar, Agarwal and Yang can handle the multiple 
sensitive attributes whereas for Equalized Odds only Agarwal and Yang can cater to the multi-attribute case. 
Overall, LPCA and LPCEO achieve comparable performance in terms of computational costs.

Adult Bank COMPAS German

Zafar 31.52 4.12 0.1 0.14

Agarwal 154.6 77.53 15.03 7.48

Yang 15.21 12.69 6.06 4.12

LPCA 40.9 49.05 4.8 0.59

Adult Bank COMPAS German

Agarwal 137.34 88.23 14.58 8.99

Yang 20.51 15.34 3.21 1.38

LPCEO 40.6 63.28 17.89 2.74
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attributes are provided by users voluntarily. To illustrate, we consider an the Adult dataset and modify the ‘sex’ 
and ‘race’ attributes in the training data by randomly assigning their values to every element in the training data 
while keeping other dimensions/attributes unchanged. We also ensure that the accuracy of the base classifier (say 
RandomForest) largely remains unchanged. Noticeably, while all the algorithms mostly achieve similar levels 
of accuracy on the test dataset, none of them can maintain the same DDPM and DEOM after the training set is 
modified. This is because, unlike LPCA and LPCEO, all these algorithms assume that the distribution of sensitive 
attributes in the training and test data are the same and hence sensitive attribute information in the training set 
has a significant impact on the classification result of the test data. The detailed results are reported in Table 8. 
The DELTR algorithm, in which prediction is done based on a ranking function learnt on training set, is also 
affected by this modification, albeit to a less extent because it can only cater to single binary sensitive attribute. 
In the case of DEO some algorithms like Agarwal et al. and Hardt et al. are more affected by this experiment 
because they post-process and handle multiple subpopulations whereas in-processing algorithms like Yang et al., 
Padala et al., Zafar et al. etc. (some dealing with single binary sensitive case) are less affected.

Conclusion
The primary contribution of this paper is in identifying the presence of a special but widespread batch-admission-
like situation where batch classification is a natural operation. This decoding of an apparently obvious real-world 
setting helps us to design a simple LP-based algorithm that is being able to compete and perform better than 
sophisticated classification algorithms. We carefully generalize the definition of demographic parity and equalized 
odds for multiple sensitive attributes and analyze its theoretical computational complexity. These definitions help 
us to develop the LP framework which enables the generation of the desired configuration, be it expressed in 
terms of demographic disparity, average acceptance rate or a simple externally defined distribution of acceptance 

Table 7.   Comparison of test accuracies, and DEOM between Yang et al.14 and LPCEO averaged over four 
configurations generated by Yang on various datasets. The number of gerrymandering groups for Adult, Bank, 
COMPAS and German datasets are 13, 10, 8 and 8 respectively.

Dataset DDPM

Yang LPCEO

Accuracy DEOM Accuracy DEOM

Adult 0.0683 0.7899 0.2716 0.828 0.3261

Bank 0.0632 0.9016 0.1323 0.9073 0.1272

COMPAS 0.1135 0.6564 0.113 0.6581 0.1366

German 0.1343 0.7498 0.2071 0.7683 0.2207

Table 8.   Test accuracy and DDPM and DEOM of various baselines on the Adult dataset with change in the ’sex’ 
and ’race’ attribute in the training data keeping the test data unchanged. We have chosen our DDPM similar 
to Yang by tuning α, ˆβ to show comparative results. The DELTR algorithm can only cater to single binary 
sensitive attribute.

Baseline

Original train-test Train modified

Accuracy DDPM Accuracy DDPM

Zafar 0.831 0.21 0.8218 0.18

Padala 0.8031 0.0658 0.8346 0.1766

Agarwal 0.8035 0.0711 0.9056 0.052

Yang 0.7812 0.018 0.7985 0.1195

Madras 0.8323 0.0185 0.8505 0.1972

DELTR 0.6529 0.0034 0.6126 0.0044

LPCA 0.8335 0.019 0.8326 0.019

Baseline

Original train-test Train modified

Accuracy DEOM Accuracy DEOM

Zafar 0.811 0.23 0.805 0.29

Padala 0.8126 0.1633 0.8395 0.189

Agarwal 0.8543 0.1324 0.8617 0.3987

Yang 0.795 0.2564 0.795 0. 2581

Mary 0.8430 0.2787 0.8402 0.4333

Romano 0.8088 0.1612 0.8046 0.2239

Cho 0.8423 0.2176 0.8452 0.4073

Hardt 0.8396 0.2948 0.8645 0.4598

LPCEO 0.8637 0.1778 0.8637 0.1778
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rates. Additional advantages of our configuration based LP framework includes - (i) ability to deal with multiple 
overlapping subpopulations, (ii) invariance to changes in sensitive attribute distribution in training data and (iii) 
applicability to related problems such as fair gerrymandering. In the future, it would be interesting to see how 
our framework can be applied to notions of fairness like counterfactual fairness, calibration, etc. which are quite 
different from independence and separation based notions of fairness (Supplementary Information).

Data availability
 All the codes and datasets are available at https://​github.​com/​alpha​accou​nt/​fair-​batch-​class​ifica​tion.
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