
Can Videos as a By-Product of GUI Testing
Help Developers Understand GUI Tests?

Jianwei Shi∗, Oliver Karras†, Martin Obaidi∗, and Malvin Tandun∗
∗Leibniz Universität Hannover, Software Engineering Group, Hannover, Germany

Email: {jianwei.shi, martin.obaidi}@inf.uni-hannover.de, malvin.tandun@stud.uni-hannover.de
†TIB - Leibniz Information Centre for Science and Technology, Hannover, Germany

Email: oliver.karras@tib.eu

Abstract—[Context] Software with graphical user interfaces
(GUIs) is used in everyday life. Users expect working software
when they interact with a software product. For this reason, test-
ing and defect corrections are required. However, understanding
GUI tests is challenging, as the generated textual test reports
lack the dynamic details about interaction steps to reproduce a
GUI defect. [Objective] We want to revise the practice of GUI
testing and use videos as a by-product to capture and convey
these dynamic details. [Method] Based on the video as a by-
product approach, we propose to generate videos as a by-product
of GUI testing, integrating annotations and test outputs directly
into the videos. These videos serve as supplementary material
for documenting dynamic test executions in addition to static
test reports (e.g., texts, screenshots). In an experiment, we asked
11 participants to distinguish between true and false defects
in watching videos and screenshots of four test cases. We also
conducted structured interviews to ask the participants about
their opinions for these two documentation options. [Results
& Conclusion] Our results show visible differences between
the video and the screenshots in effectiveness and efficiency in
defect analysis, but cannot prove the differences statistically. The
listed advantages and disadvantages of both documentations are
complemental. Both documentations are helpful and thus videos
as a by-product of GUI testing can foster the understanding of
GUI tests.

Index Terms—by-product, GUI test, video

I. INTRODUCTION

Software and graphical user interface (GUI) have become
an integral part of everyday life. As a result, humans use
software throughout the day and have correspondingly high
expectations of its design, usability, and user experience. For
this reason, software and especially its GUI must be well
and continuously tested to ensure that (GUI) defects are not
delivered to customers. However, developers frequently experi-
ence and report difficulties with identifying and understanding
defects and their sources due to incomplete and imprecise test
reports [1], [2]. One crucial issue of test reports is their lack of
dynamic details about interaction process and their individual
steps to reproduce a GUI defect and identify its source [3]. In
particular, the textual and thus static descriptions of interaction
processes and their steps are often unclear and have to be
modified most frequently during development [2]. In addition,
missing links between test reports, the software (source code),
and specification documents impede the work of developers
as the pure test report lacks the important key events of the
respective interaction process for reproduction [1]. The issue

of missing or unclear information for reproducing a defect was
identified as a core challenge of test reports by Zimmermann
et al. [4] as well as Soltani et al. [5]. However, a test
report “must make simple and unambiguous reproduction of
a failure possible” [6, p. 329]. In most cases, several people
with different technical and educational backgrounds have to
deal with this test report, such as managers, developers, users
and other stakeholders [6]–[8], which leads to the problems
of inaccuracy, incompleteness, and thus limited reproducibility
mentioned above. Hence, a test report is created and used by
people with different interests and educational backgrounds.

We propose the provision of videos as supplementary mate-
rial to static test reports addressing the issue of inaccuracy and
incompleteness. Based on the video as a by-product approach
by Karras et al. [9], [10], we propose an approach that
integrates video generation with GUI testing to enrich static
test reports (e.g., textual documentation, screenshots) with
dynamic videos of interaction steps and key events. This type
of video is a suitable documentation option for communicating
the dynamic details of interaction processes on GUIs to a
variety of people with different technical and educational
backgrounds [9], [10]. In this work, we focus on helping
testers produce a video as supplementary documentation of
static GUI test reports and helping developers understand the
GUI test through watching the generated video. Although we
limit the target audience of this type of video to developers for
now, we assume that these videos are of value even to other
stakeholders due to their simplicity and ease of use [11]. This
paper has the following contributions:

1) An approach for videos as a by-product of GUI testing
that integrates video generation into GUI testing so that
the test reports associated with test logs and screenshots
are enriched with the generated videos.

2) An experiment showing that the generated videos and
screenshots lead participants to the same effectiveness
and efficiency in determining if there is a defect.

3) The insight that developers’ preferences and opinions
on using videos and screenshots in understanding GUI
tests are different. Each kind of documentation has its
strengths and weaknesses. Thus, videos and screenshots
are both valid documentation options.

The rest of this paper is structured as follows: Section II lists



related work. Then the approach of videos as a by-product of
GUI testing is explained in Section III. Section IV presents
the experiment and the results. The last section concludes and
proposes future work.

II. RELATED WORK

Video has been proposed as a new medium for commu-
nication in Requirements Engineering (RE) over one decade.
Brill et al. [12] have proposed a low-effort video production
approach in requirements engineering. These videos help to
validate requirements from the perspective of customers and
requirements engineers. Schneider et al. [13] further developed
this approach into the affordable video approach, in which the
video is produced in affordable efforts to assist elicitation and
validation in RE.

Different works combined videos as a documentation option
with additional information, such as source code [14], [15] and
interactions [9], [16]. Pham et al. [14], [15] recorded videos
while GUI test executions to supplement test reports with the
videos. These videos are specially coded for saving storage
resource while storing additional information. In particular,
the video is linked to the source code lines: The corresponding
source code line is highlighted while video is playing.

Shi and Schneider [16] have enhanced the tool suite Screen-
Tracer from Pham et al. [14], [15]. Shi and Schneider have
fixed the issue of capture delay [15] and proposed two con-
cepts for highlighting GUI interactions: Code injection and
frame manipulation. Tandun [17] has implemented the code
injection concept in ScreenTracer. The GUI interactions are
automatically highlighted with a red rectangle. In the updated
ScreenTracer, the replay speed can be slowed down and the
console output is linked to timestamps in the video. Tandun
has conducted a semi-structured interview to ask ten testers
in a company about opinions of the updated ScreenTracer.
According to the coding results [18], the testers can use the
tool suite to find the accurate position of a defect and use
minimum time to understand a defect.

Karras et al. [9] have proposed the video as a by-product ap-
proach and applied it to prototyping. Based on their approach,
videos are generated that demonstrate interaction sequences
on hand-drawn and digitally created mockups as additional
support for textual scenarios. These videos are produced as a
by-product of digital prototyping by capturing and replaying
interaction events of responsive controls without any imple-
mentation. In the experiment of Karras et al. [9], they found
that such videos allow a slightly faster understanding of textual
scenarios by developers compared to static mockups.

Using replay methods or videos to support the reproduction
of a defect is in practice. Selenium [19] can be used for
capturing the dynamic interactions and reproduce them. Test
scripts can be created and then replayed in Selenium. Another
tool Ranorex Studio records a video during the test and uses
the video as part of the test report [20]. In the academia,
Nass et al. [21] developed a tool called Scout which captures
the test executions and replays them with instructions. Testers
can add hints on Scout to make the tests more informative.

Scout replays hints with highlighting over GUI elements, e.g.,
a rectangle that highlights the next GUI element in interaction.

Our work has the following innovations compared to pre-
sented related work: 1. We generate the video during GUI
testing. This video is not for elicitation and validation, but for
verification in RE. The video can be used as a communication
medium between developers and testers. By watching the
video, it can be checked if the understanding of testers about
a requirement is the same as the understanding of developers.
2. The generated video from our approach is linked with test
annotations and outputs, not just a video itself (such as in
Ranorex’s solution). This linking of artifacts helps developers
and testers better understand GUI tests, as artifacts with strong
interrelationships must be processed and related together to be
better understood, as shown by Karras et al. [22], [23]. 3. Our
approach generates video automatically during the test. This
approach differs from the one from Nass et al. [21], [24],
where testers need to add the additional information manually.
In our approach, testers can generate videos by just running
scripts without any other activities.

III. APPROACH

Based on previous work [15], [16], we systematically fol-
lowed the video as a by-product approach by Karras et al. [9],
[10] to develop and implement our approach and its concepts
for videos as a by-product of GUI testing. Our approach
produces videos during test execution and uses these videos
for communication about requirements. This approach can
be integrated into processes which contain development and
execution of GUI tests.

Figure 1 uses FLOW notation by Stapel et al. [25] to
explain how we apply the video as a by-product approach for
GUI testing (in an agile development context). After receiving
written requirements, developers start implementation and
deliver working software (A). In agile development, testers
develop tests (B) before implementation of functionalities.
When testers have access to executable files with source code,
they can develop more concrete test cases (B) and test the GUI
of the software. Next, testers execute tests (C) and generate
videos during the test run. A static test report documentation
can be generated automatically. Then testers organize the test
report (D) from the static documentation and the videos.
Lastly, testers and developers communicate with each other
by viewing the test report.

A. Video as a By-Product Approach

Our approach is designed to help developers understand
defects better than using only static documentation. The main
goal of our approach is: Developers can use videos to un-
derstand the reported GUI defects of a software. Concretely,
developers can 1. Familiarize themselves with contextual in-
formation of defects; and 2. Clarify if the reported defect is
an true defect.

We follow eight of the nine principles of the video as a by-
product approach [9], [10] to revise GUI testing and to apply
videos as a by-product. These eight principles are: P1 Focus,



Written
Requirements

Test 
Development

Software 
Development

Test 
Execution

Test 
Report

Developer

Tester

A

B

C

D

Video

Test Code

Executable

Static 
Docu.

Organize
Report

Legend:

<Activity>

<Person>

<Document>

C
Step number

<Person>

Information 
flows from 
person to person

Generates 
information

Receives 
information

Information
flows in

Information
flows out

Personal experience 
flows into

Fig. 1. FLOW diagram of our videos as a by-product of GUI testing approach.

P2 Concurrency, P3 Parties involved, P4 Relief, P5 Separation,
P7 Combination, P8 Fallback option, P9 Further use. We do
not apply the principle P6 Technology by Karras [10] as we
do not focus on the use of mobile devices to generate videos
but rather on personal computers.

Based on the eight principles and our goal, we developed
three concepts for our approach.

• Concept 1: Video is generated during the test execution
to describe a system appearance;

• Concept 2: Video is replayed with additional infor-
mation (highlighted GUI interactions, step descriptions,
command line output, etc.) to make the video easy to
understand;

• Concept 3: Clickable texts of step descriptions and
command line output are used in replay to make efficient
defect analysis possible.

We explain how the concepts correspond to principles.
Firstly, all three concepts are proposed with the focus on one
practice, namely GUI testing (P1). A video is generated during
the test execution (Concept 1). The video is produced (Concept
1) and used (Concepts 2 and 3) in agile development context
(P2). Concept 1 helps testers to generate a video with existing
test scripts in minimum steps (P4). Concepts 2 and 3 enable
testers and developers (P3) to watch the video with linked
additional information, which help them understand the test
(P4). All concepts are profitable for testers and developers
and no other roles are burdened (P3 and P4), as Fig. 1 shows.
Additional information is combined with the video (P7). Next,
we want to separate the logic of producing and replaying
video into two software components (P5). Video serves as
supplementary material for static test reports. A traditional
textual test report is by all means created as a fallback option
(P8). Video as a by-product in GUI testing can be applied
not only in internal communication between developers and
testers, but also can be used in communication with customers
(P9). However, the video must be adapted to solicit customers’
feedback, which is part of our future work.

B. Technical Implementation
We implemented our concepts in a tool called ScreenTracer

that generates a video during test execution. The video is
replayed in a video player with clickable texts. Below, we
describe how the concepts are realized.

1) Video Generation: The video is generated by running
existing GUI test scripts (Concept 1), which are developed
during the software development. We have used the tool
ScreenTracer [15], [16] with existing NUnit1 test projects to
capture the videos. These test projects use Selenium Web-
Driver2 to conduct GUI tests on a website. A test project
contains a test suite, and the test suite contains many test cases.
The test run executes these test cases, which are called in the
main function.

To highlight the GUI interactions (Concept 2), a dynamic
method changes behavior of the program: Every time the
element is clicked or be typed in, the dynamic method draws
a red rectangle before the interaction and hides the rectangle
after the interaction. In the test script, testers write annotations
(e.g. Console.WriteLine(“Step 1: Log in”);) to add additional
textual information to the video. This textual information with
the corresponding times is stored with the video. Additionally,
we have added a function to select the capture area to capture
only the test object and to save storing cost. All technical
details of the ScreenTracer can be found in the works of Pham
et al. [14], [15] and Tandun [17]. A tester needs to conduct
three steps: 1. Select the test project; 2. Select the area to
capture; 3. Click the capture button. After a test is completed,
a video is generated.

2) Video Replay: Figure 2 shows how the video is replayed
in a video player. The video player loads the video and
the clickable text under the video. User can go to referred
timestamp by clicking the blue text (Concept 3).

3) Limitation: As the driver of screen capturing is outdated
in ScreenTracer, the generated video is choppy. For the sake

1https://docs.microsoft.com/en-gb/dotnet/core/testing/
unit-testing-with-nunit

2https://www.nuget.org/packages/Selenium.WebDriver

https://docs.microsoft.com/en-gb/dotnet/core/testing/unit-testing-with-nunit
https://docs.microsoft.com/en-gb/dotnet/core/testing/unit-testing-with-nunit
https://www.nuget.org/packages/Selenium.WebDriver


of evaluation, we use the OBS studio to capture and store the
video as an mp4 data during the same test run as ScreenTracer
uses. The additional textual information with timestamps are
also temporary manually created: A list of strings and the
corresponding times are stored as a Web Video Text Tracks
(vtt) file. The video player as a web page loads the mp4 data
and the vtt file for replay. The produced video and the video
player are in accordance with the concepts. We have published
example videos, vtt files, and HTML source code of the video
player in the dataset [26] for transparency.

Fig. 2. HTML video player (a) and magnified GUI with highlight (b).

IV. EVALUATION

We wanted to evaluate the effect of GUI test videos.
According to video as a by-product approach for GUI testing,
a defect is reported by testers and handed in over developers.
We wanted to know if a GUI test video helps developers
understand a defect. The reasons of the defect can be 1.
developers did something wrong in the source code, i.e., the
defect is true or 2. testers misunderstand the requirements and
write the wrong test cases, i.e. the test case is incorrectly
specified, the reported defect is false.

In our study, we compare videos with screenshots, as
both visualize the GUI tests. Based on the goal template by
Basili and Rombach [27], we concrete our evaluation goal
as follows: We analyze GUI test videos for the purpose of
distinguishing between true and false defects with respect to
their effectiveness and efficiency from the viewpoint of the
developers in the context of watching videos and screenshots.
Here, effectiveness means that developers can find the right
reason of the reported defect. Efficiency means that developers

can find a reason in a short time. The participation of this study
is voluntarily and without compensation.

We test the following two hypotheses: There is a difference
in

H1: efficiency
H2: effectiveness

between the test video and the screenshots. The corresponding
null hypotheses assume that there is no difference between the
test video and the screenshots.

We ask the following research question (RQ):

RQ: What are the strengths and weaknesses of test
videos and screenshots in understanding GUI tests in the
perspective of developers?

A. Study Design

In this experiment, we have one factor with two treatments
(i.e. screenshots and a video). We use the paired comparison
design [28], i.e., each participant watches not only screenshots
but also videos. We choose to include four test cases, because
1. participants can conduct the experiment in an acceptable
and affordable time, and 2. collect as much quantitative data
as possible for statistical tests, and 3. check the preference of
documentation for different test cases. The test case contains
many test steps. Each step is documented as a textual de-
scription, which are linked with the video, as Fig. 2a shows.
For each step, one screenshot is captured as comparison. The
textual description is also set as the name to the screenshot.
That means, for each case, there is one video and multiple
screenshots. All videos and screenshots are available in our
dataset [26].

We choose a web-based note app called TakeNote3 as the
test object for evaluation. This app is about note taking and
maintaining, with which developers should be familiar. We
also prepared a tutorial video of this app.

Figure 3 shows the general study design. After a short
introduction of the experiment, participants are required to
watch the source code folder structure and the tutorial video of
the app. Then, participants are required to read the static doc-
umentation which contains the given requirement, additional
information (if needed) for that requirement, related code lines,
and the expected and the real results of the test case run. The
textual documentation of test case 3 is shown as follows:

Given requirement: If the user deletes a category
permanently, the TakeNote App shall 1. permanently
remove the category and 2. keep the notes which
belonged to that category under folder Notes.
The related code are lines 69 - 73 in:
src/client/containers/ContextMenuOptions.tsx
Expected result: The note “The solar system -
Earth” and the note “The solar system - Jupiter”
should not appear in the note list.

3https://github.com/taniarascia/takenote, demo available on https://takenote.
dev/ (State 7-Jun-2023)

https://github.com/taniarascia/takenote
https://takenote.dev
https://takenote.dev


Experiment 
intro.

Watch 
one docu.

Defect
analysis

Interview
Post-

Interview

Familiarization with 
folder structure and 

the app 

Activities in black boxes are repeated five times. The first time is for 
learning the task. The further four times are for carrying out real tasks.

Read 
textual 
docu.

Watch 
another 

docu.

Fig. 3. General experiment process. Activities in black boxes are repeated five times. The first time is for learning the task. The further four times are for
carrying out real tasks.

Real result: The note “The solar system - Earth”
and the note “The solar system - Jupiter” appear in
the note list.

Next, participants watch both types (i.e. the video and the
screenshots) subsequently for each test case. They are required
to watch one documentation type to select a reason of the
reported defect in the phase defect analysis in Fig. 3 between
three choices (true defect/false defect/not sure). During defect
analysis, participants may read the source code. We measure
the time taken (as metric 1) of the watch one docu. and
the defect analysis (Fig. 3) to check the efficiency (H1) of
the watched documentation. We also count the number of
correct reasons (as metric 2) to check the effectiveness (H2) of
the watched documentation. After the task of defect analysis,
participants watch another documentation type. They are asked
to list the strengths and weaknesses of each documentation
(RQ), choose the preferred documentation and give reasons
for the choice in the phase interview. At last, the experiment
conductor tells participants the right answers of the reasons
and the measured time. Participants are required to answer
questions about effectiveness and efficiency (post-interview).
We provide the questions in our dataset [26].

We divide participants into two groups and have a crossover
design for the settings of the groups. For the phase watch one
docu., group A watches videos for test cases 1 and 2 and
screenshots for test cases 3 and 4; group B watches screenshots
for test cases 1 and 2 and videos for test cases 3 and 4.

The type of defects (true/false) is mixed in the study.

1) Test case 1 is about a true defect. A rendered horizontal
line should be clearly visible in the dark mode but was
not visible if the mode is changed from normal to dark
mode.

2) Test case 2 is about a false defect. Testers misunderstand
that the Takenote App should reset all personalized
settings in sorting. They think the App should sort
the notes in alphabetical order after logout and login
again. According to the requirement, the settings are
permanently stored and will not be reset. In the test
run, the setting of “Sort by” was changed from Last
updated to Date Created, and then logging out and in
was conducted. Testers have reported a defect and they
claim the notes should be sorted in alphabetical order as
expected output.

3) Test case 3 is about a false defect. Testers misunderstand
the deletion function of a category. They think that
after deletion of a category permanently, the notes under

that category should also be deleted. According to the
requirement, the notes under that category should be
kept under the main folder.

4) Test case 4 is about a true defect. As soon as the user
changes the watching mode (editing or prewatch), the
TakeNote App shall provide the user with the ability
to visually determine which watching mode to switch
to. The switch between editing and prewatch modes can
be conducted by either clicking the symbols (shown as
eye or notebook) or pressing the shortcut Ctrl+Alt+P.
The Takenote App should change the eye symbol to
the notebook symbol if Ctrl+Alt+P is pressed, but keeps
unchanged.

B. Demographics

Eleven participants took part in the experiment, 6 for group
A and 5 for group B. Two participants are female. All
participants come from the same age group from 24 to 32
years old. Median age is 29. All have rich general development
experience with the average of 10 years. For web frontend
(HTML, JavaScript/TypeScript) specially: 4 are beginners,
5 have intermediate skill, 2 are advanced developers. Four
participants (with identifiers P03, P05, P06, and P07, see also
Tab. I) are working students, the other seven are industrial
practitioners.

C. Result and Analysis

Table I shows the time taken (metric 1) and mark incorrect
selections of defect analysis in gray cells. To test H1 and H2,
we conducted the Mann-Whitney U test for these metrics, as
Tab. II shows. To calculate the Mann-Whitney U test for metric
2, we follow the instructions from Bortz and Schuster [29] for
small samples of shared rankings. For the sake of transparency,
the individual calculation steps for this test are provided in the
data set [26]. We set the significance level α to 0.05. As the
test is conducted for two times for each metric respectively,
we use the Bonferroni corrected α = 0.05/2 = 0.025.

By calculating Cohen’s d as effect size, we find a visible
small difference in metric 1 and a visible medium difference
in metric 2. However, the p values show that these differences
have no statistical significance, probably due to a small sample.
Hence, we cannot reject the null hypotheses of H1 and H2.

To answer the research question, we have firstly marked the
relevant words in the answers of strengths and weaknesses.
After that, we have pattern coded the marked words: 1. Sum-
marize seven categories as different topics; 2. Code words as
advantage or disadvantage for a category; 3. Count occurrence



TABLE I
QUANTITATIVE RESULTS (TIME IN SECONDS)

Case 1 Case 2 Case 3 Case 4
Group A Video Video Screenshots Screenshots
P01 49 280 116 95
P03 87 323 265 133
P04 - - 128 112
P06 55 378 133 328
P07 58 226 45 141
P10 91 152 56 16
Group B Screenshots Screenshots Video Video
P02 113 108 100 133
P05 46 148 20 25
P08 45 300 123 122
P09 193 321 299 370
P11 30 71 242 83

Gray background means that the corresponding participant did
not select the right reason of the corresponding test case.
P04 has experienced technical issues for cases 1 and 2, so the
results are omitted.

TABLE II
RESULTS OF MANN-WHITNEY U TEST

Metric For Test Cases U p Cohen’s d
M1: Time taken for
watching and analysis

1 & 2 8 .4009 0.5
3 & 4 13 .7872 0.2

M2: # correct selections 1 & 2 7.5 .2207 0.8
3 & 4 10 .3173 0.5

of advantages and disadvantages for each documentation and
each category. Table III shows the coding result. We answer
RQ with Tab. III and the following descriptions. The category
Visualization is mentioned more than 40 times. Participants
mention more advantages than disadvantages for videos, while
more disadvantages than advantages for screenshots. Regard-
ing category Time, participants have the opposite tendency.
Long watching time is mentioned 10 times for video, while
short watching time 9 times for screenshots. We have also
observed opposite tendency in category Completeness. Videos
seem to show participants details from the GUI test, but
screenshots seem to lack details. In category Identification
& Navigation, participants mention that the clickable step
descriptions help navigation and the difficulty of locating
relevant positions by using videos. Participants meant that
the screenshots can help them to identify the problem more
quickly but make navigation more difficult by using screen-
shots. The complete coding is available in our dataset [26].

D. Threats to validity

In the following, we present threats to validity, categorized
according to Wohlin et al. [28].

In the study, participants watched videos and screenshots
and then compared them. The order of watching may have
an effect on perception and, therefore, on their feedback. To
minimize this threat to the construct validity, participants
watch one type for cases 1 and 2 and another type for cases
3 and 4 before the phase defect analysis (Fig. 3).

Participants would take time to learn how to use videos
or screenshots to find the reason of the reported defect. A

threat to the construct and conclusion validity is that the
time measurement would be not accurate. To mitigate that,
the experiment conductor taught participants how to use the
video player to watch videos and how to navigate through
screenshots in the phase of learning the task.

Another threat to time measurement is the familiarity of
the project. If participants already knew the TakeNote project
before the study, they could use less time analyzing the bug:
this threatens the conclusion validity. Participants must not
know this project before the study. We checked this when we
asked for their consent.

The quantitative results show visible differences in metric
1 and metric 2, but without the statistical significance. The
number of the participants and of the test cases in this study
could be negligible to achieve the statistical significance.
The generalization of the test results may be a threat to the
conclusion validity.

Test cases 1 and 4 are about true defects of the TakeNote
App. A participant could easily recognize the true defect
without watching the documentation (screenshots/video), if the
given requirement and the test case description (expected result
and real result) were very similar. To mitigate this threat to the
construct validity, we have used the Detailed FunctionalMAS-
TER template from Rupp et al. [30] to formulate a requirement.
The participants need to watch the screenshots or the video to
understand a given requirement. Only when they understand
the requirements, they can get familarized with the reported
defect and find the reason.

In choosing the reason of reported defects, we provide an
option “After looking the test-video/screenshots and the source
code carefully, I am still not sure.” We do not force participants
to choose a reason (true or false defect). Participants seem not
to guess a hypothesis because the experimenter encouraged
them to select their subjective option. This mitigate the threat
to the construct validity. Meanwhile, we can collect partici-
pants’ real choices and use this collected data to check RQ2
(conclusion validity).

E. Discussion

1) Comparison between both documentations: A reviewer
has pointed out that the screenshots seem to be a subset of the
video, because the video consists of frames, some of which
are exactly the screenshots. We argue that the screenshots and
the video are different media and viewers interact with them
differently. If the video was viewed by opening the frames as
screenshots, the subset relation would be true. However, the
screenshots are viewed in an image viewer, while the video
is viewed in a video player on the HTML page (Fig. 2). A
screenshot is captured automatically after the corresponding
step is conducted: this shows the end of the corresponding
step and the begin of the next step. Both documentations
provide with step definition: as windows title which shows
on the top of the image viewer (screenshots), as clickable
subtitles which shows under the video player (video). Hence,
both documentations present the test step in different ways.



TABLE III
ADVANTAGES AND DISADVANTAGES OF BOTH DOCUMENTATIONS

Category and meaning Type Frequency Typical example from participants

Visualization: Mentioned documentation
visualizes the test case run.

Video pro 20 It shows the user interactions clearly
contra 3 don’t cover shortcuts interaction

Screenshot pro 9 clear screenshots of buttons
contra 14 It’s not that clear what the SW User is doing.

Time: The time which participants will use the
mentioned documentation to watch or think.

Video pro 1 it may give more time to think about the source of issue
contra 10 it takes longer to watch

Screenshot pro 9 quick to watch
contra 1 it takes time to understand what happens

Completeness: Mentioned documentation
describe the test case run in a complete way.

Video pro 6 showing all the details from the workflow
contra 3 they might not be complete

Screenshot pro 4 Shows all the steps
contra 9 Missing out on details

Identification & Navigation: Mentioned
documentation helps participants identify the
problem or nagivate to the problem position.

Video pro 3 Clickable test steps helps navigation
contra 3 must click pause to see wished position

Screenshot pro 9 Giving an idea where to look quickly
contra 3 navigating takes more effort

Readability: The readability of mentioned
documentation

Video pro 0 -
contra 1 dark mode making difficult to read

Screenshot pro 3 more readable of the details on images
contra 0 -

Explanation: Mentioned documentation
explains the test case run.

Video pro 3 There is a text explanation at each video.
contra 1 I don’t know how the dark mode is activated.

Screenshot pro 1 Title of each screenshot helped me to understand
contra 5 Missing out on ... explanation

Follow: Participants follow the mentioned
documentation.

Video pro 3 It’s easier to follow the steps of the SW User.
contra 4 difficult to follow without the audio.

Screenshot pro 0 -
contra 1 Harder to follow the steps taken by the SW User.

Our study wanted to compare these two media and find any
difference in efficiency and effectiveness.

2) About test case 2: In Tab. I, we notice that six par-
ticipants made wrong selection (four of them were not sure)
of the reason for defect analysis of test case 2. The reported
defect of test case 2 is a false defect. The given requirement is
“As soon as the user changes editor preferences, the TakeNote
App shall be able to permanently store the updated preferences
as local storage in the Web browser.” In the test run, the
setting of “Sort by” is changed from Last updated to Date
Created. The misunderstanding from testers was two-fold:
First, they thought the settings should be reset after logout and
login again; second, they thought the notes should be sorted
alphabetically by default.

However, six participants are confused about the “Sort by”
setting of Date Created. P01 and P07 asked the experimenter
if the date is a day or time. P02, P06, P10, and P11 were
unsure if the “Sort by” setting of Date Created is descending
or ascending. The experimenter did not answer them these
questions before they made a decision, as participants can infer
from watching the given documentation, reading the source
code carefully, and thinking about that (as P08 did). The source
code (src\client\utils\notesSortStrategies.ts, available in our
dataset [26]) shows that the timestamp is used in the Date
Created sorting. Both documentations show that the newest
created note is ordered as the first one.

The complexity of this misunderstanding and the confusion
of the sorting function may be the reasons of following facts
of this case: 1. Four participants (P01, P02, P05, P03) were

unsure if the reported bug is a true bug; 2. All participants
(except P02, P09, and P11) use the most of time for test case
2 (See also Tab. I).

3) Audio in the test video: In our study, three participants
expressed their need for audio in the test video. P04 wrote
in test case 0 (the case for learning the task): “no audio (is
wished: description of the usage, more understandable if given
audio), someone may not concentrate on the video content
without audio”. P08 and P09 wrote similar opinions. This
is worth further investigating, if added audio as explanations
in the generated test video help developers understand a test
better.

4) Suitability of video in communication: Our results show
that videos and screenshots do not differentiate in effectiveness
and efficiency. However, we argue that the videos are more
suitable for communication in the development team. Cock-
burn [31] states that the video is more effective in “transferring
ideas” than the paper. For complex cases like our test case 2,
videos can show the test clearly (Visualization in Tab. III) and
completely (Completeness in Tab. III). A video shows what
really happened, while this information must be under some
cases inferred from static documentation. Using videos reduces
the effort of clarifying incorrect inference.

V. CONCLUSION AND FUTURE WORK

Developers cannot understand a static report of a GUI
defect. One reason of that is the report is missing dynamic
details. This work proposes to generate videos as a by-product
of GUI testing as supplements to static test reports (e.g., texts
and screenshots). The generated video is annotated with red



rectangles and linked with textual test descriptions. Testers
produce the video by running the test. Developers watch the
annotated video with clickable texts.

In our empirical study, we wanted to investigate if test
videos and screenshots differ in terms of efficiency and effec-
tiveness in understanding a GUI test. We also wanted to know
the opinions about these two documentations from developers.
According to the quantitative results, we cannot statistically
prove the difference between two documentations in efficiency
and cannot statistically prove the difference in effectiveness.
Our pattern coding results show that the each documentation
has its advantages and disadvantages. The frequency (Tab. III)
indicated that both documentation supplement with each other,
as a frequently mentioned advantage of a documentation can
be a frequently mentioned disadvantage of another documen-
tation. The frequently mentioned advantages in categories
Visualization, Completeness (Tab. III) confirm that the test
video helps developers understand GUI tests. Our videos as
a by-product of GUI testing approach provides a better way
to organize a test report. The report not only includes texts
and screenshots, but also videos which link with these texts:
Developers and testers can use this report to better understand
the GUI test.

The study results also show that the preferences of these
two documentations vary between the four test cases. We may
assume that the preference is dependent on the type of the
test case. We will analyze the collected preference reasons
in the interview to investigate this assumed dependence. Fur-
thermore, we will update the driver of screen capturing and
integrate this driver into the ScreenTracer.

ACKNOWLEDGMENT

This work is funded by Deutsche Forschungsgemeinschaft
(DFG) - Project number 289386339 (ViViUse). We thank the
reviewers for their valuable comments.

REFERENCES

[1] J. Aranda and G. Venolia, “The secret life of bugs: Going past the errors
and omissions in software repositories,” in 31st International Conference
on Software Engineering. IEEE, 2009.

[2] D. Wang, Q. Wang, Y. Yang, Q. Li, H. Wang, and F. Yuan, “‘Is It Really a
Defect?’ An Empirical Study on Measuring and Improving the Process
of Software Defect Reporting,” in 2011 International Symposium on
Empirical Software Engineering and Measurement. Banff: IEEE, Sep
2011.

[3] A. M. Memon, “GUI testing: pitfalls and process,” Computer, vol. 35,
no. 8, Aug. 2002.

[4] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What Makes a Good Bug Report?” IEEE Transactions on
Software Engineering, vol. 36, no. 5, Sep. 2010.

[5] M. Soltani, F. Hermans, and T. Bäck, “The significance of bug report
elements,” Empirical Software Engineering, vol. 25, no. 6, Nov 2020.

[6] A. Spillner, T. Roßner, M. Winter, and T. Linz, Praxiswissen Soft-
waretest: Testmanagement : Aus- und Weiterbildung zum Certified Tester
- Advanced Level nach ISTQB-Standard. Heidelberg: dpunkt, 2014.

[7] E. Dustin, J. Rashka, and J. Paul, Automated software testing: introduc-
tion, management, and performance. Reading, Mass.: Addison-Wesley,
1999.

[8] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshy-
vanyk, “Auto-completing bug reports for android applications,” in 10th
Joint Meeting on Foundations of Software Engineering. ACM, Aug
2015.

[9] O. Karras, C. Unger-Windeler, L. Glauer, and K. Schneider, “Video
as a by-product of digital prototyping: Capturing the dynamic aspect of
interaction,” in 25th International Requirements Engineering Conference
Workshops (REW). IEEE, 2017.

[10] O. Karras, Supporting Requirements Communication for Shared Un-
derstanding by Applying Vision Videos in Requirements Engineering.
Hannover: Logos Verlag Berlin GmbH, 2021.

[11] ——, “Software professionals’ attitudes towards video as a medium
in requirements engineering,” in International Conference on Product-
Focused Software Process Improvement. Springer, 2018.

[12] O. Brill, K. Schneider, and E. Knauss, “Videos vs. use cases: Can
videos capture more requirements under time pressure?” in Requirements
Engineering: Foundation for Software Quality, vol. 6182. Springer,
2010.

[13] K. Schneider, M. Busch, O. Karras, M. Schrapel, and M. Rohs, “Refining
vision videos,” in Requirements Engineering: Foundation for Software
Quality, vol. 11412. Essen: Springer, 2019.

[14] R. Pham, H. Holzmann, K. Schneider, and C. Bruggemann, “Beyond
plain video recording of GUI tests: Linking test case instructions
with visual response documentation,” in 7th International Workshop on
Automation of Software Test (AST). Zurich: IEEE, Jun. 2012.

[15] R. Pham, H. Holzmann, K. Schneider, and C. Brüggemann, “Tailoring
video recording to support efficient GUI testing and debugging,” Soft-
ware Quality Journal, vol. 22, no. 2, Jun. 2014.

[16] J. Shi and K. Schneider, “Creation of human-friendly videos for debug-
ging automated gui-tests,” in Testing Software and Systems. Springer,
2021, p. 141–147.

[17] M. A. Tandun, “Report-video production for quick bug-finding
in the web applications,” Hannover, Jan 2022, [Bachelor Thesis].
[Online]. Available: https://www.pi.uni-hannover.de/fileadmin/pi/se/
Stud-Arbeiten/2022/BA Tandun 2022.pdf

[18] J. Shi, K. Schneider, M. Tandun, and O. Karras, “Supplementary
material for evaluating screentracer among testers,” Jan 2023. [Online].
Available: https://zenodo.org/record/7522978

[19] Software Freedom Conservancy, “About Selenium,” https://www.
selenium.dev/about/, 2022, [Accessed Jun-2023].

[20] B. Chauvin, “Video reporting in ranorex studio,” https://www.ranorex.
com/blog/video-reporting/, 2020, [Accessed Jun-2023].

[21] M. Nass, E. Alegroth, and R. Feldt, “Augmented testing: Industry
feedback to shape a new testing technology,” in International Conference
on Software Testing, Verification and Validation Workshops (ICSTW).
Xi’an: IEEE, Apr 2019.

[22] O. Karras, A. Risch, and K. Schneider, “Interrelating Use Cases and
Associated Requirements by Links: An Eye Tracking Study on the
Impact of Different Linking Variants on the Reading Behavior,” in 22nd
International Conference on Evaluation and Assessment in Software
Engineering, 2018.

[23] O. Karras, A. Risch, and J. Klünder, “Linking Use Cases and Associated
Requirements: A Replicated Eye Tracking Study on the Impact of
Linking Variants on Reading Behavior,” Journal of Software Engineering
Research and Development, vol. 9, pp. 5–1, 2021.

[24] M. Nass, E. Alégroth, and R. Feldt, “On the Industrial Applicability of
Augmented Testing: An Empirical Study,” in International Conference
on Software Testing, Verification and Validation Workshops (ICSTW).
Porto: IEEE, 2020.

[25] K. Stapel, K. Schneider, D. Lübke, and T. Flohr, “Improving an industrial
reference process by information flow analysis: A case study,” in
Product-Focused Software Process Improvement. Springer, 2007.

[26] J. Shi, O. Karras, M. Obaidi, and M. Tandun, “Supporting Data
Set for Paper ‘Can Videos as a By-Product of GUI Testing Help
Developers Understand GUI Tests?’,” 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.8162396

[27] V. Basili and H. Rombach, “The tame project: towards improvement-
oriented software environments,” IEEE Transactions on Software Engi-
neering, vol. 14, no. 6, 1988.

[28] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer, 2012.

[29] J. Bortz and C. Schuster, Statistik für Human- und Sozialwissenschaftler,
ser. Springer-Lehrbuch. Springer, 2010. [Online]. Available: https:
//doi.org/10.1007/978-3-642-12770-0

[30] C. Rupp and die SOPHISTen, Requirements-Engineering und -
Management: das Handbuch für Anforderungen in jeder Situation,
7th ed., ser. Hanser eLibrary. München: Carl Hanser Verlag, 2021.

[31] A. Cockburn, Agile Software Development. Addison Wesley, 2001.

https://www.pi.uni-hannover.de/fileadmin/pi/se/Stud-Arbeiten/2022/BA_Tandun_2022.pdf
https://www.pi.uni-hannover.de/fileadmin/pi/se/Stud-Arbeiten/2022/BA_Tandun_2022.pdf
https://zenodo.org/record/7522978
https://www.selenium.dev/about/
https://www.selenium.dev/about/
https://www.ranorex.com/blog/video-reporting/
https://www.ranorex.com/blog/video-reporting/
https://doi.org/10.5281/zenodo.8162396
https://doi.org/10.1007/978-3-642-12770-0
https://doi.org/10.1007/978-3-642-12770-0

	Introduction
	Related Work
	Approach
	Video as a By-Product Approach
	Technical Implementation
	Video Generation
	Video Replay
	Limitation


	Evaluation
	Study Design
	Demographics
	Result and Analysis
	Threats to validity
	Discussion
	Comparison between both documentations
	About test case 2
	Audio in the test video
	Suitability of video in communication


	Conclusion and Future Work
	References

