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1 Introduction

A better understanding of string compactifications involving localized sources such as D-

branes or orientifold planes is an important task for string phenomenology. Unfortunately,

for most scenarios a full solution to the ten-dimensional equations of motion seems to be

out of reach, even in the supergravity approximation, because the involved differential

equations are too complex. On the other hand, commonly used procedures for simplifying

this task, such as a smearing of the localized sources over the compact space, may introduce

their own problems and need not necessarily capture essential features of the true solution

(see e.g. [1–3]). It would therefore be desirable to be able to compute important observ-

ables such as the cosmological constant without having to know the full ten-dimensional

dynamics or rely on simplifications such as smearing.

In the first part of this work, we will show, in the context of type II supergravity coupled

to D-branes and O-planes, that such a method often exists, building upon previous work

that had already pointed towards this possibility [4–6]. In particular, we will argue that
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the cosmological constant, Λ, can often be expressed as a sum of terms that are due to the

action of localized sources,

Λ ∝
∑

p

cp

(

S
(p)
DBI + S

(p)
CS

)

, (1.1)

where S
(p)
DBI and S

(p)
CS are the on-shell evaluated DBI and Chern-Simons actions of the Dp-

branes and/or Op-planes present in the corresponding supergravity solution, and cp are

p-dependent constants. Thus, in compactification scenarios where our reasoning holds, Λ

is entirely specified by the classical boundary conditions of some of the bulk fields at the po-

sitions of the sources and independent of the details of the ten-dimensional bulk dynamics.

Such a property was noticed before in [4, 5]. Using a single scaling symmetry of the

action of different supergravity theories, the authors were able to relate Λ to boundary

terms involving the supergravity fields that have to be evaluated in the near-source region.

They pointed out, however, that topologically nontrivial background fluxes can also give

contributions that arise from the patching of gauge charts. The explicit evaluation of these

subtle flux and all source contributions together with their gauge dependence for a general

type II compactification make up the first part of our paper. Furthermore, we show that

the flux contributions actually vanish in many interesting examples such that the only

contributions to the cosmological constant are due to the action of D-branes and O-planes.

From a somewhat different angle, also the results of [6] suggested such a behavior.

There, it was shown that the cosmological constant in solutions of perturbative heterotic

string theory is zero to all orders in α′, unless one introduces spacetime-filling fluxes or

considers string loop or non-perturbative corrections. Since the argument only used the

scaling properties of the effective potential with respect to the dilaton, it was then con-

jectured that a similar reasoning should also be applicable for the type II string, with the

exception that then also D-brane and O-plane sources should give a contribution to Λ. For

classical solutions of type II supergravity, this suggests that, in absence of spacetime-filling

flux, any non-zero contribution to Λ must be generated by terms that are due to localized

sources. It turns out, however, that the intuitive scaling argument of [6] is complicated in

the type II string by a subtlety related to the RR fields: in a frame, where the bulk action

scales uniformly with the dilaton, non-trivial couplings of the RR potentials with deriva-

tives of the dilaton of the form dφ ∧ C ∧ F arise. These couplings are only present in the

type II string, not in the heterotic string. In the presence of background fluxes, they can

be shown to yield non-zero contributions to Λ, thus spoiling the argument sketched above.

As we will show in this paper, however, it remains true in many cases that Λ is com-

pletely determined by a sum of source terms. The reason is that classical type II (and also

heterotic) supergravity exhibits a two-parameter scaling symmetry, related to the dila-

ton scaling and the mass scaling of the classical action [7, 8]. Both the scaling symmetry

exploited in [5] and the one implicitly used in [6] are special cases of this more general sym-

metry. As we will show below, it ensures that one can often find a particular combination

of the equations of motion such that all bulk terms are eliminated from the equation deter-

mining Λ, leaving a contribution entirely from localized sources. The cosmological constant

is then indeed given by a sum of source terms as initially claimed. More precisely, this
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can be shown to hold for maximally symmetric compactifications of type II supergravity

involving sources of arbitrary dimension and at most H flux and one type of RR flux.

In the second part of this work, we discuss an application of our result to the idea of

placing D3-branes at the bottom of the Klebanov-Strassler solution [9–11], a setup that

has been suggested for the construction of meta-stable de Sitter vacua in string theory

starting with [12]. The backreaction of D3-branes on the Klebanov-Strassler geometry has

recently been subject of intense discussions [13–23]. Part of this debate concerns the com-

putational evidence for a singularity in fields that do not directly couple to the anti-branes

as it emerged in several approaches.

More precisely, the presence of this singularity has so far been demonstrated in simpli-

fied setups that use certain approximations. In earlier works on the subject, this involved

a partial smearing of the branes and a linearization of the equations of motion around the

Klebanov-Strassler background [14–17]. [18] therefore also discusses the possibility that the

singularity might just be an artifact of perturbation theory and disappear in the full setup

(see however [19]). Although it could recently be shown in [20] that also the non-linear

equations of motion necessarily lead to a singular solution, the analysis still required par-

tially smeared branes. An analysis of the fully localized case could only be carried out for

a simplified toy model with D6-branes [3, 24, 25], which is related by T-duality to partially

smeared D3-branes on R
3 × T 3 [19]. In this simplified setup, it was shown that fully lo-

calized branes in a non-BPS flux background lead to a singularity in the energy density of

the H flux, which is not directly sourced by the D6-branes.

As our result from the first part of the paper relates the near-brane behavior of the

supergravity fields to the effective cosmological constant, it is natural to try to apply this

to D3-branes in the KS background. We show that under a few assumptions this would

indeed be possible and confirm the presence of a non-standard singularity at the D3-brane

similar to the one discussed before, but now without the approximation of any smearing

and by using the full non-linear supergravity equations.

This paper is organized as follows. In section 2, we establish our notation and con-

ventions and state the equations of motion of type II supergravity used in the following

sections. In section 3, we discuss the two scaling symmetries of classical type II supergrav-

ity. We then show that the cosmological constant can be written as a sum of source terms

and a term involving topological background fluxes that can in many cases be gauged away

by exploiting a combination of the symmetries. In section 4, we present several explicit

examples of compactifications of type II supergravity and show how our framework can be

applied to them in order to obtain an expression for the cosmological constant in terms of

the actions of localized sources. In section 5, we consider the backreaction of D3-branes on

the Klebanov-Strassler throat glued to a compact space in type IIB string theory and dis-

cuss under what assumptions our previous results would imply the existence of a singularity

in the energy densities of H and F3. We conclude with some comments in section 6.
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2 Type II supergravity

We start by establishing our notation and conventions.1 In the tree-level supergravity ap-

proximation, the low energy effective action of type II string theory in Einstein frame can

be written as

S = Sbulk + Sloc (2.1)

with

Sbulk = SNSNS + SRR =

∫

⋆10

{

R− 1

2
|dφ|2 − 1

2
e−φ|H|2 − 1

4

∑

n

e
5−n
2 φ|Fn|2

}

. (2.2)

Here, R is the curvature scalar of the metric g, ⋆10 denotes the ten-dimensional Hodge

operator associated with g, φ is the dilaton, H is the NSNS 3-form field strength, and Fn

are the RR field strengths. For an n-form A, the norm |A|2 is defined by

|A|2 ⋆101 =
1

n!
Aµ1...µnA

µ1...µn ⋆101 = (⋆10A) ∧A. (2.3)

We often consider warped product spaces M(10) = M(d) ×w M(k), where ⋆d and ⋆k then

denote the Hodge operators of the corresponding warped metric factors. For factorizing

forms Ap ∧ Bq, where Ap is a p-form on M(d) and Bq a q-form on M(k), these Hodge

operators satisfy the useful identity ⋆10(Ap ∧Bq) = (−1)p(k−q)(⋆dAp)∧ (⋆kBq). In general,

we have (⋆D)
2Ap = (−1)p(D−p)+tAp for any p-form on a D-dimensional manifold with t

timelike directions.

Throughout this paper, we use the democratic formulation [27], so that the sum over

the RR field strengths in (2.2) also includes the dual fields with n > 5. The field strengths

are related to one another by the duality relations

e
5−n
2 φFn = ⋆10 σ(F10−n), (2.4)

which have to be imposed on-shell. The operator σ here acts on an n-form ωn like

σ(ωn) = (−1)
n(n−1)

2 ωn. (2.5)

Also notice that, in (2.2), we have set 2κ210 = 1, so that the Planck mass has been absorbed

into the definition of the metric.

The term Sloc denotes the action of localized sources corresponding to either Dp-branes

or Op-planes and reads2

Sloc =
∑

p

S
(p)
loc =

∑

p

(

S
(p)
DBI + S

(p)
CS

)

(2.6)

1We use the conventions of [26] except that the sign of B is flipped.
2We do not include the NSNS 2-form in the DBI action here, because in all the examples we discuss in

detail the sources are either point-like in the internal space or they are wrapped O-planes, so that a B-field

along the world volume cannot occur. Likewise we do not consider D-branes with world volume fluxes in our

examples and hence also omit them in the DBI action. It is easy to check that omitting the NSNS 2-form in

the DBI action does not lead to a missing term in the H-equation of motion, because δSDBI/δBµν also van-

ishes if B and F are set to zero after the field equations are derived (cf. also the explicit expressions in [28]).

– 4 –



J
H
E
P
0
9
(
2
0
1
3
)
1
2
3

with

S
(p)
DBI = ∓µp

∫

⋆p+1e
p−3
4 φ ∧ σ(δ9−p), S

(p)
CS =

{+ µp

∫

〈C ∧ e−B〉p+1 ∧ σ(δ9−p)

− µp

∫

Cp+1 ∧ σ(δ9−p)

, (2.7)

where the upper line is for Dp-branes and the lower line for Op-planes, and µp > 0 is

the absolute value of the Dp-brane/Op-plane charge. For Dp-branes and Op-planes, the

Chern-Simons terms would have the opposite sign. ⋆p+1 is the Hodge operator on the (p+1)-

dimensional world volume, Σ, of the source in question, and we define δ9−p = σ(⋆9−p1)δ(Σ),

where ⋆9−p1 is the (9− p)-dimensional volume form transverse to the source (defined such

that ⋆101 = ⋆p+11 ∧ ⋆9−p1) and δ(Σ) is the delta distribution with support on Σ. We

also use the polyform notation in (2.7), i. e. C =
∑

nCn−1 denotes the sum of all electric

and magnetic RR potentials that appear in type IIA or type IIB supergravity, and e−B is

defined as a power series of wedge products. The symbol 〈· · · 〉p+1 denotes a projection to

the form degree p+ 1, i.e.,

〈C ∧ e−B〉p+1 = Cp+1 − Cp−1 ∧B +
1

2
Cp−3 ∧B ∧B − . . . (2.8)

Throughout this paper, we restrict ourselves to warped compactifications to d ≥ 4

dimensions that preserve maximal symmetry in the non-compact d-dimensional spacetime.

Accordingly, we only consider spacetime-filling sources extending in p+ 1 ≥ d dimensions.

Furthermore, all fields are assumed to depend only on the internal coordinates xm. The

form fields are allowed to have legs in external directions only if they are spacetime-filling,

in other words they have to be of rank d or higher. All other form fields are purely internal.

We assume a warped metric of the form

ds210 = gµνdx
µdxν + gmndx

mdxn, gµν = e2Ag̃µν , (2.9)

where A is the warp factor and g̃µν is the unwarped d-dimensional metric corresponding

to a Minkowski or (A)dS spacetime. We will also put a tilde on quantities such as Hodge

operators, covariant derivatives or contractions of tensors if they are constructed using the

unwarped metric instead of the warped one.

We now list the relevant equations of motion. The trace of the external Einstein

equation reads

Rd =
d

2

(

L −
∑

p

L(p)
CS

)

+
d

4

∑

n

e
5−n
2 φ|F ext

n |2, (2.10)

where Rd = Rµνg
µν is the d-dimensional Ricci scalar and we denote the spacetime-filling

RR field strengths by F ext
n . L is the Lagrangian including all bulk terms and the DBI and

CS terms due to the localized sources, and L(p)
CS are the CS parts of the source Lagrangian.

For the warped metric (2.9), one finds

Rd =
2d

d− 2
e−2AΛ− e−dA∇̃2edA, (2.11)
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where Λ is the d-dimensional cosmological constant. Substituting this into (2.10) and

integrating over ten-dimensional spacetime then yields

8vV
d− 2

Λ = 2
(

S −
∑

p

S
(p)
CS

)

+
∑

n

∫

⋆10 e
5−n
2 φ|F ext

n |2, (2.12)

where we have introduced the volume factors

v =

∫

⋆̃d1, V =

∫

⋆10−d e
(d−2)A. (2.13)

The Bianchi identities for the RR fields are

d−HF + j = 0, (2.14)

where F =
∑

n Fn is the polyform containing the sum over all RR field strengths, d−H =

d −H∧ is the twisted exterior derivative, and j is the polyform containing the sum over

all source contributions of the different Bianchi identities, where j =
∑

p µp〈δ ∧ eB〉9−p for

D-branes and j = −∑

p µpδ9−p for O-planes. Finally, we state the dilaton equation,

∇2φ = −1

2
e−φ|H|2 +

∑

n

5− n

8
e
5−n
2 φ|Fn|2 ±

∑

p

p− 3

4
µpe

p−3
4 φδ(Σ), (2.15)

and the equation of motion and Bianchi identity for H,

d
(

e−φ ⋆10 H
)

− 1

2
〈F ∧ σ(F )〉8 = 0, dH = 0. (2.16)

3 The cosmological constant as a sum of source terms

In this section, we will introduce two independent scaling symmetries satisfied by the

action (2.1) and use them to derive an expression for the cosmological constant Λ in terms

of the (on-shell evaluated) action of localized sources.

3.1 Two scaling symmetries

It is known since the 1980s [7] that the terms in the low energy effective action of string

theory must satisfy simple scaling properties when the dilaton or equivalently the string

coupling constant is scaled. This property is inherited from the simple coupling of the

dilaton to the world sheet curvature in string perturbation theory and is manifest in the

string frame of the 10D effective action. In Einstein frame, the scaling does not only affect

the dilaton φ, but also the metric gMN and the RR (n−1)-forms Cn−1 of the type II theories:

e−φ 7→ se−φ, gMN 7→
√
sgMN , Cn−1 7→ sCn−1, (3.1)

where s is a scaling parameter. This then leads to

S(χ) 7→ sχS(χ), (3.2)

– 6 –
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where χ is the Euler characteristic of the world sheet from which the contribution, S(χ),

to the effective action was derived. For a standard low energy effective action consisting

of the classical two-derivative action for the bulk supergravity fields, Sbulk, and the lowest

order action due to the presence of localized sources, Sloc, we then get

S = Sbulk + Sloc 7→ s2Sbulk + sSloc. (3.3)

This can be verified using (3.1) in (2.2) and (2.7) or simply by using the corresponding

actions in the string frame. Thus, in absence of localized sources, the effect of (3.1) is to

rescale the tree-level supergravity action by an overall factor s2. The transformations (3.1)

are then a symmetry of the theory, since they leave the equations of motion invariant.

A second scaling symmetry [8] can be obtained from the mass dimension of the fields,

which can be determined from the fact that the effective action is a derivative expansion

and has mass dimension zero. Using that the mass dimension of the coordinates is −1

and the mass dimension of a derivative is +1, one can count the number of derivatives

of a given term in the action and the number of dimensions that are integrated over to

determine the mass dimension of the fields. If one then scales the fields in the effective

action according to their mass dimension but leaves the coordinates unscaled, one obtains

a non-trivial scaling of the terms in the action. The corresponding scaling of the bosonic

fields in type II string theory is3

gMN 7→ t−2gMN , Cn−1 7→ t−(n−1)Cn−1, B 7→ t−2B, (3.4)

where t is another scaling parameter. This yields the following scaling of the terms in the

low energy action

SD
i 7→ ti−DSD

i , (3.5)

where D denotes the number of dimensions that are integrated over (usually D = 10,

but D is less than ten for source terms) and i denotes the number of derivatives of the

terms involved. For a two-derivative bulk action and zero-derivative source terms with

(p+ 1)-dimensional world volume, we thus get

S = Sbulk + Sloc 7→ t−8Sbulk +
∑

p

t−p−1S
(p)
loc , (3.6)

as can be verified using (3.4) in (2.2) and (2.7). In absence of localized sources, the trans-

formations (3.4) are a symmetry, since they rescale the bulk action by an overall factor t−8

and thus leave the equations of motion invariant. Together with (3.3), this implies that

the type II supergravity action at tree-level has two global scaling symmetries, which are

explicitly broken by terms that are due to the presence of localized sources.

3This symmetry is sometimes called Trombone symmetry in the context of supergravity, see for exam-

ple [29]. Note that in our conventions the exponent of t in (3.4) actually corresponds to the length (i.e. the

inverse mass) dimension of the field.
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3.2 The method

As mentioned in the introduction, the above scaling symmetries can often be used to derive

an expression for the cosmological constant Λ in terms of the on-shell action of localized

sources. In those cases where this is possible, Λ is thus determined by the boundary

conditions of some of the bulk supergravity fields at the positions of the sources and in-

dependent of the details of the dynamics in the bulk. We will argue below that this is

possible for compactifications that involve at most NSNS H flux and not more than one

type of RR flux. This extends the recent work [5] by an explicit evaluation of the general

flux contribution and the use of a second scaling symmetry to gauge them away in the

above-mentioned cases. The resulting simplified expression for the cosmological constant

in terms of on-shell brane and O-plane actions can then be applied to several interesting

type II flux compactifications, as we discuss in the remainder of the paper.

The strategy for deriving our expression for Λ is as follows. At first, the scaling sym-

metries are used to derive an expression for the action (2.1) that holds on-shell. This

on-shell expression can then be substituted into the integrated Einstein equation (2.12),

which, as we will show, eliminates the dependence of the equation on the bulk fields up

to certain flux terms and yields the desired result for Λ. Before we discuss how to derive

the on-shell action in the general case, let us at first review the basic principle [5] using a

simple example. Consider an action S[ψi] that depends on a number of fields ψi and that

satisfies a scaling symmetry,

S[τkiψi] = τkS[ψi], (3.7)

where the scaling parameter τ is a real number, and k is assumed to be non-vanishing. We

can then take the τ derivative of (3.7) to obtain

∫

∑

i

kiτ
ki−1ψi

δS[τkiψi]

δ(τkiψi)
= kτk−1S[ψi], (3.8)

where we have written the result in terms of the the usual functional derivative (which for

derivative terms implicitly involves partial integrations). Evaluating the equation at τ = 1

and using the fact that the fields satisfy the equations of motion δS[ψi]/δψi = 0, we then

find that the left-hand side of (3.8) vanishes and

S[ψi] = 0 (3.9)

on-shell.

In deriving (3.9), however, we made two simplifications that do in general not hold in

the context of string compactifications. The right-hand side of the equation is therefore

often more complicated than in this simple example. First, we assumed that all terms in

the action S[ψi] scale uniformly with τ . When we identify τ with the scaling parameters

s and t of the previous subsection, this is then not true in string theory when localized

sources are included, as can be seen from (3.3) and (3.6).4 Second, when we evaluated

dS[τkiψi]/dτ to arrive at (3.8), we had to integrate by parts all those terms in S[τkiψi]

4The assumption would also break down if one includes, e.g., α′ or loop corrections.
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that involve derivatives of ψi. In string theory, however, many compactifications involve

the presence of non-trivial background fluxes. The corresponding NSNS and/or RR field

strength(s) then have a non-exact part such that, globally, they cannot be written in terms

of a gauge potential. Instead, their gauge potentials are only locally defined. Thus, total

derivatives involving the NSNS or RR gauge potentials do not necessarily integrate to zero

anymore but may involve non-trivial contributions from patches of different gauge charts,

which would yield an extra contribution when one integrates by parts. When we repeat

the above calculation for the general action (2.1), we therefore expect that the right-hand

side of (3.9) receives two contributions: one contribution due to the presence of localized

sources and another one due to non-trivial background fluxes.

In order to account for the possibility of flux, we explicitly divide the NSNS and RR

field strengths into a flux part, which is closed but not exact, and a fluctuation, which is

exact and given in terms of a globally defined gauge potential. For H, we thus write

H = dB +Hb, (3.10)

where Hb denotes the background flux and B is the fluctuating globally defined NSNS po-

tential. Since Hb is closed, the Bianchi identity dH = 0 is satisfied such that our definition

is consistent.5

For the RR field strengths, separating off the non-exact part is more subtle. This is

related to the fact that their Bianchi identities are more complicated and, in particular,

that some of them receive contributions from localized sources. Since we only consider

spacetime-filling sources in this paper, they enter the Bianchi identities as delta forms

whose legs are always in some of the internal directions. Thus, a source term can only

show up in the Bianchi identity for the purely internal part of the corresponding RR

field strength. It is therefore convenient to split the polyform F =
∑

n Fn into a part

F int =
∑

n F
int
n , which contains all RR field strengths that are purely internal and may

have a source term in their Bianchi identity, and a part F ext =
∑

n F
ext
n , which contains

all RR field strengths that are spacetime-filling (and possibly also have legs in the internal

part) and, accordingly, do not have a source term in their Bianchi identity,

F = F int + F ext. (3.11)

For F ext, the Bianchi identities (2.14) then simplify to

d−HF
ext = 0. (3.12)

This allows us to make the ansatz

F ext = d−HC
ext + eB ∧ F b, (3.13)

where F b is a d−Hb-closed but non-exact polyform containing the sum over the spacetime-

filling background fluxes and Cext is a polyform containing the sum over the spacetime-

filling RR potentials. In a (maximally symmetric) type IIB compactification to 4 dimen-

sions, for example, we would have F b = F b
5 +F b

7 +F b
9 and Cext = Cext

4 +Cext
6 +Cext

8 , since

5We do not consider compactifications involving NS5-branes in this paper, i.e. the Bianchi identity for

H does not contain a source term.
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only forms of rank 4 or higher would be allowed to be spacetime-filling. One can verify

that (3.13) solves the Bianchi identities (3.12) and is therefore a consistent ansatz for the

field strengths F ext.

The Bianchi identities of the internal field strengths, F int, however, may contain source

terms such that these field strengths can in general not be written in a way similar to (3.13)

everywhere on the compact space. We will circumvent this problem in this paper by simply

expressing, at the level of the equations of motion, F int in terms of their dual field strengths

F ext, which then in turn can be expressed in terms of (3.13). If, for example, F3 = F int
3 is

internal, we can express it in terms of the spacetime-filling F7 = F ext
7 via the duality relation

F int
3 = −e−φ ⋆10 F

ext
7 and then use (3.13) to split F ext

7 into an exact and a non-exact part.6

Finally, let us note that, since we put the non-exact parts of the NSNS and RR field

strengths into Hb and F b, we can assume that the gauge potentials B and Cext are globally

defined. This implies that total derivatives involving B and Cext integrate to zero on a

compact space, which will be used below. It should also be mentioned that, under the

scalings (3.1) and (3.4), the flux terms Hb and F b behave in the same way as the corre-

sponding gauge potentials do. This follows from the fact that the mass dimension and the

coupling to the dilaton is the same for the exact and the non-exact parts of the NSNS and

RR field strengths.

3.3 On-shell action and cosmological constant

Let us now discuss how to derive the on-shell expression for the action (2.1) that will later

be used in the integrated Einstein equation (2.12) to obtain our result for Λ. Contrary to

the simple example sketched in the previous subsection, the calculation is rather involved if

one considers the general case including sources and fluxes. Let us therefore note that there

is an alternative way to obtain our result, which only uses the equations of motion instead

of exploiting the scaling symmetries. This second derivation may serve as a double-check

of our results and is detailed in appendix A. In the following, we will continue to discuss

the first method, using the scaling symmetries. The reader who is less interested in the

technical details of the derivation may also jump directly to (3.33) and the subsequent

discussion, where we present our result for Λ.

Let τ denote the scaling parameter, where τ equals s if we consider the dilaton scal-

ing (3.1) and t in case of the mass scaling (3.4). Moreover, we will use primes to denote the

τ -transformed fields and the corresponding τ -transformed action. Thus, if τ = s, we have,

for example, g′MN =
√
sgMN , and if τ = t, we have g′MN = t−2gMN . According to (3.3)

and (3.6), the action (2.1) then scales as

S′ = S′
bulk + S′

loc = τkSbulk +
∑

p

τ lpS
(p)
loc , (3.14)

6A subtlety occurs for F5, which is self-dual, and F4, which can have both internal and spacetime-filling

components in compactifications to 4 dimensions. In these cases, only the internal components F int
4 , F int

5

can have a source term in the Bianchi identity. We therefore express those in terms of their duals F ext
6 ,

F ext
5 , which can in turn be written in terms of (3.13).
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where k = 2, lp = 1 for τ = s and k = −8, lp = −p− 1 for τ = t. Taking the τ derivative

and evaluating the equation at τ = 1, we find

dS′
bulk

dτ

∣

∣

∣

∣

τ=1

+
dS′

loc

dτ

∣

∣

∣

∣

τ=1

= kSbulk +
∑

p

lpS
(p)
loc . (3.15)

We now proceed as in the simple example discussed in section 3.2: we first evaluate the

terms on the left-hand side of the equation and integrate by parts to express them in terms

of a functional derivative of the action with respect to the fields. We then substitute the

equations of motion to simplify the expressions.

The first term on the left-hand side of (3.15) yields7

dS′
bulk

dτ

∣

∣

∣

∣

τ=1

=

∫
[

δSbulk
δgMN

dg′MN

dτ
+
δSbulk
δφ

dφ′

dτ
+
δSNSNS

δH
∧ dH ′

dτ
+

〈

δSRR

δF
∧ dF ′

dτ

〉

10

]
∣

∣

∣

∣

τ=1

,

(3.16)

where we have implicitly used partial integration to write the first two terms in the inte-

grand as functional derivatives of Sbulk with respect to the metric and the dilaton. These

functional derivatives are equivalent to the variation of the bulk action, which will later

allow us to use the equations of motion to simplify the expression. Similarly, we should

also rewrite the remaining two terms in above equation as variations with respect to the

NSNS and RR potentials. This is more involved since H and F may contain flux (cf. (3.10)

and (3.13)), and so we will consider these terms separately later. Let us at first evaluate

the dS′
loc/dτ term in (3.15),

dS′
loc

dτ

∣

∣

∣

∣

τ=1

=

∫
[

δSloc
δgMN

dg′MN

dτ
+
δSloc
δφ

dφ′

dτ
+

〈

δSloc
δC

∧ dC ′

dτ

〉

10

+
δSloc
δB

∧ dB′

dτ

]
∣

∣

∣

∣

τ=1

=

∫
[

δSloc
δgMN

dg′MN

dτ
+
δSloc
δφ

dφ′

dτ

]∣

∣

∣

∣

τ=1

+
∑

p

dS
′(p)
CS

dτ

∣

∣

∣

∣

τ=1

. (3.17)

Since Sloc does not depend on any field derivatives but only on the fields themselves, we

did not have to integrate by parts here. We can now combine (3.16) and (3.17) and use

the equations of motion δS/δgMN = δS/δφ = 0 to obtain

dS′
bulk

dτ

∣

∣

∣

∣

τ=1

+
dS′

loc

dτ

∣

∣

∣

∣

τ=1

=

∫
[

δSNSNS

δH
∧ dH ′

dτ
+

〈

δSRR

δF
∧ dF ′

dτ

〉

10

]
∣

∣

∣

∣

τ=1

+
∑

p

dS
′(p)
CS

dτ

∣

∣

∣

∣

τ=1

.

(3.18)

The two terms involving δH and δF are evaluated as follows. Substituting (3.10) into

the δSNSNS/δH term in (3.18), we can integrate by parts to obtain

∫

δSNSNS

δH
∧ dH ′

dτ

∣

∣

∣

∣

τ=1

=

∫
[

d
δSNSNS

δH
∧ dB′

dτ
+
δSNSNS

δH
∧ dH ′b

dτ

]∣

∣

∣

∣

τ=1

=

∫
[

δSNSNS

δB
∧ dB′

dτ
+
δSNSNS

δH
∧ dH ′b

dτ

]
∣

∣

∣

∣

τ=1

. (3.19)

7We define functional derivatives with respect to form fields, A, such that δS =
∫

δS
δA

∧ δA.
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The δSRR/δF term in (3.18) can be computed in a similar fashion but is more complicated

due to the subtleties explained in section 3.2. We first use (3.11) and write

∫
〈

δSRR

δF
∧ dF ′

dτ

〉

10

∣

∣

∣

∣

τ=1

=

∫
〈

δSRR

δF ext
∧ dF ′ext

dτ
+
δSRR

δF int
∧ dF ′int

dτ

〉

10

∣

∣

∣

∣

τ=1

. (3.20)

We now have to replace all RR field strengths F int
n by their dual field strengths F ext

10−n

in order to be able to write them in terms of the globally defined gauge potentials Cext

using (3.13), which in turn will allow us to integrate by parts in (3.20). Using the duality re-

lations (2.4) as well as the scalings (3.1) and (3.4), we find for the two cases τ = s and τ = t:

∫
〈

δSRR

δF
∧ dF ′

ds

〉

10

∣

∣

∣

∣

s=1

=
∑

n

∫
(

δSRR

δF ext
n

∧ F ext
n +

δSRR

δF int
n

∧ F int
n

)

=
∑

n

∫
(

δSRR

δF ext
n

∧ F ext
n − δSRR

δF ext
10−n

∧ F ext
10−n

)

= 0, (3.21)
∫

〈

δSRR

δF
∧ dF ′

dt

〉

10

∣

∣

∣

∣

t=1

=
∑

n

(1− n)

∫
(

δSRR

δF ext
n

∧ F ext
n +

δSRR

δF int
n

∧ F int
n

)

=
∑

n

(1− n)

∫
(

δSRR

δF ext
n

∧ F ext
n − δSRR

δF ext
10−n

∧ F ext
10−n

)

=
∑

n

(10− 2n)

∫

δSRR

δF ext
n

∧ F ext
n . (3.22)

These two expressions can now be rewritten in a way that will become convenient further

below. In order to do so, we again exploit the scalings (3.1) and (3.4) and make use of the

identity δSRR/δF
ext
n ∧ F ext

n = −1
2 ⋆10 e(5−n)φ/2|F ext

n |2, which can be derived from (2.2). We

thus find
∫

〈

δSRR

δF
∧ dF ′

dτ

〉

10

∣

∣

∣

∣

τ=1

= 2

∫
〈

δSRR

δF ext
∧ dF ′ext

dτ

〉

10

∣

∣

∣

∣

τ=1

− 2k

∫
〈

δSRR

δF ext
∧ F ext

〉

10

− k

2

∑

n

∫

⋆10 e
5−n
2 φ|F ext

n |2, (3.23)

where k = 2 for τ = s and k = −8 for τ = t as in (3.14).

We now integrate by parts on the right-hand side of equation (3.23). Taking into

account (3.10) and (3.13), this yields8

∫
〈

δSRR

δF ext
∧ dF ′ext

dτ

〉

10

∣

∣

∣

∣

τ=1

8The factor 1
2
that appears when rewriting δSRR/δC

ext in terms of δS/δCext and δSloc/δC
ext is related

to a subtlety regarding the variation of the CS action of the RR fields. One only obtains the correct

equations of motion if one takes the coupling of the RR fields to the sources as being half the coupling that

one would get from the “naive” variation of the action. One can think of this as being due to the fact that

one half of
∑

p S
(p)
CS represents an electric coupling of the RR fields to the sources, whereas the other half

is due to a magnetic coupling of the dual RR fields to the sources. This subtlety is known in the literature

and has, for example, been discussed in footnote 6 of [10].
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=

∫
〈

δSRR

δF ext
∧
(

d−H
dC ′ext

dτ
+eB ∧ dF ′b

dτ
−d(dB′+H ′b)

dτ
∧ Cext+

dB′

dτ
∧ eB ∧ F b

)〉

10

∣

∣

∣

∣

τ=1

=

∫
〈

δSRR

δCext
∧ dC ′ext

dτ
+
δSRR

δF ext
∧
(

eB ∧ dF ′b

dτ
+
δF ext

δB
∧ dB′

dτ
+
δF ext

δH
∧ dH ′b

dτ

)〉

10

∣

∣

∣

∣

τ=1

=

∫
〈(

δS

δCext
− 1

2

δSloc
δCext

)

∧ dC ′ext

dτ
+

1

2

δSRR

δB
∧ dB′

dτ

+
δSRR

δF ext
∧
(

eB ∧ dF ′b

dτ
+
δF ext

δH
∧ dH ′b

dτ

)〉

10

∣

∣

∣

∣

τ=1

=

∫
〈(

δS

δCext
− 1

2

δSloc
δCext

)

∧ dC ′ext

dτ
+

1

2

(

δS

δB
− δSNSNS

δB
− δSloc

δB

)

∧ dB′

dτ

+
δSRR

δF ext
∧
(

eB ∧ dF ′b

dτ
+
δF ext

δH
∧ dH ′b

dτ

)〉

10

∣

∣

∣

∣

τ=1

, (3.24)

where we also used

2

〈

δSRR

δF ext
∧ δF ext

δB

〉

8

=
〈

F ext ∧ σ(F int)
〉

8
− δSloc

δB
=
δS

δB
− δSNSNS

δB
− δSloc

δB
=
δSRR

δB
, (3.25)

which can be derived using (2.2), (2.16), (3.10) and (3.13). With the equations of motion,

δS/δCext = δS/δB = 0, one finally obtains

∫
〈

δSRR

δF ext
∧ dF ′ext

dτ

〉

10

∣

∣

∣

∣

τ=1

= −1

2

∑

p

dS
′(p)
CS

dτ

∣

∣

∣

∣

τ=1

− 1

2

∫

δSNSNS

δB
∧ dB′

dτ

∣

∣

∣

∣

τ=1

+

∫
〈

δSRR

δF ext
∧
(

eB ∧ dF ′b

dτ
+
δF ext

δH
∧ dH ′b

dτ

)〉

10

∣

∣

∣

∣

τ=1

.

(3.26)

Evaluating this for τ = s using (3.1) then also implies

∫
〈

δSRR

δF ext
∧ F ext

〉

10

= −1

2

∑

p

S
(p)
CS +

∫
〈

δSRR

δF ext
∧ eB ∧ F b

〉

10

. (3.27)

Substituting (3.26) and (3.27) into (3.23) then leads to

∫
〈

δSRR

δF
∧ dF ′

dτ

〉

10

∣

∣

∣

∣

τ=1

=−
∑

p

dS
′(p)
CS

dτ

∣

∣

∣

∣

τ=1

+ k
∑

p

S
(p)
CS −

∫

δSNSNS

δB
∧ dB′

dτ

∣

∣

∣

∣

τ=1

+2

∫
〈

δSRR

δF ext
∧
(

eB∧dF ′b

dτ
−k eB∧F b+

δF ext

δH
∧dH ′b

dτ

)〉

10

∣

∣

∣

∣

τ=1

− k

2

∑

n

∫

⋆10 e
5−n
2 φ|F ext

n |2. (3.28)

Putting everything together, we now use (3.28) together with (3.19) in (3.18) to arrive

at
[

dS′
bulk

dτ
+

dS′
loc

dτ

]

τ=1

=k
∑

p

S
(p)
CS − k

2

∑

n

∫

⋆10 e
5−n
2 φ|F ext

n |2 +
∫

δSNSNS

δH
∧ dH ′b

dτ

∣

∣

∣

∣

τ=1
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+2

∫
〈

δSRR

δF ext
∧
(

eB∧dF ′b

dτ
−k eB∧F b+

δF ext

δH
∧dH ′b

dτ

)〉

10

∣

∣

∣

∣

τ=1

.

(3.29)

Using (3.15) and the two scaling symmetries (3.1) and (3.4) and evaluating the functional

derivatives then leads to the two equations

2Sbulk + Sloc =2
∑

p

S
(p)
CS −

∑

n

∫

⋆10 e
5−n
2 φ|F ext

n |2

−
∑

n

∫

F b
n ∧

〈

eB ∧ σ(F int)
〉

10−n
, (3.30)

−8Sbulk −
∑

p

(p+ 1)S
(p)
loc =− 8

∑

p

S
(p)
CS + 4

∑

n

∫

⋆10 e
5−n
2 φ|F ext

n |2

+
∑

n

(9− n)

∫

F b
n ∧

〈

eB ∧ σ(F int)
〉

10−n

− 2

∫

Hb ∧
(

e−φ ⋆10 H −
〈

σ(F int) ∧ Cext
〉

7

)

, (3.31)

where σ is the operator defined in (2.5). We can now linearly combine (3.30) and (3.31)

introducing a free parameter c and rearrange the source terms using S = Sbulk + Sloc and

S
(p)
loc = S

(p)
DBI + S

(p)
CS , which yields

2S − 2
∑

p

S
(p)
CS +

∑

n

∫

⋆10 e
5−n
2

φ|F ext
n |2 =

∑

p

(

1 +
p− 3

2
c

)

[

S
(p)
DBI + S

(p)
CS

]

−
∑

n

(

1 +
n− 5

2
c

)
∫

F b
n ∧

〈

eB ∧ σ(F int)
〉

10−n

− c

∫

Hb ∧
(

e−φ ⋆10 H −
〈

σ(F int) ∧ Cext
〉

7

)

.

(3.32)

Substituting this into the integrated Einstein equation (2.12) and collecting all contribu-

tions from background fluxes into a single term F(c), we find the result

8vV
d− 2

Λ =
∑

p

(

1 +
p− 3

2
c

)

[

S
(p)
DBI + S

(p)
CS

]

+

∫

F(c) (3.33)

with the volume factors v and V defined as in (2.13). Note that all terms on the right-hand

side of (3.33) contain an implicit factor of the external “volume” v such that it cancels out

in the equation, and Λ does not depend on it. The flux term F(c) takes the form

F(c) = −
∑

n≥d

(

1 +
n− 5

2
c

)

F b
n ∧

〈

eB ∧ σ(F int)
〉

10−n

− cHb ∧
(

e−φ ⋆10 H −
〈

σ(F int) ∧ Cext
〉

7

)

, (3.34)
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where the summation range is determined by the fact that the background fluxes F b
n are

spacetime-filling by definition and must therefore be of rank d or higher (cf. the discussion

in section 3.2).

As stated earlier, the contribution of the flux term F(c) can often be gauged away

in (3.33) by choosing an appropriate numerical value for the free parameter c. Up to an

overall volume factor V (whose sign is known to be positive), Λ is then completely de-

termined by the on-shell actions of the localized sources that appear in the corresponding

solution. If only one of the fluxes in (3.34) is non-zero, it is straightforward to see that F(c)

can be set to zero, since then one can simply choose c such that the c-dependent prefactor

of the corresponding term vanishes in (3.34).9 For a compactification with non-zero Hb,

for example, one would choose c = 0, and, for a compactification with non-zero F b
7 , one

would choose c = −1.

Even if the NSNS flux Hb and one of the RR fluxes (other than F b
5 ) are both non-zero,

it is still often possible to find a c such that F(c) vanishes. The reason is that the term

multiplying Hb in (3.34) is proportional to

δSNSNS

δH
+ 2

〈

δSRR

δF ext
∧ δF ext

δH

〉

7

= −e−φ ⋆10 H +
〈

σ(F int) ∧ Cext
〉

7
. (3.35)

If the H equation of motion implies that d
[

e−φ ⋆10 H −
〈

σ(F int) ∧ Cext
〉

7

]

= 0, which is

the case in many interesting examples, then we can write

− e−φ ⋆10 H +
〈

σ(F int) ∧ Cext
〉

7
= ω7, (3.36)

where ω7 is a closed but not necessarily exact 7-form. Note that only a possible non-exact

part of ω7 can contribute to (3.33) since any exact part of ω7 would reduce to zero when

inserted into (3.34) and integrated over. If a gauge transformation of the RR potentials

can be employed to cancel ω7 in (3.36), the term multiplying Hb in (3.34) vanishes for any

c, and we can choose the value for c such that also the RR flux term in (3.34) vanishes.

Consider, for example, a compactification of type IIA supergravity with non-zero Hb and

F0. The non-trivial background fluxes appearing in (3.34) are then Hb and F b
10,

F(c) = −
(

1 +
5

2
c

)

F b
10 ∧ F0 − cHb ∧

(

e−φ ⋆10 H −
〈

σ(F int) ∧ Cext
〉

7

)

. (3.37)

Assuming that d
[

e−φ ⋆10 H −
〈

σ(F int) ∧ Cext
〉

7

]

= 0 by the H equation of motion, (3.35)

and (3.36) now imply that the term multiplying Hb can be canceled by a gauge transfor-

mation C7 7→ C7 − ω7/F0. This is a valid gauge transformation that leaves all RR field

strengths unchanged. In the new gauge, we then have e−φ ⋆10 H −
〈

σ(F int) ∧ Cext
〉

7
= 0

such that (3.37) reduces to F(c) = −(1+5c/2)F b
10∧F0. We can therefore choose c = −2/5

so that F = 0.10

9F5 flux is an exception, because it does not have a c-dependent prefactor in F(c) and can therefore not

be gauged away in (3.33). This is the reason for the existence of the Freund-Rubin solutions of type IIB

supergravity on AdS5 × S5 [30].
10Note that, even though F(c) is not gauge invariant, one can convince oneself that the full expression

for Λ in (3.33) is gauge invariant.
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In presence of more than one type of RR flux, this reasoning does not work anymore,

since it is then not possible to choose an appropriate c such that each term in F(c) is

set to zero individually. We may still be able to find a c = c0 that solves the equation
∫

F(c0) = 0 such that
∫

F(c0) vanishes as a whole, but the numerical value of c0 then

depends on the bulk fields that appear in (3.34). This will in general not be useful, since

it just has the effect of trading the explicit dependence of Λ on the bulk dynamics for

an implicit dependence hidden in the value of c0. We will explain this in more detail in

section 4 where we discuss several examples for string compactifications in which F(c) can

be set to zero and one counterexample in which it cannot be set to zero.

3.4 Validity of the supergravity approximation

Before we proceed with applying the above results to some explicit examples, a comment

on their regime of validity is in order. In the vicinity of localized sources, field derivatives

and the string coupling often blow up such that α′ and loop corrections can become large,

making the reliability of the supergravity approximation questionable. Given that the

right-hand side of (3.33) is evaluated directly at the positions of the sources, one might

therefore wonder about the self-consistency of our expression for Λ.

In order to clarify the meaning of our result, it is important to recall that (3.33)

has been derived by using the two-derivative supergravity action (2.1), (2.2), (2.6), (2.7).

Within this theory, (3.33) is an exact expression that can serve as well as any other method

for calculating the cosmological constant in the supergravity approximation. The only

question now is what happens to (3.33) if one takes into account the various types of stringy

corrections, because these may significantly affect the strong field region at the sources.

The answer to this question depends on how (3.33) is used. If one reads it as an

expression that calculates the cosmological constant in terms of the near-source behavior,

one has to use the near-source behavior in the supergravity approximation and then gets

the cosmological constant in the supergravity approximation. Let us, for simplicity, focus

on the case with only one type of sources present in the compactification. We can then

schematically write Λclass = κSclass
loc , where the superscript class denotes the values in the su-

pergravity appoximation, and κ is some constant. If classical supergravity provides a good

approximation for the lower-dimensional effective theory, e.g. in the usual regime of large

volume and small string coupling, the full cosmological constant, Λfull, is well-approximated

by the lowest order expression, Λfull ≈ Λclass, and one therefore also has Λfull ≈ κSclass
loc .

Note that this is true even when Sclass
loc is not a good approximation to Sfull

loc . This is the

way we will use (3.33) in section 4.

In section 5, on the other hand, we also use (3.33) backwards, i.e. we extract infor-

mation on the near-brane behavior in a setup where Λ is known. Here it is important to

stress that this will only give us information on Sclass
loc , i.e. on the near brane behavior in the

supergravity approximation. In particular, the singularity in the H and F3 energy density

we find is a priori only a feature of the supergravity approximation, and our result just con-

firms the singularity exactly like other people have seen the singularity in the supergravity

approximation [14–17, 20]. Whether the singularity gets resolved by stringy effects can not

be inferred from our argument and is beyond the scope of our work. The useful advantage
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of our method is that it shows that this singularity survives the full supergravity analysis

and is not an artifact of the partial smearing or a linearization around the BPS background.

4 Examples

In this section, we discuss different solutions of type IIA and IIB supergravity that have

appeared in the literature and show how (3.33) can be evaluated in our framework to obtain

an explicit expression for the cosmological constant.

4.1 The GKP solutions

Here we consider warped compactifications of type IIB supergravity to 4-dimensional

Minkowski space with H flux and F3 flux and the necessary sources for tadpole cance-

lation along the lines of [10] (GKP) and related work [31–34]. For simplicity, we specialize

to models involving only O3-planes as sources. In [10], the authors also discussed models

with D7-branes and O7-planes along with their F-theory description. The discussion of

models with 7-branes in our framework is analogous albeit more lengthy.

Following [10], we find that the non-vanishing fields must satisfy

F3 = −e−φ ⋆6 H, F5 = −(1 + ⋆10)e
−4A ⋆6 dα, Cext

4 = ⋆̃4(α+ a), α = e4A,

(4.1)

where the warp factor A and the dilaton φ are functions on the compact space, and

a is an integration constant corresponding to a gauge transformation. Also note that

F5 = ⋆10F5 = F int
5 + F ext

5 with F ext
5 = dCext

4 . The topologically non-trivial fluxes cancel-

ing the O3-tadpoles are F3 flux and H flux, so that the relevant fluxes appearing in the

definition of F(c), given by (3.34), are

Hb and F b
7 , (4.2)

whereas all other terms in (3.34) vanish. Thus (3.34) reduces to

F(c) = −cHb ∧
[

e−φ ⋆10 H + F3 ∧ Cext
4

]

+ (1 + c)F b
7 ∧ F3. (4.3)

Using (4.1), we find that the first term can be put to zero by gauge fixing a = 0.11 Further-

more, F3 and H are related by a special condition which is given in (4.1). This condition

can be shown to saturate a BPS-like bound and is equivalent to the ISD condition of the

complex three-form field strength in the notation of [10]. It follows from this condition

that also the second term in (4.3) is zero, as can be checked:
∫

F b
7 ∧ F3 =

∫

(

F7 − dCext
6 +H ∧ Cext

4

)

∧ F3

=

∫

(

F7 ∧ F3 + eφ ⋆6 F3 ∧ (⋆̃4e
4A) ∧ F3

)

= 0, (4.4)

11Note that, although F(c) is not gauge-invariant, the full expression for the cosmological constant Λ is,

since it contains a term C4 ∧ µ3δ6 which changes such that the total a-dependence of Λ cancels out as it

should.
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where in the last step we used that F7 = −eφ ⋆10F3 = −eφ ⋆6F3∧ ⋆̃4e4A. Thus F(c) reduces

to zero for any choice of c. This is expected in this model, since also the contribution of

localized source terms to Λ is independent of c for sources with p = 3.

We therefore find that (3.33) yields

Λ =
1

4vV
(

S
(3)
DBI + S

(3)
CS

)

. (4.5)

Spelling out the contributions from the O3-planes and using (4.1) in (2.7), we arrive at

Λ =
1

4vV µ3

∫

(

⋆̃4e
4A − Cext

4

)

∧ σ(δ6) =
1

4V NO3 µ3
(

e4A0 − α0

)

, (4.6)

where A0, α0 denote the values of A,α at the position of the O3-plane(s) and µ3 > 0 is the

absolute value of the O3 charge. Since α = e4A, the DBI and Chern-Simons parts of the

source action cancel out such that

Λ = 0 (4.7)

as expected.

4.2 D6-branes on AdS7 × S
3

Let us now consider type IIA supergravity with D6-branes on AdS7×S3, i.e. the setup stud-

ied in [3, 24, 25].12 While a smeared solution can be constructed explicitly for this setup, it

was argued in [3, 24] that in the supergravity approximation a solution with fully localized

branes, if existent at all, necessarily yields a singularity in the energy density of the H

flux at the location of the D6-branes. As we will see below, it is rather straightforward to

reproduce this result in our framework.

It was shown in [3] that the non-vanishing fields in this setup must satisfy the ansatz

F0 = const., H = αF0e
φ−7A ⋆3 1, F2 = e−3/2φ−7A ⋆3 dα, Cext

7 = ⋆̃7(α+ a),

(4.8)

where the warp factor A, the dilaton φ and α are functions on the internal space, and a

is an integration constant related to a gauge freedom. The tadpole for the D6-branes is

canceled by a non-zero H flux on the 3-sphere and a non-zero Romans mass, i.e. F0 “flux”.

The relevant fluxes appearing in F(c) are therefore

Hb and F b
10, (4.9)

and (3.34) reduces to

F(c) = −cHb ∧
[

e−φ ⋆10 H − F0 ∧ Cext
7

]

−
(

1 +
5

2
c

)

F b
10 ∧ F0. (4.10)

Using (4.8), one can see that the first term vanishes by a convenient gauge choice, a = 0.

We are then left with the second term which can be set to zero choosing c = −2
5 .

12Note that, unlike in the scenario considered in [12], the anti-branes are here not added to uplift an

existing AdS solution to dS, but to cancel the tadpole and guarantee the existence of an AdS solution in

the first place.
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We can now substitute this into (3.33) to find

Λ =
1

4vV
(

S
(6)
DBI + S

(6)
CS

)

. (4.11)

Spelling out the contributions of the D6-branes and using (4.8) then yields

Λ =
1

4vV µ6

∫

(

−⋆̃7e3/4φ+7A − Cext
7

)

∧ σ(δ3) = − 1

4V ND6 µ6

(

e3/4φ0+7A0 + α0

)

, (4.12)

where A0, α0, φ0 denote the values of A,α, φ at the brane position and µ6 > 0 is the absolute

value of the D6 charge. Assuming that at leading order in the distance r to the brane, the

dilaton and the warp factor diverge as they would in flat space [35],

e2A ∼ r1/8, eφ ∼ r3/4, (4.13)

it is straightforward to show that the first term in (4.12) (which comes from the DBI part

of the brane action) is actually zero. That this assumption is correct was explicitly proven

in the analysis carried out in [24].

The cosmological constant is therefore exclusively determined by α0:

Λ ∼ −µ6α0. (4.14)

Since Λ is negative, it then follows that α has to be non-zero and positive at the source.

Together with (4.13), this implies that near the source the energy density of the H flux

diverges like the inverse of the warp factor,

e−φ|H|2 = α2e−14AeφF 2
0 ∼ e−2A. (4.15)

This is consistent with the result found in [3, 24] by other methods, where it was also

argued that finite α0 implies a singular energy density of the H flux. As we will show

in section 5, a similar argument holds for meta-stable de Sitter vacua that are obtained

by placing D3-branes on the Klebanov-Strassler throat embedded into a compact space.

Under a few assumptions we will discuss in detail, one would find a singularity similar to

the one observed in the D6 model.

4.3 SU(3)-structure Manifolds with O6-planes

Here we discuss a particular model of compactifications of type IIA supergravity on SU(3)-

structure manifolds that was studied in [36], namely O6-planes on dS4 × SU(2) × SU(2)

(see also [37] for more examples of this type). This setup allows (unstable) critical points

with positive Λ.

According to [36], the form fields satisfy

F0 = m, F2 = miY
(2−)
i , H = p

(

Y
(3−)
1 + Y

(3−)
2 − Y

(3−)
3 + Y

(3−)
4

)

, (4.16)

where Y
(2−)
i , Y

(3−)
i are certain 2-forms and 3-forms, respectively, and m,mi, p are constant

coefficients that are not relevant for the following discussion. The tadpole generated by

– 19 –



J
H
E
P
0
9
(
2
0
1
3
)
1
2
3

the O6-planes is canceled by non-zero H and F0 flux. However, while there is a non-trivial

field strength F2 (induced by the presence of the O6-planes), there is no topological F2

flux, since it is not allowed by the cohomology of SU(2) × SU(2). For the same reason,

F b
8 = 0, and the non-zero background fluxes appearing in F(c) are

Hb and F b
10. (4.17)

Considering (3.34) for this setup, we thus find

F(c) = −cHb ∧
[

e−φ ⋆10 H − F0 ∧ Cext
7

]

−
(

1 +
5

2
c

)

F b
10 ∧ F0. (4.18)

As discussed in section 3.3, the H equation of motion

d
[

e−φ ⋆10 H − F0 ∧ Cext
7

]

= 0 (4.19)

implies that we can choose a gauge for Cext
7 such that the first term on the right-hand side

of (4.18) vanishes. The second term can be set to zero by choosing c = −2
5 .

Evaluating (3.33), we therefore find that the cosmological constant is given by

Λ =
1

10vV
(

S
(6)
DBI + S

(6)
CS

)

=
1

10vV µ6

∫

(

e3/4φ ⋆4 1 ∧ ⋆31− Cext
7

)

∧ σ(δ3), (4.20)

where the right hand side should be understood as a sum over the various O6-plane terms,

and µ6 > 0 is the absolute value of the O6 charge. In [36], the setup was considered in

the smeared limit, where the delta forms δ3 are replaced by volume forms of the space

transverse to the corresponding sources. If a localized version of this solution exists, (4.20)

would give a constraint on the possible field behavior at the O-planes.

4.4 The DGKT solutions

Finally, we look at type IIA supergravity compactified on T 6/Z2
3, which is an explicit ex-

ample for the type IIA flux compactifications considered in [38, 39].13 In order to stabilize

the moduli, the model requires the presence of NSNS flux as well as several RR fluxes of

different ranks. As discussed in section 3.3, it is therefore a counterexample, where it is in

general not possible to set the flux-dependent terms in (3.33) to zero and write Λ as a sum

of localized source terms only.

The NSNS and RR field strengths in this model are given by

Hb = −pβ0, F0 = m0, F2 = 0, F4 = F int
4 + F ext

4 = eiω̃
i + ⋆4 e0, (4.21)

where p,m0, e0, ei are numbers, β0 is an odd 3-form and ω̃i are even 4-forms under the

orientifold involution.14 The non-trivial fluxes appearing in (3.34) are thus

Hb, F b
10, F b

6 and F b
4 (4.22)

13As discussed in [39], the sources are smeared in order to obtain a solution. The discussion whether a cor-

responding localized solution exists or how it differs from the smeared solution [1–3, 39–42] does not concern

us here. We only consider this model to give an example of a solution where many fluxes are turned on.
14Note that the spacetime-filling part of F4, which is given by F ext

4 , is treated as internal F6 in the

conventions of [38].
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such that

F(c) = −cHb ∧
[

e−φ ⋆10 H − F0 ∧ Cext
7

]

−
(

1 +
5

2
c

)

F b
10 ∧ F0

−
(

1 +
1

2
c

)

F b
6 ∧ F int

4 +

(

1− 1

2
c

)

F b
4 ∧ F int

6 , (4.23)

where we used that the fluctuation B is zero on-shell. The first term on the right-hand

side can be made to vanish by choosing a gauge for the Cext
7 field. Since the other terms

do in general not vanish, however, we cannot choose c such that all of them are set to zero

simultaneously.

As pointed out in section 3.3, we can still solve the equation
∫

F(c) = 0 for some c = c0
(unless its c-dependence coincidentally cancels out on-shell) and use it in (3.33) to arrive

at an expression for Λ which formally only depends on source terms,

Λ =
2 + 3c0
8vV

(

S
(6)
DBI + S

(6)
CS

)

. (4.24)

However, the resulting numerical value for c0 then implicitly depends on the bulk fields

appearing in F(c). It is therefore hard to approximate its numerical value or even its

sign in compactification scenarios with more than one type of RR flux, unless the full

solution is already known (as in the present example). This is contrary to the previous

examples, where c could be fixed to a known number such that, up to a volume factor, Λ was

completely determined by the boundary conditions of the fields in the near-source region.

5 Singular D3-branes in the Klebanov-Strassler throat

In this section, we discuss to what extent our previous results can be applied to meta-stable

de Sitter vacua in type IIB string theory obtained by placing D3-branes at the tip of a

warped throat geometry along the lines of [12]. We spell out and discuss the assumptions

under which one can give a simple topological argument for a singularity in the energy

density of H and F3 due to the brane backreaction.

5.1 Ansatz

Following [12], we consider type IIB no-scale Minkowski solutions obtained by embedding

the Klebanov-Strassler solution [9] into a compact setting [10]. In order to stabilize the

geometric moduli, we also include non-perturbative effects which may come from Euclidean

D3-brane instantons or gaugino condensation. The resulting supersymmetric AdS vacuum

is then uplifted to a meta-stable de Sitter vacuum by putting a small number of D3-branes

at the tip of the Klebanov-Strassler throat [11, 12].

In order to apply the results of section 3 to this scenario, we split the total cosmological

constant into a part, Λclass, which is due to the classical equations of motion and given

by evaluating (3.33) at the solution, and the rest, Λnp, which contains all corrections from

non-perturbative effects that are not captured by the classical computation, i.e., we write

Λ = Λclass + Λnp. (5.1)
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Let us now discuss the explicit form of Λclass in the present setup. For simplicity, we will

restrict ourselves to the case, where the no-scale solutions of [10] are realized in a model

with O3-planes, and the non-perturbative effects come from Euclidean D3-brane instan-

tons. In [10], also orientifold limits of F-theory compactifications involving D7-branes and

O7-planes are discussed. We checked that it is also possible to study such models in our

framework, but the discussion becomes more involved, since the presence of these sources

induces a non-trivial F1 field strength.

Our ansatz for the different fields thus reads15

Cext
4 = ⋆̃4(α+a), F5 = −(1+⋆10)e

−4A⋆6dα, H = eφ−4A⋆6(αF3 +X3) , F1 = 0, (5.2)

where A,α, φ are functions on the internal space, a is an integration constant corresponding

to a gauge freedom, and X3 is an a priori unknown 3-form satisfying dX3 = 0. One can

check that this ansatz follows from the form equations of motion and the requirement that

the non-compact part of space-time be maximally symmetric, if only sources with p = 3

are present.

As in the examples discussed in section 4, the flux-dependent terms F(c) in (3.33) can

now be simplified by a convenient choice of the parameter c. To see this recall that the

relevant fluxes in the present case are

Hb and F b
7 (5.3)

and thus (3.34) reduces to

F(c) =− cHb ∧
[

e−φ ⋆10 H + F3 ∧ Cext
4

]

+ (1 + c)F b
7 ∧ F3. (5.4)

Using (5.2), we find that the first expression on the right-hand side of (5.4) cancels

out for a = 0 except for a term ∼X3. The second term in (5.4) can be set to zero by the

choice c = −1, yielding16

F(−1) = −⋆̃41 ∧Hb ∧X3. (5.5)

We will argue below that, upon a certain choice for the UV boundary conditions of the

three-form field strengths, the integral of (5.5) gives a contribution to the cosmological

constant in (3.33) that is negligible compared to the contribution from the anti-D3-brane

source terms.

Keeping the flux term for the moment, we can substitute (5.5) into (3.33) and write

Λclass =
1

4vV
(

S
(3)
DBI + S

(3)
CS

)

+
1

4vV

∫

F(−1)

=
1

4vV µ3

∫

(

−⋆̃4e4A − Cext
4

)

∧ σ
(

δ
(D3)
6

)

+
1

16vV µ3

∫

(

⋆̃4e
4A − Cext

4

)

∧ σ
(

δ
(O3)
6

)

15If one no longer assumes the BPS condition of section 4.1, the function α need not be related to the

warp factor, and X3 may be non-vanishing.
16To be precise, one finds that the integrated dilaton equation implies −

∫

Hb∧
[

e−φ ⋆10 H + F3 ∧ Cext
4

]

+
∫

F b
7 ∧ F3 = 0 in absence of sources with p 6= 3, such that

∫

F(c) = −
∫

⋆̃41 ∧ Hb ∧ X3 actually holds for

any choice of c. This is consistent with the fact that also the source part of (3.33) is independent of c for

p = 3. Thus the value of Λclass is uniquely determined by (3.33) as it should be.
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− 1

4vV

∫

⋆̃41 ∧Hb ∧X3, (5.6)

where we have spelled out the contributions of the localized sources. Note that the O3-

plane charge is 1
4 of the D3-brane charge µ3, where µ3 > 0 in our conventions. Evaluating

the above equation, we find that the total cosmological constant (5.1) is given by

Λ = − 1

4V ND3 µ3
(

e4A0 + α0

)

+
1

16V NO3 µ3
(

e4A∗ − α∗

)

− 1

4V

∫

M(6)

Hb ∧X3 + Λnp, (5.7)

where A0, α0 and A∗, α∗ denote the values of A,α at the positions of the D3-branes and

O3-planes, respectively.

5.2 The argument

Our goal is now to evaluate (5.7) and relate it to the near-tip behavior of the energy density

of the H flux. In order to do so, we make the following assumptions.

1. Topological flux. In the region of the conifold, F3 carries a non-trivial topological

flux along the directions of a 3-cycle called the A cycle, H carries a topological flux

along the directions of the dual 3-cycle called the B cycle, and all other components

of H and F3 are exact. This assumption is due to the fact that the deformed conifold

is topologically a cone over S2×S3, where the deformation has the effect of replacing

the singular apex of the conifold by a finite S3 (see e.g. [43, 44]). The deformed

conifold therefore has a non-trivial compact 3-cycle along the S3 (the A cycle) and

a dual, non-compact 3-cycle (the B cycle). We will assume that also in our compact

setting the relevant cycles threaded by topological flux are the A cycle and the B

cycle, at least in the region of the conifold. Following the literature [9], we then

place F3 flux along the A cycle and H flux along the B cycle. On general compact

manifolds, there may of course exist additional cycles that are threaded by flux. We

will assume, however, that such additional topologically non-trivial terms in F3 and

H only become relevant deep in the UV, i.e., far away from the anti-D3-brane.

2. IR boundary conditions. The D3-brane locally deforms the geometry as it would

do in flat space. This implies in particular that the warp factor goes to zero in the

vicinity of the D3-brane as it usually does,

e2A → 0. (5.8)

It also implies that we can locally approximate the internal geometry by

gmn ≈ e−2Ag̃mn (5.9)

at leading order in an expansion around the distance r to the brane, with g̃mn regular

(in suitable coordinates).

This is a standard assumption discussed recently e.g. in [20, 21] for the case of partially

smeared D3-branes. In an analogous setting, it was verified explicitly in [24] for the
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toy model with D6-branes discussed in section 4.2, where both the warp factor and the

internal metric indeed diverge exactly as they would do in the corresponding flat space

solution [35] at leading order in the distance parameter r. It would be interesting to

carry out a similar derivation as in [24] also for the D3-branes considered here, but this

is beyond the scope of the present paper (see also [20, 21] for an analogous discussion

of partially smeared D3-branes in the non-compact Klebanov-Strassler solution).

In order that the unperturbed deformed conifold metric g̃mn shrinks smoothly at the

tip, we furthermore expect that the energy density of F3 along the A cycle contracted

with g̃mn does not vanish at the tip:

eφ|F̃A
3 |2 6= 0, (5.10)

where the superscript denotes the component of F3 along the A cycle.17 This is mo-

tivated by the fact that the energy density of FA
3 is non-vanishing and prevents the A

cycle from collapsing at the tip of the deformed conifold before the perturbation by

the D3-branes [9]. Using the results of [21], one can verify that (5.10) indeed holds

for the case of partially smeared D3-branes.

3. UV boundary conditions. The boundary conditions for the O3-planes in the UV

far away from the D3-branes are approximately the standard BPS boundary condi-

tions,

α∗ ≈ e4A∗ , (5.11)

up to small corrections such that the O3-plane term in (5.7) is negligible compared to

the other terms. To justify this, recall that in the GKP setup without the D3-branes

this is the usual BPS behavior that does not lead to a contribution to the cosmologi-

cal constant. When a large flux background with a large number of O3-planes of this

type is then perturbed by a small number of D3-branes at the tip of a warped throat,

the D3-branes will give a small direct contribution to the cosmological constant due

to their tree-level brane action (see below). One might however wonder whether the

D3-brane backreaction on the geometry and the fields could also distort the rela-

tion (5.11) near the O3-planes, such that now also the O3-planes would contribute

significantly to the vacuum energy. However, this backreaction effect would be of

higher order in the small perturbation from the redshifted D3-branes and should

thus be negligible compared to the direct contribution from the D3-brane source

terms. This is analogous to the usual assumption of BPS asymptotics in the UV im-

posed in non-compact treatments of brane backreaction (e.g. [20, 25]). It would be an

interesting extension to explicitly compute the boundary conditions at the O-planes,

e.g. following the analysis in [24].

Similarly, we also assume that the three-form field strengths approach their unper-

turbed values and thus become ISD in the UV far away from the D3-branes, which

17This is not to be confused with the notation of [19, 21], where the superscript in FA
3 is an index running

over all components of F3.
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implies

XUV
3 ≈ 0, (5.12)

again up to corrections that are negligible in (5.7). One might again wonder whether

a small deviation from the ISD condition in the UV due to the anti-brane backreac-

tion might be relevant for the value of the cosmological constant. As discussed above,

however, it would be very surprising if the effect of such a deviation far away from

the D3-branes would not be negligible compared to their direct effect in the IR, so

that we will adopt (5.12) as a reasonable assumption.

4. Non-perturbative corrections. Non-perturbative corrections to the effective po-

tential (due to, e.g., Euclidean D3-branes or gaugino condensation on D7-branes) are

captured by adding a negative term to the overall cosmological constant, i.e.

Λ = Λclass − |Λnp|. (5.13)

This assumption consists in fact of two parts: the first is that the non-perturbative

effect gives, by itself, rise to a negative contribution to the vacuum energy, and the

second is that it does not significantly change the classical contributions. These as-

sumptions are implicit in the construction of [12], where the non-perturbative effects

first make the vanishing cosmological constant of the GKP setup negative without

significantly changing the classical background fluxes or the vevs and masses of the

moduli that are stabilized by these fluxes (the complex structure moduli and the

dilaton). Moreover, the subsequent de Sitter uplift due to D3-branes is assumed to

happen through their classical source terms only and does in turn not significantly

change the vevs and masses of the moduli that are stabilized by the non-perturbative

effects (the Kähler moduli). There has also been some progress in describing the

above effects from an explicit 10D point of view [45–48]. In [48] it was argued that a

non-vanishing gaugino bilinear 〈λλ〉 on D7-branes indeed leads to a negative contri-

bution to the 4D spacetime curvature proportional to |〈λλ〉|2. On the other hand, the

backreaction of this on the classical contribution Λclass to the vacuum energy would

be only a higher order effect. Similar properties are expected for the non-perturbative

corrections due to Euclidean D3-brane instantons.

5. Cosmological constant. The presence of the D3-branes uplifts the solution to a

meta-stable de Sitter vacuum such that the total cosmological constant of the solution

is positive,

Λ > 0, (5.14)

as proposed in [12].

If one makes the above assumptions 1. - 5., our ansatz (5.7) for the cosmological

constant drastically simplifies.

Let us at first discuss the flux term in (5.7). Since X3 is closed by definition, we can

make the ansatz

X3 = βωA
3 + dω2 (5.15)
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in the conifold region. Here β is an unknown function of the internal coordinates, ω2 is a

2-form, and ωA
3 is the harmonic 3-form along the A cycle satisfying dωA

3 = 0. We have split

X3 into a part, βωA
3 , along the A cycle, which can in general be non-exact, and a part, dω2,

that is not necessarily along the A cycle and has to be exact.18 Using dX3 = dωA
3 = 0, we

find from (5.15) that

dβ ∧ ωA
3 = 0, (5.16)

which implies that β is only a function of the coordinates parametrizing the S3 but con-

stant over the remaining directions. We can therefore set β = βUV = 0 without loss of

generality, where βUV denotes the value of β in the UV region of the warped throat far

away from the D3-branes.

The flux term in (5.7) then simplifies as follows. Since, under assumption 1., H only

carries a flux along the B cycle in the conifold region, we find Hb∧X3 = Hb∧(βωA
3 +dω2) =

Hb ∧ βUVωA
3 − d(Hb ∧ ω2). We can therefore write

∫

M(6)

Hb ∧X3 =

∫

M(6)

Hb ∧XUV
3 = 0 (5.17)

such that the integral is completely determined by the units of H flux present in the

compactification and the UV boundary conditions for the three-form field strengths but

independent of the IR physics close to the D3-branes.

Using (5.17) together with assumptions 2.- 4., we find that (5.7) reduces to

Λ ≈ − 1

4V ND3 µ3 α0 − |Λnp|, (5.18)

up to negligible corrections. From assumption 5. it then follows that

− 1

4V ND3 µ3 α0 > |Λnp|, (5.19)

which implies that α0 must be finite and negative.19

It is straightforward to see that this yields a singular energy density of the H flux in

the region near the D3-branes. As argued above, we can locally approximate the internal

metric as gmn ≈ e−2Ag̃mn, where g̃mn is regular. Using (5.2), we can then write

e−φ|H|2 = eφ−8A|αF3 +X3|2 ≥ α2e−8Aeφ|FA
3 |2 ≈ α2e−2Aeφ|F̃A

3 |2 (5.20)

in the near-brane region, where we have used that the component of X3 along F
A
3 vanishes.

Since eφ|F̃A
3 |2 is expected to be non-zero at the tip of the conifold, it then follows from (5.8)

and α0 6= 0 that the energy density of the H flux at least diverges like the inverse of the

warp factor,

e−φ|H|2 ∼ e−2A. (5.21)

18Note that, assuming the presence of F3 flux along the A cycle, X3 is not allowed to have a non-exact

component along the B cycle as follows from the F1 equation e−φH ∧ ⋆10F3 = 0 and the ansatz for H

stated in (5.2).
19Note that α must change its sign somewhere in between the BPS region around the O3-planes (where

α ≈ e4A) and the tip of the throat (where α < 0). In the toy model discussed in [3], a similar constraint

was used to formulate a topological no-go theorem, which is rederived in our framework in section 4.2.
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Assuming a regular dilaton,20 the dilaton equation (2.15) furthermore implies that the di-

vergence in the energy density of H must be canceled by a divergent term in the energy

density of F3. We thus find that the energy densities of H and F3 diverge at least as21

e−φ|H|2 ∼ e−2A, eφ|F3|2 ∼ e−2A. (5.22)

Note that, due to its global nature, the argument is independent of most details of the

bulk dynamics and does therefore not require simplifications such as a partial smearing of

the branes or a linearization of the equations of motion. Under the assumptions discussed

above, it holds for fully localized branes that backreact on the full non-linear equations of

motion.

6 Conclusion

We have shown how the 10D equations of motion for classical type II supergravity can be

combined to give a surprisingly simple expression for the cosmological constant in terms of

the classical near-source behavior of the supergravity fields and a contribution from topo-

logically non-trivial background fluxes. The derivation relies on no specific assumptions

on the compactification manifold, but it holds only for maximally symmetric spacetimes

of dimension four or more. In simple examples, the flux contribution can be chosen to

be zero, and the expression reduces to contributions that have support only on localized

sources. This extends the recent work [5] to general brane and flux setups. We checked our

result against some well-understood examples of flux compactifications and found agree-

ment with all expectations. We specified the assumptions that are required to apply our

result also to de Sitter uplifts from D3-branes in warped throats and showed that this

would then indicate the presence of a singular H and F3 energy density at the D3-brane

similar to what has been reported in recent studies of the same setup [14–17, 20]. Although

our analysis does not clarify the physical meaning of this singularity (see [22, 23, 49] for a

recent conjecture), it indicates that it is unlikely a mere artifact of approximations such as

partial smearing or linearized field equations, which we do not use.

It should be interesting to apply our general result also to other aspects of string

compactifications.
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A Explicit manipulations of the equations of motion

Here we present an alternative derivation of our main result (3.33), which only uses the

equations of motion. We first consider the Bianchi identity (2.14) for the internal RR field

strength F int
8−p and multiply by σ(Cext

p+1),

0 = −ασ(Cext
p+1) ∧

〈

d−HF
int + j

〉

9−p

= d
[

σ(Cext
p+1) ∧ F int

8−p

]

+ α〈σ(d−HC
ext)〉p+2 ∧ F int

8−p + ασ(H ∧ Cext
p−1) ∧ F int

8−p

+ασ(Cext
p+1) ∧H ∧ F int

6−p − ασ(Cext
p+1) ∧ j9−p

= d
[

σ(Cext
p+1) ∧ F int

8−p

]

+ ασ
〈

F ext − eB ∧ F b
〉

p+2
∧ F int

8−p − ασ(F int
8−p) ∧H ∧ Cext

p−1

+ασ(F int
6−p) ∧H ∧ Cext

p+1 + ασ(j9−p) ∧ Cext
p+1

= d
[

σ(Cext
p+1) ∧ F int

8−p

]

− e(p−3)φ/2 ⋆10 |F int
8−p|2 +

〈

eB ∧ F b
〉

p+2
∧ σ(F int

8−p)

−H ∧ Cext
p−1 ∧ σ(F int

8−p) +H ∧ Cext
p+1 ∧ σ(F int

6−p)− Cext
p+1 ∧ σ(j9−p). (A.1)

Here we have introduced the constant α which equals +1 for type IIA and −1 for type IIB

supergravity. Multiplying the H equation of motion (2.16) by B yields

0 = 2B ∧ d
(

e−φ ⋆10 H
)

− α 〈B ∧ σ(F ) ∧ F 〉10
= 2B ∧ d

(

e−φ ⋆10 H
)

− 2α
〈

B ∧ σ(F int) ∧ F ext
〉

10

= 2d
〈

e−φB ∧ ⋆10H −B ∧ σ(F int) ∧ Cext
〉

9
− 2(H −Hb) ∧

(

e−φ ⋆10 H
)

+2
〈

dH(B ∧ σ(F int)) ∧ Cext − αB ∧ σ(F int) ∧ eB ∧ F b
〉

10

= 2d
〈

e−φB∧⋆10H−B∧σ(F int)∧Cext
〉

9
−2(H−Hb)∧

(

e−φ ⋆10 H−
〈

σ(F int)∧Cext
〉

7

)

−2
〈

−B ∧ Cext ∧ σ(j) + eB ∧ F b ∧B ∧ σ(F int)
〉

10
. (A.2)

Notice in above equation that F int
6 never appears since F int is everywhere multiplied by

either B or H, which must both be purely internal in a maximally symmetric compactifi-

cation to d ≥ 4 dimensions. We now take the combination (1+(p−3)c/2) times (A.1) plus

c/2 times (A.2) and sum over p. Substituting the definition of j from section 2, this yields

0 =
∑

3≤p

(

1 +
p− 3

2
c

)

{

−e(p−3)φ/2 ⋆10 |F int
8−p|2 − Cext

p+1 ∧ σ(j9−p)
}

+c
〈

e−φ ⋆10 |H|2 +B ∧ Cext ∧ σ(j)
〉

10
− Σ(c) + total derivatives

=
∑

3≤p

(

1 +
p− 3

2
c

)

(

−e(p−3)φ/2 ⋆10 |F int
8−p|2 − S

(p)
CS

)

+c e−φ ⋆10 |H|2 − Σ(c) + total derivatives, (A.3)

where c is a free parameter. We also introduced the shorthand

Σ(c) = −
∑

2≤p

(

1 +
p− 3

2
c

)

F b
p+2 ∧ 〈eB ∧ σ(F int)〉8−p +

(

1− 1

2
c

)

F b
4 ∧ σ(F int

6 )
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−cHb ∧
(

e−φ ⋆ H − 〈σ(F int) ∧ Cext〉7
)

, (A.4)

where we have combined all terms that depend on background fluxes to simplify our no-

tation.

The trace of the external components of the (trace-reversed) Einstein equation reads

4

d
Rd = −1

2
e−φ|H|2+

∑

3≤p

p− 7

4

(

e(p−3)φ/2|F int
8−p|2 ± µpe

(p−3)φ/4δ(Σ)
)

+
5

4
eφ/2|F ext

4 |2, (A.5)

where the upper sign is for D-branes and the lower sign for O-planes and we have used

|F ext
5 |2 = −|F int

5 |2 to rewrite the spacetime-filling part of |F5|2. Note that spacetime-filling

F4 flux can only be present for d = 4 in type IIA supergravity, while F5 flux can be present

for d = 4 or d = 5 in type IIB supergravity.

The dilaton equation (2.15) yields

0 = −∇2φ− 1

2
e−φ|H|2 +

∑

3≤p

p− 3

4

(

e(p−3)φ/2|F int
8−p|2 ± µpe

(p−3)φ/4δ(Σ)
)

+
1

4
eφ/2|F ext

4 |2.

(A.6)

Combining (A.5) and (A.6), we find

4

d
Rd = c e−φ|H|2 +

∑

3≤p

(

1 +
p− 3

2
c

)

(

−e(p−3)φ/2|F int
8−p|2 ∓ µpe

(p−3)φ/4δ(Σ)
)

+
(

1− c

2

)

eφ/2|F ext
4 |2 + total derivatives. (A.7)

Finally, we can combine (A.7) with (A.3) to get

4

d
⋆10 Rd =

∑

3≤p

(

1 +
p− 3

2
c

)

(

∓ ⋆10 µp e
(p−3)φ/4δ(Σ) + S

(p)
CS

)

+ F(c)

+ total derivatives, (A.8)

where we defined

F(c) = Σ(c)−
(

1− c

2

)

F b
4 ∧ σ(F int

6 ) (A.9)

and used eφ/2 ⋆10 F
ext
4 = −σ(F int

6 ), which follows from the duality relations (2.4). Integrat-

ing over ten-dimensional space and using (2.11), we get rid of all total derivative terms and

find
8vV
d− 2

Λ =
∑

p

(

1 +
p− 3

2
c

)

[

S
(p)
DBI + S

(p)
CS

]

+

∫

F(c), (A.10)

with the volume factors v and V defined as in (2.13).
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[29] E. Cremmer, H. Lü, C. Pope and K. Stelle, Spectrum generating symmetries for BPS

solitons, Nucl. Phys. B 520 (1998) 132 [hep-th/9707207] [INSPIRE].

[30] P.G. Freund and M.A. Rubin, Dynamics of dimensional reduction,

Phys. Lett. B 97 (1980) 233 [INSPIRE].

[31] K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux,

JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].

[32] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds,

Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].

[33] K. Becker and M. Becker, M theory on eight manifolds, Nucl. Phys. B 477 (1996) 155

[hep-th/9605053] [INSPIRE].

[34] B.R. Greene, K. Schalm and G. Shiu, Warped compactifications in M and F theory,

Nucl. Phys. B 584 (2000) 480 [hep-th/0004103] [INSPIRE].

[35] B. Janssen, P. Meessen and T. Ort́ın, The D8-brane tied up: string and brane solutions in

massive type IIA supergravity, Phys. Lett. B 453 (1999) 229 [hep-th/9901078] [INSPIRE].

[36] C. Caviezel, P. Koerber, S. Körs, D. Lüst, T. Wrase and M. Zagermann, On the cosmology of

type IIA compactifications on SU(3)-structure manifolds, JHEP 04 (2009) 010

[arXiv:0812.3551] [INSPIRE].

[37] U.H. Danielsson, S.S. Haque, P. Koerber, G. Shiu, T. Van Riet and T. Wrase, De Sitter

hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [arXiv:1103.4858] [INSPIRE].

[38] O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization,

JHEP 07 (2005) 066 [hep-th/0505160] [INSPIRE].

– 31 –

http://dx.doi.org/10.1103/PhysRevD.87.106010
http://arxiv.org/abs/1206.6369
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6369
http://arxiv.org/abs/1212.4828
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4828
http://dx.doi.org/10.1103/PhysRevD.87.063012
http://arxiv.org/abs/1212.5162
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5162
http://dx.doi.org/10.1007/JHEP02(2013)061
http://arxiv.org/abs/1202.1132
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1132
http://dx.doi.org/10.1007/JHEP02(2012)025
http://arxiv.org/abs/1111.2605
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2605
http://dx.doi.org/10.1007/JHEP10(2012)078
http://arxiv.org/abs/1205.1798
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1798
http://dx.doi.org/10.1002/prop.201000083
http://arxiv.org/abs/1006.1536
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1536
http://dx.doi.org/10.1088/0264-9381/18/17/303
http://arxiv.org/abs/hep-th/0103233
http://inspirehep.net/search?p=find+EPRINT+hep-th/0103233
http://dx.doi.org/10.1016/0550-3213(87)90227-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B288,525
http://dx.doi.org/10.1016/S0550-3213(98)00057-1
http://arxiv.org/abs/hep-th/9707207
http://inspirehep.net/search?p=find+EPRINT+hep-th/9707207
http://dx.doi.org/10.1016/0370-2693(80)90590-0
http://inspirehep.net/search?p=find+J+Phys.Lett.,B97,233
http://dx.doi.org/10.1088/1126-6708/1999/08/023
http://arxiv.org/abs/hep-th/9908088
http://inspirehep.net/search?p=find+EPRINT+hep-th/9908088
http://dx.doi.org/10.1016/S0550-3213(00)00373-4
http://arxiv.org/abs/hep-th/9906070
http://inspirehep.net/search?p=find+EPRINT+hep-th/9906070
http://dx.doi.org/10.1016/0550-3213(96)00367-7
http://arxiv.org/abs/hep-th/9605053
http://inspirehep.net/search?p=find+EPRINT+hep-th/9605053
http://dx.doi.org/10.1016/S0550-3213(00)00400-4
http://arxiv.org/abs/hep-th/0004103
http://inspirehep.net/search?p=find+EPRINT+hep-th/0004103
http://dx.doi.org/10.1016/S0370-2693(99)00315-9
http://arxiv.org/abs/hep-th/9901078
http://inspirehep.net/search?p=find+EPRINT+hep-th/9901078
http://dx.doi.org/10.1088/1126-6708/2009/04/010
http://arxiv.org/abs/0812.3551
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.3551
http://dx.doi.org/10.1002/prop.201100047
http://arxiv.org/abs/1103.4858
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.4858
http://dx.doi.org/10.1088/1126-6708/2005/07/066
http://arxiv.org/abs/hep-th/0505160
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505160


J
H
E
P
0
9
(
2
0
1
3
)
1
2
3

[39] B.S. Acharya, F. Benini and R. Valandro, Fixing moduli in exact type IIA flux vacua,

JHEP 02 (2007) 018 [hep-th/0607223] [INSPIRE].

[40] T. Banks and K. van den Broek, Massive IIA flux compactifications and U-dualities,

JHEP 03 (2007) 068 [hep-th/0611185] [INSPIRE].

[41] F. Saracco and A. Tomasiello, Localized O6-plane solutions with Romans mass,

JHEP 07 (2012) 077 [arXiv:1201.5378] [INSPIRE].

[42] J. McOrist and S. Sethi, M-theory and type IIA flux compactifications, JHEP 12 (2012) 122

[arXiv:1208.0261] [INSPIRE].

[43] P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys. B 342 (1990) 246

[INSPIRE].

[44] R. Minasian and D. Tsimpis, On the geometry of nontrivially embedded branes,

Nucl. Phys. B 572 (2000) 499 [hep-th/9911042] [INSPIRE].

[45] P. Koerber and L. Martucci, From ten to four and back again: how to generalize the

geometry, JHEP 08 (2007) 059 [arXiv:0707.1038] [INSPIRE].

[46] D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, D3-brane potentials

from fluxes in AdS/CFT, JHEP 06 (2010) 072 [arXiv:1001.5028] [INSPIRE].

[47] A. Dymarsky and L. Martucci, D-brane non-perturbative effects and geometric deformations,

JHEP 04 (2011) 061 [arXiv:1012.4018] [INSPIRE].

[48] B. Heidenreich, L. McAllister and G. Torroba, Dynamic SU(2) structure from seven-branes,

JHEP 05 (2011) 110 [arXiv:1011.3510] [INSPIRE].

[49] I. Bena, J. Blaback, U. Danielsson and T. Van Riet, Antibranes don’t go black,

Phys. Rev. D 87 (2013) 104023 [arXiv:1301.7071] [INSPIRE].

– 32 –

http://dx.doi.org/10.1088/1126-6708/2007/02/018
http://arxiv.org/abs/hep-th/0607223
http://inspirehep.net/search?p=find+EPRINT+hep-th/0607223
http://dx.doi.org/10.1088/1126-6708/2007/03/068
http://arxiv.org/abs/hep-th/0611185
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611185
http://dx.doi.org/10.1007/JHEP07(2012)077
http://arxiv.org/abs/1201.5378
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5378
http://dx.doi.org/10.1007/JHEP12(2012)122
http://arxiv.org/abs/1208.0261
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.0261
http://dx.doi.org/10.1016/0550-3213(90)90577-Z
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B342,246
http://dx.doi.org/10.1016/S0550-3213(00)00035-3
http://arxiv.org/abs/hep-th/9911042
http://inspirehep.net/search?p=find+EPRINT+hep-th/9911042
http://dx.doi.org/10.1088/1126-6708/2007/08/059
http://arxiv.org/abs/0707.1038
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.1038
http://dx.doi.org/10.1007/JHEP06(2010)072
http://arxiv.org/abs/1001.5028
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.5028
http://dx.doi.org/10.1007/JHEP04(2011)061
http://arxiv.org/abs/1012.4018
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4018
http://dx.doi.org/10.1007/JHEP05(2011)110
http://arxiv.org/abs/1011.3510
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.3510
http://dx.doi.org/10.1103/PhysRevD.87.104023
http://arxiv.org/abs/1301.7071
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.7071

	Introduction
	Type II supergravity
	The cosmological constant as a sum of source terms
	Two scaling symmetries
	The method
	On-shell action and cosmological constant
	Validity of the supergravity approximation

	Examples
	The GKP solutions
	overlineD6-branes on AdS(7) x S*3
	SU(3)-structure manifolds with O6-planes
	The DGKT solutions

	Singular overlineD3-branes in the Klebanov-Strassler throat
	Ansatz
	The argument

	Conclusion
	Explicit manipulations of the equations of motion

