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1 INTRODUCTION 

Reactive nitrogen compounds (Nr, which include NOx (i.e. NO+NO2), N2O, ammonia and 
HONO) have a large impact on atmospheric chemical composition and thus, on climate. 
Nitric oxide (NO) is a chemically reactive trace gas that reacts with ozone (O3) to form NO2 
(Crutzen, 1979). The formation of O3 depends on a sensitive relationship between NOx 
(NO+NO2) and volatile organic compounds (VOC) (Sillman et al., 1990). Thus, even trace 
levels of NOx can activate O3 production. O3 itself can enrich the troposphere and as a short-
lived climate pollutant (SLCP) can affect the climate (Shoemaker, et al., 2013). Nitrous oxide 
(N2O) is among the most important greenhouse gas, together with H2O, CO2 and CH4. N2O 
has a relatively long lifetime, is enriched in the troposphere and impacts the earth’s radiative 
balance (Ciais et al., 2013). When N2O enters the stratosphere, it reacts with O3 to NO, 
thereby depleting the ozone layer (Crutzen, 1979). 
 
In 2005, a total of about 187 Tg N reactive nitrogen compounds (Nr) were emitted into the 
atmosphere (Galloway et al., 2008). Deposition of atmospheric Nr in a dryland ecosystem was 
29.3 kg N ha-1 yr-1 (Sickman et al., 2019). The deposition of N-acids, which is commonly 
referred to as acid rain, leads to an increase in acidification in terrestrial and aquatic 
ecosystems (Galloway, 1995). Globally, 8.9 Tg N yr-1 NOx and 9.4 Tg N yr-1 N2O (natural 
soils and agriculture) are released from soils into the atmosphere (Denman et al., 2007). NOx 
emissions from soils are on the order of about one third of overall anthropogenic sources, 
which originate from burning of fossil fuel from car engines and industrial processes 
(Denman et al., 2007). The N2O emissions from soils are the strongest global source where 
0.7% and 0.9% of N-fertilizer is released as NOx and N2O, respectively (Bowman et al., 
2002b). Continuous acceleration of the nitrogen cycle will result in an increased pollution of 
air, soils, and water and mitigation strategies for sustainable protection of the environment 
and human health are needed (Galloway et al., 2008). 
 
A global inventory of NO emissions from soils, based on 112 studies with 583 NOx emission 
rates worldwide, has been provided by Steinkamp and Lawrence (2011). Their estimate of the 
global NO soil source strength is 8.6 Tg N yr-1, which is very close to the most recent IPCC 
(2007) estimate of 8.9 Tg yr-1. Data from field measurements for NO emissions from desert 
soils are limited (McCalley and Sparks 2008; Hartley and Schlesinger, 2000). However, more 
than 40% of the surface area of the earth is covered by drylands (UNEP, 1997) and thus, the 
study of Nr emissions from semi-arid and arid ecosystems is of great importance. Recently it 
was discovered that especially alkaline soils from semi-arid and arid ecosystems can emit 
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nitrous acid, HONO (Oswald et al., 2013). When exposed to solar radiation (and more 
specifically to radiation at the wavelength of λ=578 nm), HONO is an indirect source of NO 
in the atmosphere due to photolysis to the hydroxyl radical (OH) and NO. 
 
Additionally, soils from irrigated agriculture in all drylands are heavily fertilized and release 
high NO emissions, thereby affecting regional air quality (Behrendt et al., 2017). In this 
chapter, a description of recent discoveries and advances in the processes of the 
biogeochemical N-cycle and their relationship to environmental parameters is presented, 
followed by a discussion pertaining to current advances in NO and N2O emissions from semi-
arid and arid lands. 
 

2 BIOGENIC EMISSION OF NO, N2O AND HONO FROM SOILS, CRYPTOGAMIC 
COVERS AND PLANTS – GENERAL ASPECTS 

Microbes are able to enzymatically produce and consume both, NO and N2O in soils (Conrad, 
1996). It is widely accepted that nitrification and denitrification are the predominant processes 
responsible for NO and N2O release. However, the re-cycling of Nr within soils due to 
simultaneous microbial consumption, is likely to be small. For natural dryland soils, studies 
have detected only very low rates of NO consumption (Behrendt et al., 2014). There is 
evidence that thin biofilms of lichens and mosses pre-dominantly covering the top soil layer 
in drylands, which are called cryptogamic covers or biocrusts, release globally 0.6 Tg N yr-1 
HONO, 1.1 Tg N yr-1 NO (Weber et al., 2015), and about 0.3 Tg N yr-1 N2O (Lenhart et al., 
2015). These biocrusts are micro-scale films and are habitat for various microbes. With an 
increase in crust development, inorganic nitrogen typically increases (Kidron et al., 2016), 
consequently affecting gaseous N-oxide-emissions. It was also found that the abundance of 
ammonia oxidizing Archaea (AOA) increases with aridity as indicated by quantification of 
their amoA (encoding the ammonia monooxygenase, AMO) genes (Delgado-Baquerizo et al., 
2016). Recently, it was found that biocrusts can drive NO emissions from dryland soils under 
limited soil moisture (Behrendt et al., 2017). A moisture dependent response of nitrifying 
microbial communities to wetting of dry soil was also reported by an earlier study (Placella 
and Firestone, 2013), where the samples dried in the laboratory. More of such timely studies, 
where flux measurements are combined with molecular techniques, are needed to identify the 
biogeochemical processes responsible for sources and sinks of N-gases (see Chapter 3). This 
newly emerged research field is referred to as gas metabolomics or “volatilomics” (e.g. Insam 
and Seewald, 2010). 
 
NO and N2O fluxes are controlled by various environmental parameters such as: (i) gaseous 
diffusion (e.g., oxygen, carbon dioxide), (ii) substrate diffusion, (iii) soil temperature, (iv) soil 
moisture, (v) ambient mixing ratio of NO and N2O, (vi) soil properties, e.g. pH, carbon 
content, redox potential (Butterbach-Bahl et al., 2013; Pilegaard, 2013). There is an urgent 
need to understand the potential negative and positive contributions of soil microbes to soil-
atmosphere exchange of trace gases and complex microbe-microbe, microbe-environment and 
microbe-plant interactions with a focus on climate change (Bardgett et al., 2008). In dryland 
soils, soil temperature and soil moisture are highly variable and affect microbial activity 
(Chapter XX; Moyano et al., 2013; Behrendt et al., 2014; Behrendt et al., 2017), thereby 
causing variability in NO and N2O fluxes in time and space. Since the focus of this review is 
on NO and N2O emissions from drylands, where coverage of plants is sparse or absent, 
emissions from plants will only be briefly discussed. There is indication that plants emit N2O 
during photosynthesis (Lenhart et al., 2018; Smart and Bloom, 2001; Hakata et al., 2003; 
Dean and Harper, 1986; Goshima et al. 1999), but this process is not yet considered on a 
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global scale (Denman et al., 2007). While earlier studies report compensation point 
concentrations (production and consumption are balanced resulting in a zero net flux) for NO2 
from plants, recent studies provide evidence that these compensation point concentrations are 
very low if at all existing (Breuninger et al., 2012 and references therein; Chaparro-Suarez et 
al., 2011). This suggests that plants act predominantly as a small NO2 sink. 
 
Given the small quantities of NO and N2O emissions from drylands, monitoring of these 
emissions poses a challenge because monitoring of these emissions requires a large 
instrumentation setup. The most frequent techniques to measure NO and N2O are: (i) dynamic 
and static chambers in laboratory incubations (Behrendt et al., 2014), dynamic and static 
chambers in the field (Pape et al., 2009; Hutchinson and Moiser, 1981), and eddy covariance 
(Rummel et al., 2002; Eugster and Merbold, 2015). Recent developments in instrumentation 
provide highly sensitive chemiluminescence trace level analysers (Behrendt et al., 2014), 
quantum cascade laser absorption spectroscopy (including the measurement of isotopologues 
for N2O) and fiber-enhaned Raman spectroscopy (Keiner et al., 2015), as well as ground 
based and satellite born sensors (Mamtimin et al., 2015; Mamtimin et al., 2016). Comparisons 
between the methods showed a good agreement between e.g. (i) soil chambers with gradient 
method (Parrish et al., 1987), (ii) soil chambers with laboratory incubations (Ludwig et al., 
2001), and (iii) laboratory incubations with remote sensing techniques (Mamtimin et al., 
2015). 
 

2.1 SOIL-ATMOSPHERE EXCHANGE OF NO, N2O AND HONO: PROCESSES 

Soil processes are classified into abiotic (reactions based on chemical and physical principles) 
and biotic processes (that involve microbial metabolism). Abiotic formation of NO occurs in 
acidic and organic rich soils (Homyak et al., 2017), whereas abiotic formation of N2O is based 
on the interaction between pH, organic matter, and MnO2 (Liu et al., 2016). However, there is 
still a need to combine flux measurements with additional analysis of composition and 
diversity of microbial community characteristics (Butterbach-Bahl et al., 2013; Pilegaard, 
2013) to gain a full understanding of abiotic processes. Linking flux measurements to the 
activity of certain microbial groups (Behrendt et al., 2017; Kolb and Horn, 2012) may be 
useful to improve biogeochemical processes in models. Within the N-cycle, microbes utilize a 
set of oxygen-demanding and oxygen sensitive enzymes, which either produce or consume 
NO and N2O (Klotz and Stein, 2011). Thus, NO and N2O are intermediates of the N-cycle 
subject to rapid microbial turnover. The expression of specific genes, e.g. bacterial amoA, or 
narG/nosZ (encoding nitrate and nitrous oxide reductases) can be used as a proxy for the 
activity of ammonia oxidizing and denitrifying bacteria, respectively (e.g. Behrendt et al., 
2017; Palmer et al., 2016). Such proxies have been established for all major microbial groups 
involved in the N-cycle in soils. However, there is still an ongoing discussion to what extent 
these results reflect enzyme synthesis (Rocca et al., 2015; Blazewicz et al. 2013). The soil-
atmosphere exchange of NO and N2O is a result of the metabolism of various microbial 
groups, and variations that occur in gas exchange at the microsite scale consequently matter. 
Nevertheless, regional gas exchange is controlled by variations in environmental parameters. 
Therefore, abiotic and biotic processes (for overview see fig. 1) and environmental parameters 
are considered next. 
 

2.1.1 Chemodenitrification 
The abiotic production of NO and N2O, but also other reactive N-gases such as NO2 and 
methyl nitrite, was reported for soils with low pH (pH < 5.5), and high concentrations of iron 
cations (Fe2+) and organic matter (Van Cleemput and Samater, 1996). There is evidence that 
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in drylands, where water is limited, a shift from biotic to abiotic processes for NO production 
occurs (Homyak et al., 2017; McCalley and Sparks 2009). About two decades ago, Venterea 
et al. (2000) stated that for improved NO/N2O modelling, it is necessary to understand the 
abiotic reactions involving liquid NO2

-/HNO2 and gaseous NO2/HONO. A recent study 
suggests that quinone redox chemistry is mediating NO2 conversion to HONO and highlights 
abiotic processes at the soil surface (Scharko et al., 2017). Microbially produced 
hydroxylamine can react in the gas phase on mineral surfaces to form HONO (Ermel et al., 
2018). Manganese dioxide (MnO2) acts as a strong oxidant in soils and therefore pays a 
central role in N2O formation from hydroxylamine (Liu et al., 2016). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The major processes of the biogeochemical nitrogen cycle (modified from Su et al., 
2011 and Klotz and Stein, 2011). Note that arrows for hydroxylamine oxidation and HONO release 

mechanisms are in dots, since the portion of abiotic and biotic contribution are unclear. The anaerobic 
ammonia oxidation (Anammox) arrows are dotted, since the importance of this process in soils is 

unclear. 

 

2.1.2 Biological nitrogen fixation (BNF) 

The atmosphere provides a stable pool of N2 for biological N-fixers. However, the large 
investment of energy required for BNF (Madigan et al., 2012) might be a reason why N-fixing 
microorganisms (i.e., diazotrophs) are not successful in utilizing their advantage compared to 
non-diazotrophs even in N-limited ecosystems. N-assimilation outweighs N-depositions by 
far in many ecosystems like N-limited wet- and drylands (Knorr et al., 2015; Borken et al., 
2016; Larmola et al., 2013; Aranibar 2003; Su et al., 2011). Such ecosystems depend on N-
fixing microorganisms (i.e., diazotrophs) that provide Nr to other organisms including plants 
for assimilation. Symbioses of diazotrophs with plants might accelerate N fixation 
dramatically.  BSC of drylands host a symbiotic microbial community that likewise depends 
on the transfer N from diazotrophs that are active over a wide range of temperatures and 
moisture contents (Aranibar et al., 2003) contribute to ecosystem resilience in drylands. 
Diazotrophy can indeed be the major source of reactive N in such systems (Su et al., 2011), 
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demonstrating that diazotrophs are corner stone organisms in drylands. The increase of 
biological N fixation from 44 Tg N yr-1 in the pre-industrial period to about 195 Tg N yr-1 
(Cleveland et al., 1999) suggests that anthropogenic alteration of the N-cycle has been larger 
than previously assumed (Vitousek et al., 2013). Land-use change in drylands decreases 
biological nitrogen fixation from natural soils, especially from conversion of late to early 
successional stages of biological soil crusts that routinely show diazotrophic activities 
(Housman et al., 2006; Belnap, 2002). 

 

2.1.3 Nitrification 

Nitrification is the microbial oxidation of ammonia to nitrate. Most nitrifiers are autotrophic 
organisms and thus use carbon dioxide as their source of carbon. The first microbial group is 
ammonia oxidizing bacteria (AOB), which performs the oxidation of ammonia, via 
hydroxylamine, to nitrite (Ward et al., 2011). The enzymes are ammonia monooxygenase 
(AMO) and hydroxylamine oxidoreductase (HAO). Hydroxylamine has been discovered as an 
obligate intermediate long ago (Lees, 1952), whereas NO as an obligate intermediate was 
discovered just recently (Lancaster, 2017). Thus, the search for a third enzyme in the 
biological oxidation of ammonia to nitrite continues. The second group is ammonia oxidizing 
archaea (AOA), which is challenging to cultivate (Könneke, et al., 2005; Jung, et al., 2011). 
Differences in metabolism, kinetics, and specialization to ecosystems and environmental 
parameters lead to the question of niche differentiation of AOB and AOA (Prosser and Nicol, 
2012; Hatzenpichler, 2012; Martens-Habbena et al., 2009). AOB can utilize enzymes that are 
homologous to denitrifier enzymes that reduce NO2

- to NO and further to N2O (Casciotti and 
Ward, 2001; Casciotti and Ward, 2005). This process is referred to as nitrifier denitrification 
(Wrage-Monnig et al., 2018; Kool et al., 2011). The third group is nitrite oxidizing bacteria 
(NOB), which convert nitrite to nitrate via the enzyme nitrite oxidoreductase, NXR (Sorokin 
et al., 2012). It is thought that AOB and AOA are main producers of NO and N2O compared 
to NOB. The exhalation of NO and N2O is being investigated for decades (Galbally and Roy, 
1978; Lipschultz et al., 1981). HONO, a new indirect source of NO, was discovered (Su et al., 
2011; Oswald et al., 2013). The latter is a product of AOB and AOA metabolism (Scharko et 
al., 2015), but produced from a heterogeneous reaction of gaseous hydroxylamine on the soil 
surface (Ermel et al., 2018). Recently, complete ammonia oxidizers (COMAMMOX) have 
been discovered, which are capable of complete nitrification (Van Kessel et al., 2015; Daims 
et al., 2015). For completeness, heterotrophic nitrification (HN) is included here. Dominant 
HN was found most likely due to saprophytic and fungal activity in acidic coniferous forest 
soils (Zhang et al., 2011), where conditions for other nitrifiers are unfavorable. In such 
ecosystems HN could dominate NO and N2O exchange. 

 

2.1.4 Denitrification 
Complete denitrification is the microbial reduction of nitrate (NO3

-) to N2 via nitrite (NO2
-), 

NO and N2O as the obligatory intermediates (Knowles, 1982). Denitrifiers are facultative 
organisms that preferentially respire oxygen and switch to denitrification when oxygen 
becomes limiting and N-oxides are available (Zumft, 1997). In soils, various groups of 
denitrifiers have been identified, including a phylogenetically highly diverse group of mostly 
heterotrophic bacteria (Philippot et al., 2007; Philippot et al., 2009; Palmer et al., 2010; 
Palmer et al., 2012; Palmer and Horn, 2012; Palmer and Horn, 2015), fungi (Kobayashi et al., 
1996), some archaea (Zumft, 1997), as well as algae, lichens and mosses in soil crusts (Barger 
et al., 2013). The denitrifying enzymes are nitrate reductase (NAR), nitrite reductase (NIR), 
NO reductase (NOR), and N2O reductase (NOS, Philippot, 2002; Zumft, 1997). The study of 
the activity of these enzymes in soils and their controls is partly limited by experimental 
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methods (Gross and Bemner, 1992; Bollmann and Conrad, 1997). For example, it is almost 
impossible to differentiate denitrification from nitrification derived N2O production in the 
field. For details about diversity, structure and size of the denitrifier community, the reader is 
referred to a more comprehensive review (Braker and Conrad 2011, and references therein). 
The regulation of the expression of denitrification associated genes, which have been 
identified for N2O production and consumption, is dependent on oxygen and NO 
concentration (Spiro, 2012; van Spanning et al., 2007). Denitrification is promoted under 
microaerophilic and anoxic conditions, e.g. in anoxic microsites. pH is an important 
parameter affecting gene abundance, transcription and denitrification kinetics (Liu et al., 
2010) as well. There is indication that water absorption on decomposing plant residues and 
the presence of pores > 35 µm in diameter create N2O hotspots on a microscale in soil 
(Kravchenko et al., 2017; Schlüter et al., 2018). N2O consumption and the different microbial 
groups capable of this process and their controls by environmental parameters is not yet well 
understood (Kolb and Horn, 2012; Chapuis-Lardy et al., 2007). Recent flux measurements are 
now more often accompanied either by molecular analysis and/or 15N and 18O isotopic 
measurements to increase the understanding of which process dominates the NO and N2O 
exchange. 
 

2.1.5 Other microbial processes relevant for N-gas exchange 
One prominent example is the aerobic consumption of NO performed by methanotrophs, 
which links the N and C cycle in the gas phase (Stein and Klotz, 2011; Ren et al., 2000; 
Krämer et al., 1990; Bender and Conrad, 1994). Anaerobic ammonia oxidation is a process 
similar to denitrification, where ammonia is converted via NO2

- to produce N2 (Strous et al., 
2006; Strous et al., 1999), which has an important role in the N-cycle in the oceans (Ward, 
2003). The importance of this process for N-cycling in soils is not yet known. 
Codenitrification (Spott et al., 2011) and dissimilatory nitrate reduction to ammonia (DNRA) 
are mentioned here for a complete review, but due to low organic matter and lack of moisture 
their importance in dryland soils is expected to be low and thus is not further discussed. 
 

2.1.6 Transport processes in soil, canopy and surface boundary layers 
For microbial activity (as approximated by CO2 production here), a single optimum function 
at intermediate soil moisture (volumetric water content approximately θv = 0.5 × ε, where ε 
equals the total porosity, saturated water content) was found (Skopp et al., 1990; Moyano et 
al., 2013). This single optimum function is shifted to low soil moisture for NO and HONO 
emissions (Oswald et al., 2014). Thus, it seems likely that this pattern in NO and HONO 
emissions is controlled by abundance and activity of the nitrifying community. An additional 
controller might be CO2 diffusion, since most nitrifiers are autotrophs. For some soils, a 
bimodal distribution of NO emission was observed, with one maximum at low water content 
and the other at high water content (Yu et al., 2008; Behrendt et al., 2017). It was 
demonstrated by gene expression that nitrifier and denitrifier contribute to this bimodal 
distribution (Behrendt et al., 2017). More energy-rich organic substrates are available under 
high moisture conditions, thus promoting activity of heterotrophs including denitrifiers, and 
NO and O2 diffusion coefficients are very low at about 2 x 10-9 m2 s-1 (see Table1). The latter 
promotes the enrichment of NO and consumption of O2 and thus conditions ideal for onset of 
denitrification. 
 
Once the gases are released from the soil into the atmosphere, they may chemically react, 
interact with plant canopy, and dilute via mixing and transport. Within the canopy, NO reacts 
rapidly with O3 and forms nitrogen dioxide (NO2). The so-called canopy reduction factor 
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(CRF) is used to describe the amount of NOx, which is used to reduce the soil emissions into 
the free atmosphere due to reactions within the canopy, e.g. stomatal uptake. 
 

Table1: Compilation of diffusion coefficients (D) for oxygen (O2) and nitric oxide (NO) in air and 
water. 

 DO2 DNO References 
water 2.13 x 10-9 m2 s-1 2.21 x 10-9 m2 s-1 Goldstick and Fatt (1970); 

Zacharia and Deen (2005) at 25°C 
and atmospheric pressure 

air 1.82 x 10-5 m2 s-1 1.80 x 10-5 m2 s-1 Massman, (1998) at standard 
pressure 

 
 

2.2 SOIL-ATMOSPHERE EXCHANGE OF NO, N2O AND HONO: 

ENVIRONMENTAL PARAMETERS 

In the following sub-sections the most dynamic environmental parameters affecting the 
production and consumption processes of NO and N2O will be discussed. Other 
environmental parameters, such as soil properties (e.g. pH, carbon content, texture) may affect 
NO and N2O emissions too, but their dynamics are commonly investigated on a larger scale in 
time and space (Chapter XX). Agricultural practices (e.g. irrigation, ploughing, liming, 
burning, herbicide/fungicide applications), however, are commonly only applied at field scale. 
While for NO emissions from soil into the atmosphere only the top layer of soil is of 
relevance (Rudolph et al., 1996), much deeper layers are also of relevance for N2O emissions. 
In middle to upper soil layers the produced N2O is partly consumed and only a fraction is 
released into the atmosphere (filter function). 
 

2.2.1 Nitrogen availability and fertilization 
Fertilizer application to increase yields is a common practice to secure food for a growing 
global population. However, the microbial processes, especially nitrification and 
denitrification, are dependent on NH4

+, NO3
-, and NO2

- as substrates. Application of fertilizers 
thus results in agricultural fields emitting more N2O and NO than natural soils. Within the 
available literature, various correlations between different nitrogen species and N-gases can 
be found, however, they are not consistent and very soil specific. One reason may be that 
nitrogen availability affects N2O and NO emissions in several ways: (i) the amount of 
fertilizer (FA), (ii) the amplification factor defined as a dimensionless increase in gaseous 
emissions compared to a non-fertilized control soil, (iii) an increased temperature response 
based on fertilization (Q10F), and the type of fertilizer (Mosier et al., 1998; Mamtimin et al., 
2016). Urea is the predominant nitrogen fertilizer with 54% of overall nitrogen fertilizer used 
(IFA, 2018). Mixtures of fertilizers, such as diammonium phosphate and coated forms (e.g. 
polyolefin-coated fertilizers, POCFs) tend to yield lower gaseous emissions (Fechner, 
unpublished data; Shoji and Kanno, 1994). Based on the N demand the total amount of 
fertilizer applied in one growing season should be divided with largest amounts applied in 
stages of rapid growth (Chen et al., 2011). A fertilization factor was applied to laboratory NO 
measurements, assuming an exponential decay function, to model net potential NO emissions 
for the growth season 2010 in the field (Mamtimin et al., 2016). Also urine applications 
(Khan, 2009), wet and dry deposition (Jia et al., 2016) and plant residuals (Harrison et al., 
2002) increase gaseous N emission. About 1.0% of N-fertilizer was emitted as NO in a recent 
study (Steinkamp and Lawrence, 2011), which is similar to 0.9% of N-fertilizer released as 
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N2O reported from earlier studies (Bouwman et al., 2002a, 2002b). Recent and future focus of 
studies should be the establishment of management practices for constant yields under 
optimal N-fertilization to decrease gaseous N emissions (Matson et al., 1998; Ju et al., 2009; 
Chen et al., 2011). 
 

2.2.2 Soil water content 
The relative fluxes of nitrogen trace gases depend on the soil water content (expressed as 
water holding capacity, WHC, and water filled pore space, WFPS) (Figure 2; Oswald et al., 
2013). This conceptual model was proposed by Firestone and Davidson (1989) for NO, N2O, 
and N2. Diffusion is dependent on soil water content (Skopp et al., 1990), which therefore is 
an indirect controller of denitrification (e.g. O2 and NO concentration) and nitrification (e.g. 
O2 and NH3 concentration). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The relationship between percent soil moisture (expressed as water holding 
capacity, WHC, and water-filled pore space, WFPS) and the relative fluxes of nitrogen trace gases 
(from Oswald et al., 2013, adopted from Firestone and Davidson, 1989). Recently a second HONO 

maximum at high soil moisture was discovered (Wu et al., submitted) 

 
It is well known that at WFPS > 60% denitrification dominates, while at WFSP < 60% 
nitrification dominates (Davidson 1993). Interestingly, the initiation of HONO emissions was 
reported at about 33% WHC or 40% WFPS, when N2O emissions decrease to zero (Oswald et 
al., 2013). There is evidence for a delicate balance between microbial oxidation of Mn2

+ and 
reduction of Mn oxides (Sparrow and Uren, 2014). It was shown for artificial soil mixtures 
that the abiotic formation of N2O from NH2OH depends on the Mn-form, pH and organic 
matter (Liu et al., 2017). However, such studies are lacking to date for natural soils. Thus, it is 
hypothesized that in natural soils the availability of Mn-form depends on soil moisture and 
soil temperature (Sparrow and Uren, 2014), affects N2O and potentially HONO formation, 
and deserves future research. It is also noteworthy that some dryland agricultural soils do not 
follow the conceptual model of a single NO optimum, but rather show two distinct NO 
emission maxima (Behrendt et al., 2017). 
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2.2.3 Soil temperature 
Production and consumption of NO and N2O is catalyzed by various microbial enzymes (see 
sections 2.1.3 and 2.1.4). It is well known that enzymatic reactions can be described with 
Michaelis-Menten kinetics (Michaelis and Menten, 1913), and are exponentially dependent on 
temperature. One way to model the relationship of temperature and NO and N2O emissions is 
the use of a temperature amplification factor, known as the Q10-value. It is generally accepted 
that Q10 values for (micro) biological processes under non-limiting conditions (here: water 
availability and soil substrate) are in the order of 2 to 3 (Schipper et al., 2014). Exponential 
relationship of soil temperature and NO emissions was first demonstrated in a laboratory 
experiment (Yang et al., 1996). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The relationship between soil temperature and the net flux of nitric oxide (NO) determined by 
laboratory incubation of a bare soil taken from the semi-arid Taklimakan Desert at 0.81% gravimetric 
soil moisture (close to Sache oasis, Xinjiang, China, N=3). 

 
For a soil sample from the Taklimakan Desert, where gravimetric soil water content in the 
field was around 0.81%, a similar exponential relationship of NO emissions and soil 
temperature was found (Figure 3). Q10 values for NO emissions from that soil were in the 
range of 1.4 to 1.6. It is still under debate if these NO emissions at very low soil moisture are 
of abiotic or microbial origin (Sullivan et al., 2012; Behrendt et al., 2017; McCalley and 
Sparks, 2009). There is also evidence that different end-products, e.g. N2O and N2, generated 
by different enzymatic reactions differ in their Q10 values by about 2 and 1.4, respectively 
(Phillips et al., 2014). 
 

2.2.4 Ambient mixing ratio for NO, N2O and HONO 
The compensation concentration, ccomp, bellow which net emissions to the atmosphere occur, 
was introduced as a critical variable that controls the flux of trace gases in soil-atmosphere 
exchanges (Conrad, 1994). The use of ccomp was suggested for scaling trace gas fluxes in soil-
atmosphere exchange (Conrad and Dentener, 1999) and was frequently applied in modelling 
NO emissions (Bargsten et al., 2010; Feig et al., 2008; Yu et al., 2008; Kirkman et al., 2001). 
Behrendt and co-workers (2014) have concluded that only NO production can be detected 
from dryland soils. For a soil sample from a blueberry covered spruce forest (pH 3.2; 41.00% 
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carbon) they found the lowest ccomp of 47 ppb, whereas for a soil sample from the Mongolian 
Desert they estimated ccomp to amount to about 6590 ppb (pH 7.9; 0.96% carbon). It is well 
known that fungal activity dominates in acidic and organic rich coniferous forest soils 
(Pennanen et al., 1998). Often heterotrophic activity is related to denitrification (see Section 
2.1.4) and therefore ccomp might be correlated to different microbial processes. N2O 
consumption occurs in soils, even at low pH and atmospheric N2O concentrations (Kolb and 
Horn, 2012; Palmer and Horn, 2015; Palmer et al., 2010). N2O consumption is generally not 
well understood (Chapuis-Lardy et al., 2007), because N2O net fluxes are more commonly 
studied, where it is thought that N2O production is the main contributor to N2O emissions. 
Ultimately isotopic measurements are necessary to disentangle heterotrophic nitrification 
(Zhang et al. 2011), (complete) denitrification and co-denitrification (Kumon et al., 2002). 
However, high NO consumption already points towards denitrification and co-denitrification. 
Moderate ccomp values of 506 and 600 ppb have been reported from dryland farming soils in 
China (Behrendt et al., 2014) and Egypt (Saad and Conrad, 1993), respectively. In dryland 
agriculture, the lack of organic matter as well as water (irrigation regime, see Mamtimin et al., 
2016: about 24h flooding followed by a 2 weekly phase of evaporation) may explain why low 
abundance and activity of (heterotrophic) denitrifiers have been found in such soils (Behrendt 
et al., 2017). Low denitrifier diversity and activity was also found for Chilean arid soils 
(Orlando et al., 2012). HONO fumigation experiments indicate that ccomp for HONO is likely 
the result of multiple processes possibly including microbial processes, chemical reactions on 
the soil surface and adsorption/desorption effects (Ermel, 2014). The study of compensation 
concentrations is important for scaling fluxes, and additionally to target the identification of 
separate biological and chemical processes involved in production and consumption of NO, 
N2O and HONO. 
 
2.3 SOIL-ATMOSPHERE EXCHANGE OF NO, N2O AND HONO: NOVEL 

ISOTOPIC TOOLS 

Different isotopic approaches have recently been developed to follow the (microbial) 
pathways for production of NO, N2O, and HONO. Slightly different methods have been 
developed using either chromium trioxide (CrO3) or the excess of ozone (O3) to convert NO 
into gaseous NO2 which is trapped in a solution as NO2

- and NO3
-, after the denitrifier 

conversion method is used and 15N2O is measured (Yu et al., 2017; Kang et al., 2017). 
Labelling and stable isotopes and isotopomers of N2O demonstrated the tracing of the source 
by either nitrification or denitrification (Wrage-Mönnig et al., 2018; Buchen et al., 2018; Park 
et al., 2011; Wrage et al., 2005; Pérez et al., 2000) and finally allowed the quantification of 
archaeal N2O production (Jung et al., 2013). 15N labelled Urea was applied and a method to 
follow the biogenic HO15NO emissions from soils was established (Wu et al., 2014). Isotopic 
methods have been also applied for separating NO production (Kang et al., 2017) and N2O 
consumption (Lewicka-Szczebak et al., 2017; Wen et al., 2016). 15N tracer experiments for 
NH4

+, NO3
- and NO2

- (Russow et al., 2009) have validated the hypothesis of a diffusion limit 
for NO emissions (Firestone and Davidson, 1989; Skopp et al., 1990; Skiba et al., 1997). 
Thus, diffusion of NO out of the cell is limited under elevated soil moisture and anaerobic 
conditions (0-0.2% O2) and almost all NO can be converted to N2O before it escapes into the 
atmosphere (Russow et al., 2009). This explains why previous studies on NO have been 
conducted only for a thin layer of topsoil (Rudolph et al., 1996; Behrendt et al., 2014; 
Bargsten et al., 2010; Feig et al., 2008; Yu et al., 2008; Remde et al, 1989), which is not 
limited by constraints of molecular diffusion. Recent studies also highlight that this soil 
surface layer plays an important role for multiple chemical reactions, which impact various 
forms of gaseous Nr release into the atmosphere (Ermel et al., 2018; Liu et al., 2017; Scharko 
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et al., 2015; Oswald et al., 2013). 15N isotopic fractionation factors for nitrification (αs/p) 
revealed an optimum function with maximum αs/p at field capacity of about 1.031, which 
might be the result of N-transport in form of NH4

+ supply within the microbial cells and NH3 
oxidation via enzymatic catalysis (Yun and Ro, 2014). 
 

3 MICROBIAL NO, N2O AND HONO EMISSIONS FROM SEMI-ARID AND ARID 
SOILS 

Earlier studies found an increase in NO and N2O emissions on the order of 10 to 100 times 
after rainfall (Davidson and Kingerlee, 1997; Verchot et al., 1999; Ludwig et al., 2001; 
Hartley and Schlesinger, 2000). For soils from the Mojave Desert, 0.08 to 1.9 ng m-2 s-1 NO 
emissions were reported with a potential emission of up to 34 ng m2 s-1 under simulated 
rainfall conditions in the laboratory (McCalley, 2008). A modelling study for atmospheric 
NOx emissions from bare soils found slightly higher values (Steinkamp and Lawrence, 2011). 
HONO emissions, which comprise a major fraction of gaseous nitrogen loss especially from 
dryland soils under low soil moisture, may explain this difference (Oswald et al., 2013). In 
contrast, when soils dry out, N substrates concentrate in hydrologically disconnected 
microsites, which generate, together with N uptake from plants, a hot spot character of NO 
and N2O emissions in drylands (Homyak et al., 2016). Hence, the spatial variability of NO, 
N2O and HONO emissions from drylands may be considerable. It is assumed that gaseous N 
emissions will further increase, predominantly in regions where dryland farming is intensified 
under fertilization and irrigation practices (Mamtimin et al., 2016). The type of fertilizer 
seems also important, since HONO (and N2O) emissions depend on the microbial 
intermediate hydroxylamine (Ermel et al., 2018; Liu et al., 2017, Wu et al., 2014), which is 
thought to be produced in larger quantity from urea and NH4

+ fertilizers than from fertilizer 
mixtures. For example, nitrate concentrations in air samples originated from the Taklimakan 
Desert under non-dust, floating dust, and dust storm conditions were 3.81 ± 1.24, 2.95 ± 0.69, 
and 4.99 ± 1.71 µg m-3, respectively (Wu et al., 2014). It is still not known to which extent 
this nitrate is blown out from heavily fertilized soils or originated from chemical reactions in 
the desert atmosphere. However, similar elevated nitrate concentrations have been reported 
from other deserts (Turpin et al., 1997). The magnitude of biogenic soil NO emissions for 
dryland soils are on the lower range of NO emissions (Steinkamp and Lawrence, 2011), but 
the area is large (UNEP, 1997). Also the potential of NO emissions due to non-water rainfall 
inputs has not been studied yet. Therefore it is thought that the nitrogen cycle in drylands is of 
global relevance. 
 
 
3.1 THE ROLE OF NON-RAINFALL WATER INPUTS AND SOIL TEMPERATURE 

The limited rainfall in drylands has led the scientific community to assume that microbial 
abundance and activity in these areas is low. However, microbial life was even found in the 
middle of the Atacama Desert, the driest place on Earth (Maier et al., 2004). Recent studies 
demonstrate that physical vapor adsorption from the atmosphere by the desert soil, a form of 
non-rainfall water input, is very frequent (Agam and Berliner, 2006; Ravi et al., 2006). The 
adsorbed water penetrates the first few (3-5) centimeters of the topsoil (Agam and Berliner, 
2004). There is strong evidence that these non-rainfall water inputs control CO2 efflux (Hugh 
et al., 2015). New studies have found that high NO (and HONO) emission occurred in soils 
during very low soil moisture of < 2% gravimetric soil moisture (Behrendt et al., 2017; 
Behrendt et al., 2014; Mamtimin et al., 2016; Oswald et al., 2013, see also Fig. 4). Similar 
maximum NO emissions under very low soil moistures have been found in the Kalahari and 
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Chihuahuan Desert (Aranibar et al. 2004, Hartley and Schlesinger, 2000). Maximum CO2 
production was used as a proxy for activity of the overall microbial community, which was 
observed at about θv = 0.5 × ε (Skopp et al., 1990; Moyano et al., 2013). This finding 
demonstrates that NO (and HONO) emissions from dryland soils at very low soil moisture are 
not correlated to the maximum relative soil emission at about 60% WFPS (Fig. 2). CO2 
production from soils under elevated soil moisture is predominantly the result of heterotrophic 
metabolism (Casals et al., 2011) and therefore using CO2 production as a proxy for overall 
activity of the microbial community might not be suitable. It should be noted that the soil 
samples dried out significantly over the course of the experiment, thus, future research is 
needed to clarify if the activation is dependent on time after re-wetting or on soil moisture 
content. Rapidly responding bacteria can be linked to very strong increases of trace gases, 
which have been observed for N2O (e.g. Davidson, 1992a) and CO2 (Placella and Firestone, 
2013; Placella et al., 2012) after addition of water to dry soils. Consequently, the trace gas 
emission from the soil into the atmosphere is not only a result of abiotic processes and 
transport, but additionally mixed with microbial processes modifying concentrations of the 
trace gas. 
 
Under very low soil moisture, molecular gas diffusion in soils is accelerated (Skopp et al., 
1990). Under < 2% gravimetric soil moisture, CO2 from the atmosphere can easily diffuse 
into soil and thus is more easily accessible to microbes than organic matter. Thus, it is likely 
that under such low soil moisture conditions autotrophic processes dominate over 
heterotrophic processes. In soils from humid mid-latitude ecosystems, maximum NO 
emissions occurred under moderate soil moisture, and as the climate becomes drier, the 
maximum NO emissions shift towards lower optimum soil moistures (Behrendt et al., 2014; 
Behrendt et al., 2017). This highlights the importance of autotrophic nitrification for NO 
emissions in dryland soils. It is noteworthy that an increase in gravimetric soil moisture of up 
to 2.2% was frequently observed in the Negev Desert by non-rainfall water inputs (here: water 
vapor adsorption) (Agam and Berliner, 2004). This so-called hysteresis effect has not yet been 
studied for NO, N2O, and HONO emissions. In comparison to fertilized agricultural soils 
from humid mid-latitude ecosystems, the NO emissions from dryland soils are very low. 
However, if water vapor adsorption could maintain NO emission at a low, but constant level, 
the large area covered by drylands (more than 40% of global land; UNEP, 1997) may result in 
a significant contribution to the overall global budget of NO (and eventually HONO) 
emissions. 
 
The high NO emission under low soil moisture has also been investigated by molecular 
methods. Transcriptional activity of different microbial groups is correlated to soil moisture 
(Behrendt et al., 2017; Placella and Firestone, 2013), which suggests the hypothesis that under 
low soil moisture a specialized microbial community drives the nitrogen cycle in drylands. 
Dryland soils are hot spots for NO emissions (Homyak et al., 2016) and NO emission 
modeling suggests that dryland soils are a stronger source than previously recognized 
(Steinkamp and Lawrence, 2011). There is indication that ammonia oxidizing archaea (AOA) 
play a major role in the nitrogen cycle under extremely dry conditions (Sullivan et al., 2012). 
AOA are known to produce NO (Martens-Habbena et al., 2015), tolerate high temperatures 
(Adair and Schwarz, 2010) and low NH4

+ (Stahl and de la Torre, 2012), and have an efficient 
aerobic carbon metabolism (Könneke et al., 2014). There is evidence that AOB dehydrate and 
quickly recover from drying out after re-wetting of soil (Ermel et al., 2018; Thion and 
Prosser, 2014; Gleeson et al., 2013). AOA dehydrate and recover slower, suggesting that they 
might stay active for a longer time than AOB under dry conditions. One reason for this is 
likely their smaller cell size and therefore their ability to colonize in fine soil pores, where 
water films are present even under low soil moisture. This might be an advantage for their 
survival under harsh conditions in dryland soils. However, other studies found evidence that 
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under low moisture, abiotic processes dominate gaseous N losses in drylands (e.g. McCalley 
and Sparks 2009). Thus, the processes responsible for gaseous losses under low soil moisture 
are still debated. 
 
The main focus of laboratory incubations is to study the impact of microbe-environment 
interactions on the soil-atmosphere exchange of trace gases to deduce a net potential NO flux, 
which can be validated against field NO fluxes; e.g. from dynamic chambers (Ludwig et al., 
2001). Commonly, in these studies soil moisture, soil temperature, and the mixing ratio of the 
trace gas under investigation are changed (Laville et al., 2009; Feig et al., 2008; Yang et al., 
1996). The unique advantage of laboratory studies versus field measurements is the 
investigation of the effect of single parameters, such as soil moisture, on the soil-atmosphere 
exchange of trace gases (Figure 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Effect of gravimetric soil moisture and soil temperature on net NO flux from a hyper-arid, 
unfertilized soil from Gobi Desert, Mongolia (results of laboratory experiments, see Behrendt et al., 
2014). Blue and red color refers to 20 and 30°C and dark and bright color refers to NO-free and 133 
ppb NO fumigation, respectively. 

 
The net NO release rate follows an optimum function over the course of the drying-out of the 
soil sample and under low and elevated NO as well as at 20 and 30°C. For this hyper arid soil, 
only NO production was observed (Figure 4). For this hyper arid soil, NO consumption rate 
coefficients, kNO, were estimated to be on the order of < - 0.120 × 10-5 m3 kg-1 s-1. This very 
low kNO range indicates that NO consumption and potential conversion into N2O and N2 may 
be of minor importance in dryland soils. This agrees with one of the first few studies of NO 
and N2O from semi-arid regions, where it was found that NO fluxes dominate and N2O fluxes 
are of minor importance (Scholes et al., 1997). Low organic carbon contents and thus limited 
carbon substrate (availability of CO2 dominates over (dissolved) organic matter under low soil 
moisture) and elevated temperatures may be the reasons why soils from semi-arid, arid and 
hyperarid ecosystems are a less favorable environment for denitrifiers. Low denitrifier 
diversity and activity was found for such soils (Orlando et al., 2012; Behrendt et al., 2017). 
The increase of NO production with soil temperature, here expressed as Q10-value, is on the 
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order of 2. Indeed, previously developed algorithms (e.g. Feig et al., 2008) fit both the 
laboratory and the field data very well in most cases. In this algorithm, the net NO flux, FNO 
(in ng m-2 s-1) is described as a function of the relative soil moisture, S (or % of “Water Filled 
Pore Space”), by 
 

∗ ∗ exp ∗ . 
 
The parameters a, b, and c are related to observed values by 

∗ exp 
 

1
 

 

 
where Sopt is the soil moisture at which the maximum net NO flux is observed; FNO(Sopt) 
equals max[FNO(S)]; and Supp is the soil moisture at which FNO(WFPS) = FNO(Supp)  0 for S > 
Sopt. Numerical values of the parameters a, b, and c can be determined by minimizing the sum 
product of the difference between measured and fitted data points. Different temperature 
responses for NO release rate under low and high soil moisture indicate that different 
microbial groups contribute to the overall NO release rate from soil over the course of a dry-
out. 
 
3.2 MICROBIAL GROUPS VS. MICROBIAL GUILDS – EFFECT ON DRYLAND 

SOIL PROCESSES 

The activity of the overall microbial community in dryland soils drives the dynamics of 
biogeochemical processes, e.g. nitrification and denitrification (expressed in terms of the 
change in NO and N2O fluxes from soil to the atmosphere). However, in order to understand 
how the microbial community affects biogeochemical processes, both microbial phylogeny 
and physiology need to be considered. The overall activity of the microbial community of a 
soil can be thought of as the sum of activities of various microbial groups. As a proxy for the 
activity of different microbial groups, e.g. ammonia oxidizing bacteria (AOB), ammonia 
oxidizing archaea (AOA) and denitrifiers, their gene expression can be studied and linked to 
NO, N2O and/or HONO emissions from dryland soils. Under elevated and very low soil 
moisture, two maxima in NO release rate occur, which can be linked to the activity of 
phylogenetic different microbial groups: AOA under very low soil moisture, and denitrifiers 
under elevated soil moisture, respectively (Behrendt et al., 2017). For a better understanding 
of the overall microbial community response to changes in environmental parameters (e.g. 
pH, ammonia concentration and temperature) are linked to different physiological responses 
within a microbial group. This has been modelled by incorporating several microbial guilds 
into one microbial group (Bouskill et al., 2012). In such a model, the different microbial 
guilds are characterized based on differences in their traits, e.g., Vmax and KM values 
(physiology), for different species (phylogeny). Vmax is the maximal velocity under which an 
enzyme can catalyze a reaction and KM is the half-saturation constant. Both are parameters for 
modelling enzyme kinetics (Michaelis and Menten, 1913). A similar concept of microbial 
guilds was discussed for carbon cycling (Schimel and Schaefer, 2012; see Chapter XX), and 
for the temperature response of the microbial community consisting of different microbial 
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guilds (Schipper et al., 2014). The concept of microbial groups and microbial guilds is of 
great importance to modelling trace gas fluxes. 
 
The primary evidence for two maxima in NO release rates during drying out has been 
reported for sodic soils from a semi-arid ecosystem, but only one maximum in NO release 
rate was used for modelling (Yu et al., 2008). This resulted in an underestimation of NO 
fluxes from semiarid sodic soils. Finally, there is evidence that the incorporation of 
phylogenetic microbial guilds via functional gene data into models can improve their results 
(Graham et al., 2016) and the understanding of how microbes affect ecosystem functioning in 
drylands. The knowledge about archaea is still limited, but they are thought to have a great 
ecological relevance in drylands, especially for NO emissions from soils. Thus, the biological 
nitrification model (Bouskill et al., 2012) may be extended in the future by several archaeal 
guilds to better understand the role of various AOA’s in dryland nitrogen cycling. Finally, the 
concept of microbial groups and microbial guilds does not only focus anymore on the 
microbiological questions “who is there?” and “who is active?”, but also on the question “how 
much detail of the overall microbial community structure and activity is needed to create 
accurate models?”. The ultimate goal of this interdisciplinary research is to create models that 
are sufficiently detailed to represent the dynamics in biogeochemical processes conceptually 
rich enough to explore emergent behaviors. Focus of new research should be on the link 
between molecular methods and measurements of various trace gas fluxes. Since molecular 
analyses only provides a “snapshot” for specific time points and are destructive samplings, the 
online monitoring of trace gases is thought of as a powerful tool to get insight into the 
dynamics of the different microbial groups within the overall microbial community and into 
physiology/enzyme kinetics and metabolism of different microbial guilds. One prominent 
trace gas candidate may be methanol, which is produced during the microbial oxidation of 
methane (see Section 2.1.5). This is of interest, since methanotrophs are also capable of NO 
consumption (see Section 2.1.5). The NO consumption by methanotrophs is a third process in 
addition to activity from AOA and denitrifiers to model NO release rates from a dryland soil 
based on microbial activity deduced from functional gene expression (Behrendt et al., 2017). 
There is evidence that methane oxidation occurs in arid soils, but could not be detected in 
hyperarid soils from the Negev Desert (Angel and Conrad, 2009). 
 
3.3 NITRIFICATION VS. DENITRIFICATION: OBSERVATIONS FROM 

DRYLANDS 

There is indication that in dryland soils the activity of denitrifiers is limited (Orlando et al., 
2012; Behrendt et al., 2017). Exceptions are dark cyanolichen biocrusts, which are 
characterized by high N fixation rates, but denitrification equals only about 3-4% of N 
fixation rates (Barger et al., 2013). These dark cyanolichen biocrusts have also been identified 
as important source for HONO (Weber et al., 2015). However, we want to recapitulate that 
nitrifiers are also capable of denitrification (see section 2.1.3) and thus produce NO and N2O. 
Interestingly, there is evidence that this process is dependent on NO2

- accumulation (Giguere 
et al., 2017; Behrendt et al., 2017). Despite NO2

- levels that are commonly very low, there is 
evidence that these low NO2

--levels drive NO (Behrendt et al., 2017) and N2O production 
(Giguere et al., 2017) by both AOA and AOB. Interestingly, there is evidence of an 
abundance of atypical archaeal ammonia-oxidizing communities in desert soils, 
demonstrating that AOA are of great relevance (Marusenko et al., 2015). All the 
aforementioned studies raise the need for future studies focusing on changes in the NO2

- pool 
in desert soils, potential nitrifier denitrification by AOA and AOB, and finally the role of 
nitrite oxidizing bacteria (NOB). Interestingly, a modelling approach for nitrification revealed 
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a 12 °C higher optimum temperature for AOA than for AOB (Taylor et al., 2016), supporting 
the role of AOA for NO and N2O emissions from dryland soils under elevated temperatures. 
These findings may help to understand the counterintuitive larger potential nitrification rates 
observed in seasonally dry ecosystems (Sullivan et al., 2012). There is indication for a 
bacterial salt tolerant nitrifying community in soils from the Negev desert (Nejidat, 2005). 
This highlights the important role of salts in dryland soils, and the role of the deliquescence 
relative humidity (DRH). For NaCl-organic mixed aerosols, the point of DRH was determined 
at about 75% (Cruz and Pandis, 2000). For soils with high salt content, water vapor 
adsorption increases beyond 2.2% in gravimetric soil moisture. For HONO it was found that 
alkaline soils emit the largest amounts (Oswald et al., 2013), but the effect of salts on HONO 
formation from soils is still unkown. Microbial processes involved in ammonia oxidation for 
NO, N2O and HONO emissions from dryland soils are not yet understood. Eventually in 
dryland soils conditions are less favorable for denitrifiers and in deserts they might be even 
bellow the limit of detection (Orlando et al., 2012). Thus, nitrification should be the 
predominant process in desert soils. 
 
3.4 GLOBAL IMPORTANCE OF NO, N2O AND HONO EMISSIONS FROM 

NATURAL DRYLAND SOILS 

Most dryland soils are carbon-poor and lack substantial rainfall inputs, which results in 
predominantly low soil moisture (Chapter YY). These conditions are unfavourable for 
denitrification and the contribution to N2O emissions from these soils is commonly low. 
However, under these conditions the processes of nitrification and nitrifier denitrification 
might be important and contribute largely to HONO and NO formation. Instead of focusing 
on rainfall as the main driver of microbial activity and trace gas release from dryland soils, 
future studies should focus on the role of water vapor adsorption. There is also evidence from 
a multi-satellite sensor study that already one day before rainfall, soil moisture increased and 
NO emissions  are within the order of about 3.3 ng (N) m-2 s-1 from soils in the Sahel region 
(Zörner et al. 2016). In the same study, the NO emissions from rainfall pulses were found to 
be range from 6 to 65 ng (N) m-2 s-1 (assuming a life time for NOx of 4 h). While the short 
NOx pulses due to rainfall detected by remote sensing techniques are a validation of previous 
field measurements (Johansson and Sanhueza, 1988; Davidson, 1992b; Levine et al., 1996; 
Scholes et al., 1997), NOx emissions based on water vapor adsorption in the field have not yet 
been measured. Very low yearly average NO emissions of 2.18 to 3.46 ng (N) m-2 s-1 for the 
Sahel region (Delon et al. 2014) suggest that NO emissions due to water vapor adsorption 
might be the predominant process in regions where rainfall events are rare. Changes in land-
use, desertification as well as the increase in dryland farming (including irrigation/soil 
moisture regime and C and/or N fertilization practices) are thought to accelerate the N cycle 
in drylands in the future. For example, a change in land-use from grassland to shrubland 
resulted in decrease of NO emissions (Hartley and Schlesinger, 2000), whereas a conversion 
of grassland into cropland resulted in an 8-fold increase in N2O emissions (Mosier et al., 
1996). While the contribution of natural dryland soils to global N2O emissions is low (e.g. 
Scholes et al., 1997), the role of dryland soils for N2O consumption is not yet understood. 
There is indication that not only denitrifiers, but also other bacteria and archaea might play an 
important role in N2O consumption, like the recently detected clade II nitrous oxide reducers 
most of which don’t denitrify (Jones et al., 2014; Sanford et al., 2012; Chapuis-Lardy et al., 
2007). The effect of soil degradation (water or wind erosion or chemical/physical 
deterioration), which frequently occurs in dryland soils (Müller et al., 2014), on NO, N2O and 
HONO emissions has not been studied yet. However, there is indication that especially at sites 
where the salt content is increasing, a nitrifying community with unique capabilities can 
establish (Nejidat, 2005). An overview examining the variability of HONO emissions under 
different land use is given by Oswald et al. (2013). There is evidence that the development of 
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bio crusts are capable of fixing sand dunes on a large scale of 16 km long and 0,7 km wide 
area where 1 x 1 meter straw checkerboard sand barriers were constructed (Li et al., 2002). 
However, a change from bare sand dunes into anthropogenic created soil surfaces where bio 
crusts have been established has not only the benefit of dune stabilization, but also the price of 
additional trace gas release. There is evidence that especially the late successional stage of 
dark cyanolichen crusts produce large amounts of HONO and NO (Weber et al., 2015). 
Despite maximal gaseous N-emissions from dryland soils are only low, recent HONO 
emissions from drylands (Oswald et al., 2013) suggest that these soils are important for N-
cycling. Despite fluxes of N-oxides are several orders of magnitude higher under simulated 
rainfall conditions (McCalley, 2008), rainfall in drylands is limited. Of so far unknown 
importance in the water cycle in drylands are the non-rainfall water inputs, which have been 
shown to trigger trace gas emissions recently (McHugh et al., 2015). Non-rainfall water inputs 
are thought to occur in drylands on a more regular basis than rainfall and therefore might be 
important for N-cycling in these ecosystems. 
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