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Abstract
Spin-polarized atomic ensembles probed by light based on the Faraday interaction are a
versatile platform for numerous applications in quantum metrology and quantum information
processing. Here we consider an ensemble of Alkali atoms that are continuously optically
pumped and probed. Due to the collective scattering of photons at large optical depth, the steady
state of atoms does not correspond to an uncorrelated tensor-product state, as is usually
assumed. We introduce a self-consistent method to approximate the steady state including the
pair correlations, taking into account the multilevel structure of atoms. We find and characterize
regimes of Raman lasing, akin to the model of a superradiant laser. We determine the spectrum
of the collectively scattered photons, which also characterizes the coherence time of the
collective spin excitations on top of the stationary correlated mean-field state, as relevant for
applications in metrology and quantum information.

Keywords: Faraday interaction, quantum nondemolition, Raman lasing, cumulant expansion,
superradiant laser, atomic ensemble, collective scattering

(Some figures may appear in colour only in the online journal)

1. Introduction

Atomic ensembles coupled to light represent a versatile plat-
form for quantum communication [1], for quantum met-
rology [2], optical atomic clocks [3], and quantum simu-
lations [4]. In particular, the Faraday interaction of light
with collective atomic spins has proven to be a power-
ful tool for realizing a light–matter quantum interface [5],
enabling highly efficient quantum control and measurements
of atoms [6]. It was used in early quantum optics exper-
iments on quantum non-demolition measurements and has
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since become a powerful tool for generating spin squeezing of
atomic ensembles [7–16]. More generally, the Faraday inter-
action was also utilized to generate and control exotic many-
body entanglement [17, 18]. The exquisite quantum control
and long spin coherence time enabled the demonstration of
quantum information protocols, including quantum memory
and teleportation [19–22] as well as entanglement [23–25]
and engineered interactions [26] between remote macro-
scopic systems. Further quantum technological applications
have been demonstrated in entanglement-enhanced magneto-
metry [27–29] and in quantum back-action-evading measure-
ment of motion [30].

These protocols have commonly been performed in a
pulsed mode of the external pumping and probing light fields.
In this case, the light–matter interaction involves collective
spin excitations on top of a fully polarized, uncorrelated spin
state [5]. More recently, the regime of continuous pumping
and probing was explored in a number of experiments and
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theoretical investigations. In particular, it has been considered
theoretically as a possibility to generate stationary entangle-
ment among remote atomic ensembles [31, 32] and in a hybrid
system comprising a mechanical oscillator and a collective
atomic spin [33]. Unconditional steady-state entanglement
of atomic ensembles achieved in this way has been repor-
ted in [24]. Here,—in contrast to the pulsed regime outlined
before—optical pumping and probing have to happen at the
same time in order to maintain a sufficient stationary atomic
polarization. In this regime, the usual assumption of an uncor-
related spin-coherent state becomes a poor approximation for
the steady state of atoms. This is due to the fact that at large
optical depth, as relevant for an efficient light–matter interface,
scattering of photons experiences collective enhancement and
introduces strong inter-atomic correlations. The steady state
is thus defined from an interplay between the optical pump-
ing of single atoms and the collective scattering of photons
induced by the probe field. A systematic theoretical descrip-
tion of a light–matter quantum interface with continuous pump
and probe appropriate for this regime is lacking.

Here, we introduce a self-consistent method based on the
cumulant expansion to study continuously pumped and probed
atomic ensembles beyond standard mean-field theory based
on uncorrelated atoms. Our model describes a fairly gen-
eral setup comprised of an ensemble of Alkali atoms with a
ground state spin F subject to continuous optical pumping and
transverse probing in a geometry as explored in [19–25]. We
give an ab initio derivation of an effective Lindblad master
equation for an optically thick ensemble of N spin-F systems,
accounting for single atom optical pumping as well as collect-
ive scattering events generating correlations among atoms. We
solve the master equation for its approximate steady state in a
cumulant expansion considering two-particle correlations. By
means of the quantum regression theorem, we also determine
the spectrum of collectively scattered photons. The width of
the corresponding spectral lines determines the coherence time
of the spin oscillator associated with collective atomic excit-
ation on top of the correlated mean-field state. We find that
the system exhibits features of line narrowing and instabilities
associated with transitions to regimes of continuous Raman
lasing [34, 35]. These effects depend on the optical depth,
which sets the strength of collective scattering relative to indi-
vidual depumping, but also on the geometry of the setup and
in particular the angle among the directions of polarization of
light and atoms. Such dependencies of line-narrowing on the
geometry have been observed experimentally3.

We develop our treatment of an optically pumped and
probed atomic ensemble by drawing a formal analogy to the
model of a superradiant laser introduced in [36–38]. Both sys-
tems are described by a Lindbladmaster equation where single
atom dynamics competes with cooperative effects described
by collective jump operators. In addition, in both cases, this
competition encompasses laser transitions which are well
accounted for by an improved mean field theory based on

3 We have discussed it with Prof. Eugene Polzik and Prof. Philipp Treutlein.

cumulant expansions. However, while the superradiant laser
is mostly considered on the basis of a two-level approxim-
ation, it is crucial to take into account all Zeeman substates
and Clebsch–Gordan weights for Raman transitions in order
to cover the physics in a continuously pumped and probed
atomic ensemble. While a light–matter quantum interface will
be operated below the laser threshold, it is still important to
understand and characterize the instability provided by the
Raman lasing transition. We hope that our study will help to
extend the continuous [24, 31–33] or quasi-continuous [7–14]
operation of quantum interfaces to higher efficiency and
stronger light–matter coupling.

The article is organized as follows. In section 2 we first
give a brief introduction to the theory of the superradiant
laser and then introduce a slightly more general model, which
could be considered a superradiant Raman laser. This model
exhibits certain features specific to pumped and probed atomic
ensemble, but is simple enough for an analytic characteriza-
tion of its phase regimes. In section 3 we derive the master
equation for a continuously pumped and probed ensemble of
Alkali atoms. We discuss its approximate solution based on
a cumulant expansion and explore its features on the basis
of the model for the generalized superradiant laser. Finally,
in section 4 we summarize and give an outlook for future
studies.

2. Superradiant laser

2.1. Superradiant laser master equation

In this section, we recapitulate the two-level-system model of
the superradiant laser and its most general features, which was
treated in great detail in [36–38]. The general setup is shown
schematically in figure 1(a). We consider an ensemble of N
two-level atoms placed in a cavity with linewidth κ. The cavity
frequency ωc is set to be resonant with the atom transition fre-
quency ωeg, i.e. ωc = ωeg. The transition between the ground
state |g⟩ and the excited state |e⟩ couples to the cavity mode â
with a single photon Rabi frequency Ω/2, cf figure 1(b). The
system is described by the Lindblad master equation

d
dt
ρ=−i

ωeg

2

[
J z + â†â,ρ

]
− i

Ω

2

[
J+â+ J−â†,ρ

]
+w

N∑
i=1

D
[
σ+
i

]
ρ+κD [â]ρ, (1)

whereD [A]ρ= AρA† − 1/2
[
A†A,ρ

]
+
is a Lindblad superop-

erator, J z =
∑N

i=1σ
z
i and J± =

∑N
i=1σ

±
i are collective spin

operators, written in terms of the Pauli operator σz
i and the lad-

der operators σ+
i = (σ−

i )
† for the ith atom. In addition to the

cavity decay, the model takes in an incoherent, non-collective
pumping process causing population inversion at an effective
rate w. The individual character of pumping is essential, since
only in this case the stationary collective polarization of the
ensemble will be maintained [39, 40]. This pumping process
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Figure 1. (a) Ensemble of N two-level atoms with single photon
Rabi frequency Ω/2 and incoherent pumping rate w, inside a cavity
with linewidth κ. The atoms decays through the cavity with rate
γ =Ω2/κ. (b) Simplified level scheme of the two-level atoms inside
the superradiant laser in (a) with coherent atom–cavity interaction
(solid arrows) and incoherent pumping rate w (wiggly arrow).
(c) Realization of the incoherent pumping process with rate w via a
fast-decaying excited state. (d) The coherent coupling of |g⟩ and |e⟩
is achieved through a coherent Λ-type Raman transition.

could correspond e.g. to an additional Λ-type two-photon pro-
cess involving a laser assisted excitation followed by a spon-
taneous emission as shown in figure 1(c).

The finite linewidth of the atomic transition could be reflec-
ted in an additional Lindblad term in equation (1). However,
the physics of the superradiant laser relies in particular on the
excited state being long lived on the scale of the cavity decay
rate. In this limit spontaneous decay plays a minor role and we
choose to suppress it here for the sake of clarity. Its role has
been discussed carefully in [36, 39, 41] where long lived trans-
itions in Alkaline earth atomswere considered. Another realiz-
ation of narrow band transitions can be found inΛ-type Raman
transitions as shown in figure 1(d). This corresponds also to
the way the first proof-of-principle realizations of superradi-
ant (Raman) lasing have been achieved [38, 42]. We note that
the following section will expand on this correspondence, and
investigate more complicated two-photon transitions and las-
ing transitions in multilevel atoms.

In contrast to the conventional laser, the superradiant laser
relies on collective effects in the atomic medium to store its
coherence, instead of relying on the long coherence time of
photons inside the cavity [38]. Therefore, we consider the
atomic ensemble coupling to the light field in an extreme bad-
cavity regime. In this regime the cavity decay is much faster
than all other processes, i.e. κ≫ w,Ω, and can be adiabatically
eliminated [36], resulting in the permutation invariant master
equation, taken here in a frame rotating at the atomic transition
frequency ωeg,

d
dt
ρ= w

N∑
i=1

D
[
σ+
i

]
ρ+ γD

[
J−
]
ρ (2)

with the rate γ =Ω2/κ of the collective decay term.

Figure 2. The polarization ⟨σz
1⟩ (blue solid line), two-atom

correlations
⟨
σ+
1 σ−

2

⟩
(red dashed line) and the dimensionless

linewidth Γ/γ (yellow dashed-dotted line) versus dimensionless
single-atom pumping rate w/Nγ.

From equation (2) the evolution of the expectation values
of ⟨σz

1⟩ and
〈
σ+
1 σ

−
2

〉
follows as

d
dt

⟨σz
1⟩= w(1−⟨σz

1⟩)− γ (1+ ⟨σz
1⟩)

− 2(N− 1)γ
〈
σ+
1 σ

−
2

〉
,

d
dt

〈
σ+
1 σ̂

−
2

〉
=
{
(N− 2)γ ⟨σz

1⟩− (w+ γ)
}〈

σ+
1 σ

−
2

〉
+

γ

2
(⟨σz

1⟩+ 1) ⟨σz
1⟩, (3)

where we used the cumulant expansion and factorized〈
σ+
1 σ

−
2 σ

z
3

〉
=
〈
σ+
1 σ

−
2

〉
⟨σz

1⟩ and ⟨σz
1⟩⟨σz

2⟩= ⟨σz
1⟩

2 due to neg-
ligible cumulants ⟨σz

1σ
z
2⟩c and

〈
σ+
1 σ

−
2 σ

z
3

〉
c
, see [43].

The steady state expectation values can be obtained by
setting the left hand sides of the equation (3) to zero and
solving the resulting quadratic equation. Figure 2 shows the
characteristic linearly increasing polarization ⟨σz

1⟩ (blue solid
line) and the inverted parabola of the correlations

〈
σ+
1 σ

−
2

〉
(red dashed line) over the single-atom pumping rate w/Nγ.
As one can see, the non-zero two-atom correlations for a
large atomic ensemble (N≫ 1) corresponding to the superra-
diant laser regime exist only when the pumping w fulfills the
inequalities

γ < w< Nγ. (4)

At the lower threshold (w= γ), the pumping overcomes the
atomic losses, and the population inversion is established. At
the same time, the two-atom correlations build up signifying
the onset of superradiance, i.e. atom decay rate γ through the
cavity is enhanced by a factor proportional toN (cf figure 1(a)).
It is the minimum condition for lasing, which is in contrast to
a conventional laser where the threshold is obtained when the
pumping overcomes the cavity losses. At the upper threshold
(w= Nγ), the two-atom correlations vanish due to the noise
imposed by the pumping. Thus, in this case the ensemble con-
sists of random radiators producing thermal light.

The spectrum of light leaving the cavity is S(ω) =

F [⟨â†(t)â(0)⟩](ω) = Ω2

κ2 F [⟨J+(t)J−(0)⟩](ω) where F

3
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Figure 3. (a) A level scheme of an atom, which has incoherent
pumping w+ (cf figure 1(c)), depumping w−, and single photon
Rabi frequency Ω+/2 (cf figure 1(d)) and counter rotating rate
Ω−/2. (b) This simplified level scheme shows only the relevant
levels and processes of (a). It is effectively the level scheme of
figure 1(b) with additional processes for exchanged levels |g⟩ ↔ |e⟩.

denotes Fourier transform4. The equation of motion for the
two-time collective dipole correlation function

d
dt

〈
J+(t)J−(0)

〉
=

(
iωeg −

Γ

2

) 〈
J+(t)J−(0)

〉
(5)

with Γ = w+ γ− (N− 1)γ ⟨σz
1⟩ follows from the Quantum

Regression Theorem [44]. As a result, the spectrum of the out-
put light of the cavity is Lorentzian with a linewidth Γ, which
is on the order of γ [36].

At the pumping strength wopt = Nγ/2 the atom–atom cor-
relations

〈
σ+
1 σ̂

−
2

〉
reach their maximum, meaning optimal

synchronization of the dipole moment of individual atoms and
a corresponding maximal collective atomic dipole moment.
This results in the maximal intensity and the relatively nar-
row linewidth of the output laser light [38]. Thus, the super-
radiant laser regime corresponds to a quite delicate balance
between the collective and non-collective processes given in
equation (2).

2.2. Generalized superradiant laser master equation

We now consider a generalization of the superradiant laser
master equation where we allow for additional processes
which can arise in more complicated level schemes such as
shown in figure 3(a). These processes correspond to counter-
rotating terms in the picture of the effective two-level sys-
tem, cf figure 3(b), which may still arise as resonant processes
from suitable Λ-type transitions. Thus, we consider a Jaynes–
Cummings like coupling of each atom to the cavity mode at
(effective) single photon Rabi rate Ω+ and an anti-Jaynes–
Cummings type interaction at rate Ω−. Moreover, we also
account for individual pumping at rate w+ and at individual
depumping from the excited to the ground state at rate w−.
All of these processes may arise in double-Λ like transitions
as shown in figure 3 and in more complex level schemes as
discussed in section 3.

After eliminating the excited states, the master equation
that accounts for these additional processes in the effective
two-level system corresponds to,

4 We use the convention F [f(t)](ω) = 1√
2π

´+∞
−∞ dte−iωtf(t).

d
dt
ρ=−i

ωeg

2
[J z,ρ]− i

[(
Ω+

2
J+ +

Ω−

2
J−
)
â+ h.c., ρ

]
+w+

N∑
i=1

D
[
σ+
i

]
ρ+w−

N∑
i=1

D
[
σ−
i

]
ρ+κD [â]ρ.

(6)

Here, ωeg accounts for a (possible) energy difference between
the two states which physically corresponds to an energy split-
ting between the two ground states. Considering the cavity
decay as the fastest timescale, i.e. κ≫ Ω±,w±, we perform
its adiabatic elimination as before, resulting in a field that is
slaved to the collective atomic dipole of the atomic ensemble,
â≃−i(Ω+J+ +Ω−J−)/κ. The master equation for atoms
only becomes

d
dt
ρ= w+

N∑
i=1

D
[
σ+
i

]
ρ+ γ−D

[
J−
]
ρ

+w−

N∑
i=1

D
[
σ−
i

]
ρ+ γ+D

[
J+
]
ρ (7)

with rates γ− =Ω2
−/κ and γ+ =Ω2

+/κ of the collective terms.
The first two terms are identical to the simplified model of

the superradiant laser, which were considered in the previous
section, while the third and fourth can be regarded as a super-
radiant laser with interchanged levels. The model considered
here thus is unchanged by relabeling +↔−. We exploit this
symmetry here and assume without loss of generality that the
single atom pumping generates population inversion in |e⟩,
that is w+ > w−. Furthermore, we are interested in the regime
of w+,w− ≫ γ−,γ+ where only collectively enhanced rates
Nγ± are comparable to w±.

We proceed as in the previous section, and derive the evol-
ution of expectation values from equation (7)

d
dt

⟨σz
1⟩= w+ (1−⟨σz

1⟩)−w− (1+ ⟨σz
1⟩)

− 2(N− 1)(γ− − γ+)
〈
σ+
1 σ

−
2

〉
d
dt

〈
σ+
1 σ

−
2

〉
=
{
(N− 2)(γ− − γ+) ⟨σz

1⟩

− (w+ +w− + γ− + γ+)
}〈

σ+
1 σ

−
2

〉
+

1
2
((γ− − γ+)+ (γ− + γ+)⟨σz

1⟩) ⟨σz
1⟩, (8)

where we factorized ⟨σz
1σ

z
2⟩ ≈ ⟨σz

1⟩
2 and

〈
σ+
1 σ

−
2 σ

z
3

〉
≈〈

σ+
1 σ

−
2

〉
⟨σz

1⟩ as in [43] assuming negligible cumulants
⟨σz

1σ
z
2⟩c,

〈
σ+
1 σ

−
2 σ

z
3

〉
c
.

The steady state expectation values can be obtained by set-
ting the left hand sides of equation (8) to zero and solving
the resulting quadratic equation. The steady state solution of
⟨σ+

1 σ
−
2 ⟩ shows that atom–atom correlations, witnessing the

regime of superradiant lasing, exist if and only if the single-
atom pumping rate w+ fulfills the inequality

w+ < N(γ− − γ+)
w+ −w−

w+ +w−
−w−. (9)

4
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Figure 4. Polarization ⟨σz
1⟩, and atom–atom correlation ⟨σ+

1 σ−
2 ⟩

versus single-atom pump rate w+, for vanishing collective
excitation rate γ+ = 0. For comparison, for w−/Nγ− = 0 (dashed
lines) the curves of figure 2 are reproduced.

Here, we assume the limit of a large atom numbers N≫ 1
and restrict equations to leading order in 1/N. Moreover, we
assume strong pumping towards level inversion, w+ ≫ γ±. In
comparison with equation (4), the threshold condition for the
generalized superradiance laser has a nonlinear dependence
on w+ for the upper and for the lower bounds. We also recall
that we took w+ > w− and conclude that a dominant collect-
ive emission rate γ− > γ+ is necessary for superradiance to
occur.

Compared to the model of the superradiant laser, which
depended only on the ratio w/Nγ, there are now four inde-
pendent parameters Nγ± und w±. It will be useful to discuss
the steady state physics in terms of the ratios of single atom
pumping to collective decay,w+/Nγ−, collective excitation to
collective decay, γ+/γ−, and single atom depumping to col-
lective decay, w−/Nγ−.

Figure 4 illustrates the case where γ+/γ− = 0, and shows
atomic polarization and dipole correlations versus w+/Nγ−,
in analogy to what was shown for the superradiant laser
in figure 2. The overall behavior is similar, but in com-
parison, the superradiant regime is somewhat reduced for
nonzero single atom depumping w−/Nγ− (solid line), as is
to be expected. Figure 5 provides a more complete overview,
and shows the steady state polarization ⟨σz

1⟩ and atom–atom
correlation ⟨σ+

1 σ
−
2 ⟩ versus collective excitation rate γ+/γ−

and individual pumping w+/Nγ−. The left (right) column of
figure 5 refers to vanishing (nonzero) single atom depump-
ing w−/Nγ−. The figure illustrates the superradiant domain
and shows that it is excellently characterized by condition (9).
Most importantly, figure 5 reveals a rich dependence of the
steady state properties on the ratio of collective excitation and
decay ratios γ+/γ−. Corresponding cuts along this axis are
shown in figure 6. The behavior of the system along these will
be of importance for our discussion of multilevel atoms in the
next section, where we will show that geometrical aspects of
the light–matter interactions determine the ratio of the rates

Figure 5. Polarization ⟨σz
1⟩, atom–atom correlation ⟨σ+

1 σ−
2 ⟩, and

full-width at half maximum of the Lorentz peak Γ (top to bottom
row) versus collective excitation rate γ+/γ− and single-atom pump
rate w+/Nγ−. The single-atom depumping rate is w− = 0 in
(a)–(c) and w−/Nγ− = 0.05 in (d)–(f). The dashed lines at
w+/Nγ− = 0.1 correspond to the parameters in in figure 6. The
dotted lines are given by equation (9), giving an envelope of the
superradiant lasing regime in leading order in 1/N.

Ω± and with it the ratio of γ±. The maximal atom–atom
correlations are

max
w+

〈
σ+
1 σ

−
2

〉
=

1
8
− w−

Nγ+

1
γ−
γ+

− 1

in leading order in 1/N, for γ+ ⩾ γ− at the optimal pumping
strength w+,opt = N(γ− − γ+)/2−w−.

In the generalized superradiant laser the linewidth is still
on the order of the atomic linewidth γ−, even though the
ensemble is incoherently pumped with a much stronger rate
w+. We will now show that we essentially have two superra-
diant lasing transitions, |e⟩ → |g⟩ and |g⟩ → |e⟩, radiating at
the same time with identical linewidth of the order of γ−, but
different intensities.

As before, the spectrum of the output light
S(ω) = F [⟨â†(t)â(0)⟩](ω) = γ+

κ F [⟨J+(t)J−(0)⟩](ω)+
γ−
κ F [⟨J−(t)J+(0)⟩](ω) is evaluated using the Quantum
Regression Theorem [45] based on the equation of motion

5
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Figure 6. Polarization ⟨σz
1⟩, and atom–atom correlation ⟨σ+

1 σ−
2 ⟩

versus collective excitation rate γ+/γ−, corresponding to the
dashed lines in figure 5. Varying γ+ scans through the superradiant
regime. For γ+ close below the upper threshold of the superradiant
regime (9), the polarization and atom–atom correlation are strongly
dependent on γ+, and therefore very sensitive to small changes.
w+/Nγ− = 0.1.

d
dt

〈
J−(t)J+(0)

〉
=

(
−iωeg −

Γ

2

) 〈
J−(t)J+(0)

〉
with linewidthΓ = γ− + γ+ +w+ +w− − (N− 1)(γ− − γ+)
⟨σz

1⟩. The corresponding spectrum is given by two Lorentz
functions at ±ωeg with heights S± and identical linewidth
(full-width at half maximum) Γ. The linewidth Γ forw+ > w−
to leading order 1/N is

Γ

γ−
≈ W+ +W+W−(W− −W+W− − 1)

(W+ − 1)(W− − 1)W−

(
1− γ+

γ−

)
,

where we defined the dimensionless variables

W± :=
(w+ ±w−)(w+ +w−)

N(γ− − γ+)(w+ −w−)
.

The linewidthΓ is shown in figures 5(c) and (f).We see that the
generalized superradiant laser preserves the remarkable fea-
ture of the superradiant laser—the linewidth on the order of
the effective atomic decay rate γ−—even for non-vanishing
γ+. And even with additional single-atom depumping rate
w− the linewidth increases only slightly (see figure 5(f)). The
spectrum exhibits two asymmetric peaks at the sideband fre-
quencies ω =±ν. The ratio of the sideband intensities S± is
given by

S+
S−

=
γ+
γ−

1

1− ⟨J z⟩ ⟨J+J−⟩
≈ γ+

γ−
(10)

forN≫ 1 in the superradiant regime, which is simply the ratio
of collective emission rates at the sidebands. We want to point
out that equal Lorentz peak height is not possible, because the
superradiant condition (9) cannot be fulfilled for γ+ = γ−.

The model of the generalized superradiant laser will be a
helpful reference to understand the physics of continuously
pumped and probed atomic ensembles, which will be treated
in the following.

3. Continuously pumped and probed atomic
ensembles

Here, we consider the setup shown in figure 7. An ensemble
of Alkali atoms is subject to optical pumping and to continu-
ous, off-resonant probing of spin polarization transverse to the
direction of mean polarization. The treatment will closely fol-
low that in [5, 46], but extend it in two aspects: first, instead
of pulsed, continuous pump and probe fields will be treated
and second, the possibility of collective emissions instead of
scattering of independent atoms will be considered. We first
develop the corresponding master equation in section 3.1 and
then apply it to the examples of atoms with ground state F= 1
in section 3.2 and F= 4 in section 3.3. These applications will
demonstrate the close connection to the model of the general-
ized superradiant laser introduced in the previous section.

3.1. Master equation of continuously pumped and probed
atomic ensembles

We considerN Alkali atoms which are continuously probed by
an off-resonant laser of wavelength λc propagating in z direc-
tion with linear polarization enclosing an angle θ relative to the
x-axis, the axis of mean atomic polarization, cf figure 7. The
laser couples off-resonantly to one of the atomic D-lines with
ground state spin F and excited state spins F′. The respect-
ive Zeeman states will be denoted by |F,mF⟩ and |F ′,mF ′⟩.
We assume a spatial distribution of atoms exhibiting a large
optical depth D= Nσ0

A along the axis of the probe field. Here,

σ0 =
3λ2

2π is the scattering cross section on resonance, and A is
the beam cross section. In this limit, the scattering of photons
in the z direction occurs in the same spatial mode, which we
model here by a cavity mode with linewidth κ to which all
atoms couple equally [47]. This (virtual) cavity mode is then
adiabatically eliminated in the limit κ→∞, which yields a
master equation for the atoms that represents collective emis-
sions in the z direction in free space. Scattering in all other dir-
ections is non-collective, and will be covered by suitable Lind-
blad terms in the master equation. Regarding motion of atom,
we will follow the approximations of [5] suitable for treating
an ensemble of thermal atoms in a cell. Through thermal aver-
aging, the motion of the atoms is almost decoupled from their
spin and the forward-scattered photons.

Our starting point is the master equation for N atoms inter-
acting with the electromagnetic field in dipole approximation.
In the electromagnetic field we distinguish the forward scatter-
ing modes, which are modeled as a running wave cavity, and
all other field modes,

ρ̇=
1
iℏ

[Hat +Hcav +Hfield +Hint,ρ] +κD [â]ρ. (11)

6
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Figure 7. Ensemble of Alkali atoms subject to continuous optical
pumping along the direction of a homogeneous magnetic field B⃗. An
off-resonant probe laser propagates along the transverse direction
with linear polarization enclosing an angle θ with the mean atomic
polarization. At large optical depth, collective emission generates
photons in the orthogonal light polarization. PBS denotes a
beamsplitter sensitive to polarization used to measure the rotation of
the polarization angle of the transmitted probe light.

The Hamiltonians are

Hat = ℏ
N∑
i=1

∑
F′,mF′

ω′
F′,mF′

|F′,mF′⟩⟨F′,mF′ |i

+
∑
mF

ωF,mF |F,mF⟩⟨F,mF|i

}
Hcav = ℏωcâ

†â

Hfield = ℏ
∑
λ

ˆ
dk ωkâ

†
k,λâk,λ

Hint =
N∑
i=1

∑
F′

E−(ri, t)d
−
i,FF′ + h.c..

We expand the electric field into its coherent (C-number) com-
ponent, the (quantized) cavity field orthogonally polarized to
it, and all other field modes, which are, respectively,

E−(r, t) = E−(z, t)+E−
cav(z)+E−

field(r), (12)

E−(z, t) = ρc
√
Φe−i(kcz−ωct)ec, (13)

E−
cav(z, t) = ρqâ

†e−ikczeq, (14)

E−
field(r) =

∑
λ

ˆ
dk ρωâ

†
k,λe

−ikrek,λ. (15)

Here, ρc =
√

ℏωc
2ϵ0cA

, ρq =
√
κρc/2, and ρω =

√
ℏω

2ϵ0(2π)3
is the

electrical field per photon for classical, cavity and free field,
respectively. ωc is the laser frequency, kc its wave number, Φ
the photon flux, and ec = (cosθ sinθ 0)T the linear polar-
ization of the laser field. Regarding the forward scattered
quantum field (i.e. the cavity field), eq = (−sinθ cosθ 0)T

is the linear polarization vector orthogonal to ec, and κ the cav-
ity line width. Since we are eventually interested in the free

space limit κ→∞, we take the cavity resonance frequency
ωc to be identical to the laser frequency. The dipole operator
in Hint is expanded as di = d+i,F ′F+ d−i,F ′F as d

+
i,F ′F = πF

′

i diπFi ,
where πFi =

∑
mF

|F,mF⟩⟨F,mF|i are projectors in the spin-F-
subspace of atom i, and d−i,F ′F = (d+i,F ′F)

†.
In a first step, we consider the dispersive limit of light–

matter interaction where the detuning∆ of the laser frequency
ωc from the closest atomic F↔ F ′ transition is large, and
only resonant two photon transitions can occur. In this limit,
the excited states can be adiabatically eliminated [48]. In the
same step, we eliminate the field modes in Born–Markov
approximation [49]. This results in a master equation for the
ground state spins F and the cavity mode, covering forward
scattering of photons,

ρ̇=
1
iℏ
[
Hat,g+Hcav +H eff

int,ρ
]
+κD [â]ρ

+
N∑
i=1

3∑
µ=1

D
[
Leffat,i,µ

]
ρ. (16)

From the atomic Hamiltonian Hat only the ground state mani-
fold remains,

Hat,g := ℏ
N∑
i=1

∑
mF

ωF,mF |F,mF⟩⟨F,mF|i.

Here the effective interaction Hamiltonian for the ground state
spins with light is [48]

H eff
int ≈−

N∑
i=1

((
E−
cav(zi, t)

)T↔
α iE+(zi, t)+ h.c.

)
,

where we use the polarizability tensor

↔
α i :=

|d|2

ℏ∆

2∑
k=0

skT̂
(k)
i (17)

with scalar, vector and tensor polarizability operators [50, 51]

T̂(0)i =− 1√
3
1i,

T̂(1)i =
i√
2
Fi×,

T̂(2)i =
1
2

(
2Fi⊗Fi+ iFi× .− 2

3
(Fi)

2
1i

)
.

d denotes the reduced dipole matrix element (in the conven-
tion of [51]), and sk are dimensionless, real coefficients which
depend on the detuning (see (4.43) in [52]). For detunings
much larger than the excited states’ hyperfine splitting, the
tensor polarizability does not contribute, s2 → 0 [53]. In the
effective light matter interaction we keep terms linear in the
coherent field, and drop termswhich are quadratic in the coher-
ent field (Stark shift of atomic levels) or in the quantum field

7
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(no mean field enhancement). The Stark shift is dropped here
for simplicity, but could be easily taken into account in this
framework. We note that in the Hamiltonian in equation (17)
the atomic coordinates drop out, such that the atomic positions
decouple from the dynamics. This is due to the fact that we
consider forward scattering only.

The Lindblad terms in the second line of equation (16)
account for individual spontaneous emission of each atom.
The jump operators can be conveniently labeled in a Cartesian
basis with index µ= 1,2,3,

Leffat,i,µ ≈
√
γ′
(↔
α iE+

)
µ
,

where we define γ ′ =
ω3

c
6πℏϵ0c3 . We note that, due to the struc-

ture of Lindblad terms, the second line of equation (16) is
actually basis independent. A convenient choice will be to use
{ec,eq,ez}.

In the next step we eliminate the cavity field in the free
space limit based on the methods of [45, 49]. The resulting
master equation, written in a rotating frame with respect to
Hat,g, in the limit κ→∞ is

ρ̇=
∑
ω

{
γdec

N∑
i=1

∑
µ=c,q,z

D [Vµ
i (ω)]ρ+ γD [V q(ω)]ρ

}

+w
N∑
i=1

D
[
F+
i

]
ρ. (18)

We introduce here the dimensionless jump operators

V q(ω) =
N∑
i=1

V q
i (ω), (19)

Vµ
i (ω) =

∑
mF,m

′
F

ωmF−ωm ′
F
=ω

|mF⟩⟨mF|Vµ
i |m

′
F⟩⟨m ′

F| (20)

for atom i for µ ∈ {c,q,z}. The sum is over all pairs (mF,m ′
F)

with a given energy splitting ℏω = ℏ(ωmF −ωm ′
F
), and

Vµ
i :=

2∑
k=0

skeTµT̂
(k)
i ec. (21)

In equation (18) we introduced the decoherence rate due to
spontaneous emission,

γdec =Φγ′

(
|d|2

ℏ∆
ρc

)2

=
Φ

8
σ0

A

(γ0
∆

)2
,

and the rate of collective forward scattering,

γ =Φ

(
ωc |d|2

2ϵ0cAℏ∆

)2

=
Φ

16

(σ0

A

)2(γ0
∆

)2
. (22)

We use here the spontaneous emission rate γ0 =
ω3

c |d|
2

3πϵ0ℏc3 . We
note that due to the collective nature of the jump term asso-
ciated with collective scattering, the effective rate of these

processes is Nγ. Therefore, the relative strength of collect-
ive scattering with respect to decoherence due to spontaneous
emission, Nγ

γdec
= D

2 , becomes large for sufficiently large optical
depth.

Furthermore, we add in the last line of equation (18) a Lind-
blad term accounting for optical pumping to the ground state
with mF = F. As explained earlier, we employ a phenomeno-
logical description for this process, as our main aim here is to
provide a microscopic picture for the non-collective and col-
lective effects of the continuous probe. The microscopic the-
ory of optical pumping is of course well established, and can
in principle be used to give a more realistic account than the
minimalmodel used here. Themaster equation (18) is themain
result of this section. Formore details on its derivation we refer
to [52].

It is instructive to consider in more detail the form of the
jump operator in equation (21)

V q
i = i

s1
2

(
F−
i −F+

i

)
− s2

(
i cos(2θ)√

2
W1 +

sin(2θ)
4

W2

)
(23)

occurring in the collective jump term in equation (18), where
we defined the operators

W1 :=

(
F 0
i +

1
2

)
F−
i +

(
F 0
i −

1
2

)
F+
i ,

W2 := 3
(
F 0
i

)2 − (Fi)
2
+
(
F−
i

)2
+
(
F+
i

)2
.

The operator W1 collects processes which change m by ±1,
and W2 contains changes by 0 or ±2. We emphasize that
the θ-dependence is an effect of the tensor component T̂(2)

in the polarizability tensor, and scales with s2 ≪ s1 for large
detuning.

While both W1 and W2 can be considered as corrections
to the dominant dynamics provided by the vector polarizab-
ility, their impact on the dynamics is very different: W1 cor-
rects the dominant ±1 transitions in the vector polarizability,
which contributes crucially to the unbalancing of transition
rates among the Zeeman states responsible for the lasing beha-
vior, as will be discussed below. In contrast, the±2 transitions
added by W2 are comparatively slow, and make a negligible
contribution to the dynamics. Therefore, we will disregard
them below in our analytical considerations, but include them
in the numerical analysis only.

3.2. Ground-state spin F=1

We will now evaluate the master equation in equation (18) for
the case of spin F= 1. In order to highlight the most important
features more clearly, we deliberately omit the W2 compon-
ents in the jump operators in equation (23) for now. With this
simplification, the master equation becomes

8
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ρ̇=
1
i

N∑
i=1

[
1∑

m=−1

ωm|m⟩⟨m|i,ρ

]
+ γD

[
V+(θ)

]
ρ+ γD

[
V−(θ)

]
ρ

+w+

N∑
i=1

D
[
F+
i

]
ρ+w−

N∑
i=1

D
[
F−
i

]
ρ. (24)

Here, the first term on the right hand side accounts for the
splitting of the levels |m⟩ in the external magnetic field with
Zeeman energies ωm where now m=−1,0,1. The terms in
the second line represent the effect of collective scattering
of photons in the z-direction. The collective jump operators
depend on the angle θ between the polarizations of atoms and
light, and are given by

V±(θ) =
N∑
i=1

V±
i (θ) (25)

with single atom operators

V±
i (θ) = s1

(
1+ ϵcos(2θ)

(
∓F 0

i +1/2
))
F±
i . (26)

We define ϵ=
√
2 |s2/s1| measuring the relative weight of the

ground states’ tensor to vector polarizability. In the limit of
large detuning ϵ vanishes asymptotically. The terms in the last
line describe individual optical pumping and depumping at
ratew±, respectively. As in the case of the generalized superra-
diant laser in section 2.2, we restrict the analysis to w+ > w−.
The collective jump operators are associated with transitions
between Zeeman states |n⟩ to |m⟩ where ∆m= m− n=±1
for V±(θ), respectively. It will be useful to define the single-
atom transition rates for these transitions

γm,n = γ
∣∣⟨m|Vm−n

i (θ)|n⟩
∣∣2 (27)

= γs1 (1+ ϵcos(2θ)(∓m+ 1/2))2 .

It can be seen that the angle θ controls the balance between
∆m=±1 transitions. Figure 8(a) illustrates how the relative
weight of γ0,±1 and γ±1,0 shifts with θ. From the discussion
of the generalized superradiant laser model in section 2.2, it
should be expected that the relative weight crucially determ-
ines the regimes of superradiance, as shown schematically in
figure 8(b).

As in the previous sections, the master equation (24) is
solved for the steady state in a cumulant expansion. For this
purpose, the master equation is expanded in an operator basis
(with elements Aα

i for particle i), and three-particle correl-
ators are approximated as ⟨Aα1

1 Aα2
2 Aα3

3 ⟩ ≈ ⟨Aα1
1 Aα2

2 ⟩ ⟨Aα3
3 ⟩+

⟨Aα1
1 Aα3

3 ⟩ ⟨Aα2
2 ⟩+ ⟨Aα2

2 Aα3
3 ⟩ ⟨Aα1

1 ⟩− 2⟨Aα1
1 ⟩ ⟨Aα2

2 ⟩ ⟨Aα3
3 ⟩.

From this approximate solution we can extract information
on single particle observables such as level populations and
mean polarization, as well as on the magnitude of two-particle
correlations. The latter we quantify by the norm ∥τ2∥2 of
τ2 = ρ2 − ρ1 ⊗ ρ1, where ρn denotes the n-body reduced dens-
ity operator. The dependence of these quantities on the angle
θ are shown in figures 9 and 10.

Figure 8. (a) Transition rates γm,n versus angle θ, for a relative
weight of tensor to vector polarizability ϵ= 0.1. Rates of transitions
in opposite direction and involving different levels are identical, i.e.
γ0,1 = γ0,−1 and γ−1,0 = γ1,0. (b) Transition rates γm,n between the
different ground state levels m for angles θ = 0,π/4,π/2. The
thickness of the line represents a measure for the transition strength.
Transition fulfilling the conditions for superradiant lasing are shown
in red and blue.

Figure 9. Polarization ⟨F 0
i ⟩/F, and norm of two-atom correlations

∥τ2∥2 over the angle θ, where τ2 := ρ2 − ρ1 ⊗ ρ1 and ρn is the
reduced density matrix of n atoms. Red and blue shaded regions
correspond to ∥τ2∥2 > 10−3 indicating significant two-atom
correlations and associated lasing. The parameters are chosen the
following way: for a fixed Nγ and N= 2× 105 we need a small
single-atom depumping rate w− = Nγ/1000 to be in a regime of
significant collective effects. The single-atom pumping rate follows
as w+ = 5w− to create a significant population inversion.

The mean polarization ⟨F 0
i ⟩/F along the x-direction

strongly depends on the parameter θ as a result of the inter-
play between the optical pumping along x and quantum jumps
described by the collective jump operators V±

i (θ). We can
understand this behavior by considering each transition in
figure 8(b) involving only two levels and comparing it with

9
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Figure 10. Population p|m⟩ of levels |m⟩ versus θ. Populations
experience significant redistribution in the lasing regimes (blue and
red shaded areas) as compared to non-lasing regime (white area)
where single atom physics prevails. The parameters are the same as
in figure 9.

the condition for superradiance (9) of the generalized superra-
diant laser. For the upper transition 1↔ 0 and θ= 0 the col-
lective emission with rate γ0,1 is dominant, due to γ0,1/γ1,0 =
((2+ ϵ)/(2− ϵ))

2
> 1. This allows superradiance, meaning

correlations between atoms build up and the atoms emit col-
lectively such that the emitted intensity scales with N2. For
the upper transition and For θ > π/4 the collective excita-
tions are dominant, due to γ0,1/γ1,0 ⩽ 1, meaning the super-
radiant condition (9) cannot be fulfilled. Tuning θ between
0 and π/4 gives a polarization curve in figure 9 similar
to figure 6. This similarity is somewhat surprising, as the
change of θ in figure 9 entails a nonlinear change of the
both rates γ0,1, γ1,0 (see figure 8), while in figure 6 only γ+
is linearly changed. The lower transition −1↔ 0 can ful-
fill the superradiant condition (9) only for θ > π/4, with a
maximum dominant collective down rate γ−1,0 for θ = π/2,
resulting in a polarization similar to figure 6 with inverted
x-axis.

For both, transitions −1↔ 0 and 0↔ 1, superradiance
implies an enhanced collective jump rate proportional to N,
necessarily decreasing the polarization ⟨F 0

i ⟩/F. The superra-
diant transition in the red shaded region in figure 10 shifts
much of the population from |1⟩ to |0⟩, as is shown in figure 10.
The small change in population of |−1⟩ is a result of the
single-atom depumpings with rate w− shifting the popula-
tion of |0⟩ downwards. The superradiant transition in the blue
shaded region in figure 10 shifts the population from |0⟩ to
|−1⟩. The change in population of |1⟩ is a result of the single-
atom depumpings with rate w− shifting the population of |1⟩
downwards.

The significant θ-dependent redistribution of populations
away from the fully polarized state is shown in figure 10. It
is also clearly visible that the red shaded regime correspond-
ing to superradiance of the 0↔ 1 transition involves a much
larger population than the blue shaded regime corresponding
to superradiance of the−1↔ 0 transition. This will be visible
also in terms of the intensity of collectively scattered photons.

Figure 11. Spectrum S(ω) of collectively scattered light versus
frequency ω on the x-axis and angle θ on the y-axis (separated in two
plots due to different color scales). The lower plot shows the two
Lorentz peaks at ω =±20γ associated with a superradiant transition
on the 0↔ 1 levels, while the upper plot has the Lorentz peaks at
ω =±10γ associated with a superradiant transition on the −1↔ 0
levels. The intensity maxima reflect the steady state populations in
the respective levels. The parameters are identical to figure 9.

The spectrum of light collectively scattered to the
polarization orthogonal to the laser polarization, S(ω)∝∑N

i,j=1F [⟨Vi(τ)Vj(0)⟩](ω), follows from a Fourier transform
of the atomic two-time correlation functions

N∑
i, j=1

⟨Vi(t+ τ)Vj(t)⟩= N(N− 1) ⟨V2(t+ τ)V1(t)⟩

+N ⟨V1(t+ τ)V1(t)⟩ .

Here we defined Vi := V+
i (θ)+V−

i (θ). In order to distinguish
contributions from 0↔ 1 and −1↔ 0 transitions in the spec-
trum we assume a nonlinear Zeeman splitting with, for con-
creteness, ω−1 = 0, ω0 = 10γ, and ω1 = 30γ. This particular
level splitting is chosen here such that photons generated on
the lower transition occur at a sideband frequency ω0 −ω−1 =
10γ and for the upper transition at ω1 −ω0 = 20γ. The spec-
trum in figure 11 reveals clearly that for 0⩽ θ < π/4 only the
upper transition can be superradiant and for π/4⩽ θ ⩽ π/2
only the lower transition can be superradiant as expected from
the superradiant condition (9) and indicated in figure 8(b).

In addition, we extract the full-width at half maximum
Γ of the dominant Lorentz peak, as shown in figure 12. In
the red and blue shaded superradiant regions, the linewidth
Γ is on the same order of magnitude as the collective jump
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Figure 12. Linewidth (full-width at half maximum) Γ of the highest
Lorentz peak versus angle θ. The superradiant regimes (red and blue
shaded) show a linewidth on the order of the collective jump rate γ.
The parameters are identical to figure 9.

Figure 13. Transition rates γn±1,n = γ⟨n± 1|Vqi (±Ωz) |n⟩ (see
jump operator (20)) with a Zeeman splitting Ωz versus the angle θ
for F= 4 with the parameters given in figure 15. The rates show a
similar θ dependence as in the simplified three level model in
figure 8, but their absolute value is also dependent on the hyperfine
level m.

rate γ. At θ = π/4 the dynamics is well approximated by
single atom dynamics for which the linewidth is given by
Γ = 2γ+w− +w+.

3.3. Ground state spin F=4

Finally, we consider as an example the case of the cesium D2-
line with F= 4 and F ′ = 3,4,5. Here, we consider the com-
plete master equation (18) without any approximation. The
steady state is determined as before in cumulant expansion
assuming vanishing cumulants of three or more atoms, that is,
keeping only two-atom correlations.

Because the full jump operators (23) generate transition
rates γn±1,n with similar θ dependence (see figure 13), multiple
transitions can fulfill the superradiant condition (9) and we
expect multiple transitions contributing to the superradiance at
the same time. An independent indication of which transitions

Figure 14. Population p|m⟩ distribution for different angles
θ = 0,0.254π,π/2 versus the hyperfine levels |m⟩ for the same
parameters as in figure 15, figure (a) has optical depth D≈ 76
(N= 2× 107 atoms), and (b) optical depth D≈ 1900 (N= 5× 108

atoms). The lines connecting the dots are meant as a guide for the
eye. (a) and (b) In the non-lasing regime at θ = 0.254π, the atoms
are uncorrelated and exhibit an exponential distribution of
populations, consistent with up and down rates independent on the
level m. (b) For θ= 0 the upper transitions become superradiant,
meaning also the collective emission rate shifts the population to
lower levels canceling the single-atom pumpings and resulting in an
almost flat population distribution for m⩾ 0; for θ = π/2 the lower
transitions are superradiant competing with the single-atom
pumpings, giving an almost flat distribution for m⩽ 0. (a) The
population for m⩾ 0 is also flattened for θ= 0, but not as
pronounced as in (b). For θ = π/2 there is no superradiance in any
transition and the population remains close to the θ = 0.254π case.

are involved in the superradiance is the population distribution
over the different hyperfine levels plotted in figures 14(a) and
(b). Figure 14(b) is more instructive to see the pronounced
effect of superradiance with optical depth D≈ 1900, while
figure 14(a) with D≈ 76 is more achievable. For uncorrel-
ated atoms around θ ≈ π/4 the single-atom pumpings dom-
inate, due to the pumping rate w, giving an exponential popu-
lation distribution in both cases. For θ= 0 figure 14(b) shows
the approximately flat distribution for m⩾ 0, indicating that
all upper transitions have collective emissions balancing the
single-atom pumpings dominantly created by the pumping
rate w. This implies that all transitions between levels m⩾ 0
are radiating collectively enhanced, i.e. are superradiant. For
θ = π/2 one has an inverted behavior in figure 14(b): the
population of the upper levels is almost exponential, while the
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Figure 15. Polarization ⟨F 0
i ⟩/F, and norm of two-atom correlations

∥τ2∥2 versus the angle θ for F= 4, i.e. a nine-level ground state
manifold. Figure (a) has optical depth D≈ 76 (N= 2× 107 atoms),
and (b) optical depth D≈ 1900 (N= 5× 108 atoms). The two-atom
correlations are defined as τ2 := ρ2 − ρ1 ⊗ ρ1, ρn is the reduced
density matrix of n atoms, and the red and blue shaded regions
correspond to ∥τ2∥2 > 10−3. This figure with F= 4 is the analog to
figure 9 in the simplified three-level system. The parameters are the
collective jump rate γ/γdec ≈ 1.9× 10−6, and a pump rate
w/γdec ≈ 5.8× 10−3. These rates correspond to a laser power
ℏωcΦ= 6mW, probe beam area A= (300µm)2, laser wavelength
λL = 852nm, a detuning∆= 2π× 3GHz, and pump rate
w= 1kHz.

lower levels m⩽ 0 show a flat distribution. In the lower levels
the collective emissions are balancing the single-atom pump-
ings, meaning the transitions between the levels m⩽ 0 are
radiating superradiantly. Figure 14(a) shows a less pronounced
effect for θ= 0 and lacks any superradiance for θ = π/2.

Figure 15(b) shows the same qualitative behavior for the
polarization and correlations as figure 9 and confirms that the
choice of the simplified jump operators (26) captured the dom-
inant effect of the full jump operators (23). The lower optical
depth in figure 15(a) compared to figure 15(b) leads to a reduc-
tion of the red-shaded θ-range with significant two-atom cor-
relations and prevents any significant two-atom correlations
for θ > π/4, i.e. no superradiance on any lower transitions.

4. Conclusion

In this article we have used the methods and insights of
the superradiant laser [36–38], specifically the self-consistent
approximation of the exact dynamics via the cumulant
expansion, and applied it to the continuously pumped and off-
resonantly probed atomic ensembles as present in experiments

such as [24, 30]. In all discussed continuously pumped and
probed systems of the article we have seen parameter regimes
with steady-states with significant atom–atom correlations
strongly influencing observable quantities such as the polar-
ization. This shows that an approximation around the single-
atom steady-state, like a simple single-atom mean-field and
subsequent Holstein–Primakoff transformation, would have
been insufficient to capture these effects.

We see that a self-consistent approximation of the exact
dynamics via the cumulant expansion is a suitable way to
derive the moment system for spin-1/2 atoms (see sections 2.1
and 2.2) and derive analytical results, such as the superradi-
ant lasing condition (9). For the higher spin atoms the ana-
lytical treatment becomes too tedious and one can calculate
numerical results as we have shown for the spin-1 atoms in
section 3.2 and spin-4 atoms in section 3.3 in a setting of super-
radiant Raman-lasing.

The key insight in the extension of the superradiant laser in
section 2.1 to the generalized superradiant laser in section 2.2
shows strong polarization dependence on the ratio γ+/γ− of
the collective excitation rate γ+ and collective emission rate
γ− (see figure 6). This behavior then can be found again in
the F= 1 in figure 9 and F= 4 in figure 15. Here the x-axis is
the linear polarization angle θ of the probe laser, which leads
to a change in the collective excitation and collective emis-
sion between neighboring excited states (see figures 8 and 13)
and has therefore an analog effect on the polarization. This
dramatic effect in polarization in continuously pumped and
probed atomic ensembles caused by superradiance, meaning
collective radiance and resulting atom–atom correlation build-
up, should, in principle, be observable in experiments.
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