
The Tractability of Model-checking for LTL:
The Good, the Bad, and the Ugly Fragments

Michael Baulanda Martin Mundhenkb Thomas Schneiderc

Henning Schnoord,1 Ilka Schnoord Heribert Vollmere,2

a Knipp GmbH, Dortmund, Germany
Michael.BaulandATknipp.de

b Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany
mundhenkATcs.uni-jena.de

c School of Computer Science, University of Manchester, UK
schneiderATcs.man.ac.uk

d Department of Computer Science, Rochester Institute of Technology, Rochester, NY, USA
{hs,is}ATcs.rit.edu

e Theoretische Informatik, Leibniz-Universität Hannover, Germany
vollmerATthi.uni-hannover.de

Abstract

In a seminal paper from 1985, Sistla and Clarke showed that the model-checking problem for Linear Tem-
poral Logic (LTL) is either NP-complete or PSPACE-complete, depending on the set of temporal operators
used. If, in contrast, the set of propositional operators is restricted, the complexity may decrease. This
paper systematically studies the model-checking problem for LTL formulae over restricted sets of proposi-
tional and temporal operators. For almost all combinations of temporal and propositional operators, we
determine whether the model-checking problem is tractable (in P) or intractable (NP-hard). We then focus
on the tractable cases, showing that they all are NL-complete or even logspace solvable. This leads to a
surprising gap in complexity between tractable and intractable cases. It is worth noting that our analysis
covers an infinite set of problems, since there are infinitely many sets of propositional operators.

Keywords: computational complexity, linear temporal logic, model checking

1 Introduction

Linear Temporal Logic (LTL) has been proposed by Pnueli [11] as a formalism to
specify properties of parallel programs and concurrent systems, as well as to rea-
son about their behaviour. Since then, it has been widely used for these purposes.
Recent developments require reasoning tasks—such as deciding satisfiability, va-
lidity, or model checking—to be performed automatically. Therefore, decidability

1 Supported by the Postdoc Programme of the German Academic Exchange Service (DAAD)
2 Supported in part by DFG VO 630/6-1.

Electronic Notes in Theoretical Computer Science 231 (2009) 277–292

1571-0661/© 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.02.041

http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

and computational complexity of the corresponding decision problems are of great
interest.

The earliest and fundamental source of complexity results for the satisfiability
problem (SAT) and the model-checking problem (MC) of LTL is certainly Sistla and
Clarke’s paper [17]. They have established PSPACE-completeness of SAT and MC
for LTL with the temporal operators F (eventually), G (invariantly), X (next-time),
U (until), and S (since). They have also shown that these problems are NP-complete
for certain restrictions of the set of temporal operators. This work was continued by
Markey [8]. The results of Sistla, Clarke, and Markey imply that SAT and MC for
LTL and a multitude of its fragments are intractable. In fact, they do not exhibit
any tractable fragment.

The fragments they consider are obtained by restricting the set of temporal op-
erators and the use of negations. What they do not consider are arbitrary fragments
of temporal and Boolean operators. For propositional logic, a complete analysis has
been achieved by Lewis [6]. He divides all infinitely many sets of Boolean operators
into those with tractable (polynomial-time solvable) and intractable (NP-complete)
SAT problems. A similar systematic classification has been obtained by Bauland et
al. in [3] for LTL. They divide fragments of LTL—determined by arbitrary combina-
tions of temporal and Boolean operators—into those with polynomial-time solvable,
NP-complete, and PSPACE-complete SAT problems.

This paper continues the work on the MC problem for LTL. Similarly as in [3],
the considered fragments are arbitrary combinations of temporal and Boolean oper-
ators. We will separate the MC problem for almost all LTL fragments into tractable
(i.e., polynomial-time solvable) and intractable (i.e., NP-hard) cases. This extends
the work of Sistla and Clarke, and Markey [17,8], but in contrast to their results, we
will exhibit many tractable fragments and exactly determine their computational
complexity. Surprisingly, we will see that tractable cases for model checking are
even very easy—that is, NL-complete or even L-solvable. There is only one set of
Boolean operators, consisting of the binary xor -operator, that we will have to leave
open. This constellation has already proved difficult to handle in [3,1], the latter
being a paper where SAT for basic modal logics has been classified in a similar way.

While the borderline between tractable and intractable fragments in [6] and
[3] is quite easily recognisable (SAT for fragments containing the Boolean function
f(x, y) = x ∧ y is intractable, almost all others are tractable), our results for MC
will exhibit a rather diffuse borderline. This will become visible in the following
overview and is addressed in the Conclusion. Our most surprising intractability
result is the NP-hardness of the fragment that only allows the temporal operator U
and no propositional operator at all. Our most surprising tractability result is the
NL-completeness of MC for the fragment that only allows the temporal operators F,
G, and the binary or -operator. Taking into account that MC for the fragment with
only F plus and is already NP-hard (which is a consequence from [17]), we would
have expected the same lower bound for the “dual” fragment with only G plus or ,
but in fact we show that even the fragment with F and G and or is tractable. In
the presence of the X-operator, the expected duality occurs: The fragment with F,

M. Bauland et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 277–292278

prop. operators I N E V M L BF
temp. operators

X NL10 NL10 NL12 NL11 NP2 NL14 NPS

G NL10 NL10 NL12 NL13 NP2 NPS

F NL10 NL10 NP5 NL11 NP2 NPS

FG NL10 NL10 NPc NL13 NPc NPS

FX NL10 NL10 NPc NL11 NPc PST

GX NL10 NL10 NL12 NP6 PS3 PST

FGX NL10 NL10 NPc NPc PS1 PST

S L15 L15 L15 L15 L15 L15 L15

SX NP8 NP8 NP8 NP8 NP8 NP8 NP8

SG NP8 NP8 NP8 NP8 PS4 NP8 PS4

SF NL16 NP9 NP9 NL16 PS4 NP9 PS4

SFG NPc NPc NPc NPc PSc NPc PSS

SFX NPc NPc NPc NPc PSc NPc PST

SGX NPc NPc NPc NPc PSc NPc PST

SFGX NPc NPc NPc NPc PSc NPc PST

all other NP7 NPc NPc NPc PS3 NPc PST

combinations
(i.e., with U)

Legend.

(PS stands for PSPACE.)

1 Theorem 3.1 (1)
2 Theorem 3.1 (2)
3 Theorem 3.1 (3)
4 Theorem 3.1 (4)
5 Corollary 3.2
6 Theorem 3.3
7 Theorem 3.4
8 Theorem 3.5
9 Theorem 3.6
10 Theorem 4.2
11 Theorem 4.3 (1)
12 Theorem 4.3 (2)
13 Theorem 4.4
14 Theorem 4.5
15 Theorem 4.6
16 Theorem 4.7
S Theorem 2.1 (1)
T Theorem 2.1 (2)

c conclusion from
surrounding results

Table 1
An overview of complexity results for the model-checking problem

X plus and and the one with G, X plus or are both NP-hard.
Table 1 gives an overview of our results. The top row refers to the sets of

Boolean operators given in Definition 2.3. These seven sets of Boolean operators
are all relevant cases, which is due to Post’s fundamental paper [12] and Lemma
2.2. Entries in bold-face type denote completeness for the given complexity class
under logspace reductions. (All reductions in this paper are logspace reductions
≤log

m .) The entry L stands for logspace solvability. All other entries denote hardness
results. Superscripts refer to the source of the corresponding result as explained in
the legend.

This paper is organised as follows. Section 2 contains all necessary definitions
and notation. In Section 3, we show NP-hardness of all intractable cases, followed
by Section 4 with the NL-completeness of almost all remaining cases. We conclude
in Section 5. Due to the limitations of space, we have left out a number of proofs.
These can be found in the Technical Report [2].

2 Preliminaries

A Boolean function or Boolean operator is a function f : {0, 1}n → {0, 1}. We
can identify an n-ary propositional connector c with the n-ary Boolean operator f

defined by: f(a1, . . . , an) = 1 if and only if the formula c(x1, . . . , xn) becomes true
when assigning ai to xi for all 1 ≤ i ≤ n. Additionally to propositional connectors

M. Bauland et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 277–292 279

we use the unary temporal operators X (next-time), F (eventually), G (invariantly)
and the binary temporal operators U (until), and S (since).

Let B be a finite set of Boolean functions and T be a set of temporal operators. A
temporal B-formula over T is a formula ϕ that is built from variables, propositional
connectors from B, and temporal operators from T . More formally, a temporal
B-formula over T is either a propositional variable or of the form f(ϕ1, . . . , ϕn) or
g(ϕ1, . . . , ϕm), where ϕi are temporal B-formulae over T , f is an n-ary propositional
operator from B and g is an m-ary temporal operator from T . In [17], complexity
results for formulae using the temporal operators F, G, X (unary), and U, S (binary)
were presented. We extend these results to temporal B-formulae over subsets of
those temporal operators. The set of variables appearing in ϕ is denoted by VAR(ϕ).
If T = {X,F, G,U,S} we call ϕ a temporal B-formula, and if T = ∅ we call ϕ a
propositional B-formula or simply a B-formula. The set of all temporal B-formulae
over T is denoted with L(T, B).

A Kripke structure is a triple K = (W, R, η), where W is a finite set of states,
R ⊆ W ×W is a total binary relation (meaning that, for each a ∈ W , there is some
b ∈ W such that aRb) 3 , and η : W → 2VAR for a set VAR of variables.

A model in linear temporal logic is a linear structure of states, which intuitively
can be seen as different points of time, with propositional assignments. Formally,
a path p in K is an infinite sequence denoted as (p0, p1, . . .), where, for all i ≥ 0,
pi ∈ W and piRpi+1.

For a temporal {∧,¬}-formula over {F, G,X,U,S} with variables from VAR, a
Kripke structure K = (W, R, η), and a path p in K, we define what it means that
pK satisfies ϕ in pi (pK , i � ϕ): let ϕ1 and ϕ2 be temporal {∧,¬}-formulae over
{F, G,X,U,S} and let x ∈ VAR be a variable.

pK , i � 1 and pK , i 	� 0
pK , i � x iff x ∈ η(pi)
pK , i � ϕ1 ∧ ϕ2 iff pK , i � ϕ1 and pK , i � ϕ2

pK , i � ¬ϕ1 iff pK , i � ϕ1

pK , i � Fϕ1 iff there is a j ≥ i such that pK , j � ϕ1

pK , i � Gϕ1 iff for all j ≥ i, pK , j � ϕ1

pK , i � Xϕ1 iff pK , i + 1 � ϕ1

pK , i � ϕ1Uϕ2 iff there is an � ≥ i such that pK , � � ϕ2,
and for every i ≤ j < �, pK , j � ϕ1

pK , i � ϕ1Sϕ2 iff there is an � ≤ i such that pK , � � ϕ2,
and for every � < j ≤ i, pK , j � ϕ1

Since every Boolean operator can be composed from ∧ and ¬, the above defini-
tion generalises to temporal B-formulae for arbitrary sets B of Boolean operators.

This paper examines the model-checking problem MC(T, B) for a finite set B of
Boolean functions and a set T of temporal operators.

3 In the strict sense, Kripke structures can have arbitrary binary relations. However, when referring to
Kripke structures, we always assume their relations to be total.

M. Bauland et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 277–292280

clone base

BF {∧,¬}
M {∨,∧, 0, 1}
L {⊕, 1}
V {∨, 1, 0}
E {∧, 1, 0}
N {¬, 1, 0}
I {0, 1} I

V E N

M L

BF

Fig. 1. Clones with constants

Problem: MC(T, B)
Input: 〈ϕ, K, a〉, where ϕ ∈ L(T, B) is a formula, K = (W, R, η) is a

Kripke structure, and a ∈ W is a state
Question: Is there a path p in K such that p0 = a and pK , 0 � ϕ?

Sistla and Clarke [17] have established the computational complexity of the
model-checking problem for temporal {∧,∨,¬}-formulae over some sets of temporal
operators.

Theorem 2.1 ([17]) (1) MC({F}, {∧,∨,¬}) is NP-complete.

(2) MC({F, X}, {∧,∨,¬}), MC({U}, {∧,∨,¬}), and MC({U,S,X}, {∧,∨,¬}) are
PSPACE-complete.

Since there are infinitely many finite sets of Boolean functions, we introduce some
algebraic tools to classify the complexity of the infinitely many arising satisfiability
problems. We denote with idn

k the n-ary projection to the k-th variable, where
1 ≤ k ≤ n, i.e., idn

k(x1, . . . , xn) = xk, and with cn
a the n-ary constant function

defined by cn
a(x1, . . . , xn) = a. For c1

1(x) and c1
0(x) we simply write 1 and 0. A set

C of Boolean functions is called a clone if it is closed under superposition, which
means C contains all projections and C is closed under arbitrary composition [10].
For a set B of Boolean functions we denote with [B] the smallest clone containing
B and call B a base for [B]. In [12] Post classified the lattice of all clones and found
a finite base for each clone.

The definitions of all clones as well as the full inclusion graph can be found,
for example, in [4]. The following lemma, which we prove in [2], implies that only
clones with both constants 0, 1 are relevant for the model-checking problem; hence
we will only define those clones. Note, however, that our results will carry over to
all clones.

Lemma 2.2 Let B be a finite set of propositional functions and T be a set of
temporal operators. Then MC(T, B ∪ {0, 1}) ≡log

m MC(T, B).

Because of Lemma 2.2 it is sufficient to look only at the clones with constants,
which are introduced in Definition 2.3. Their bases and inclusion structure are given
in Figure 1.

M. Bauland et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 277–292 281

Definition 2.3 Let ⊕ denote the binary exclusive or. Let f be an n-ary Boolean
function.

(1) BF is the set of all Boolean functions.

(2) M is the set of all monotone functions, that is, the set of all functions f where
a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤ f(b1, . . . , bn).

(3) L is the set of all linear functions, that is, the set of all functions f that satisfy
f(x1, . . . , xn) = c0 ⊕ (c1 ∧ x1) ⊕ · · · ⊕ (cn ∧ xn), for constants ci.

(4) V is the set of all functions f where f(x1, . . . , xn) = c0∨(c1∧x1)∨· · ·∨(cn∧xn),
for constants ci.

(5) E is the set of all functions f where f(x1, . . . , xn) = c0∧(c1∨x1)∧· · ·∧(cn∨xn),
for constants ci.

(6) N is the set of all functions that depend on at most one variable.

(7) I is the set of all projections and constants.

There is a strong connection between propositional formulae and Post’s lattice.
If we interpret propositional formulae as Boolean functions, it is obvious that [B]
includes exactly those functions that can be represented by B-formulae. This con-
nection has been used various times to classify the complexity of problems related
to propositional formulae. For example, Lewis presented a dichotomy for the sat-
isfiability problem for propositional B-formulae: it is NP-complete if x ∧ y ∈ [B],
and solvable in P otherwise [6]. Furthermore, Post’s lattice has been applied to the
equivalence problem [13], to counting [15] and finding minimal [14] solutions, and to
learnability [5] for Boolean formulae. The technique has been used in non-classical
logic as well: Bauland et al. achieved a trichotomy in the context of modal logic,
which says that the satisfiability problem for modal formulae is, depending on the
allowed propositional connectives, PSPACE-complete, coNP-complete, or solvable in
P [1]. For the inference problem for propositional circumscription, Nordh presented
another trichotomy theorem [9].

An important tool in restricting the length of the resulting formula in many of
our reductions is the following lemma, which we prove in [2].

Lemma 2.4 Let B ⊆ {∧,∨,¬}, and let C be a finite set of Boolean functions such
that B ⊆ [C]. Then MC(T, B) ≤log

m MC(T, C) for every set T of temporal operators.

It is essential for this Lemma that B ⊆ {∧,∨,¬}. For, e.g., B = {⊕}, it
is open whether MC(T, B) ≤log

m MC(T, BF). This is a reason why we cannot
immediately transform upper bounds proven by Sistla and Clarke [17]—for ex-
ample, MC({F, X}, {∧,∨,¬}) ∈ PSPACE—to upper bounds for all finite sets of
Boolean operators—i.e., it is open whether for all finite sets B of Boolean opera-
tors, MC({F, X}, B) ∈ PSPACE.

M. Bauland et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 277–292282

3 The bad fragments: intractability results

Sistla and Clarke [17] and Markey [8] have considered the complexity of model-
checking for temporal {∧,∨,¬}-formulae restricted to atomic negation and proposi-
tional negation, respectively. Propositional negation does not affect the complexity
of the model checking problem. This can be proven similarly to Lemma 2.2. Using
Lemma 2.4 in addition, we can generalise the above mentioned hardness results
from [17,8] for temporal monotone formulae to obtain the following intractability
results for model-checking. The proofs of all results in this section are given in [2].

Theorem 3.1 Let B be a finite set of Boolean functions such that M ⊆ [B]. Then

(1) MC({F, G,X}, B) is PSPACE-hard.

(2) MC({F}, B), MC({G}, B), and MC({X}, B) are NP-hard.

(3) MC({U}, B) and MC({G,X}, B) are PSPACE-hard.

(4) MC({S,G}, B) and MC({S, F}, B) are PSPACE-hard.

In Theorem 3.5 in [17] it is shown that MC({F}, {∧,∨,¬}) is NP-hard. In fact,
Sistla and Clarke give a reduction from 3SAT to MC({F}, {∧}). The result for
arbitrary bases B generating a clone above E follows from Lemma 2.4.

Corollary 3.2 Let B be a finite set of Boolean functions such that E ⊆ [B]. Then
MC({F}, B) is NP-hard.

The model-checking problem for temporal {G,X}-{∧,∨}-formulae is PSPACE-
complete (Theorem 3.1(3) due to [8]). The Boolean operators {∧,∨} are a basis of
M, the class of monotone Boolean formulae. What happens for fragments of M?
In Theorem 4.3 we will show that MC({G,X},E) is NL-complete, i.e., the model-
checking problem for temporal {∧}-formulae over {G,X} is very simple. We can
prove that switching from ∧ to ∨ makes the problem intractable.

Theorem 3.3 Let B be a finite set of Boolean functions such that V ⊆ [B]. Then
MC({G,X}, B) is NP-hard.

From [17] it follows that MC({G,X},V) is in PSPACE. It remains open whether
MC({G,X},V) or MC({G,X},M) have an upper bound below PSPACE.

Next, we consider formulae with the until-operator or the since-operator. We
first show that using the until-operator makes model-checking intractable.

Theorem 3.4 Let B be a finite set of Boolean functions. Then MC({U}, B) is
NP-hard.

Although the until-operator and the since-operator appear to be similar, model-
checking for formulae that use the since-operator as only operator is as simple as
for formulae without temporal operators—see Theorem 4.6. The reason is that the
since-operator has no use at the beginning of a path of states, where no past exists.
It needs other temporal operators that are able to enforce to visit a state on a path
that has a past.

M. Bauland et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 277–292 283

x1
1 x1

2 x1
3

Fig. 2. The graph G1

xi+1
1 Gi xi+1

2 xi+1
3

Fig. 3. The graph Gi+1

Theorem 3.5 Let B be a finite set of Boolean functions. Then MC({X,S}, B) and
MC({G,S}, B) are NP-hard.

The future-operator F alone is not powerful enough to make the since-operator
S NP-hard: We will show in Theorem 4.7 that MC({F, S}, B) for [B] ⊆ V is NL-
complete. But with the help of ¬ or ∧, the model-checking problem for F and S
becomes intractable.

Theorem 3.6 Let B be a finite set of Boolean functions such that N ⊆ [B]. Then
MC({F, S}, B) is NP-hard.

An upper bound better than PSPACE for the intractable cases with the until-
operator or the since-operator remains open. We will now show that one canonical
way to prove an NP upper bound fails, in showing that these problems do not have
the “short path property”, which claims that a path in the structure that fulfills
the formula has length polynomial in the length of the structure and the formula.
Hence, it will most likely be nontrivial to obtain a better upper bound.

We will now sketch such families of structures and formulae using an inductive
definition. Let G1, G2, . . . be the family of graphs presented in Figures 2 and 3.
Notice that Gi is inserted into Gi+1 using the obvious lead-in and lead-out arrows.
The truth assignments for these graphs are as follows:

G1 :

x1
1 b1

x1
2 a1

x1
3 a1, c1

Gi+1 :

xi+1
1

∧i+1
j=1 aj

xi+1
2 ai+1

xi+1
3

∧i+1
j=1 aj , ci+1

x ∈ Gi truth assignment from Gi, bi+1

Now the formulae are defined as follows:

ϕ1 := (a1Ub1)Uc1, and ϕi+1 := ((ai+1Uϕi)Ubi+1)Uci+1.

The rough idea behind the construction is as follows: To satisfy the formula ϕ1

in G1, the path has to repeat the circle once. In the inductive construction, this
leads to an exponential number of repetitions.

4 The good fragments: tractability results

This subsection is concerned with fragments of LTL that have a tractable model-
checking problem. We will provide a complete analysis for these fragments by

M. Bauland et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 277–292284

proving that model checking for all of them is NL-complete or even solvable in
logarithmic space. This exhibits a surprisingly large gap in complexity between
easy and hard fragments.

The following lemma establishes NL-hardness for all tractable fragments. It is
proven in [2].

Lemma 4.1 Let B be a finite set of Boolean functions. Then MC({F}, B),
MC({G}, B), and MC({X}, B) are NL-hard.

It now remains to establish upper complexity bounds. Let C be one of the clones
N, E, V, and L, and let B be a finite set of Boolean functions such that [B] ⊆ C.
Whenever we want to establish NL-membership for some problem MC(·, B), it will
suffice to assume that formulae are given over one of the bases {¬, 0, 1}, {∧, 0, 1},
{∨, 0, 1}, or {⊕, 0, 1}, respectively. This follows since these clones only contain
constants, projections, and multi-ary versions of not, and , or , and ⊕, respectively.

Theorem 4.2 Let B be a finite set of Boolean functions such that [B] ⊆ N. Then
MC({F, G,X}, B) is NL-complete.

Proof. The lower bound follows from Lemma 4.1. For the upper bound, first note
that for an LTL formula ψ the following equivalences hold: FFψ ≡ Fψ, GGψ ≡ Gψ,
FGFψ ≡ GFψ, GFGψ ≡ FGψ, Gψ ≡ ¬F¬ψ, and Fψ ≡ ¬G¬ψ. Furthermore, it
is possible to interchange X and adjacent G-, F-, or ¬-operators without affecting
satisfiability. Under these considerations, each formula ϕ ∈ L({F, G,X}, B) can be
transformed without changing satisfiability into a normal form ϕ′ = XmP ∼y,
where P is a prefix ranging over the values “empty string”, F, G, FG, and GF; m is
the number of occurrences of X in ϕ; ∼ is either the empty string or ¬; and y is a
variable or a constant. This normal form has two important properties. First, it can
be represented in logarithmic space using two binary counters a and b. The counter
a stores m, and b takes on values 0, . . . , 9 to represent each possible combination of
P and ∼. Note that a takes on values less than |ϕ|, and b has a constant range.
Hence both counters require at most logarithmic space. It is not necessary to store
any information about y, because it can be taken from the representation of ϕ.

Second, ϕ′ can be computed from ϕ in logarithmic space. The value of a is
obtained by counting the occurrences of X in ϕ, and b is obtained by linearly parsing
ϕ with the automaton that is given in Figure 4, and which ignores all occurrences
of X.

We show in [2] how to obtain an NL algorithm using the normal form ϕ′. �

Theorem 4.3 (1) Let B be a finite set of Boolean functions such that [B] ⊆ V.

Then MC({F, X}, B) is NL-complete.

(2) Let B be a finite set of Boolean functions such that [B] ⊆ E. Then MC({G,X}, B)
is NL-complete.

Proof. The lower bounds follow from Lemma 4.1.

First consider the case [B] ⊆ V. It holds that F(ψ1∨· · ·∨ψn) ≡ Fψ1∨· · ·∨Fψn as well
as XFϕ ≡ FXϕ and X(ϕ∨ψ) ≡ Xϕ∨Xψ. Therefore, every formula ϕ ∈ L({F, X}, B)

M. Bauland et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 277–292 285

F

G

FG

GF

¬
F¬

G¬

FG¬

GF¬

F

G

G

F

G

F

F

G

F
G

G
F

¬

¬

¬¬
¬

F

G

G

F

G

F

F

G

Fig. 4. An automaton that computes P ∼

can be rewritten as

ϕ′ = FXi1y1 ∨ · · · ∨ FXinyn ∨ Xin+1yn+1 ∨ · · · ∨ Ximym,

where y1, . . . , ym are variables or constants (note that this representation of ϕ can
be constructed in L). Now let 〈ϕ, K, a〉 be an instance of MC({F, X}, B), where
K = (W, R, η), and let ϕ be of the above form. Thus, 〈ϕ, K, a〉 ∈ MC({F, X}, B) if
and only if for some j ∈ {n + 1, . . . , m}, there is a state b ∈ W such that yj ∈ η(b)
and b is accessible from a in exactly ij R-steps or if, for some j ∈ {1, . . . , n}, there
is a state b ∈ W such that yj ∈ η(b) and b is accessible from a in at least ij R-steps.
This can be tested in NL.

As for the case [B] ⊆ E, we take advantage of the duality of F and G, and ∧ and
∨, respectively. Analogous considerations as above lead to the logspace computable
normal form

ϕ′ = GXi1y1 ∧ · · · ∧ GXinyn ∧ Xin+1yn+1 ∧ · · · ∧ Ximym.

Let I = max{i1, . . . , im}. For each j = 1, . . . , m, we define W j = {b ∈ W |
yj ∈ η(b)} and Rj = R ∩ W j × W j . Furthermore, let W ′ be the union of W j for
j = 1, . . . , n (!), and let R′ = R ∩ W ′ × W ′. Now 〈ϕ, K, a〉 ∈ MC({G,X}, B) if and
only if there is some state b ∈ W ′ satisfying the following conditions.

• There is an R-path p of length at least I from a to b, where the first I + 1 states
on p are c0 = a, c1, . . . , cI .

• The state b′ lies on a cycle in W ′.
• For each j = 1, . . . , n, each state of p from cij to cI is from W j .
• For each j = n + 1, . . . , m, the state cij is from W j .

These conditions can be tested in NL as follows. Successively guess c1, . . . , cI and
verify their membership in the appropriate sets W j . Then guess b, verify whether
b ∈ W ′, whether b lies on some R′-cycle, and whether there is an R′-path from cI

to b. �

In the proof of Theorem 4.3, we have exploited the duality of F and G, and ∨ and
∧, respectively. Furthermore, the proof relied on the fact that F and ∨ (and G and ∧)
are interchangeable. This is not the case for F and ∧, or G and ∨, respectively. Hence

M. Bauland et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 277–292286

it is not surprising that MC({F}, {∧}) is NP-hard (Corollary 3.2). However, the NL-
membership of MC({F, G}, {∨}) is surprising. Before we formulate this result, we
try to provide an intuition for the tractability of this problem. The main reason is
that an inductive view on L({F, G}, {∨})-formulae allows us to subsequently guess
parts of a satisfying path without keeping the previously guessed parts in memory.
This is possible because each L({F, G}, {∨})-formula ϕ can be rewritten as

ϕ = y1 ∨ · · · ∨ yn ∨ Fz1 ∨ · · · ∨ Fzm ∨ Gψ1 ∨ · · · ∨ Gψ� ∨ FGψ�+1 ∨ · · · ∨ FGψk, (1)

where the yi, zi are variables (or constants), and each ψi is an L({F, G}, {∨})-formula
of the same form with a strictly smaller nesting depth of G-operators. Now, ϕ is
true at the begin of some path p iff one of its disjuncts is true there. In case none
of the yi or Fzi is true, we must guess one of the Gψi (or FGψj) and check whether
ψi (or ψj) is true on the entire path p (or on p minus some finite number of initial
states). Now ψi is again of the above form. So we must either find an infinite path
on which y1 ∨ · · · ∨ yn ∨ Fz1 ∨ · · · ∨ Fzm is true everywhere (a cycle containing at
least |N | states satisfying some yi or zi suffices, where N is the set of states of the
Kripke structure), or we must find a finite path satisfying the same conditions and
followed by an infinite path satisfying one of the Gψi (or FGψj) at its initial point.
Hence we can recursively solve a problem of the same kind with reduced problem
size. Note that it is neither necessary to explicitly compute the normal form for ϕ

or one of the ψi, nor need previously visited states be stored in memory.

Theorem 4.4 Let B be a finite set of Boolean functions such that [B] ⊆ V. Then
MC({G}, B) and MC({F, G}, B) are NL-complete.

Proof. The lower bound follows from Lemma 4.1. It remains to show NL-membership
of MC({F, G}, B). For this purpose, we devise the recursive algorithm MC{F,G},V as
given in Table 2. Note that we have deliberately left out constants. This is no re-
striction, since we have observed in Lemma 2.2 that each constant can be regarded
as a variable that is set to true or false throughout the whole Kripke structure.

The parameter mode indicates the current “mode” of the computation. The
idea is as follows. In order to determine whether ϕ is satisfiable at the initial
point of some structure starting at a in K, the algorithm has to be in mode now.
This, hence, is the default setting for the first call of MC{F,G},V. As soon as the
algorithm chooses to process a G-subformula Gα of ϕ, it has to determine whether
α is satisfiable at every point in some structure starting at the currently visited
state in K. It therefore changes into always mode and calls itself recursively with
the first parameter set to α, see Line 17.

Hence, for any given instance 〈ϕ, K, a〉 of MC({F, G}, B), we have to invoke
MC{F,G},V(ϕ, K, a, now) in order to determine whether there is a satisfying path for
ϕ in K starting at a. It is easy to see that this call always terminates: First,
whenever the algorithm calls itself recursively, the first argument of the new call is
a strict subformula of the original first argument. Therefore there can be at most |ϕ|
recursive calls. Second, within each call, each passage through the while loop (Lines
2–32) either decreases ψ or increases c. Hence, there can be at most |ϕ| · (|W | + 1)

M. Bauland et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 277–292 287

Algorithm MC{F,G},V

Input ϕ ∈ L({F, G}, B)
Kripke structure K = (W, R, η)
a ∈ W

additional parameter mode ∈ {now, always}
Output accept or reject

1: c ← 0; ψ ← ϕ; b ← a; Ffound ← false
2: while c ≤ |W | do
3: if ψ = α0 ∨ α1 (for some α0, α1) then
4: guess i ∈ {0, 1}
5: ψ ← αi

6: else if ψ = Fα (for some α) then
7: Ffound ← true
8: ψ ← α

9: else /∗ ψ is some Gα or a variable ∗/
10: if Ffound then /∗ process encountered F ∗/
11: guess n with 0 ≤ n ≤ |W |
12: for i = 1, 2, . . . , n do /∗ if n = 0, ignore this loop ∗/
13: b ← guess some R-successor of b

14: end for
15: end if

16: if ψ = Gα (for some α) then
17: call MC{F,G},V(α,K, b, always)

18: else /∗ ψ is a variable ∗/
19: if ψ /∈ η(b) then
20: reject
21: end if
22: if mode = always then
23: c ← c + 1
24: b ← guess some R-successor of b

25: Ffound ← false
26: ψ ← ϕ

27: else
28: accept
29: end if

30: end if
31: end if
32: end while
33: accept

Table 2
The algorithm MC{F,G},V

M. Bauland et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 277–292288

passages through the while loop until the algorithm accepts or rejects.
MC{F,G},V is an NL algorithm: The values of all parameters and programme vari-

ables are either subformulae of the original formula ϕ, states of the given Kripke
structure K, counters of range 0, . . . , |W | + 1, or Booleans. They can all be repre-
sented using �log |ϕ|�, �log(|W | + 1)�, or constantly many bits. Furthermore, since
the algorithm uses no return command, the recursive calls may re-use the space
provided for all parameters and programme variables, and no return addresses need
be stored.

It remains to show the correctness of MC{F,G},V, which we will do in two steps.
in always mode, which will be shown by induction on the nesting depth of the G-
operator in ϕ. We denote this value by μG(ϕ). Claim 2 will then ensure the correct
behaviour in now mode. Both claims are proven in [2].

Claim 1. For each ϕ ∈ L({F, G},V), each K = (W, R, η), and each a ∈ W :
〈Gϕ, K, a〉 ∈ MC({F, G}, B)

⇔ there is an accepting run of MC{F,G},V(ϕ, K, a, always)

Claim 2. For each ϕ ∈ L({F, G}, B), each K = (W, R, η), and each a ∈ W :
〈ϕ, K, a〉 ∈ MC({F, G}, B) ⇔ there is an accepting run of MC{F,G},V(ϕ, K, a, now)

�

Unfortunately, the above argumentation fails for MC({G,X}, V) because of the
following considerations. The NL-algorithm in the previous proof relies on the fact
that a satisfying path for Gψ, where ψ is of the form (1), can be divided into a
“short” initial part satisfying the disjunction of the atoms, and the remaining end
path satisfying one of the Gψi at its initial state. When guessing the initial part, it
suffices to separately guess each state and consult η.

If X were in our language, the disjuncts would be of the form Xkiyi and X�iGψi.
Not only would this make the guessing of the initial part more intricate. It would
also require memory for processing each of the previously satisfied disjuncts Xkiyi.
An adequate modification of MC{F,G},V would require more than logarithmic space.
We have shown NP-hardness for MC({G,X}, V) in Theorem 3.3.

Theorem 4.5 Let B be a finite set of Boolean functions such that [B] ⊆ L. Then
MC({X}, B) is NL-complete.

Proof. The lower bound follows from Lemma 4.1.
For the upper bound, let ϕ ∈ L({X}, B) be a formula, K = (W, R, η) a Kripke

structure, and a ∈ W a state. Let m denote the maximal nesting depth of X-
operators in ϕ. Since for any k-ary Boolean operator f from B, the formula
Xf(ψ1, . . . , ψk) is equivalent to f(Xψ1, . . .Xψk), ϕ is equivalent to a formula ϕ′ ∈
L({X}, B) of the form ϕ′ = Xi1p1 ⊕ · · · ⊕ Xi�p� , where 0 ≤ ij ≤ m for each
j = 1, . . . , �. It is not necessary to compute ϕ′ all at once, because it will be suffi-
cient to calculate ij each time the variable pj is encountered in the algorithm MC{X},L
given in Table 3.

It is easy to see that MC{X},L returns 1 if and only if ϕ is satisfiable. From the used

M. Bauland et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 277–292 289

Algorithm MC{X},L

Input
ϕ′ = Xi1p1 ⊕ · · · ⊕ Xi�p�

Kripke structure K = (W, R, η)
a ∈ W

Output
accept or reject

1: parity ← 0; b ← a; k ← 0
2: while k ≤ m do
3: for j = 1, . . . , � do
4: if ij = k and pj ∈ η(b) then
5: parity ← 1 − parity
6: end if
7: end for
8: k ← k + 1
9: b ← guess some R-successor of b

10: end while
11: return parity

Table 3
The algorithm MC{X},L

variables, it is clear that MC{X},L runs in nondeterministic logarithmic space. �

In the fragment with S as the only temporal operator, S is without effect, since
we can never leave the initial state. Hence, any formula αSβ is satisfied at the initial
state of any structure K if and only if β is. This leads to a straightforward logspace
reduction from MC({S},BF) to MC(∅,BF): Given a formula ϕ ∈ L({S},BF), suc-
cessively replace every subformula αSβ by β until all occurrences of S are eliminated.
The resulting formula ϕ′ is initially satisfied in any structure K iff ϕ is.

Now MC(∅, BF) is the Formula Value Problem, which has been shown to be
solvable in logarithmic space in [7]. Thus we obtain the following result.

Theorem 4.6 Let B be a finite set of Boolean functions. Then MC({S}, B) ∈ L.

In our classification of complexity, which is based on logspace reductions ≤log
m ,

a further analysis of S-fragments is not possible. However, a more detailed picture
emerges if stricter reductions are considered, see [16, Chapter 2].

Theorem 4.7 Let B be a finite set of Boolean functions such that [B] ⊆ V. Then
MC({S, F}, B) is NL-complete.

Proof. The lower bound follows from Lemma 4.1. For the upper bound, we will
show that MC({S,F}, B) can be reduced to MC({F}, B) by disposing of the S-
operator as follows. Consider an arbitrary Kripke structure K and a path p therein.
Then the following equivalences hold.

pK , 0 � αSβ iff pK , 0 � β (2)

pK , 0 � F(αSβ) iff pK , 0 � Fβ (3)

pK , 0 � F(α ∨ β) iff pK , 0 � Fα ∨ Fβ (4)

pK , 0 � FFα iff pK , 0 � Fα (5)

Statements (4) and (5) are standard properties and follow directly from the
definition of satisfaction for F and ∨. Statement (2) is simply due to the fact that
there is no state in the past of p0. As for (3), we consider both directions separately.

M. Bauland et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 277–292290

Assume that pK , 0 � F(αSβ). Then there is some i ≥ 0 such that pK , i � αSβ. This
implies that there is some j with 0 ≤ j ≤ i and pK , j � β. Hence, pK , 0 � Fβ. For
the other direction, let pK , 0 � Fβ. Then there is some i ≥ 0 such that pK , i � β.
This implies pK , i � αSβ. Hence, pK , 0 � F(αSβ).

Now consider an arbitrary formula ϕ ∈ L({S,F}, B). Let ϕ′ be the formula
obtained from ϕ by successively replacing the outermost S-subformula αSβ by β

until all occurrences of S are eliminated. This procedure can be performed in
logarithmic space, and the result ϕ′ is in L({F}, B). Due to (2)–(5), for any path p

in any Kripke structure K, it holds that pK , 0 � ϕ if and only if pK , 0 � ϕ′. Hence,
the mapping ϕ �→ ϕ′ is a logspace reduction from MC({S, F}, B) to MC({F}, B). �

5 Conclusion, and open problems: the ugly fragments

We have almost completely separated the model-checking problem for Linear Tem-
poral Logic with respect to arbitrary combinations of temporal and propositional
operators into tractable and intractable cases. We have shown that all tractable
MC problems are at most NL-complete or even easier to solve. This exhibits a sur-
prisingly large gap in complexity between tractable and intractable cases. The only
fragments that we have not been able to cover by our classification are those where
only the binary xor -operator is allowed. However, it is not for the first time that
this constellation has been difficult to handle, see [1,3]. Therefore, these fragments
can justifiably be called ugly.

The borderline between tractable and intractable fragments is somewhat diffuse
among all sets of temporal operators without U. On the one hand, this borderline
is not determined by a single set of propositional operators (which is the case for
the satisfiability problem, see [3]). On the other hand, the columns E and V do not,
as one might expect, behave dually. For instance, while MC({G},V) is tractable,
MC({F}, E) is not—although F and G are dual, and so are V and E.

Further work should find a way to handle the open xor cases from this paper
as well as from [1,3]. In addition, the precise complexity of all hard fragments
not in bold-face type in Table 1 could be determined. Furthermore, we find it a
promising perspective to use our approach for obtaining a fine-grained analysis of
the model-checking problem for more expressive logics, such as CTL, CTL*, and
hybrid temporal logics.

References

[1] Bauland, M., E. Hemaspaandra, H. Schnoor and I. Schnoor, Generalized modal satisfiability., in:
B. Durand and W. Thomas, editors, STACS, Lecture Notes in Computer Science 3884 (2006), pp.
500–511.

[2] Bauland, M., M. Mundhenk, T. Schneider, H. Schnoor, I. Schnoor and H. Vollmer, The tractability of
model-checking for LTL: The good, the bad, and the ugly fragments, Technical Report 07-04, Reports
on Computer Science, Friedrich-Schiller-Universität Jena (2007).
URL http://www.minet.uni-jena.de/Math-Net/reports/reports.html

[3] Bauland, M., T. Schneider, H. Schnoor, I. Schnoor and H. Vollmer, The complexity of generalized
satisfiability for linear temporal logic, in: H. Seidl, editor, FoSSaCS, Lecture Notes in Computer Science
4423 (2007), pp. 48–62.

M. Bauland et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 277–292 291

http://www.minet.uni-jena.de/Math-Net/reports/reports.html

[4] Böhler, E., N. Creignou, S. Reith and H. Vollmer, Playing with Boolean blocks, part I: Post’s lattice
with applications to complexity theory, SIGACT News 34 (2003), pp. 38–52.

[5] Dalmau, V., “Computational Complexity of Problems over Generalized Formulas,” Ph.D. thesis,
Department de Llenguatges i Sistemes Informàtica, Universitat Politécnica de Catalunya (2000).

[6] Lewis, H., Satisfiability problems for propositional calculi, Mathematical Systems Theory 13 (1979),
pp. 45–53.

[7] Lynch, N. A., Log space recognition and translation of parenthesis languages, Journal of the ACM 24
(1977), pp. 583–590.

[8] Markey, N., Past is for free: on the complexity of verifying linear temporal properties with past., Acta
Inf. 40 (2004), pp. 431–458.

[9] Nordh, G., A trichotomy in the complexity of propositional circumscription., in: LPAR, Lecture Notes
in Computer Science 3452 (2005), pp. 257–269.

[10] Pippenger, N., “Theories of Computability,” Cambridge University Press, Cambridge, 1997.

[11] Pnueli, A., The temporal logic of programs, in: FOCS (1977), pp. 46–57.

[12] Post, E., The two-valued iterative systems of mathematical logic, Annals of Mathematical Studies 5
(1941), pp. 1–122.

[13] Reith, S., “Generalized Satisfiability Problems,” Ph.D. thesis, Fachbereich Mathematik und Informatik,
Universität Würzburg (2001).

[14] Reith, S. and H. Vollmer, Optimal satisfiability for propositional calculi and constraint satisfaction
problems, Information and Computation 186 (2003), pp. 1–19.

[15] Reith, S. and K. W. Wagner, The complexity of problems defined by Boolean circuits, in: MFI 99
(2005).

[16] Schnoor, H., “Algebraic Techniques for Satisfiability Problems,” Ph.D. thesis, University of Hannover
(2007).

[17] Sistla, A. and E. Clarke, The complexity of propositional linear temporal logics, Journal of the ACM
32 (1985), pp. 733–749.

M. Bauland et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 277–292292

	Introduction
	Preliminaries
	The bad fragments: intractability results
	The good fragments: tractability results
	Conclusion, and open problems: the ugly fragments
	References

