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Realize that everything connects to everything else.

– Leonardo da Vinci

Creativity is just connecting things. When you ask creative people how they did some-
thing, they feel a little guilty because they didn’t really do it, they just saw something.
It seemed obvious to them after a while.

– Steve Jobs

Osyris is a genus of plants [that] can survive and grow by themselves, [but] they also
opportunistically tap into the root systems of nearby plants and parasitize them.

– Wikipedia
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Abstract

Scholarly Knowledge Graphs and Systematic Reviews share a primary purpose: Com-
piling a scientific state-of-the-art by comparing relevant scholarly contributions for
a specific research question. Knowledge Graphs, however, do not represent a partic-
ularly accessible data structure for human editing. Instead, a landscape of System-
atic Review Services supports researchers with the Systematic Review methodology.
Nonetheless, integration of Systematic Review Services promises great potential for
growth of scholarly Knowledge Graphs.

This thesis proposes OSyRIS, a comprehensive web service approach and im-
plementation for integrating arbitrary Systematic Review Services with a scholarly
Knowledge Graph, namely ORKG. The service bases on a threefold approach: First,
a plausible infrastructure specification. Upon that, the service seamlessly integrates
with the existing ORKG ecosystem. Second, ScopedDBSCANScoring, a novel scoring
algorithm for predicate mappings based on pivotal Systematic Review data. Applica-
tion of the algorithm fosters conceptual integrity of the underlying Knowledge Graph.
And third, a User Interface represented by a widget of interactive modals that guide
Systematic Review Service users through the data export process. At that, two task-
specific UI elements are deliberately designed in order to support selection of quality
mappings.

Based on the implementation, OSyRIS is shown in-depth quality: First of all,
a representative integration into a popular Systematic Review Service provides an
overall proof of correct functionality. Empirical evaluations furthermore support
that the ScopedDBSCANScoring algorithm outperforms a predicate label only-based
mapping baseline that is currently implemented in ORKG. As a preceding contri-
bution, a gold standard data set for evaluation of label and literal-based Knowledge
Graph disambiguation algorithms is presented. For the mapping task specific User
Interface, an empirical evaluation retrieves most usable of a few alternative element
representations.

Keywords: Scholarly Knowledge Graphs, Systematic Reviews, Interoperability of
Web-based Services, Knowledge Graphs Disambiguation, Digital Scholarship
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Zusammenfassung

Wissenschaftliche Knowledge Graphs und Systematic Reviews dienen einem gemein-
samen Zweck: Der Zusammenstellung eines aktuellen Stands der Wissenschaft (state-
of-the-art), durch den Vergleich von relevanten Beiträgen zu einer bestimmten For-
schungsfrage. Knowledge Graphs stellen jedoch keine besonders zugängliche Daten-
struktur für die Bearbeitung durch Menschen dar. Stattdessen unterstützt eine
Landschaft von Systematic Review-Diensten Forscher bei der Systematic Review-
Methodik. Dennoch verspricht die Integration von Systematic Review-Diensten
großes Wachstumspotenzial für wissenschaftliche Knowledge Graphs.

Diese Arbeit stellt OSyRIS vor, den umfangreichen Ansatz samt Umsetzung eines
Web-Dienstes für die Integration von beliebigen Systematic Review-Diensten mit
einem wissenschaftlichen Knowledge Graph, nämlich ORKG. Der Dienst basiert auf
einem dreistufigen Ansatz: Erstens, einer verständlichen Infrastruktur-Spezifikation.
Anhand dieser lässt sich der Dienst nahtlos mit dem existierenden ORKG-Ökosystem
integrieren. Zweitens, ScopedDBSCANScoring, einem neuartigen Bewertungsalgo-
rithmus für Predikat-Übersetzungen basierend auf ausschlaggebenden Systematic
Review-Daten. Anwendung des Algorithmus pflegt die konzeptionelle Integrität
des zugrundeliegenden Knowledge Graphs. Und drittens, einer Benutzerschnittstelle
die durch ein Widget bestehend aus Interaktionsmodalen besteht, welche wiederum
Nutzer:innen von Systematic Review-Diensten durch den Datenexport führen. Dabei
werden zwei aufgabenspezifische Schnittstellenelemente sorgfältig entworfen, um Nut-
zer:innen bei der Wahl hochwertiger Übersetzungen zu untertützen.

Basierend auf der Umsetzung wird OSyRIS umfassende Qualität nachgewiesen:
Zunächst zeigt eine repräsentative Integration in einen bekannten Systematic Review-
Dienst die korrekte Funktionalität des Dienstes. Eine empirische Evaluierung un-
terstützt, dass die Leistung des ScopedDBSCANScoring-Algorithmus ein lediglich
auf Predikat-Bezeichnern beruhendes Übersetzungsverfahren, wie es derzeit in ORKG
implementiert ist, übertrifft. Als einhergehender Beitrag dieser Arbeit wird ein
Gold-Standard-Datensatz für die Bewertung im Systematic Review-Kontext einge-
setzter Algorithmen für die Knowledge Graph-Disambiguation präsentiert. Für die
Benutzerschnittstelle, mit speziellem Bezug auf die Übersetzungsaufgabe, stellt eine
empirische Evaluierung die benutzbarste einiger alternativen Darstellungen heraus.
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Chapter 1

Introduction

Scholarly communication is a key aspect of scientific progress. The better a com-
mon state-of-the-art is known to researchers around the globe, the more it can be
challenged. Desirably, a state-of-the-art should be accessible without much effort.
The World Wide Web (web) was developed to advance scholarly communication.
Ever since then, scientific literature has been provided by digital libraries. How-
ever, the web has specified a syntax for interlinking documents, but not abstract
concepts described in these documents [1]. Therefore, researchers today still default
to performing comprehensive literature research before approaching a subject. Yet,
the web is right now in the transition from a document- to a concept-centric web,
namely the semantic web [2]. At that, the Knowledge Graph (KG) is the ubiq-
uitous formalisation for encoding abstract concepts. Scholarly scholarly KGs have
thus been an auspicious approach towards improved accessibility of the scientific
state-of-the-art [3], [4].

Except for granting logical merits, KG representations have disadvantages, nonethe-
less. Particularly, data structures like lists or tables feel more natural from a human
perspective. In order to allow arbitrarily abstract concepts to be described, KGs
require rather complex graph patterns. That being said, scholarly KGs represent
but means of centralised scholarly communication infrastructures. The higher level,
on the contrary, is served by interactive tools that engage with established scientific
methodologies. Prevalent in many subjects, Systematic Reviews (SRs) represent a
fundamental methodology and synonymous artifact that is supported by a landscape
of applications on the web. Reviews compile a scoped state-of-the art for answering
a predefined research question [5], [6]. In this regard, the interaction of web-based
Systematic Review Services (SR Services) and scholarly KGs promises great benefits
for once more progressing scholarly communication.
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1.1 Motivation

At present, about thirty thousand SRs are published per year [7]. Moreover, the
trend is increasing [8]. On the same page, hundreds of thousands of researchers use
SR Services on a regular basis [9], [10]. SR Services aid the entire SR process. At
the final stages, they accumulate the results in one place. Results of an SR are key
contributions from original work. Those provide inherent value for growing scholarly
KGs. Yet, the way from an SR Service to a scholarly KG is bridged by the entire
publication lifecycle. A SR is published as usual and the official document must
then explicitly be targeted for knowledge extraction and integration. In the end,
the SR data is transferred to a higher level representation (e.g. paper) and later
reduced again to the lower level KG representation. The lack of an interface in
direct proximity to the results is an apparent problem. An effortless way to export
the results would be in favour of scholarly KGs. Optimally, users of an SR Service
would be provided with an option to export the available results with no more than
a few clicks; right from the service application.

1.2 Problem

The problem is evident: Scholarly KGs would profit from SR data collected at SR
Services. An integration interface is therefore desirable. However, interoperability is
primarily valuable for the scholarly KG end. For that reason, low effort integration
costs are a key requirement for an integration interface in order to engage with SR
Service providers. Furthermore, according translation of SR data to proper KG
representations is a mandatory intermediate step, viewing not only syntax, but also
semantics. For it is known that KGs come with a well-known bottleneck: Ambiguous
concept entities in the graph alleviate its purpose, as knowledge inference may no
longer be complete. An according translation of concepts described in SR data
would favour disambiguation and overall KG integrity. For scholarly KGs to scale
with the pace of science, however, data should be able to be created by anyone at
any time. Scholarly KGs would hence need to grow without (real time) supervision.
Inherently, an integration interface SR Services would need to work fully-automated
at the scholarly KG end.
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1.3 Research Questions

To be concise, the above stated problem can be reflected by the following research
questions:

RQ 1 What interface for low-effort integration can a scholarly Knowledge Graph
provide to arbitrary Systematic Review Services?

Data collected in SR Services provides value for scholarly KGs. Therefore, the
demand of interoperability clearly emanates from the scholarly KG side. At
scale, an interface for interoperability should allow for simple integration from
the SR Service side.

RQ 2 What data processing measures can foster KG disambiguation in the under-
lying KG upon data exchange?

Data read from SR Services require a syntactic translation in order to allow for
being written to schoarly KGs. But also the concepts described within the re-
spective SR should be mapped to those existing in the KG, i.e. disambiguated
with the KGs at export time.

RQ 3 What User Interface can support an intuitive application of the KG disam-
biguation measures upon data exchange?

Data mappings between SR Services and scholarly KGs are merely an auto-
mated estimate. The human user should thus approve or disapprove individual
mapping recommendations. The UI should accordingly support the user with
making a reasonable decision.

1.4 Structure

The basic structure of this work is pursuant to common literature from the field.
Initially, background knowledge required to understand this work is shared. Subse-
quently, related work is presented and commented with respect to this work. The
main part starts with describing the approach for answering the research questions.
Then, the implementation of the approach is touched upon. Based on the implemen-
tation, the following evaluation supports the value of the proposed service and its
components. Due to the broad problem statement, the main part addresses topics
from a broader spectrum of disciplines. The targeted service is ultimately a software
engineering product. The KG disambiguation to foster KG integrity is moreover
subject to knowledge engineering and machine learning in further view. The human
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user interface evidently draws from human computer interaction principles. For that
reason, the main chapters are structured all the same: First, they regard the overall
widget interface. Second, they expand of the KG disambiguation measures. And
third, they consider the UI. Themselves, the previously stated research questions
resemble this structure. This work closes with a comprehensive discussion, including
to a critical view on itself, as well as ideas for future work. A concise conclusion ends
the work.

1.5 Contributions

The encompassing contribution of this work is a microservice that integrates with
the Open Research Knowledge Graph (ORKG) ecosystem. Throughout, this ser-
vice is referred to as OSyRIS (ORKG Systematic Review Integration Service). The
service is contemplated by the following isolated contributions: First, a web service
specification integrating with ORKG and arbitrary SR Services. Second, a high-level
algorithm that fosters KG disambiguation in the targeted scholarly KG. And third,
two User Interface (UI) components that support users with the disambiguation
mapping task.

Data Availability The source code related with work is available online. Experi-
ment related code resides in a University data repository under https://data.uni-
hannover.de [11]. Service related code resides in an ORKG GitLab repository under
https://gitlab.com/TIBHannover/orkg [12].
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Chapter 2

Background

This chapter outlines knowledge required to understand the remainder of this work.
The topical range spans the technical and contextual frame for the work. Computer
science fundamentals are presupposed, as the background connects beyond.

2.1 Knowledge Graphs

By definition, a KG is merely a graph model of concepts in the real world. More pre-
cisely, nodes represent entities in the modeled domain, whereas edges depict relations
among them. As a KG usually serves a specific domain, it maintains an accordingly
specific scheme, also referred to as ontology. At that, it defines meta concepts like
classes and properties. An ontology is technically a minimum part of the KG itself.
At any point in time, a KG can be traversed to infer knowledge over the concepts [3].

There are different modelling specifications for KGs. Most common are directed
edge-labelled graphs (del graphs), heterogeneous graphs and property graphs. They
differ in how data is attached to nodes and edges. RDF (Resource Description Frame-
work (RDF)) is the World Wide Web Consortium (W3C) declared standard model for
KGs on the web. It bases on directed edge-labelled graphs, as facts are represented
in a subject-predicate-object relation. Mathematically speaking, facts are triples.
From a graph perspective, subjects and objects represent nodes, whereas predicates
represent directed relationships. Subjects and objects can conceptually describe enti-
ties on the web. For this, they are depicted by Internationalised Resource Identifiers
(IRIs) – a superset of Uniform Resource Locators (URLs). Objects, however, can
also depict literals, i.e. serialisable information, such as numbers or strings. The
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optional RDF schema presents a minimum ontology for KGs1 [14] [3] [15].
RML (RDF Mapping Language (RML)) –– superset of the W3C R2RML spec-

ification – is a data store mapping language. It can be used to describe constraint
mappings from different types of relational data to anRDF representation. Unlike
R2RML, it can not only source from relational databases, but also from files (e.g.
JSON or CSV ). At that, it is commonly implemented with data integration pipelines
on KGs [16].

SQL (Structured Query Language) has been the longtime de-facto standard for
relational database querying [17]. However, KGs represent graph-based databases.
This is, querying KGs bases on different fundamentals. In order to draw from known
concepts, RDF KGs were designated the SQL-syntax influenced SPARQL Protocol
And RDF Query Language (SPARQL). SPARQL reuses popular SQL keywords, but
uses RDF graph patterns for stating query conditions [18].

2.2 Systematic Reviews

A Systematic Review is both a methodology as well as the such raised artifact (a
paper in general). It aims to answer a predefined research question in a system-
atic, unbiased way using existing publications [5], [6]. In general, reviews assess
original work contributions with respect to the upfront defined question. As a re-
sult, extracted contributions are compared in order to compile a scoped state-of-the
art [19]. From this, further procedures can connect, whether it is research, develop-
ment or policy making. SRs are most popular in medical and healthcare domains.
For instance, a systematic review in the healthcare domain could compare quality of
different vaccines to aid clinicians [20]. Although there is no standard approach to
SRs, literature sketches a few common steps [5], [6], [19]–[21]:

Preparation Definition of a constructive research question. Supplementary, defini-
tion of in- and exclusion criteria upon which studies will be respected.

Search Strategic search for studies supposedly answering the research question. Ap-
plication of the in- and exclusion criteria.

Screening Critical appraisal of each included study’s quality. Elimination of studies
that do not meet specific quality criteria.

1Turtle is a language and file format for expressing RDF. It is often times used synonymous
with RDF. Throughout this work, Turtle is implied with explicit KG listing [13].
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Synthesis Extraction of relevant study contributions. Comparative encoding of
contributions in a suitable format, e.g. a table.

Reporting Compilation of the results, including to the review context, synthesis
and protocol. Transparent justification of the review process.

2.3 Clustering

Clustering is a fundamental technique used in the machine learning domain. Given a
set of data points, clustering algorithms are ought to identify structural relationships.
The different groups can be considered clusters of semantically related data points.
Clustering helps to identify patterns in data for arbitrary purposes. As a visual
example, clustering is a vital part of digital image processing (such as with segmen-
tation). As a more abstract example, clustering is also heavily deployed with data
mining algorithms. Given great magnitudes of data points, clustering algorithms
can help to detect certain dynamics. Dynamics could describe categories, anomalies
or distribution phenomena [22]. Clustering represents an unsupervised approach to
learning. This is, clustering algorithms handle patterns in the data automatically.
Clustering algorithms do moreover differentiate in whether the number of clusters
is automatically derived or must be defined beforehand. [23]. Clustering algorithms
classify as one of the following: Hierarchical clustering algorithms, which recursively
assemble clusters based on global similarity metrics. The cluster size is therefore
dependent on the depth of recursion. Partitional clustering algorithms, which it-
eratively assemble a fixed number of clusters with increasing specificity. Obtained
clusters do not overlap. Density-based clustering algorithms, which assemble clusters
based on spatial data point density. In this, clusters can have arbitrary shapes. In
particular, outlier data points can be assigned a designated noise cluster [24].

2.4 Representational State Transfer

Representational State Transfer (REST) is a widely used architectural paradigm
for HTTP-based Application Programming Interfaces (APIs). For it being stateless,
REST-APIs can scale horizontally without further ado. REST alienates the anatomy
of an HTTP request in favour of a uniform communication meta protocol [25]. Most
basically, the HTTP verb defines the type of operation requested. The pathname
of the request URL states the associated resources which are addressed. It can op-
tionally include an Identifier (ID) to address a specific one. Also, the query string
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can optionally provide modifier arguments (e.g. a resource limit). Resource spe-
cific data can be provided with the request data (body). The dominant messaging
format among REST-compliant services is JavaScript Object Notation (JSON) [26].
Upon response, the HTTP status codes depict the result of a resource manipulation
(e.g. 201 for resource created) [27]. Table 2.1 summarises the basic REST interface
operations.

HTTP Verb REST Operation

GET Request resource
POST Create resource
PUT Modify existing resource (total)
PATCH Modify existing resource (partial)
DELETE Delete existing resource

Table 2.1: Basic REST methodology. The HTTP verbs are used to describe an
interface for resource related operations.

2.5 Custom Web Components

Nowadays, most application UIs are web-based and build on web technologies. In
fact, even desktop and mobile applications have increasingly integrated with the
elaborate web technology stack [28]. The triad of the Hypertext Markup Language
(HTML), Cascading Style Sheets (CSS), and JavaScript (JS) provides languages
driving web applications. At that, HTML specifies a set of atomic-purpose UI struc-
ture elements. Rich UIs combine systematically deployed components of hierarchi-
cally nested HTML elements [29]. Yet, such components do violate basic software
engineering principles. Particularly, reusability and information hiding are unachiev-
able. As a result, common web views implement a proposed standard for custom
web components that emulate ordinary HTML elements. A custom web component
is represented by a JS class that inherits from the generic HTMLElement class. The
class defines its behaviour. Each instance of an element injects an isolated Document
Object Model (DOM) into the document, a so-called Shadow DOM [30].

2.6 Web Applications Widgets

On the web, a widget is a modular application with a UI that allows for embedding
into arbitrary third-party applications. Widgets isolate development and mainte-
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nance at a single provider [31]. Widget-based interoperability represents the ubiq-
uitous approach for scaling interoperability across web service UIs. Most efficiently,
widgets come with a minimum integration effort. Host applications that do not re-
quire any interaction simply embed widgets using the iframe HTML element [32].
For programmatic interaction, widgets exploit the possibility to reference cross site
scripts in HTML documents [33]. For presenting a UI, in particular, widgets are
subject to usability concerns upon design time. Usability describes the degree at
which an interactive system can be used by specified users in a specified context.
Evaluation of widget quality is thus mostly evaluation of its usability [34].
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Chapter 3

Related Work

Knowledge engineering has been a popular subject in recent years. Evidently, a
lot of work more or less relates with the approach shared in this work. Yet, this
work does not only focus on knowledge engineering, but also other disciplines related
with engineering a web-based interface. An extensive outlook on related work is
hereinafter presented and connected with the thesis.

3.1 Open Research Knowledge Graph

The benefits of KGs for scholarly communication are obvious. For this reason, schol-
arly KGs have been a priority topic for the TIB – Leibniz Information Centre for
Science and Technology (TIB). In 2018, Auer, Kovtun, Prinz, et al. laid out first
steps towards a KG for the scientific domain [4]. Successively, Jaradeh, Oelen,
Farfar, et al. presented the Open Research Knowledge Graph [35]. From different
perspectives, premises and feasibility were then assessed [35], [36]. As a result, the
ORKG emerged, a scholarly KG developed and maintained by the TIB. ORKG is
open source and serves open science [37], [38]. Thoroughly reviewed, ORKG reveals
as a dominant representative of scholarly KGs. Instead of modelling scholarly com-
munication extensively, ORKG is strictly focused on scientific artifacts to obtain
simple state-of-the-art accessibility. For this, ORKG is constrained on the successive
ontology. Figure 3.1 pictures a del graphs representation of an exemplary ORKG
instance defined across the presented ontology.

Scientific contributions describe the actual value of research. They comprise
information that is related to a research objective. Contributions thus help with
practical problems or advance the state-of-the-art for a specific research subject. Ac-
cordingly, ORKG defines the class http://orkg.org/orkg/class/Contribution
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Figure 3.1: A minimum example of entity and relationship instances integrating the
artifact-reduced ORKG ontology. The red ellipses describe schematic class entities,
the blue ones individual resources. The cyan boxes describe literal objects. The
arrows depict the relationships across resources.

(orkgc:Contribution) [39]. By frequency, papers describe the default artifact
of scientific publications. Besides contextual information, papers comprise a set
of contributions raised for a specific research question. ORKG defines the class
http://orkg.org/orkg/class/Paper (orkgc:Paper) as a parent for multiple re-
sources that are each classified a contribution [39], [40]. For the sake of highlighting
a state-of-the-art, ORKG also describes a specific class http://orkg.org/orkg/

class/Comparison (orkgc:Comparison). It aggregates topically related papers in
order to describe a paper- and contribution-based comparison. In the ORKG-UI,
comparisons are displayed as tables. Figure 3.2 shows a screenshot of a random
comparison from ORKG [39], [41].

This work targets a service set to create data in a scholarly KG. ORKG marks the
designated scholarly KG upon which the described implementation and evaluation
are conducted.

3.2 Knowledge Graph Integrity

Whenever an entity or relationship is added to a KG, conceptual ambiguity could
arise. This means, an already existing entity or relationship, respectively, could
already refer to the same real world concept. As KGs usual scale unsupervised,
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Figure 3.2: Screenshot of a random comparison from ORKG. The compared paper
resources head columns, whereas the contribution criteria head the rows. This is,
the cells represent individual contributions.

this is a frequent phenomenon. A major research topic on KGs concerns measures
to mitigate conceptual ambiguity. Or, with other words, to optimise the overall
conceptual integrity of KGs. According research has diverged in two directions.

Alignment Most research regarding integrity of KGs is based on available KGs.
This is, given a single or multiple such graphs, measures seek to align already in-
tegrated concepts for uniqueness. For this, semantic similarity of entities and rela-
tionships is computed to highlight structures that likely describe the same concept.
Proposed measures can be used in production in order to periodically prune high-
lighted duplicates, or fuse entire knowledge graphs. As first steps towards alignment
techniques, Traverso, Vidal, Kämpgen, et al. define a similarity metric for KGs. At
that, similarity is computed over scoped congruence in the graph structure [42]. Sim-
ilarly, Zhu and Iglesias define graph based similarity measures with a focus on path
finding and ontological hierarchy [43]. More progressively, Li, Zhang, and Zhang
applied an active learning strategy to detect similarity based on entity related word
vector embeddings [44]. Additionally, Zhu, Bao, Han, et al. proposed an alignment
model based on a graph convolutional network that embeds entities directly into a
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vector space [45].

Disambiguation The other perspective on KG integrity regards the data integra-
tion process. Herein referred to as disambiguation, possible ambiguities are detected
online, i.e. at time of expected data creation. However, disambiguation evidently
relies on a specific reference context. Similarity computation requires some truth
about the integration data. While alignment techniques share specific KGs as a
truth, disambiguation techniques depend on different contexts. Collarana, Galkin,
Traverso-Ribón, et al. describe an approach that connects with the alignment ap-
proach: First, RDF triples are constructed from a heterogeneous data source in order
to obtain an intermediate KG. Subsequently, the intermediate and the target KG are
merged using alignment techniques [46]. In his thesis, Oghli described a comprehen-
sive ORKG pipeline for recommending predicates based on paper full-text. Initially,
similar papers are clustered as a reference model. Incoming papers are embedded
into a TF-IDF vector space in order to be compared with likewise represented paper
clusters. As a result, batches of predicates give a hint for what predicates could ap-
ply for the incoming data [47]. The ORKG SimComp API provides an interface to
compute similarity of scientific documents. It is implemented in the ORKG frontend
application [48], [49]. The SimComp API bases on Elasticsearch. Elasticsearch is
also used in the ORKG frontend with the manual contribution creation UI. Elas-
ticsearch is a document-based search and analytics engine. It uses the BM25 (Best
Matching 25) scoring algorithm. As with the document-based nature, the BM25
algorithm is mostly progressive measures [50].

The targeted service will not have periodic maintenance capabilities in scope. Im-
mediate integrity measures will be required online. Implemented integrity measures
should therefore be bound to disambiguation, rather than alignment techniques. The
data context is evidently the one given by related SRs.

3.3 Systematic Review Services

In general, each major step in an SRs (see 2.2) could be supported by a differ-
ent application. Designated SR Services, however, support users at a sequence of
steps. A comprehensive review has revealed a landscape of SR Services. An in-
tegration interface between an SR Service and a scholarly KG would connect as
late as at the extracted or synthesised data. For that reason, five services – rep-
resentative for synthesis-inclusive SR Services – are examined and compared. The
comparison is deliberately addressing data export formats. Other properties are
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not relevant, as (partial) services that do not collect export-ready data do particu-
larly not provide KG mappable data. The compared services include to CADIMA
(CAD) [51], [52], Covidence (Cov) [9], [53], EPPI-Reviewer (E-R) [54], [55],
PICO Portal (PIC) [56], [57], and SysRev (Sys) [58], [59]. With one exception,
all services provide export functionality for tabular formats of both extracted and
compared (synthesised) data. Table 3.1 compares the export capabilities that the
review revealed for the stated SR Services.

Export CAD COV E-R PIC Sys

References yes yes yes yes yes
Formats1 RIS (TXT) CSV, RIS RIS (TXT) CSV, RIS CSV, JSON

Data Extraction yes yes yes no yes
Formats1 XLS CSV CSV - XLS

Table 3.1: Comparison of popular Systematic Review Services with regard to offered
file export functionality. Except for one case, all reviewed services offer tabular file
exports for both data extraction and synthesis sheets.

The targeted service should be agnostic towards SR Services. Knowledge about
minimum data guarantees across the majority of SR Services is thus required. A
common tabular representation promises useful.

3.4 Density-based Clustering

In 1996, Ester, Kriegel, Sander, et al. proposed the DBSCAN (Density-Based Spa-
tial Clustering of Applications with Noise) clustering algorithm. Inherently, this
introduced a novel, density-based approach to the clustering problem. DBSCAN
recursively clusters data points that are related by a spatial proximity-based neigh-
bourhood. This is represented by a predefined neighbourhood parameter ϵ. Hence,
basic knowledge about data characteristics is required. Results might particularly be
poor on unseen data [60]. To address these limitations, DBSCAN has been advanced
in various ways. Ankerst, Breunig, Kriegel, et al. proposedOPTICS (Ordering Points
To Identify the Clustering Structure). OPTICS applies linear ordering to the data
points in order to monitor reachability distances. Reachability gaps can be exploited
to obsolete a predefined ϵ parameter. As a result, density levels among different

1 Multiple file formats that serve a common general purpose were combined into a single rep-
resentative. For instance, RIS includes BIBTEX, and CSV includes XLS.
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clusters can vary [61]. Moreover, McInnes, Healy, and Astels proposed hdbscan (Hi-
erarchical Density-Based Spatial Clustering of Applications with Noise). Literally,
hdbascan adds hierarchical levels to BDSCAN. It iterates over different ϵ to detect
clusters of various density [62].

The family of DBSCAN clustering algorithms dominates the density-based clus-
tering literature. Worth mentioning, Comaniciu and Meer presented a likewise popu-
lar algorithm that build on a different approach: TheMeanShift algorithm iteratively
shifts data points towards the mode of data point density regions. Clusters corre-
spond to the regions of the same gravity upon shift convergence. In contrast to
the HDBSCAN -family, however, MeanShift is not robust against noise, as it detects
(hyper)ball-shaped clusters like partitional clustering algorithms [63].

The targeted service should detect coherency in SR and KG data to improve
disambiguation. In particular, this should outperform a label only-based mapping
approach.

3.5 Web Applications Widgets

Widget development is mostly an engineering discipline. They are commonly de-
ployed to supplement the organic content of a website. Popular examples are em-
bedded Google Maps or Instagram Posts [64], [65]. In fact, ORKG already provides a
widget for linking ORKG paper entries for given DOIs [66]. Complementary, widgets
that require a shift of attention are usually represented by modal UIs. Modals repre-
sent UI windows that overlay the primary content of a website. At that, they block
it to focus the widget-respective secondary task [67]. Modal widgets are common
with outsourced communication or data submission interfaces [68].

Widgets ultimately represent an exploit of web technologies. Hence, the scientific
perspective is sparse. Paulson, however, laid out fundamentals for interactive widget
development. The XMLHttpRequest methodology was therefore described for website
on-page communication [69], [70]. Han and Park presented usability experiments
of widgets on the web. Their key results highlight the importance of making the
purpose of widgets unduly explicit. Contexts of integration are unknown and might
not describe a clear purpose [71].

The targeted service should uphold ease of integration for SR Services providers.
The widget solution is uncontested in this regard. Also, it allows for presenting the
SR Services users with a UI from the scholarly KG’s end.

15



3.6. Information Retrieval User Interfaces

3.6 Information Retrieval User Interfaces

Looking at UIs, information retrieval applications mostly embody browser views.
This means, users are provided with a technically indefinitely long list of results
(as many as exist). Importantly, results are ordered by their degree of fulfilling a
declared information need [72]. Aside, computation of such a degree – commonly
referred to as score – is not trivial. It is especially application specific. The ordering
holds implicit and exclusive affordability about the presented objects. Jen-Hwa Hu,
Ma, and Chau designed UIs for information retrieval tasks with regard to cognitive
psychology theories. Their evaluations showed that UI elements that specifically
tie with the information retrieval aspects outperform bare list-based elements. This
is, results should explicitly describe their informative degree. Also, they supported
higher retrieval quality and satisfaction for novice users [73]. Rather unrelated,
Schneider, Weinmann, and Brocke defined a design cycle for nudging users towards
a certain behaviour on UIs. It yields, options that are desired by a provider should
be selected by default (highlighted) and showed with primacy (first) [74]. In that
regard, their findings can be transferred to information retrieval UI design.

The targeted service should provide human users with scored mapping options for
their SR criteria. A problem-specific UI that supports users – of which the majority
can be expected to have no experience with the task – with the mapping task.
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Chapter 4

Approach

Needless to say, breaking down the rather complex problem helps with finding and
describing an appropriate solution. Each section is met with a topically related
approach. First, this means a software and web engineering approach. Second, a
machine learning and information retrieval approach. And third, it is for a human
computer interaction approach.

4.1 Service Interface

A reliable first step for refining an interface between SR Services and ORKG is to
identify the key requirements. Least to say,the dominant functional requirement re-
gard the data exchange. Two dominant non-functional requirements, on the other
hand, pertain to the SR Service agnosticism, and the KG integrity. Incrementally,
minimum consistencies identified across SR Services are hereinafter adopted a com-
prehensive service infrastructure.

4.1.1 Data Guarantees

Most important for architectural decisions are the data guarantees that SR Services
provide all alike. This means, for ORKG to read review data, a generic model
over the collected data needs to be abstracted. Contrary to initial expectations,
however, SR Services maintain a simple and ubiquitous model. This is due to the
fact that all services replicate the common SR methodology. On the other hand, the
ORKG ontology is narrow on papers (orkgc:Paper) and contained contributions
(orkgc:Contribution). The majority of reviewed SR Services provide tabular data
export functionality. Exports span paper metadata and the contribution extractions
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or synthesis (see 3.3). Exported tables are accordingly equivalent structurally with
ORKG comparisons (orkgc:Comparison).

4.1.2 Scope Guarantees

SR Services usually offer data exports in separate units (e.g. only literature refer-
ences, data extraction or synthesis). Regardless, it is evidently available entirely at
SR Services. This is, once extracted or synthesised data has been collected, it could
be merged into a comprehensive relational representation. Such a representation
would be contributions mapped over respective papers and unifying criteria labels.
A merge could happen in an arbitrary web document [75]–[77]. The SR data must,
however, be complete. The scope is therefore tied with documents at the final stages
of SRs (data synthesis or reporting).

4.1.3 Key Requirements

Two non-functional requirements are imperative with the problem statement. Be-
tween a motivated SR data export and the data being written to ORKG, the dis-
ambiguation measures should take effect. Specific measures are expanded below (see
4.2). Yet to be approached first, interoperability with an arbitrary SR Service is
sought at low integration costs. Interoperability of web services is bound to take one
of two fundamental approaches. For one, different providers develop their services
independently, but with respect to an agreed communication interface. The overall
purposeful logic is more or less evenly distributed. Such symmetric interoperability
is suited for situations that require bilateral code ownership (cooperative expertise).
However, it does not scale organically with additional services. The alternative is to
accumulate the entire logic at one end. This is especially reasonable if the interop-
erability is more important from the respective end. Asymmetric interoperability is
widely adopted with shared UIs, called widgets.

Web applications at scale contemplate distributed systems. Although presenting
a single UI, they maintain on a pool of individual instances in the background.
The distribution approach originates from the need to scale on hardware. However,
increasingly product-driven development methodologies have also connected with
distributed system from an architectural perspective. Strongly cohesive functionality
is therefore encapsulated to modular sub applications, also referred to as (micro-
)services. ORKG started with a monolithic backend application, but has recently
transitioned towards a microservice architecture [48], [78]–[81].

Advantages of asymmetric interoperability, as well as the ORKG macro archi-
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tecture, lead to solve the SR Service integration problem with an individual mi-
croservice. For simplicity, that very service will hereinafter be referred to as OSyRIS
(ORKG Systematic Review Integration Service). From a software engineering per-
spective, declaration of a reusable service interface is a constructive software quality
measure. And so is the resulting horizontal scalability. Also, hiding the bulk in-
tegration logic behind the interface advances the quality. The modular approach
simplifies development and maintenance. It is henceforth solely reliant on ORKG
internal decisions.

4.1.4 Architecture

The previous findings allow for a sufficient architectural model of the envisaged
service. The service communicates with SR Services and the ORKG backend on
demand. The ORKG backend application maintains the actual underlying KG. By
technical specification, it is represented by a Neo4j graph database. Neo4j uses a
property graph model [82], [83]. Yet, the backend makes data accessible in a se-
mantic web-compliant RDF representation (del graph) by a SPARQL endpoint [84].
OSyRIS can use the SPARQL endpoint API to query the underlying KG, rather than
working directly on the Neo4j instance. Other services could be used on demand,
but are not required. To be consistent with a distributed system, OSyRIS should
be deployed through the encompassing virtual ORKG frontend interface. Figure
4.1 schematically describes the macroscopic component and implicit interface view
of ORKG. In contrast, figure 4.2 describes the microscopic component and inter-
face view of OSyRIS. Interfaces are thereby the remote communication relations.
Relevant required interfaces of the ORKG backend are also shown.

4.2 Knowledge Graph Disambiguation

The major non-functional requirement is to provide online KG disambiguation. In-
coming SR data exported from an SR Service to ORKG must first serve the ontology
(see 3.1). An according syntactical classification is the evident first measure to be
applied. Subsequently, the disambiguation measures can take place, based on the
virtual resources.

4.2.1 Entity Mapping

Papers and contributions in ORKG are represented by entities. In order to relate
papers and contributions, ORKG defines a designated predicate. On that account,

19



4.2. Knowledge Graph Disambiguation

Figure 4.1: Schematic macro-architectural component and implicit interface view
of ORKG. The frontend component virtualises the backend and microservices for a
single User Interface. Technically, each component can communicate with another or
clients individually, but the human UI is the frontend component itself, which hosts
the frontend application.

Figure 4.2: Schematic micro-architectural component and interface view of OSyRIS.
The arrows depict remote communication relations. Notice that the application is
divided: A client component runs in an SR Service, i.e. a web client. The server
application is the actual microservice application. It communicates on demand with
the ORKG backend API. The database, including the actual KG, is maintained by
the backend application in isolation. Notice that the client application injects the
widget UI.

papers are just associated with meta data and a number of contribution entities.
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Single quantitative and qualitative data is in point of fact encapsulated in individual
contributions. The tabular data retrieved from an SR Service contains a set of papers
and associated contributions. For the matter of fact, these contributions describe
rather atomic parts of a contribution in total. Having said this, for each paper in
an SR, a single orkgc:Paper and orkgc:Contribution are defined and interrelated.
As a pleasant fact, disambiguation must merely discover whether a paper has already
been represented in ORKG. Having a DOI as a global ID, the disambiguation is a
simple DOI-based query. Contributions are inherently comparable on the ambiguous
entity. To get an idea, listing 4.2.1 shares an exemplary RDF encoding of parts of
an incoming SR.

Listing 4.1: Example RDF triple representation for a small SR. Three literal contri-
butions are given and comprised within a broader contribution. Only one predicate
is defined anew, while two were already existing in the graph and are thus reused.
All created resource IDs are illustrative and would require an automatic assignment
according to an internal strategy.

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

3 PREFIX orkgr: <http://orkg.org/orkg/resource/>

4 PREFIX orkgc: <http://orkg.org/orkg/class/>

5 PREFIX orkgp: <http://orkg.org/orkg/predicate/>

6

7 orkgp:P20912 a rdfs:Property ;

8 rdfs:domain orkgr:Contribution ;

9 rdfs:range xsd:float ;

10 rdfs:label "f1 measure" ;

11

12 orkgr:R990817 a orkgc:Contribution ;

13 rdfs:label "Contribution 1" ;

14 orkgp:P40003 "manual" ;

15 orkgp:P2004 "O(log n)" ;

16 orkgp:P20912 "0.9"^^xsd:float .

17

18 orkgr:R970424 a orkgc:Paper ;

19 rdfs:label "Example Paper" ;

20 orkgp:authors [
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21 a rdf:Bag ;

22 rdf:_1 "Example Author 1" ;

23 rdf:_2 "Example Author 2" .

24 ]

25 orkgp:P31 orkgr:R990817 .

4.2.2 Predicate Mapping

Relationships in ORKG only describe individual contributions. These are literals
associated with papers. Except for ORKG internal meta data, contributions itself
are free from ontological constraints. In general, contributions can associate with
literals, or nested entities that describe more complex contributions. However, as
SRs share manually encoded contributions, they are true to a flat literal represen-
tation. This is, each contribution in the SR data can be described by a literal and
related with the beforehand created or reused contribution entity. The relationship
is thereby a predicate that embodies the respective SR criteria label. In contrast to
papers, it is likely that such criteria already exist with predicates in ORKG (think
of F1 score as a common metric to evaluate information retrieval systems). Unlike
papers, however, contribution criteria do not hold uniquely identifiable features (such
as a DOI). That being said, predicate mapping represents the bottleneck for the dis-
ambiguation measure. The remainder of this section is concerned with approaching
the disambiguation with a predicate mapping algorithm. Deliberate respect is due
to the context sketched by SR data.

Terminology First it is important to state and describe a regular terminology
for the disambiguation approach. The following terms will be used throughout this
work:

Strong Truth The strong truth is the criteria (to-be predicate) label and the related
set of literals provided with incoming SR data.

Weak Truth The weak truth is the set of predicates, and furthermore their respective
set of literals, that already exists in the KG.

Candidate A candidates is a weak truth instance that represents a possible disam-
biguation mapping, including to predicate label, predicate id and all associated
literals in the KG.
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Key Assumptions A few assumptions with incoming SRs and KGs in general
are evident. They favour a successive construction of a predicate disambiguation
algorithm:

A1.i Different concepts across the truth could be labeled with homonyms (e.g.
kappa for Cohen’s κ and Feiss’ κ).

A1.ii A single concepts across the truth could be labeled with synonyms (e.g. pre-
dictor variable and exposure variable for Independent Variable).

A2.i The weak truth is not always, but at least for the most part, conceptually
correct; i.e. could contain a fraction of outliers (noise).

A2.ii The strong truth is conceptually correct.

A3.i The weak truth could contain different valid representations (e.g. ).

A3.ii The strong truth is in a uniform representation (e.g. only values from the
interval [0, 1] for F1 Score, but no percentage value from (1, 100]).

A naive approach would compute mapping scores based on label similarity. This
is, it would apply a suitable string similarity metric. In fact, a label only-based
approach is currently implemented in the ORKG frontend application at different
occasions (e.g. for predicate creation within the manual contribution editor). Yet,
label only-based scoring is vague. First of all, because strong truth labels for a single
concept likely differ with different human labelling preferences. Second, because
linguistic ambiguities represent an insuperable obstacle (A1.i, A1.ii).

If not for a unique ID, mapping of predicates can rely on the context given by
SRs. In fact, the strong truth gives a condensed certainty: A value type and range
that literals associated with a similar predicate from the weak truth also associate
with (A2.i, A2.ii). An evident first step to master the situation is thus to reduce
the weak truth to only the predicates that are dominated by the same datatype
literals as the strong truth. For the next step, a nearby approach imposing on the
problem would try to simply view truths as a collection of documents. Thereby,
each of the documents could be embedded to a vector space, e.g. using the TF-IDF
model. Using a distance metric, such as cosine similarity, the closest weak truth to
the strong truth vector could be computed and traced back to the respective pred-
icate. However, the big picture on the weak truth is not necessarily reflecting the
small strong truth sample (A3.i). Prospective experiments supported supposedly
poor performance. Technically, a literal only-based scoring needs to spot whether
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the strong truth is represented by the weak truth. However, the weak truth can pic-
ture heterogeneous groups of literals. A fundamental step is thus to detect a cluster
in the weak truth that shares the characteristics of the entire strong truth (A3.ii).
Finding an arbitrarily shaped cluster in noisy data dictates the use of a density-based
clustering algorithm. Matching the requirement by name, the DBSCAN family of
algorithms represent according clustering behaviour. Transductive clustering algo-
rithms like DBSCAN are dependent on basic knowledge about the data they work on
as they rely on spatial reference parameters. There are a plethora of variations of the
original DBSCAN algorithm that mitigate that limitation. For the case, however,
the strong truth favourably helps with this issue. The parameters for DBSCAN can
be estimated well using simple averaging metrics on the strong truth literals. More
precisely, the ϵ parameter for DBSCAN could for instance be the standard deviation
of data points in the strong truth. To induce some tolerance, a buffer coefficient
could be applied. The neighbourhood size can moreover be set upfront to enforce
some degree of cluster cohesiveness. Also, the data point to start the first cluster
expansion from can be picked closest to the strong truth mean. The best matching
cluster is inherently expanded first. In case the expansion reveals noise, the weak
truth data point next closest to the strong truth mean is used, instead. Once a cluster
is retrieved, the algorithm can terminate, as the remaining data is regardless. This
novel variation (reduction) of DBSCAN is hereinafter called ScopedDBSCAN. The
literal only-based score is then the affiliation of the cluster inherently represented
by the strong truth data and the matched weak truth cluster. Empty clusters must
provoke the worst possible score. Figure 4.3 presents how different density-based
algorithms cluster a series of exemplary data distributions.

Left to describe is a cluster affiliation metric. Cluster affiliation, certainly pro-
viding great space for optimisation, is for a first approach the following: The weak
truth cluster should usually mark the higher volume cluster. It might come that the
strong truth compiles a data range narrower than those in the weak truth cluster. A
truth cluster being a proper subset of the other cluster would yield a perfect score.
The less the overlap, the worse the score. Obviously, however, a strong truth can
contain correct values that are beyond reflection by the weak truth. An inverted
parabolic weighting can discount lower differences. This is herein abbreviated with
δ. Simply viewing the overlap might nonetheless not be enough to retrieve a sub-
stantial score. For this, the degree of orthogonality between the linear regressions of
both clusters can help to detect similarity of data distribution orientations. This is
herein abbreviated with θ. Figure 4.4 depicts how the described behaviour applies
to some ellipsoid clusters in 2-dimensional space. Cluster affiliation, tantamount to
the literal only-based score, is a weighted aggregate of δ and θ.
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Figure 4.3: Series of data distributions and according classification results as de-
livered by different clustering algorithms. The black dots are designated outliers.
Different colors denote different cluster labels. MeanShift represents a widely popu-
lar clustering algorithm for unsupervised clustering, but does not consider outliers.
is the other popular choice for outlier sensible clustering, but was previously bench-
marked significantly lower runtime performance than. The benchmark was performed
in one sequential run, resembling the depicted order. The measured time was system
time delta before and after execution of each algorithm DBSCAN [85]. Order and
sideload effects must be considered, but the large margin gives a viable idea of the
runtime order between DBSCAN and OPTICS.

It is important to highlight that phenomenons like homonyms or synonyms from
linguistics can also apply to arbitrary data. Proof is given by looking at the fol-
lowing example: Data that describes the predicate Recall could equally well de-
scribe the predicate Precision. This resembles the homonymous label phenomenon.
For this reason, a unified label and literal-based approach can greatly enhance the
overall scoring performance, mutually supporting isolated mapping score accuracy.
Mathematically speaking, the score is ultimately a weighted sum of label only-based
scoring and literal only-based scoring. For a perfect string similarity, however, the
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Figure 4.4: Depiction of two arbitrary clusters in a 2-dimensional space. The darker
ellipsoids represent the cluster data. The lighter circles on top represent the radius
which is spanned by the cluster data, respectively. The lines depict the linear ori-
entation of the cluster data distributions, i.e. a linear regression. The affiliation
between the clusters is the balanced sum of the following two coefficients: One, the
unit angle between the linear regressions, reaching its maximum at full orthogonality,
i.e. manifolds of π

2
(θ). Two, the inverted parabolic weighted cluster overlap (δ).

perfect score should be used as a perfect label only-based match is most likely a
perfect match, nonetheless. There, the strengths of literal only-based mapping can
be reused. To be complete, the result of executing the hereby implicitly described
algorithm is a ranked and sliced list of scores. The scores are each computed on the
strong truth iterated over the structurally filtered weak truth from the KG.

4.2.3 ScopedDBSCANScoring Algorithm

The previous paragraph highlights all procedures required to formalise a scoring
algorithm for predicate mappings. Listing 4.2.3 describes the algorithm with abstract
pseudo code.

ScopedDBSCANScoring 7→ [0, 1]

ScopedDBSCAN 7→ R∗

ClusterAffiliation 7→ [0, 1]

SliceScores 7→ [C1, .., Ck], k ∈ N, C := CandidatePredicate
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Listing 4.2: ScopedDBSCANScoring Algorithm

1 PROCEDURE ScopedDBSCANScoring(truthstrong, Index, k, weightlabel):

2 typedominant ←− argmaxtype typeof(truthstrong)

3 Truthweak ←− Index(typedominant)

4 S ←− ∅
5

6 truthstrong ←− Embed(truthstrong)

7

8 FOR truthweak IN Truthweak:

9 scorelabel ←− UnitStringSimilarity(Label(truthstrong, Label(truthstrong)

10

11 IF scorelabel =1 OR typedominant NOT IN { string, number, date }:
12 S ←− AppendScores(k, S, scorelabel)

13 CONTINUE

14

15 Cweak ←− ScopedDBSCAN(Literals(truthstrong), Literals(truthweak))

16 Cstrong ←− Literals(truthstrong)

17 scoreliteral ←− ClusterAffiliation(Cstrong, Cweak)

18 scorelabel,literal ←− [ weightlabel ∗ scorelabel ] + [ (1 − weightlabel) ∗ scoreliteral ]

19

20 S ←− AppendScores(k, S, scorelabel,literal)

21

22 RETURN S

1 PROCEDURE ScopedDBSCAN(Lstrong, Lweak):

2 ϵ ←− σ(Lstrong) ∗ (1 + TOLERANCE)

3

4 F ←− { argminl(weak) |Lweak − µ(Lstrong)| }
5 C ←− ∅
6 WHILE |F| > 0 AND |Lweak| > 0:

7 core ←− min F

8 Lweak ←− Lweak \ core
9 F ←− F \ { core }
10 C ←− C ∪ { core }
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11 N ←− { l | l ∈ Lweak, GeometricDistance(l, core) < ϵ }
12 IF |N| ≥ NEIGHBOURHOOD SIZE:

13 F ←− F ∪ N

14 ELSE IF |C| = 0:

15 RETURN ScopedDBSCAN(Lstrong, Lweak)

16

17 RETURN C

1 PROCEDURE ClusterAffiliation(Cstrong, Cweak):

2 RETURN \frac{1}{2} ∗ [ \delta(Cstrong ∩ Cweak) + \theta(LinReg(Cstrong), LinReg(Cweak)) ]

1 PROCEDURE AppendScores(k, S, candidate)

2 minscored ←− minScore S

3 IF |S| < k OR minscored < Score(candidate) THEN

4 S ←− S \ curmin

5 S ←− S \cup

A lingering open issue is that data has so far been assumed in a spatial repre-
sentation. Obviously, KGs can store non-numerical literals, too (such as strings).
An intermediate step requires vector space embedding of arbitrary data. Semantics-
driven embedding pipelines have been thoroughly researched and can be reused at
this point. Embeddings required for ScopedDBSCANScoring are robust against scal-
ing effects, but solely require distances to reflect semantic relations. Embeddings
could for instance apply multidimensional scaling on the complete minimum seman-
tic distance matrix of truth literals. Besides the affiliation procedure, embedding
quality can be expected great impact on the overall scoring performance.

On a final note, the weak truth data can be retrieved by different means. The most
nearby approach would simply query the KG each time the algorithm is executed.
Subsequently, the retrieved data would have to be embedded. For sufficiently large
weak truth data, however, minor changes can be assumed to not affect mapping scores
significantly. A more sophisticated approach would thus maintain a weak truth index
constructed in parallel. That index can deliver embedded weak truth per datatype
without further ado. Reconstruction of the index can happen periodically with a
period that reflects the overall data change behaviour (for instance, every 24 hours).
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4.3 User Interface

In a best case scenario, export of SR data to ORKG would expect just a single
interaction, such as a button click. In this scenario, the KG disambiguation would
work with perfect quality. A human-in-the-loop would not have to decide it. How-
ever, perfect quality can not be assumed. That being said, a human-in-the-loop is
useful to support quality mappings. Fortunately, SR Service users are right at hand
upon the export, as well as the experts about the exported data. An immediate
mapping interface to utilise SR Service users as the human-in-the-loop is immediate.
This leads to a widget approach that integrates a task specific view of the ORKG
frontend application right to SR Services.

Within an SR Service client, OSyRIS can be integrated with a static script that
is requested. Successively, the script can be interpreted by the requesting web client.
Upon that, it injects the widget into the document, i.e. creates HTML elements
and appends it to the global DOM. Any other communication can take place upon
the ORKG default RESTful methodology. This means, once the widget is injected,
the client application can perform XMLHttpRequest-based requests to the OSyRIS
server application. The widget modals are hidden by default, but only a button is
presented. The export process favourably divides the different required stages across
different modals. A button click can open the predicate mapping recommendations
modal. The stages least to cover are as follows. Figure 4.5 represents these stages
with a sequential finite-state machine graph.

1. Predicate Mapping and Selection The chosen SR criteria will end up pred-
icates in the scholarly KG. Accordingly computed mapping candidates are rec-
ommended to the SR Service user, expected to be selected or neglected (for
requesting a new predicate).

2. Authentication and Submission The predicate strategy was approved. In
order to associate the SR resources in ORKG with a specific user, the SR
Service user is asked to authenticate (and possibly redirected to the registration
form, if needed).

3. Success and Links The export was successful. The SR Service user is in-
formed about the results and presented with links to the created resources in
ORKG.

Error An irreversible error interrupted the process at an arbitrary stage. A
generic error modal provides the SR Service user with a helpful error message.
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Figure 4.5: Interactive sequence of the envisaged widget modals given as a Moore
Machine. The blue labels (vertical) describe desired interactive transitions, whereas
the red labels (horizontal) describe error transitions. The reflexive error transition
edge is explicitly describing failed authentication. In that case the user shall be able
to retry the authentication with correct credentials. The purple labels (horizontal,
indicating arrow) describe events emitted upon incoming state transition.

Technically speaking, the space of possible UIs design solutions is endless. Yet,
it is a supreme heuristic to pick up the user at their prior knowledge. In general
it holds, the less application-specific a UI element is, the more common it is across
applications. Simple elements do thus require no more than a quick review of existing
UIs – if at all. Having said this, modals of the OSyRIS widget can be anticipated to be
mostly compositions of basic text and and input elements. However, for the predicate
mapping task, a specific UI to support the user can be expected improved mapping
quality – especially for a majority of novice users. Two elements are determined to
support the mapping task.

4.3.1 Candidate Selection Component

The mandatory component is for providing selection options for the recommended
mapping candidates. It is mandatory with the justified purpose of the widget. The
user can actively select the mapping option they think conceptualises their selected
review criteria best. This includes to their own label for insisting on the creation of
a new predicate. Classified, the UI component that solves the problem resembles a
checkbox. The dominant design rule for nudging users towards a desired option is
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to leave it the default selection, first to appear. The default option can accordingly
be the highest scoring candidate. In order not to disregard the option for creating a
new predicate, however, a threshold can be applied (e.g. only preselect if a candidate
score is above 0.5). For an empirical evaluation to reveal, the amount of options to
present to the user is open.

4.3.2 Candidate Score Component

Showing mapping candidate options only would leave the user with estimating map-
ping scores. The estimate would only be an implication from the perceived option
labels and ordering. For this reason, the approached widget is supplemented with
an expressive score meter. The score meter can represent the score in different ways.
Also a matter of empirical evaluation, whether a discrete percentage value, an ana-
logue bar, or both in combination facilitate the mapping quality is to be revealed.
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Chapter 5

Implementation

The approach has outlined non-trivial aspects towards OSyRIS, a web service that
supposedly solves the SR Service and scholarly KGs integration problem. The ar-
chitectural, algorithmic and UI specification have been laid out. It is now to be ad-
dressed with an implementation that allows for a proper evaluation of the approach.
Moreover, the implementation gives the encompassing contribution to deploy with
ORKG.

5.1 Service Interface

For the server-side service architecture, the implementation is but textbook software
development. Specifically, OSyRIS builds on the same technology stack as other
ORKG web services [48], [78]–[81]. For a Python runtime environment, HTTP(S) ca-
pabilities are provided by uvicorn/gunicorn server gateway implementations [86], [87].
Static files are served as text content from a designated directory alongside a suitable
Content-Type header. It is important to notice that static files are served with the
Access-Control-Allow-Origin header * (any) to allow access from any host ma-
chine (arbitrary SR Services). JSON represents the messaging format for the REST-
API. The REST methodology is moreover realised with the FastAPI framework [88].
The service client communicates with the server using the XMLHttpRequest technol-
ogy. That being said, requests are performed on demand in the background. In
particular, this keeps the current web document alive (no reload) [89].

Messaging models presented in the remainder of this section are described with
TypeScript interfaces. TypeScript interfaces provide a language for typed JSON
schemes. Favourably, they are equivalent to both Python dictionaries, and JS ob-
jects. JSON keys are named according to the JSON:API recommendations. These
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recommend alphanumeric camel case, starting with a lowercase letter [90]. The
naming conventions allow JS code to use the dot notation for accessing key val-
ues. Regardless, Python code is limited to the square bracket access notation on
dictionaries.

5.1.1 Client Model

The central data maintained in the OSyRIS client application represents the reference
for the export. Upon this, recommended mappings can first be requested. The final
submission moreover relates selected mappings with the reference. The reference
data object is (re)written upon each motivated export. The data model describes a
list of paper objects. Each paper object contains relevant meta data and a nested
object that maps each SR criteria label with the respective contribution literal.

1 interface ITruth {

2 [index: number]: {

3 authorNames: string[];

4 paperTitle: string;

5 strongTruth: {

6 [label: string]

7 : string|number|boolean;

8 };

9

10 paperDOI?: string;

11 }

12 }

5.1.2 Recommendation

The initial and essential request to the OSyRIS-API regards the mapping recom-
mendations. Uncommon for REST resources, a recommendation is not a database
object. This is, recommendations represent transient, rather than persistent re-
sources. However, recommendation requests accordingly describe resource creation
requests.

1 POST /recommend

2 Headers {
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3 Accept: ’application/json’

4 Content-Type: ’application/json’

5 }

Request Model A recommendation request message contains the reference data.
It is the string truth for online KG disambiguation measures. Section 5.2.1 regards
the disambiguation measures. Alongside the reference data, the number of mapping
candidates to be retrieved can be specified1.

1 interface IRecommendationRequest {

2 k: number;

3 truth: ITruth;

4 }

Response Model A recommendation response message contains scoring informa-
tion for each of the provided strong truth labels. Scoring information includes the
actual score, as well as relevant details about the candidate predicate. As the service
is stateless, the details are required in order to recover the mapping candidates upon
submission.

1 interface IRecommendationResponse {

2 [label: string]: {

3 details: {

4 description?: string;

5 link?: string;

6 resourceID?: string;

7 };

8 label: string;

9 score: number;

10 }[]

11 }

1In order to mitigate denial of service attacks due to huge k, the server enforces a feasible
maximum. More precisely, the ScopedDBSCANScoring implementation preliminary assigns k the
minimum of k and 10. It is nonetheless useful to enable a variable k with responses to anticipate
reusability of the API.
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5.1.3 Authentication

Resources in ORKG are associated with authoring users. For privacy reasons, user
accounts are protected by password authentication (as usual). In order to write SR
data to ORKG, the user is interrupted for providing their ORKG credentials. ORKG
uses the OAuth authentication framework that provides stateless authentication ca-
pabilities in line with the REST methodology [84], [91]. The credentials are send
from the OSyRIS client to the OSyRIS server application. The server application
mediates the authentication request with the ORKG backend. An obtained access
token is then passed back to the client application. The client application stores the
access token for future (authenticated) requests2.

1 GET /recommend

2 Headers {

3 Content-Type: ’application/x-www-form-urlencoded’

4 Authorization: ’Basic orkg-client:secret’

5 }

5.1.4 Submission

The submission request completes the export. As mentioned, authentication is im-
plicit to a submission request. To the achieve this, the Authorization header carries
the previously obtained access token.

1 POST /submit

2 Headers {

3 Accept: ’application/vnd.orkg.paper.v2+json’

4 Authorization: ’Bearer <ACCESS-TOKEN>’

5 Content-Type: ’application/vnd.orkg.paper.v2+json’

6 }

Request Model A submission request message must transport the reference data,
as well as mappings between strong truth labels and candidate information (if se-
lected).

2An authentication request could also be performed right from the client application in order
to half the traffic and leverage system response time. However, possibly desirable measures like
prioritised authentication could no longer be applied.

35



5.1. Service Interface

1 interface ISubmissionRequest {

2 truth: ITruth;

3 mappings: {

4 [label: string]: {

5 resourceID?: string;

6 label: string;

7 }

8 }

9 }

Response Model A submission response message primarily serves the purpose to
inform am SR Service user with the export results. A result is primarily a success
state, i.e. whether it was successful. A successful response, however, also shares
a link to the the papers created in ORKG. These can later be used to create a
comparison.

1 interface ISubmissionResponse {

2 resourceIds: string[];

3 }

5.1.5 Integration

With the web application widget approach, integrating an SR Service with OSyRIS is
as simple as declaring a script reference. More precisely, SR Services can state a script
tag within the markup of documents that are designated to aggregate SR results.
The script source needs to correspond to the URL of the serviced OSyRIS client
application script. The script itself is is hosted by the OSyRIS server application.
The reference instructs the web client of an SR Service user to request and interpret
the script upon document load.

Widget Element The OSyRIS client application provides SR Services the API
to adopt their local development methodology with. This means, to display the
OSyRIS widget, SR Service providers are required to declare its position in the DOM.
Statically, this concludes to adding the defined orkg-export tag to the markup.
Alternatively, the widget element could be created dynamically and append to the
DOM. The UI invasive export button appears at the designated DOM position.
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Debugging By default, the integration is linked with the productive ORKG. In
order to comfort integration debugging, the client script can be queried with the
unary URL parameter /?dev. This instructs OSyRIS to work on the ORKG sandbox
environment (https://sandbox.orkg.org), instead.

Data Provision Most importantly, the individually structured SR data must be
accessible for the OSyRIS client application. JS implements the concept of higher
order functions. At that, functions are treated like any other data object. They can
thus also represent arguments for other functions [92]. To tie with the JS methodol-
ogy, OSyRIS expects to be declared a callback function which returns the Systematic
Review (SR) data in the declared format (ITruth; see 5.1.1). Upon the export is
motivated – i.e. the export button is clicked – the callback is invoked by the client
application. The returned data is validated upon the truth model shape. If valid,
it is stored in client memory for the further process. The declaration of the func-
tion happens with adding a orkg-data-callback attribute to the widget element. The
attribute value must a global (window scope) identifier for the callback function.

5.2 Knowledge Graph Disambiguation

5.2.1 Entity Mapping

When a submission request arrives, the OSyRIS server application is given already
sorted out predicate mappings. In contrast, entity disambiguation can reliably be
achieved unsupervised. For papers to be identified, the submitted doi field is used to
retrieve a possibly existing resource. The REST-API does not offer a paper resource
lookup service by DOI [93]. For that reason, the SPARQL endpoint is queried for the
resource ID of the paper with the given DOI [94]. In case no resource exists in the
KG, a new one is created (POST). In case a paper resource exists, a new contribution
is created, as well as a statement relating it with the existing paper. Listing 5.2.1
states the DOI respective paper resource (ID) lookup SPARQL query.

Listing 5.1: SPARQL query for looking up a paper resource by DOI. The token
<DOI> (line 6) simply denotes the variable DOI string.

1 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

2 PREFIX orkgp: <http://orkg.org/orkg/predicate/>

3

4 SELECT ?paper_id WHERE {
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5 ?paper_id orkgp:P26 <DOI>^^xsd:string .

6 }

7 LIMIT 1

For incoming paper information that is not yet represented in ORKG, or does
not specify a doi field, a new paper is created. The ORKG backend does not require
a DOI field, but an arbitrary identifier that is unique with the paper in the scientific
domain (usually this is the Digital Object Identifier (DOI)). For no DOI being given,
a Universally Unique ID (UUID) is generated [95]. The syntactic data integration
procedure is hidden by the ORKG backend. Appendix A displays how an RML
script would be constituted to syntactically map SR data from a relational to an
RDF representation. For completion, this connects with the previous RDF example.

Comparisons in ORKG can not be updated. As known from code dependency
managers [96], this is a deliberate measure. Comparisons are viewed as timely snap-
shots of a specific state-of-the-art that could be referred to from outside resources.
Updates can however be published through a new version of a comparison. Versions
therefore relate comparisons with a time semantic. After all, manipulating com-
parisons always results in a new comparison resource.This behaviour is due to the
current comparison creation paradigm implemented in ORKG.

The comparison creation paradigm, as implemented in the ORKG backend, is
not REST-compliant [93]. For a proper REST methodology, a comparison would be
created using a POST request. The comparison linked to the SR Service users is a
virtual comparison in ORKG. A virtual comparison can be created with only a GET

request given resource IDs of the papers to be compared. Those IDs are retrieved
with paper creation responses in the previous step. In order to persist in ORKG, a
virtual comparison must manually be saved by the user [97]. The URL for a virtual
comparison of an exported SR is constructed from the paper IDs in the related
submission response message.

5.2.2 Predicate Mapping

Upon an incoming recommendation request, the OSyRIS server application invokes
the ScopedDBSCANScoring algorithm for predicate disambiguation. In fact, it iter-
ates the execution of the ScopedDBSCANScoring algorithm over the provided strong
truth instances. Each strong truth is therefore computed the top k mappings (k
as requested). The results are finally packaged according to the recommendation
response model and send back to the client application.
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Embeddings

The implementation of the ScopedDBSCANScoring algorithm is close to the pre-
sented pseudo code (see 4.2.3). However, the algorithm is specified for an arbitrary
spatial encoding of literal KG data. Quick response time is a pivotal aspect of a
human directed system is to be considered. An acceptable recommendation response
should not exceed a few seconds. To work as quick, the presented implementation
uses only one dimensional vector space embeddings to reduce mathematical com-
plexity throughout the further score computation process. An embedding procedure
must technically be given for each group of occurring datatype that share a com-
mon similarity semantic. Data that – although typed differently – can be applied
the same distance measure can be viewed as one type. For instance, the Euclidean
Distance can used with integer and a floating point number alike. ORKG uses the
XML schema datatypes. Those are commonly prefixed with xsd. The XML schema
specifies the following considerable datatype abstractions for scientific contribution
literals: Strings (xsd:string), decimal numbers (including integers; xsd:decimal
), floating point numbers (xsd:float, xsd:double), booleans (xsd:boolean), and
dates (xsd:date, xsd:time, xsd:duration, etc.) [98]. The different embedding pro-
cedures are as follows.

Numbers Numbers are already in a numerical, one dimensional representation
by default. The embedding is thus identical with the raw data. Eventually, any
embedding will be in the numerical representation. The only reasonable distance
metric in 1D-space for ScopedDBSCAN is the absolute difference of two points.

Strings Strings represent the biggest challenge to embedding. In the end, KG
string literals can have arbitrary length, but are usually rather short. That being
said, they represent sentences in a natural language. To find out the semantic dis-
tances, a sentence transformer model fine-tuned on semantic embeddings is used to
compute high-dimensional semantic embeddings. The chosen model is all-mpnet-
base-v2 from the SBERT library, which builds on PyTorch. all-mpnet-base-v2 excels
at general purpose semantic embeddings [99]. Subsequently, the pairwise distances
are computed using cosine similarity and stored in a distance matrix. The distance
matrix. The matrix is then downscaled to a 1D-space preserving the relative dis-
tances. The downscaling procedure calculates the squared distances, centers the
distances and performs eigendecomposition. The first eigenvector represents the
proper 1D representation. This procedure is usual for distance relation preserving
multidimensional scaling [100].
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Dates Dates naturally embody a universal semantic, regardless of the specific for-
mal representation. This is, they represent a specific point in time. That being
said, dates are all translated to the corresponding Unix Timestamp for a common
numeric representation [101]. They can further be viewed as numbers and applied
the numerical embedding procedure. Some dates are not specific with a point in
time, but rather time frames (such as years or months). The Timestamp is then
seen to correspond with the centric point in time within the respective frame (e.g.
mid-year).

Booleans Boolean typed data spreads across just two punctual clusters. An em-
bedding is inherent, for instance 0 and 1 as usual. The cluster affiliation would
always be perfect, and so would be the literal only-based score. This is acceptable,
as the datatype was matched and the score is moreover dominated by label similarity.
A label only-based score is mostly equivalent. It is used directly to skip the more
complex literal only-based procedure.

Default Any other abstract data type is disregarded and thus denied a literal
context scoring. The label only-based scoring is used as the fallback procedure for
unknown or deliberately disregarded data types.

String Similarity

The algorithm is weighted with a label only score to balance out shortcomings of
isolated truth scores. The label only-based score corresponds to a unit normalised
string similarity. For that reason, the string similarity implementation likely rep-
resents an important performance factor. For the successive evaluation, two string
similarities are implemented. The first one is an inverse unit normalised Levenshtein
distance (1) [102]. The second one is a decreasing frequency weighted Jaccard index.
The Jaccard -based similarity is expected to emphasise a bag-of-words, rather than
strict n-grams nature of semantically related labels (2) [103].

similaritylevensthein(s1, s2) = 1− distlevenshtein(s1, s2)

max{|s1|, |s2|}
(1)

similarityjaccard(W1, W2) =
|W1 ∩ W2|
|W1 ∪ W2|

1
2

(2)
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Cluster Affiliation In 1D-space, there is but one linear orientation a data cluster
can follow. For that reason, different cluster orientations are always fully coherent.
The cluster affiliation procedure as presented is now merely the discounted cluster
overlap δ.

Weak Truth Index

It is useful not to query the KG with every execution of the ScopedDBSCANScoring
algorithm. Instead, it is useful to maintain an independently constructed weak truth
index in memory of the OSyRIS server application. The algorithm in execution can
query from the weak truth index for leveraged throughput. The index is set to be
reconstructed at low traffic rates, e.g. at night, about every 24 hours. Structurally,
the index is a cache dictionary with an entry for each abstracted datatype. The
entries are arrays of spatially embedded literals.

5.3 User Interface

Once the OSyRIS client script is interpreted by a web client, a custom web component
is defined. It is subsequently declared to the global custom element registry to
resemble a normal HTML entity (orkg-export). The component comprises both an
export button, as well as the modal overlay. The overlay is initially hidden. Upon
using the export button, the overlay visibility toggles. The first modal to appear
is the mapping recommendations modal. Until the recommendations are loaded,
however, visual feedback that communicates the loading process is shown in-place
(gray bars as usual for the ORKG frontend application). Since the service client is
interpreted on the window scope, a hard requirement is not to declare any global
identifiers (except for the registered element class). That being said, the client script
is invoked through an anonymous function that acts like a private scope wrapper.
For the same reason, the client application must not integrate third-party libraries
or frameworks. Also, keyboard shortcuts are not registered for alternative button
interaction. Listing 5.3 describes the abstract class interface for the custom web
component. Figure 5.1 shows a screenshot of the widget predicate recommendation
modal implementation deployed in a sandbox environment. Appendix B contains a
screenshot for each modal.
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Listing 5.2: Abstract class interface for the custom World Wide Web component of
the ORKG Systematic Review Integration Service widget. Notice that the imple-
mentation provides a static helper function for translating Comma-Separated Values
encoded Systematic Review data to a valid reference model representation. As most
Systematic Review Services provide Comma-Separated Values exports, utilisation of
the helper can reduce integration effort, once more.

1 abstract class ORKGExportElement extends HTMLElement {

2 static parseCSVString(csvStr, mappings = {

3 authorNames: "author_names",

4 paperName: "paper_name",

5 }, delim: string = ",", nestedDelim: string = ";"): IDataModel;

6

7 private _shadowRoot: ShadowRoot;

8 private dataReadCallback: () => IDataModel;

9 private dataModel: IDataModel;

10 private mappingsModel: IDataModel["mappings"];

11 private overflowBackupStyle: string;

12 private wrapperHistory: string[];

13

14 connectedCallback: () => void;

15

16 private readData(): void;

17

18 private openModal(): void;

19 private closeModal(): void;

20

21 private openModalWrapper(modalId: string): void;

22 private closeModalWrapper(): void;

23 private navigateBackModalWrapper(): void;

24

25 private openModalError(err: Error|string|{

26 [lang: string]: string;

27 }): void;

28

29 async private toExport(): void;
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30 private toAuth(): void;

31 async private toSubmit(): void;

32 private toComplete(): void;

33 }

Figure 5.1: Screenshot of the widget predicate recommendation modal implemen-
tation deployed in a sandbox environment. The predicate recommendation modal
mediates the Knowledge Graph disambiguation results to the user of the Systematic
Review Service.

5.3.1 Internationalisation

Internationalisation is the practice of adjusting a UI to different international target
populations. Most of all, this regards language translations. SR Services could
endeavour to provide their UI in multiple languages. Although ORKG provides
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a single English language UI, the preference of external service providers should
thoroughly be met. For that reason, the widget includes a build routine that renders
different language widget assets from JSON translation files. Unless for a explicit
preference, web services can serve languages based on the Accept-Language request
header. However, the widget is served from the ORKG host system. The SR Services
mediate the user session. User request headers are thus hidden from the OSyRIS
server application. Therefore, the OSyRIS client script can be queried with the
URL parameter /?lang with an alpha-2 ISO language code [104]. For undefined
languages, the English widget is served as a default.

5.3.2 Events

Web browser JS environments build on event-driven communication. This is, nodes
in the DOM can cause emission of events that possibly carry information. Events
bubble upwards the DOMs-tree as to allow hierarchically related elements to listen
to the events with a callback. A typical type of event, for instance, is the click event
(inherent to a directed mouse click by the user). The widget is attached meaningful
events for the integrator to listen for. Although the widget is a blackbox application,
an integrating SR Service can optionally handle the events in a desired way. For
instance, the export button could be hidden after the SR was successfully exported.
Once the review data has changed, the button visibility could toggle once again.
Table 5.1 states two events that are part of the implementation. Listing 5.3.2 shows
an example for how an event can be handled.

Event Name Event Detail Event Cause

error Error message The SR export process aborted with
error.

export URL of Comparison created in
ORKG

The SR export process was successful.

Table 5.1: Events associated with the OSyRIS widget underlying custom web com-
ponent. Each event is emitted upon a related cause. Events can optionally carry
cause-specific detail information. The detail information can be read by attached
listeners.

Listing 5.3: Example listener on export widget element. The listener intercepts errors
throughout the export process. The handler assigns an implied data synthesis table
element an error class in order to give visual feedback (e.g. as red border around the
table).
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1 document.querySelector("orkg-export")

2 .addEventListener("error", e => {

3 document.querySelector("table.synthesis-table")

4 .classList.add("error");

5 });

5.3.3 Errors

Whenever an error occurs throughout the export process, the widget transitions to
the error modal. Known error sources are deliberately caught in order to express
an according error message. Unknown errors are intercepted globally. This results
in a generic error message. In case the error originated from the communication of
OSyRIS (including to the ORKG backend), the generic error message is appended
with the respective server error response message.

5.3.4 Styles

To blend into the ORKG fronted, the widget applies a coherent stylesheet. To date,
ORKG has not published design guidelines. However, as far as possible, the widget
reuses layout and styles from the ORKG frontend application. Mappable layouts
were filtered from the actual ORKG frontend markup. Mappable styles were filtered
from actual ORKG frontend stylesheets 3.

5.3.5 Mapping Task

The specified Candidate Selection Component presents the user with predicate can-
didates. The highlighted options are thereby the individual predicate labels. As
usual for a checkbox, the different options are aligned in a horizontal bid.

The Candidate Score Component is a meter. Meters are usual for representing an
analogous state degree. The degree here is evidently the mapping score. Research
on UI elements supported that redundant depictions of a single state representation
element reduce the perceived cognitive load [105]. For this, the score meter is applied
also color coding. The coloring reflects the score on a slightly desaturated spectrum

3A new stylesheet was compiled to bear overall reproducibility in mind. However, a more
DevOps-friendly integration with the ORKG Frontend would be achieved with merging the new
stylesheet with the existing ones. The existing stylesheet(s) could then simply be referenced from
the widget markup in-place of the new stylesheet.
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between red (poor score) and green (strong score). The RGB4 value is computed
with the following function:

Color : [0, 1] ⊂ R 7→ {{c0, c1, c2)} | i ∈ N : ci ∈ [0, 1], 1 ≤ i ≤ 3} =: RGB

Color(score) := {1−score
2

+ 1
3
, score

2
+ 1

3
, score

3
}

Additionally, a third degree of cognitive redundancy is introduced. The score me-
ter show a gradual transition between values (bar width, text, color) upon changing
the selected option. Animated transitions were in fact supported helpful with value-
differential decision tasks [106]. The animation approach uses a recursive function
with an ease out, logarithmic call deference.

Animate : [0, 100]2 ⊂ N 7→ {(c, s)|c ∈ RGB, s ⊂ [0, 100]} with Cdelay ∈ N

Listing 5.4: ...for small constants (< 1000), the full recursion timeout (sum of iterated
timeouts) is roughly 10 times the constant in milliseconds.

1 PROCEDURE Animate(scorecur, scoretarget)

2 IF scorecur = scoretarget THEN RETURN

3 scorecur ←− scorecur +
scoretarget−scorecur
|scoretarget−scorecur|

4 colorcur ←− Color(scorecur ∗ 1
100

)

5 timeout ←− max{log2 |scoretarget − scorecur|, 1}−1 ∗ Cdelay

6 DEFER Animate(scorecur, scoretarget) FOR timeout ms

7 RETURN (colorcur, scorecur)

4The acronym RGB stands for the Red, Green and Blue color space model. RGB colors are
triples of respective color channel intensities. A described color is additive with its components, i.e.
the higher the cumulative value is, the brighter the color. Components are from a system specific
unit interval.
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Evaluation

So far, OSyRIS has proposed approaches that supposedly enable an integration of
SR Services with ORKG. Yet, whether the implementation actually solves the prob-
lem is to be evaluated. The service is therefore exemplary integrated into a real SR
Service client. This is achieved with on a formally representative injection. Also, the
quality of the proposed disambiguation algorithm ScopedDBSCANScoring is empir-
ically evaluated on a problem-specific dataset. Furthermore a qualitative evaluation
highlights the most suited UI alternatives for the predicate mapping task.

6.1 Service Interface

Integrating OSyRIS requires but a minimum of two lines of code (statements, to
be precise). This comprises the client application script and the widget tag. To
serve the client model interface, a data read callback is likely required, nonetheless.
Functionality of the service can be proved without requiring a SR Service to actually
integrate it productively. Neither does the ORKG ecosystem. In fact, the service
can be deployed and made accessible from an experimental host. Technically, this
is equivalent to a productive deployment from the ORKG end. Productively, SR
Services are required to integrate OSyRIS though the script reference and succes-
sive widget setup (see 5.1.5). What is interesting here is that the integration does
not necessarily require a static integration, i.e. encoding into the web asset files.
A dynamic integration on SR Service client runtime works quite as well. That be-
ing said, an arbitrary SR Service client can be injected the integration script (for
debugging) and successive setup code on runtime. Technically, this is in turn equiv-
alent to a productive integration from an SR Service end. The outlined procedure is
performed in CADIMA [9]. The data read callback (orkg-data-callback) reads
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data from a data extraction table presented within the data extraction document
(/area/dataExtractionView). Listing 6.1 contains the code that is injected into
CADIMA to achieve a virtual productive deployment.

Listing 6.1: Code snippet that can be injected into the CADIMA data extraction
document upon runtime in order to test OSyRIS with with CADIMA. Furthermore,
the code snippet can simply be adjusted for another Systematic Review Service
(within the orkgReadCallback callback).

1 const script = document.createElement("script");

2 script.setAttribute("src", "http://<EXPERIMENTAL-HOST>/widget.js");

3 document.querySelector("head").appendChild(script);

4

5 window.orkgReadCallback = () => {

6 const criteria = Array.from(

7 document.querySelector("#dataExtractionGridView").querySelectorAll("th")

8 ).map(th => th.textContent.trim());

9

10 const csvData = [ [ "author_names", "paper_name" ]

11 .concat(criteria).join(",") ];

12

13 const paper = [];

14 Array.from(document.querySelector("#dataExtractionGridView")

15 .querySelectorAll("td")).forEach((td, i) => {

16 const j = i % criteria.length;

17 if(i !== 0 && j == 0) {

18 csvData.push([ "Example Author", ‘Example Paper ${j}‘ ]

19 .concat(paper).join(","));

20 paper.length = 0;

21 }

22

23 paper.push(td.textContent.trim());

24 });

25

26 return ORKGExportElement.parseCSVString(csvData.join("\n"));

27 };
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28

29 const widget = document.createElement("orkg-export");

30 widget.setAttribute("orkg-data-callback", orkgReadCallback);

31 document.querySelector("body").appendChild(widget);

OSyRIS can be shown functional completeness through the described injection.
The widget is presented as expected. Using it to export an example SR to the ORKG
sandbox also works as expected. The dominant non-functional requirements can be
accepted to be fulfilled. McConnell states that per day professional programmers
write about 70 Lines Of Code (LOC) for smaller projects (ca. 10,000 (LOC)), and
about 10 LOC for large projects (ca. 10,000,000 LOC). Jones, Bonsignour, and
Subramanyam estimates about 25 LOC across different domains. To be compared,
the injection required 25 LOC (without whitespace), i.e. at most one wo:man day of
integration effort.

6.2 Knowledge Graph Disambiguation

The disambiguation of entities was described as a formal procedure. The DOI can
distinguish papers globally, as it is a unique identifier by design. Whether the
predicate-based disambiguation requires an evaluation of the ScopedDBSCANScoring
algorithm.

6.2.1 Data Preparation

Evaluation of ScopedDBSCANScoring requires a dataset upon which the algorithm
can be executed and results reasonably be interpreted. Related work on KG align-
ment is commonly evaluated on corpora like CESSMcite or DBP15Kcite. Besides,
a gold standard dataset for contextualised KG disambiguation as presented in this
work does not exist. That being said, an according dataset must be constructed
beforehand [11]. The dataset should contain a comprehensive set of real world rep-
resentative weak truth instances, i.e. predicates and associated literals. Also, these
weak truth instances should reflect the data distribution dynamics typical for schol-
arly KGs. Having said this, the construction comprises a query step to retrieve real
data from a scholarly KG, as well as a step that adds different variations of weak
truth instances.

Dataset Query The dataset is compiled directly from ORKG. For the evaluation,
two (most) usual types are focused. This is strings and decimals. Decimals are
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structurally representative for numbers in general. Per datatype, data was queried
for 10 high- and low-volume literal contexts each through the SPARQL-endpoint.
The low-volume literal contexts should represent situations where a disambiguation
algorithm could not rely on a comprehensive weak truth context. Notice that only
predicates with a description were extracted in order to allow for interpreting the
data later on. As a result, a fundamental dataset with a total of 40 records was
constructed. Listing ?? states the SPARQL query used to retrieve the different
volumes of datatype specific evaluation dataset instances from ORKG.

Listing 6.2: SPARQL query for retrieving parts of the basic evaluation dataset. The
tokens shaped <A|B> (lines 11 and 18) simply denote different alternatives A and B

that were used with different queries. All four combinations were used.

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

3 PREFIX orkgc: <http://orkg.org/orkg/class/>

4 PREFIX orkgp: <http://orkg.org/orkg/predicate/>

5

6 SELECT DISTINCT ?predicate ?label ?description

7 (GROUP_CONCAT(?literal; separator="; ") AS ?literalsList)

8 WHERE {

9 ?contribution a orkgc:Contribution ;

10 ?predicate ?object .

11 FILTER(datatype(?object) = xsd:<string|decimal>)

12 ?predicate rdfs:label ?label ;

13 orkgp:description ?description .

14 BIND(str(?object) AS ?literal)

15 }

16 GROUP BY ?predicate ?label ?description

17 HAVING(COUNT(?literal) >= 1)

18 ORDER BY <ASC|DESC>(COUNT(?literal))

19 LIMIT 10

Dataset Annotation In order to get an idea about how data in ORKG is con-
stituted, the dataset was accordingly annotated. The annotators were two graduate
computer science students. The annotations happened independent from each other.
The annotation process comprised a few steps: At first, the annotators were given
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only the predicate descriptions. With that, they were asked to annotate the crite-
ria that are supposedly referred to by the descriptions. Afterwards, the annotation
results were exchanged in order to classify the criteria label chosen by the other an-
notator. This step should reveal information on how concepts in ORKG would meet
with criteria labels used in SRs. The classes were as follows.

Cphrasing1 The annotated label exactly matches the actual dataset label, i.e. is a
perfect phrasing.

Cphrasing2 The annotated label partially matches the actual dataset label; i.e. is
partial phrasing. At least one of the space separated tokens in the annotated
label is a proper subtoken of the dataset label.

Cphrasing3 The annotated label does not at all match the actual dataset label, i.e. no
one of the space separated words in the term is a substring of the label

The distribution across classes reflects how data in a is constituted. Partial
phrasings are most frequent. This is probably due to the fact that criteria share a
common concept name, but are expressed differently (order, supplementary words,
etc.). At around half of the phrasings, the dataset label is partially matched. Phras-
ings that do not at all relate with the dataset label occur about 10% more frequently
than perfect phrasings. Figure 6.1 shows the phrasing class distribution as a bar plot.
For the definite analysis, the results should be weighted according to the phrasing
distribution to better reflect the real world model.

Second on, the annotators were given the entire preliminary dataset. They were
now to annotate the representation of the literal data. The classes are thus regarding
whether literals are represented as clusters of coherent representations, clusters of
coherent representations with outliers (noise), or as arbitrarily heterogeneous repre-
sentations. The term representation coherency was explained to the annotators as
whether literals are perceived to belong to a common group, e.g. numbers from a
certain interval or strings that are all cities.

Ccluster1 Clusters of representations, i.e. homogeneous structures of literals (e.g.
only [0,1], or [0,1] and [0,100] for the concept Recall).

Ccluster2 Clusters of representations, but including outliers.

Ccluster3 No clusters of representations, but only heterogeneous structures of literals.
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The class distribution differs significantly across the datatypes. Clusters of literal
representations are recognised at any decimal strong truth. Around 80% of the
decimal classifications do not even reveal outliers. On the contrary, strings show
only a few clean clusters. It comes with a similar fraction of clustered representations
with outliers and heterogeneous representations at around 40% on the dataset, each.
Figure 6.2 shows the representation class distribution as a bar plot. For the definite
analysis, the results should (also) be weighted according to the phrasing distribution.
This should better reflect the real world data dynamics.

It seems that numerical data is framed more frequently by common units and
typical value ranges. String data, on the other hand, seems to be used less within
generic frames. Particularly, unit measures regularly apply to numeric data only.
Obviously, the expected classification is a subjective matter. The classification of
decimals, however, achieved perfect agreement. A κ-measure (Cohen) of 0.66 for the
string classification provided a moderate inter-rater reliability. For constructing the
dataset, disagreements were resolved in a joint discussion.

Dataset Refinement The final dataset was ought to compile a reference between
possible strong truth labels and different representations of the weak truth. The
weak truth is given by the queried data (a scoped snapshot of a KG). The to-be-
evaluated strong truth is additionally raised with a perfect label, a partial label,
and a not matching label. The different labels can be constructed right from the
weak truth in the dataset, respectively. In fact, the perfect phrasing equals just the
weak truth label. The partial label is just the longest space-separated word in the
weak truth label. In case no space exists in the weak truth label, the first three
quarters of the characters in the label are used as the partial label (outer whitespace
is stripped). The not matching label is just a randomly generated word with an equal
length as the weak truth label. However, latters in the generated word do not contain
any character that is also contained in the weak truth label. This should obviate
accidental string overlap score advantages. Furthermore, for the high-volume fraction
of the data, the weak truth literals are given in three constitutions (8 items each):
As a perfect subset of a single representation cluster in the weak truth (intersection).
As a set of literals that are each not contained in the weak truth, but represent
roughly valid values for the respective concept (disjunction). This is useful to check
if a contextual predicate disambiguation algorithm also works on data that is not in
the weak truth. And, as a half overlap of a subset of a single representation cluster
and not contained literals. This is, it can be drawn right from the intersection and
the disjunction. Constructing an intersection can also be performed with little effort,
eyesight and optional review capabilities. Constructing a disjunction, however, is not
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a trivial task (especially for the string data). For that reason, a pre-trained general
purpose language model greatly lends itself to solve this task. It helps with providing
less biased, more far-sighted generation of contextual text (compared to humans).
GPT-3 models have recently supported great quality in recalling and paraphrasing
literature publications. Particularly, they have been trained on a plethora of scientific
literature [109]. The model is prompted with the following template, given a comma-
separated list of the weak truth labels in place of the pattern expression (up to the
token limit):

Please generate exactly 8 additional concepts related to the scientific concepts de-
scribed by the following values: ”<labels>”. Do not reuse any of the given concepts.

To wrap it up, the refined dataset enables evaluations of predicate disambiguation
algorithms. Therefore, the algorithms can be iterated over the real world represen-
tative weak truth. Therefore the full cartesian product of three strong truth label
phrasing types (perfect, partial, none) is given to the evaluated algorithm. If the
respective weak truth has a high volume of literals, different strong truth literals
constitutions (instersection, disjunction or their overlap) can also be tested.

6.2.2 Experiment Subjects

OSyRIS is a deliberate work towards progressing ORKG. At that, the baseline sys-
tem for the ScopedDBSCANScoring algorithm proposed in this work should be the
ORKG system closest with solving the predicate disambiguation problem. In fact,
the ORKG SimComp API provides a similarity interface for comparing scientific
artifacts. However, it is build for comparing papers and contributions, rather than
(comparably small) predicate-literal contexts. For predicates, ORKG implements a
label only-based predicate mapping recommendation interface. It is implemented
with the manual contribution creation form in the ORKG frontend application. The
service bases on Elasticsearch. The evaluation herein uses the outlined system as a
baseline. For simplicity, it is referred to as ORKG SimPredicate. Furthermore, dif-
ferent parametric variations of the ScopedDBSCANScoring algorithms are evaluated
against the baseline:

ORKG SimPredicate (experimental name) The ORKG frontend application
provides a predicate label-based recommendation retrieval interface. The re-
trieval returns a ranked list of mapping candidates.

ScopedDBSCANScoring0.50 + Jaccard ScopedDBSCANScoring with a literal only-
based scoring weight of 0.5 and unit normalised Jaccard for the literal only-based
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Figure 6.1: Data fraction per class of
criteria phrasings that were provided
by independent annotators for concepts
described by only a short explanatory
text from ORKG. Based on the true
label, the phrasing classes differentiate
perfect matches, partial matches and
no matches (i.e. empty intersection of
space separated words). The data com-
prises 20 instances per datatype (dec-
imals and strings). The average over
both classes is presented with the gray
bar plot. Partial matches dominate
the distribution. No match seems more
likely than a perfect match, which fore-
shadows problems for label only-based
disambiguation measures.

Figure 6.2: Data fraction per class of
representation clusters that were pro-
vided by independent annotators for
predicate related literals from ORKG.
Literal representations can be classified
either as given only in clusters of coher-
ent representations, clusters of coherent
representations with outliers, or as an
arbitrary heterogeneous set. The data
comprises 10 instances per datatype
(decimals and strings; only high-volume
literal contexts allow for an according
classification). The trendlines show a
coarse divergence between the datatype
classification dynamics.

scoring

ScopedDBSCANScoring0.50 + Levenshtein ScopedDBSCANScoring with a lit-
eral only-based scoring weight of 0.5 and frequency-weighted Levenshtein for the
literal only-based scoring

ScopedDBSCANScoring0.75 + Levenshtein ScopedDBSCANScoring with a lit-
eral only-based scoring weight of 0.75 and frequency-weighted Levenshtein for
the literal only-based scoring
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6.2. Knowledge Graph Disambiguation

6.2.3 Experiment Setup

The baseline system, as well as the algorithms, are each applied to the previously
raised gold standard dataset instances. The ORKG baseline does not provide a
transparent scoring, but yields relevance implicit with the ordering. Moreover, the
predicate disambiguation does not ask for an appropriate ranking, but for a specific
predicate. For this, the subjects are not compared based on typical information
retrieval quality metrics like the F1 score. Instead, the experiment subjects are com-
pared on a problem specific one-precise precision@k metric (1-precision@k). This is,
the 1-precision@k corresponds to one divided by the position of the correct candi-
date in the results list (e.g. 1/4 for the correct candidate at fourth position). To
enable repeatability, the experiment is run on the gold standard dataset instead of
an ad-hoc created weak truth index. Individual scores of ScopedDBSCANScoring
algorithm are monitored in parallel to allow for an isolated quality statement.

6.2.4 Experiment Analysis

The data phrasing distribution foreshadows that label only-based scoring is weak on
the dataset. The fraction of perfect phrasings are lower than the other two types of
phrasings. Evidently, ORKG SimPredicate works perfectly on the perfect phras-
ing labels. However, it does also not work at all on the none matching labels. The
proposed ScopedDBSCANScoring algorithm mitigates the label only context insen-
sitivity. The best performing subject is ScopedDBSCANScoring0.5 + Leven-
shtein. In total, the subject algorithm outperforms the baseline by a margin: The
overall 1-precision@k average presents an advantage of about 17% over the ORKG
SimPredicate. In order to obtain a more representative score for ORKG, the 1-
precision@k values are additionally balanced according to the previously obtained
phrasing class distribution. The overall advantage furthermore grows to even about
60%. Against prior expectations, the letter-wise Levenshtein similarity performs bet-
ter than the word-wise Jaccard string similarity metric within the scoring algorithm.
Equal weight between label and literal scoring, however, seems traceable with the
two-context approach. Table 6.1 compiles the experiment results for all subjects
upon both the balanced and the phrasing classification-based weighting. Figure 6.3
shows the same data as a bar plot, including an overall phrasing dynamic balanced
average.
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Overall 1-precision@k

ORKG SimPredicate 0.430, 0.337 (balanced)
ScopedDBSCANScoring0.50 + Jaccard 0.478, 0.485 (balanced)
ScopedDBSCANScoring0.50 + Levenshtein 0.504, 0.540 (balanced)
ScopedDBSCANScoring0.75 + Levenshtein 0.501, 0.539 (balanced)

Table 6.1: Experimental results after execution on each stated subject on the gold
standard dataset. The results are drawn from the balanced dataset, as well as
weighted according to the strong truth label phrasing behaviour revealed earlier.

Figure 6.3: Experiment specific 1-precision@k measures (vertical axis) of the different
subjects (horizontal axis) after execution on each stated subject on the gold stan-
dard dataset. The results are shown for each label phrasing class in isolation, as well
as the bare and class distribution balanced (weighted average) overall. The perfect
phrasing results in a perfect score for all subject and is thus cut in favour of zooming
into the differences. Notably, all parametric variations of the ScopedDBSCANScor-
ing algorithm outperform the ORKG SimPredicate titled baseline. Especially after
balancing the results according to the criteria label phrasing distribution revealed
beforehand, the performance advantage is about 60%.
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Figure 6.4: Plot of each mapping score computed over all of the 240 executions
of the ScoepdDBSCANScoring algorithm with Levenshtein string similarity and a
label based-only score weight of 0.5. The two spots in the data with visual score
drops occur at data that neither provides a useful label, nor a literal data context.
The substantial score average is a promising insight to accept supportive quality for
humans performing the mapping task.

Besides just ranking precision, the average correct mapping score over all 240
algorithm executions shows substantial quality. This is, the algorithm provides an
expressive value for humans using the score to decide upon suitable mappings. 6.4
is a plot over all of the 240 scores. Two areas, however, reveal poor scores. These
occur for predicates that do not have a sized weak truth literals context, as well as
strong semantic label differences. Given that no context at all is given at that point,
the scoring can be assumed better for any halfway representative context given.

6.3 User Interface

Usability experiments are concerned with evaluating different atomic purpose user
interface elements upon overall acceptance. The two described mapping task specific
elements are thus investigated. Different alternatives were given to a group of users in
order to have them interact with each alternative in mutual isolation. Subsequently,
each participant was asked to assess each alternative. The assessment bases on
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different usability perception aspects defined upfront as a uniform survey.

6.3.1 Experiment Conditions

Evidently, the experiment comprises two conditions, namely the proposed elements.
The levels for each such independent variable are the three different alternative spec-
ifications.

Condition 1: Predicate Selection Component

Alternative A First result

Alternative B First 3 results

Condition 2: Predicate Score Component

Alternative A Text (only) percentage

Alternative B Bar meter percentage

Alternative C Text and bar meter percentage

6.3.2 Experiment Task

Each participant is instructed to export the results of a minimal SR synthesis to a
fictional . In order to sketch a roughly familiar review situation, the participants are
asked to extract relevant contributions from a set of three fictional paper abstracts,
beforehand. Therefore, the contributions including to respective criteria labels must
be written to a provided synthesis table. Regardless of the extracted data, the export
randomly generates scores and candidate labels (different case or generic prefixes).
Half of the generated candidate scores are (at least) substantial, whereas the other
half is poor. This should nudge the participants towards interacting with the widget.

The abstracts for the tasks are generated using again the GPT-3 -API. The
prompts are based on a generic prompt template. Table 6.2 states the tokens sub-
stituted in the following template to generate 3 abstracts for 5 topics:

Please generate 3, about 50 words long fictional abstracts about the topic <t>.
Within each abstract, state specific values for the properties <p1>, p2>, and <p3>

with specific labels.
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Topic t Property p1 Property p2 Property p3

information retrieval
systems

proposed system
name

evaluated precision evaluated recall

language models proposed model name evaluated vocabulary
size

inter-annotator
agreement

code complexity
metrics

proposed metric
name

time complexity degree of
approximation

graph walk
algorithms

proposed algorithm
name

time complexity whether it is
complete or not

graphic processing
units

proposed device name number of cores average task time

Table 6.2: Token substitute sentences for different topics from the computer science
domain. The fundamental prompt towards GPT-3 asks for the generation of 3
fictional abstracts for the respectively substituted topic.

6.3.3 Experiment Setup

The usability experiment is performed with an unsupervised, within group design.
Test subjects are able to load the experimental application remote and perform it in
their own pace. Since the widget is set to be used from within an arbitrary SR Service,
a mocked-up SR Service application is provided. The application only provides a
data synthesis view. Also, a generic target scholarly KG is mocked-up. The such
set up environment is minimal in respect to perform the task. Particularly, however,
this setup eliminates side effects which could occur with real world applications,
including precautionary bias and distracting features. Figure 6.5 shows a screenshot
of the mocked-up SR Service. Accordingly, figure 6.6 shows a screenshot of the
mocked-up scholarly KG.

Each participant is assigned a single experimental condition, for which all levels.
This is, the UI element alternatives are sequentially presented upon a new task
instance. The number of participants depends on the condition level cardinality
(2 and 3, respectively). Condition 1 is tested on 4 participants1. The levels are
assigned according to two full rotations of Latin Square ordering to balance out
learning effects. Condition 2 is tested on 6 participants1, given one rotation of the
Latin Square ordering strategy.

1 Usually, the amount of test subjects used for qualitative studies is extended until saturation
in the analysed data is reached. However, an adequate minimum of subjects is applied. This is
usually not less than 15 to 20 people. Due to the strict time frame of this work, the amount of
participants was considered sufficient, as data saturation was reached early.
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Figure 6.5: Screenshot of the mocked-up
fictional Systematic Review Service appli-
cation deployed for the usability experi-
ments.

Figure 6.6: Screenshot of the mocked-up
fictional scholarly Knowledge Graph ap-
plication deployed for the usability exper-
iments.

After all conditions were tested by each participants, they are asked to complete a
short survey. The survey repeats over all alternatives in the assigned order. The an-
swers are asked through a 5-point Likert scale, spanning across the options “Strongly
agree” (5), “Neutral” (3) and “Strongly disagree” (1). The survey comprised below
stated questions:

Q1 The interface element was required to complete the integration task.
The respective element provides requisite functionality for solving the mapping
task. This statement should reveal how useful the element was actually per-
ceived. This is either that a mapping should be selected (Condition 1), or
that a suitability estimate (score) should be known (Condition 2).

Q2 The interface element’s underlying state was precisely depicted.
The respective element carries variable information, i.e. displays a complex
state. This statement should reveal how readable the depicted element state
was perceived. This is either mapping options (Condition 1), or a mapping
score (Condition 2).

Q3 The interface element’s purpose was clear to understand.
The respective element subliminally communicates how it should be used by
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their appearance. This statement should reveal how affordable the element
was perceived. This is either actively selecting a mapping (Condition 1), or
reading a score (Condition 2).

Q4 The interface element was expected to exist as presented.
The respective element requires a certain cognitive load from the user. This
statement should reveal how familiar the element was perceived. This is either
a checkbox nature (Condition 1), or a meter nature (Condition 2).

Q5 The interface element’s appearance fit into the overall widget.
The respective element is part of a composed interface for solving the mapping
task. This statement should reveal how aesthetic the element was perceived.

Q6 Usage of the interface element did not require additional information.
The respective element is one of a many factors in solving the mapping task.
This statement should reveal how sufficient information for using the elements
was perceived.

6.3.4 Experiment Analysis

The overall experiment results support Alternative B more usable for Condition
1, and Alternative C for Condition 2. Table 6.3 lists different Likert scores for
different score perspective bins. Figure 6.7 shows a bar plot of the overall Likert
scores.
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Bin Overall Q2..Q5

Condition 1 Alternative A 3.46
n = 4 Alternative B 4.29
Condition 2 (I) Alternative A 3.56 4.04
n = 6 Alternative B 3.11 3.71

Alternative C 3.61 4.17
Question 1 2.75
Question 2 4.63
Question 3 4.81
Question 4 3.87
Question 5 4.56
Question 6 2.50

Condition 2 (II) Alternative A 3.92
n = 4 Alternative C 4.29

Table 6.3: Computed Likert scores for the different conditions, alternatives and
partially also questions. Alternative A for condition 1 and alternative C for condition
2 reveal most usable. Q1 and Q6 show a poor score compared to the remaining
scores for the second condition. After implementing preliminary insights, additional
experiments show improved Likert scores.

Figure 6.7: Survey results given the 5-point Likert score (vertical axis) over all
condition alternatives (horizontal axis). The error bars depict the standard error. n
refers to the number of participants per condition.
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Figure 6.8: Distribution of the Likert scores from the usability survey. The gray
distribution in the background depicts the expected normal distribution around the
neutral score. Notice that a normal distribution is roughly matched, but shifted for
the first condition (blue).

Figure 6.8 shows that the Likert score data is slightly skewed from the mean,
i.e. rather not normally distributed. To support statistical significance, a non-
parametrical test was required. Given are two paired samples of ordinal outcomes
(Likert scores) based on nominal exposure (conditions). Among referable non-
parametric statistical tests, the Wilcoxon Signed-rank test is suited for the present
properties. The test investigates the central tendencies between two samples. To sup-
port statistical significance for the given survey results, the null hypothesis is tested
(two alternatives for a condition have the same usability effect). As non-parametrical
tests are considered less robust than parametrical test, the chosen significance level
was 0.01. At a p-value below the significance level, the null hypothesis would be
rejected. Then, the two-tailed alternative hypothesis would be accepted (the higher
Likert score also implies better usability).

Wilcoxon Signed-rank results provide that differences in the Condition 1 out-
come are significant at a p-value of 0.00044 (z-value −3.5162). Hence, Alternative
B is the more usable one. It can be assumed, that the options element is better
to understand with a few options rather than just one supplementary option. In
contrast, Wilcoxon Signed-rank results provide that differences in the Condition 2
outcome are not significant at a p-value of 0.68916 (z-value −0.4024).

For the second conditioned element, participant answers show a margin between
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the score trend of Q1 and Q6, and the remaining ones. Figure 6.9 shows the Likert
scores for Condition 2 for each question. Looking at Q1 in isolation, the ele-
ments appear superfluous. However, the score is technically mandatory information
to solve the task. Therefore, the scores rather show that additional information is
required to correctly interpret the score element. Therefore, the implementation is
added candidate predicate descriptions from ORKG and a more detailed mapping
task description. Four additional experiment participants are given the adjusted
score meter condition. The second survey round reveals that the scores significantly
improve compared to those from the first round. More precisely, the details im-
proved the element purpose perception. Now, Alternative C highlights as the best
usable alternative with a substantial score. Figure 6.10 shows the Likert scores for
Condition 2 after each survey round.

Figure 6.9: Survey results given the 5-point Likert score (vertical axis) over the indi-
vidual questions (horizontal axis) for the second condition. Answered score averages
for question 1 and question 6 compare poor to the remaining answers. With a certain
technical purpose, the answers indicate a lack of detail information.
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Figure 6.10: Survey results given the 5-point Likert score (vertical axis) over focused
condition alternatives (horizontal axis) for the second condition. The first diagram
(I) depicts the scores after the first survey round. The second diagram (II) depicts
the scores after the second survey round. Notably, the added detail information
advanced usability of the text-based score meter alternatives from a moderate to a
substantial level.
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Chapter 7

Discussion

OSyRIS comprises the technical depth modern web services stipulate. Many aspects
to the service, however, resemble best practices and remain unmentioned to self-
evidence. Yet, the significant and novel approaches were explained in detail. Also,
the respective implementations were succinctly described, as well as empirically eval-
uated. On a closing note, the presented solution is critically discussed. At that, the
guiding research questions are revisited. Furthermore, known limitations with the
work are stated and commented. Not least, ideas for future work are presented.

7.1 Solution

Widget Service The widget approach was shown to serve the infrastructural re-
quirements laid out early. In fact, according interoperability within the technical
bounds was already supported from the background. The lean and generic interface
towards arbitrary SR Services favours low effort integration. It also sustains software
engineering quality, hiding the entire logic in the scholarly KG backend application.
The ultimate window scope injection into CADIMA acted as a proof of functional-
ity. At both to show ease of integration on the SR Service end, and data export
capabilities. Without further ado, RQ 1 was satisfied to great extent.

Knowledge Graph Disambiguation The approached online disambiguation mea-
sures upon the scholarly KG were also thoroughly supported. As a collateral contri-
bution, a gold standard dataset was first compiled to allow for an unbiased evalua-
tion of predicate mapping (and possibly scoring) algorithms/systems. The proposed
ScopedDBSCANScoring algorithm was supported to outperform the ORKG baseline
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by a margin (about 60% performance advantage). Given that ScopedDBSCANScor-
ing was specifically designed for contextual SR data, it holds notable advantages over
the label only-based solutions. In particular, it connects at the strength of the label
only-based scoring, but can supplementary rely on a literal data context to recover
on poor labels. However, it can still not help with mappings for weakly contextu-
alised data on the full spectrum, which is reasonable. Since the implementation was
given as a first attempt using only a one dimensional space, further optimisations can
be assumed to advance performance once again. Overall, RQ 2 was quantitatively
answered to a substantial degree.

User Interface Not least, the information retrieval specific UI elements were com-
pared for most effective alternative representations. In line with interactive experi-
ments, surveys delivered data to justify an implementation decision. Three mapping
candidates for the selection component supported as the best alternative. Statistic
significance over the alternative with one candidate was provided. For the mapping
score meter, results did not deliver statistically significant differences. However, the
analogue score meter without an explicit value lagged behind the other alternatives.
A question-isolated view of the results revealed a yet misunderstood imperative for
the element to solve the task sensibly. For this, a successive experiment iteration was
providing adjusted alternatives with more detail information. The usability improved
from a moderate to a substantial level. The choice of the better alternative was now
a matter of the best scoring alternative. With standard or template element-based
UIs as a baseline, the elaborated UI provided a usability surplus for the mapping
task. Thereby, RQ 3 was also, yet qualitatively answered.

7.2 Scalability

At this point, it is worth assessing the scalability of OSyRIS. At that, scalability is
primarily depending on two variables. From the system architecture point of view,
increasing request loads can be met out-of-the-box. Additional service instances can
be added horizontally on demand. This is due to the the service implementing a
stateless paradigm, entirely. The second variable is the size of the KG, which the
proposed ScopedDBScanDScoring algorithm works on. An upper asymptotic, i.e.
worst case time complexity analysis helps to estimate performance on a huge KG.
Encompassing, the algorithm iterates the weak truth predicates p. Within, the lit-
erals only-based scoring is considerably constant in insignificant label lengths. The
literals only-based scoring is a succession of ScopedDBSCAN clustering and cluster
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affiliation computation. The original DBSCAN algorithm is said to work in O(n2).
However, the scoped modification uses a fringe, complementary to open data points
for iteration. Also, it terminates after a single cluster detection. Hence, ScopedDB-
SCAN is linear in the amount of d-respective literals l. The cluster affiliation is
respectively linear. Moreover, the definite sorting algorithm is limited in a suppos-
edly small k, i.e. in O(k). Having said this, it holds that ScopedDBSCANScoring ∈
O(|p| ∗ |l|). Linear time for data-complete algorithms marks the lower bound time
complexity.

For a reason, the weak truth index construction is outsourced to a more infrequent
routine. Querying a KG is linear in its size n, given that SPARQL query patterns
stating only graph patterns and FILTER statements [110]. However, for each of the
queried predicate-literals record, the literals are embedded into a vector space. This
is, the index construction runs in quadratic time. With a realistic assumption that
the amount of predicates grows sublinear with the amount of literals, the index
construction is more expensive than .

7.3 Limitations

Although each of the research questions was answered to a high degree, the work
bares several limitations. Most of them occur with connecting problems from the
broader view. The following issues are identified.

Complex Contributions Tabular data structures commonly edited through SR
Services imply atomic literal and criteria data encoding. This favours mapping to
ORKG. Despite being constraint to using literal encoding techniques, however, SR
Service users could still use terms referring to complex real world concepts. Those
would actually be modelled by an entity in ORKG. A real case from ORKG mod-
els locations as entities, sourced from but literally written down location names in
the respective review [111], [112]. A similar phenomenon happens with composed
relationships. Videlicet, del graphs can model complex relationships through n-ary
relationships. This exploits entities to represent a relation acting as a junction for
nested relationships [113]. Thereof independent, comparisons on n-ary relationships
is also a broader visualisation problem. Overall, how to map flat literal SR data to
accordingly complex models represents credible future work.

Predicate Description Sparsity Unfortunately, a large fraction of the predicates
in ORKG does not hold a description. Candidate predicate descriptions, however,
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supported highly important for users of SR Services to solve the mapping tasks using
OSyRIS. Mappings of non-described predicates can be expected significant quality
drops.

Score Meter Color The mapping score meter as implemented in the OSyRIS
widget applies colour coding to communicate the underlying state. Precisely, using a
spectrum between red and green. As is well known, use of colour in graphical UIs is
inaccessible for a color blind population. Red-green colour vision deficiency applies
to about 5% of the world population [114]. However, color is just one of three visual
redundancy degrees the score meter depicts. For the case, color blindness is thus not
an excluding issue.

7.4 Future Work

OSyRIS favours a plethora of adjustments and extensions. A few impulses for few
future work are shared below.

ScopedDBSCANScoring Optimisation As laid out above, the complexity of
the ScopedDBSCANScoring algorithm is mostly due to the literal embedding, clus-
tering and cluster affiliation. That being said, future work could drive these individ-
ual procedures in order to obtain improved results, overall. Also, whether the entirety
of the weak truth is required to compute useful mappings, or rather a representative
subset, could be assessed.

Full-text Consideration Some of the SR Services offer full-text reviews. This is,
users are able to upload papers and work directly on the text, e.g. to highlight rele-
vant information. Extending the OSyRIS integration APIs, the full-texts could also
be part of the recommendation request data. On this, a methodology presented by
Oelen, Stocker, and Auer for importing comparison tables from full-text review arti-
cles could be reused [115]. Just as well, the full-text-based predicate recommendation
pipeline presented by Oghli could be applied [47].

ORKG Frontend Integration The OSyRIS widget has so far been viewed inte-
grated into a SR Service. The application itself, however, would also work directly
inside the ORKG frontend. The interface for manual comparison creation provides
CSV import functionality. An uploaded CSV file is parsed and new KG entities and
relationships are accordingly created. The widget could be deployed intermediately,

69



7.4. Future Work

providing the online disambiguation capabilities to the import. In fact, OSyRIS is
able to handle the ORKG mapping process right away, working on tabular data by
design.

Naming Conventions Unlike other KGs, ORKG does not uphold a specific nam-
ing convention for entities and relationships. In case, however, naming conventions
should be introduced in the future, they could be enforced right through the OSyRIS
data integration pipeline.

Export Constraints SR Services provide researchers with a platform to organise
their SR data. Not all of the data might end up in a published SR, however. The
same desire might hold for comparisons in ORKG. This is, the OSyRIS UI could
offer the user an additional option to in- or exclude a criteria from the export.
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Conclusions

Scholarly communication aims at sharing a common state-of-the-art across the global
research community. Evidently, KGs promise infrastructural benefits for scholarly
communication. In contrast to knowledge inference, however, KGs do not excel at
human editing friendliness. Instead, popular methodologies like SRs rely on familiar
data encoding procedures. Rather than that, a landscape of designated SR Services
has been growing. Data stored at SR Services holds inherent potential for growth of
scholarly KGs.

This thesis concerned the problem of integrating SR Services with ORKG. From
different perspectives, it presented a comprehensive solution in form of a web ser-
vice titled OSyRIS. The service was presented through a formal specification and
respective implementation. Besides integrating seamlessly with the ORKG ecosys-
tem, OSyRIS was shown to provide a low-effort integration interface to arbitrary
SR Service. Moreover, an online predicate disambiguation measure to foster concep-
tual integrity of ORKG was proposed with the ScopedDBSCANScoring algorithm.
Given pivotal predicate labels and contextual literals, the algorithm can compute the
likelihood that already existing predicates in the graph refer to the same real world
concept. Empirically, the implemented algorithm outperformed a label only-based
mapping baseline by a margin. The evaluation was performed on a supplementary
constructed gold standard dataset. The compared baseline is currently implemented
in ORKG (a.o. with manual predicate creation). As a third contribution, a mapping
task specific UI was examined. At that, better representations among different UI
element alternatives were highlighted through a usability survey.

Noteworthy, the solution showed solid scaling capabilities upon a worst case com-
plexity analysis. Future work could be highlighted many aspects to improve OSyRIS
components; primarily these were algorithmic and modelling optimisations.
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[33] M. van Doorn and A. Eliëns, “Integrating applications and the world-wide web,” Computer
Networks and ISDN Systems, vol. 27, no. 6, pp. 1105–1110, 1995. doi: https://doi.org/
10.1016/0169-7552(95)00015-Y.

[34] “Ergonomics of human-system interaction – part 11: Usability: Definitions and concepts,”
International Organization for Standardization, Geneva, CH, Standard, 2018.

[35] M. Y. Jaradeh, A. Oelen, K. E. Farfar, et al., “Open research knowledge graph: Next gen-
eration infrastructure for semantic scholarly knowledge,” in Proceedings of the 10th Inter-
national Conference on Knowledge Capture, ser. K-CAP ’19, Marina Del Rey, CA, USA:
Association for Computing Machinery, 2019, pp. 243–246, isbn: 9781450370080. doi: 10.
1145/3360901.3364435.

[36] S. Auer, A. Oelen, M. Haris, et al., “Improving access to scientific literature with knowledge
graphs,” Bibliothek Forschung und Praxis, vol. 44, no. 3, pp. 516–529, 2020. doi: doi:
10.1515/bfp-2020-2042. [Online]. Available: https://doi.org/10.1515/bfp-2020-
2042.

[37] M. Stocker, A. Oelen, M. Y. Jaradeh, et al., “Fair scientific information with the open
research knowledge graph,” FAIR Connect, vol. 1, pp. 19–21, 2023. doi: 10.3233/FC-
221513.

[38] TIB – Leibniz Information Centre for Science and Technology. “Open research knowledge
graph,” Open Research Knowledge Graph. (2023), [Online]. Available: https://orkg.org
(visited on 01/07/2023).

[39] TIB – Leibniz Information Centre for Science and Technology. “Orkg ontology.” Repository,
Open Research Knowledge Graph. (2023), [Online]. Available: https : / / gitlab . com /
TIBHannover/orkg/orkg-ontology (visited on 08/15/2023).

[40] TIB – Leibniz Information Centre for Science and Technology. “Papers,” Open Research
Knowledge Graph. (2023), [Online]. Available: https://orkg.org/about/20/Papers
(visited on 09/27/2023).

[41] TIB – Leibniz Information Centre for Science and Technology. “Comparisons,” Open Re-
search Knowledge Graph. (2023), [Online]. Available: https://orkg.org/about/15/
Comparisons (visited on 09/27/2023).
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Appendix A

RML Example

Listing A.1: In order to share a comprehensive view on how Systematic Review is
transferred to a Knowledge Graph, the RML mappings below connect with the RDF
example given in the work. Application of RML mappings represents part of the
syntactic translation pipeline.

1 @prefix rr: <http://www.w3.org/ns/r2rml#> .

2 @prefix rml: <http://semweb.mmlab.be/ns/rml#> .

3 @prefix ql: <http://semweb.mmlab.be/ns/ql#> .

4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

5 @prefix orkgc: <http://orkg.org/orkg/class/> .

6 @prefix orkgp: <http://orkg.org/orkg/predicate/> .

7

8 <#PaperMapping> a rr:TriplesMap ;

9 rml:logicalSource [

10 rml:source "<JSON:IReadData>" ;

11 rml:referenceFormulation ql:JSONPath

12 ] ;

13 rr:subjectMap [

14 rr:template "http://orkg.org/orkg/resource/{paper_id}" ;

15 rr:class orkgc:Paper

16 ] ;

17 rr:predicateObjectMap [
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18 rr:predicate rdfs:label ;

19 rr:objectMap [ rml:reference "paper_title" ]

20 ] ;

21 rr:predicateObjectMap [

22 rr:predicate orkgp:authors ;

23 rr:objectMap [ rml:reference "author_names" ]

24 ] ;

25 rr:predicateObjectMap [

26 rr:predicate orkgp:P31 ;

27 rr:objectMap [

28 rml:constant "http://orkg.org/orkg/resource/{contribution_id}"

29 ]

30 ] .

31

32 <#ContributionMapping> a rr:TriplesMap ;

33 rml:logicalSource [

34 rml:source "<JSON:IReadData.po_records>" ;

35 rml:referenceFormulation ql:JSONPath

36 ] ;

37 rr:subjectMap [

38 rr:template "http://orkg.org/orkg/resource/{contribution_id}" ;

39 rr:class orkgc:Contribution

40 ] ;

41 rr:predicateObjectMap [

42 rr:predicate rdfs:label ;

43 rr:objectMap [ rml:constant "Contribution 1" ]

44 ] ;

45 rr:predicateObjectMap [

46 rr:predicate orkgp:P40003 ;

47 rr:objectMap [ rml:reference "Extraction methods" ]

48 ] ;

49 rr:predicateObjectMap [

50 rr:predicate orkgp:P2004 ;

51 rr:objectMap [ rml:reference "Worst complexity" ]
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52 ] ;

53 rr:predicateObjectMap [

54 rr:predicate orkgp:P20912 ;

55 rr:objectMap [

56 rml:reference "f1 measure" ;

57 rr:datatype xsd:float

58 ]

59 ] .
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Widget Modals
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Figure B.1: Screenshot of the OSyRIS client application widget predicate recom-
mendations modal. The recommendations are the result of the the predicate disam-
biguation measure applied in the OSyRIS server application. The Systematic Review
Service user is asked to select recommended predicates if suitable or their own ones
to force creation of a new predicate, respectively.
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Figure B.2: Screenshot of the OSyRIS client application widget authentication
modal. The Systematic Review Service user has authenticate at ORKG in order
to associated the to-be-create resources with a known ORKG user. In order the Sys-
tematic Review Service user is not yet registered in ORKG, they can use the redirect
to the registration form, intermediately.
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Figure B.3: Screenshot of the OSyRIS client application widget success modal. The
Systematic Review data export to ORKG was successful. The Systematic Review
Service user is provided with a link to the virtual comparison in ORKG that repre-
sents the exported Systematic Review.
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Figure B.4: Screenshot of the OSyRIS client application widget error modal. The
error modal is shown after an uncaught or passed through error occurred. For known
errors, a specific error message is shown to the Systematic Review Service user. For
unknown errors, a default message is shown in place.
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