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Abstract
Numerous methods have been developed to detect process anomalies during machining. Statistical approaches for semi-
supervised anomaly detection compute decision boundaries using information of normal running processes for process 
evaluation. In this paper, two statistical approaches for semi-supervised anomaly detection in machining based on envelopes 
are presented and compared. The proposed parametric approach assumes normal distributed envelopes to compute decision 
boundaries. However, experiments show that deviations from a normal distribution can reduce the monitoring quality. The 
new approach is non-parametric and employs kernel density estimation (KDE) to estimate the probability density function of 
the envelopes. Both approaches were evaluated for several machining processes. It is found that the parametric approach is 
robust against high scattering processes and yields low false alarm rates. By means of the selected safety factor, the number 
of detected anomalies can be increased using the non-parametric approach.

Keywords  Monitoring · Machining · Anomaly detection

1  Introduction

Machine tools are a central element within the value chain of 
industrial production processes. Process monitoring systems 
are used to increase the availability of machine tools and to 
reduce scrap as well as subsequent re-work [1]. Therefore, 
these systems must be highly sensitive to process errors 
and at the same time robust to false alarms. Typical pro-
cess errors include tool breakages, tool wear and process 
instabilities. To generate a suitable reaction, critical pro-
cess states have to be detected reliably and in time [2, 3]. 
Adaptivity with regard to changing machining processes, 
tools and machines is crucial for the practical use of process 
monitoring systems [4].

Monitoring systems fulfil the following subtasks: data 
acquisition, signal processing, feature extraction and selec-
tion as well as process evaluation [5, 6]. Data acquisition 
forms the basis for generating knowledge about the current 
process state. Information about the machining process is 
captured by internal and external sensors. Frequently used 

external sensors include dynamometers, accelerometers, 
acoustic emission sensors and current sensors [6].

The subsequent evaluation of machining processes can be 
done by simple monitoring procedures such as fixed bounda-
ries or tolerance bands. Fixed boundaries compare signals 
or derived signal features with a constant value. Traditional 
tolerance bands use a lower and an upper boundary for moni-
toring and have a largely constant signal-to-boundary ratio 
[4].

Machining processes can also be evaluated using super-
vised learning methods [5]. Commonly used methods 
include artificial neural networks, fuzzy systems and sup-
port vector machines [6]. In supervised anomaly detection, 
a labelled dataset containing information of normal and 
non-normal classes is required. In addition, the labelling 
process is often performed manually and is, therefore, time-
consuming. Within semi-supervised anomaly detection, only 
data describing the normal state is available [7]. Statistical 
methods also belong to this class and represent the most 
relevant methods for process monitoring in series production 
due to their transparency. These approaches create decision 
boundaries for the evaluation of machining processes. The 
created boundaries need to be robust to slight process vari-
ations and sensitive to process anomalies [8].
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Various methods have been developed for statistical 
process monitoring in machining. Lee et al. [9] use control 
charts based on Hotelling’s T2-statistic and Q-statistic for 
tool wear monitoring during face milling. To detect worn 
states of tools, control limits are computed using kernel 
density estimation (KDE) and a predefined risk level. Ker-
nel principal component analysis is chosen to extract useful 
features from a multidimensional dataset containing infor-
mation from several sensors such as motor current, acous-
tic emission and acceleration data. The proposed approach 
requires data representing the normal state when the tool 
is engaged. Yu [10] applies Gaussian Mixture Models 
(GMM) for tool wear monitoring for face milling opera-
tions. For model evaluation, the same dataset used by Lee 
et al. is considered. Features from time and time–frequency 
domain are extracted and principal component analysis is 
applied to reduce the dimensionality of the dataset. GMM 
are employed to model the normal tool state based on the 
extracted principal components and a tool performance 
index is derived to evaluate tool degradation. Wang et al. 
[11] proposed a method for tool wear monitoring during 
milling based on data describing normal process conditions. 
Control limits are derived using control charts based on T2- 
and SPE-statistic. Discrete wavelet transformation is applied 
to decompose data from force and acceleration sensors into 
different scales. For dimensionality reduction, multi-scale 
principal component analysis is used. Grasso et al. [12] 
developed an approach to detect tool breakages for end mill-
ing of titanium using spindle and axis drive signals. The 
process is evaluated based on T2-statistic and Q-statistic con-
trol charts. For dimensionality reduction, a traditional and a 
moving window principal component analysis is performed.

Most of the developed statistical monitoring systems 
consider only one type of process or one type of process 
anomaly. Moreover, many of the approaches presented in 
the literature focus on flank wear monitoring to achieve a 
desired surface quality. However, other types of anomalies 
(e.g. cutting edge breakages) have to be considered due to 
their impact on the surface quality and the workpiece geom-
etry. Therefore, the objective is to develop a robust monitor-
ing approach for complete machining, which can be used 
for machining processes with changing cutting conditions 
and process types. This paper proposes a non-parametric 
approach for the computation of decision boundaries based 
on envelopes for the detection of process anomalies. Addi-
tionally, the non-parametric approach is compared with a 
parametric approach based on the monitoring quality.

The parametric approach is presented in Sect.  2 and 
assumes that sensor signals and the corresponding envelopes 
are normally distributed. The non-parametric approach pre-
sented in Sect. 3 does not require envelopes to be normally dis-
tributed. Instead, the distribution of the envelopes is estimated 
from a random sample using kernel density estimation (KDE). 

Section 4 describes the experimental setup and the machining 
processes considered as well as the generated process anoma-
lies. In Sect. 5, performance indicators to evaluate the monitor-
ing quality are described and the results are discussed for the 
proposed monitoring approaches.

2 � Parametric approach

In the following, it is assumed that the measured signal values 
are recorded equidistantly and are available in form of discrete 
signal sequences xk(i) ∈ ℝ for k ∈

{

1,… , np
}

 processes and 
i ∈ {1,… , I} time steps.

Decision boundaries can be interpreted as confidence limits 
that will be adhered to by the signal with a specified prob-
ability. During process monitoring, these boundaries are used 
to detect process anomalies. Parametric methods assume a 
known distribution of the input data. Therefore, the probabil-
ity of a certain deviation of the sensor signal from the mean 
value can be calculated. This enables the evaluation of signal 
deviations based on the underlying distribution [8].

The parametric approach developed by Brinkhaus [8] 
assumes normally distributed sensor signals. If a sensor value 
x(i) follows a normal distribution, it can be described by the 
mean value x̄(i) and the standard deviation s(i). The estimated 
mean value can be calculated according to Eq. (1):

If this value is determined empirically, it converges in a 
large number of processes to the mean value of the population. 
The estimated standard deviation s(i) is calculated according 
to Eq. (2):

The uncertainties in the calculation of the estimated param-
eters decrease with the number of np correctly running pro-
cesses. In order to compensate these uncertainties, safety 
margins are taken into account. To prevent sporadic signal 
fluctuations from leading to an unnecessary number of false 
alarms, an upper and a lower envelope 

[

h_upk(i), h_lok(i)
]

 
around xk(i) are formed in a first step according to Eqs. (3) 
and (4):

It is also assumed that the envelopes follow a nor-
mal distribution. The parameter � must be set before the 

(1)x̄(i) =
1

nP

np
∑

k

xk(i).

(2)s(i) =

√

√

√

√
1

np − 1

np
∑

k

(

x̄(i) − xk(i)
)2
.

(3)h_upk(i) = Max
[

xk(i − �),… , xk(i + �)
]

,

(4)h_lok(i) = Min
[

xk(i − �),… , xk(i + �)
]

.
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teach-in procedure and corresponds to the maximum 
expected shift of the time-series. After calculating the 
envelopes, the decision boundaries are calculated accord-
ing to Eqs. (5) and (6):

The distributions of the envelopes h_upk(i) and h_lok(i) 
are estimated by the mean values h_up(i) , h_lo(i) and the 
standard deviations s

[

h_up(i)
]

 , s[h_lo(i)] over np processes. 
Larger values of the standard deviation lead to larger dis-
tances between the decision boundaries. The safety factor 
C affects the distance between the decision boundaries and 
the estimated mean values of the envelopes.

The memory of the monitoring system can be controlled 
by adjusting Eqs.  (5) and (6) by introducing a memory 
parameter a. The result of this adjustment is represented by 
Eqs. (7) and (8):

The memory parameter a affects the influence of past 
measured values. If a is increased, the weight of past meas-
ured values for the calculation of the mean and the standard 
deviation decreases and vice versa.

In practice, systematic changes lead to slight deviations 
from a normal distribution. Systematic changes include 
minor clamping deviations, different grinding patterns of 
the cutting edge, NC-program time delays and material 
deviations. For this reason, mixed distributions of the sen-
sor data and the corresponding envelopes can be observed 
[8]. A non-parametric approach is presented in the next 
section which takes into account deviations from a normal 
distribution.

3 � Non‑parametric approach

Parametric methods follow the assumption that the underly-
ing distribution of a random variable is known [13]. The 
monitoring accuracy can be improved by estimating the 
underlying distribution of the envelopes. KDE (also called 
Parzen-Rosenblatt window) can be used to estimate the 
probability distribution of a random variable [14]. For this 
reason, KDE is used for estimating the probability density 
function f̂ (h, i) of the envelopes 

[

h1(i), h2(i),… , hnp(i)

]

 
according to Eqs. (9) and (10)

(5)GP_up(i) = h_up(i) + C ⋅ s
[

h_up(i)
]

,

(6)GP_lo(i) = h_lo(i) − C ⋅ s[h_lo(i)].

(7)h̄k+1(i) = (1 − a) ⋅ h̄k(i) + a ⋅ hk+1(i),

(8)sk+1(i) =

√

(1 − a)sk(i)
2 + a

[

hk+1(i) − h̄k+1(i)
]2
.

where b(i) > 0 represents the bandwidth and K(h) the kernel 
function. A commonly used kernel function is the Gaussian 
kernel

The bandwidth b(i) can be determined using the Silver-
man rule [15] 

where s[h(i)] is the estimated standard deviation of the enve-
lopes for np processes. The Gaussian kernel was chosen, 
because mixed distributions close to normal are assumed. 
Other kernel functions propose that the probability density 
beyond the maximum and minimum values of a random 
sample is zero, leading to inaccurate boundaries in practice.

To compute the decision boundaries, a risk factor � 
is defined, which determines the sensitivity of the moni-
toring system. The decision boundaries GNP_up(i) and 
GNP_lo(i) are calculated using (13) and (14) such that the 
probability of an envelope value h being below GNP_lo(i) 
or above GNP_up(i) is �:

Thereby, 1 − � corresponds to the probability that a 
given envelope value h is smaller than GNP_up(i) or larger 
than GNP_lo(i).

During monitoring, it is examined whether a sensor 
value x(i) lies between the decision boundaries GNP_up(i) 
and GNP_lo(i) . If this is not the case, an alarm is issued. 
The value � can be chosen based on the expected process 
scatter. In order to analyse the effects of � on the moni-
toring quality for several machining processes, different 
values of � are chosen in Sect. 5.

(9)f̂_up(h, i) =
1

npb(i)

np
∑

k=1

K

(

h − h_upk(i)

b(i)

)

,

(10)f̂_lo(h, i) =
1

npb(i)

np
∑

k=1

K

(

h − h_lok(i)

b(i)

)

,

(11)K(h) =
1

√

(2�)
e
−

h2

2 .

(12)b(i) =

(

4s[h(i)]5

3np

)0.2

,

(13)

∞

∫
GNP_up(i)

f̂_up(h, i)dh = 𝛽, ∀ i,

(14)

GNP_lo(i)

∫
−∞

f̂_lo(h, i)dh = 𝛽, ∀ i.
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4 � Experimental setup and process analysis

An auxiliary variable is acquired for indirect monitoring 
in order to evaluate the machining processes. It is assumed 
that process anomalies affect the course of the monitored 
auxiliary variable. In this paper, the torque is used for 
indirect monitoring. The test setup is shown in Fig. 1.

The machining experiments for the acquisition of pro-
cess data are carried out on a turning center (Gildemeister 
CTX 420 linear). During machining, the spindle torque 
MSp for turning processes and the torque of the turret MTu 
for drilling, circular milling and pocket milling are meas-
ured with a frequency of 83 Hz. The data is acquired from 
a Siemens 840D Powerline via an OPC-server. The work-
piece consists of the material S335J2 and has a diameter 
of 60 mm. The reference workpiece is shown in Fig. 2.

After data acquisition, the entire manufacturing process 
is divided into four sub-processes in a segmentation step: 
pocket milling, circular milling, drilling and turning. The 
process data is adjusted so that the number of time steps 
within a sub-process is equal. A total of 45 correctly run-
ning processes are generated for turning and 50 processes 
for drilling, pocket milling and circular milling, respec-
tively. Chip clamps are observed during drilling which led 
to unexpected signal peaks.

In addition, various process anomalies are generated 
to evaluate the monitoring quality. A detailed description 
about the anomalies can be found in Table 1.

Solid metal pins are inserted into the workpiece to gen-
erate shank and edge breakages. Another anomaly type 
including an incorrect calibrated tool length. Addition-
ally, cutting edges are broken out manually. To generate 
further anomalies, defects are inserted into the workpiece 
and experiments with a worn tool are carried out. In both 
cases, 12 anomalies were generated for pocket milling and 
drilling. A total of 10 anomalies were produced for turning 
and 8 anomalies for circular milling. Figure 3 visualizes 

the influence of four generated process anomalies on the 
spindle/turret torque.

It can be observed that the signal level shift significantly 
over time. To reduce these influences, the sensor data is 
scaled by a normalization value. For this purpose, an obser-
vation window [WB,WE] is defined which contains sensor 
values in the idle phase of a process k. The normalization 
value normk is given by Eq. (15) as the mean value of all 
sensor values in the observation window:

To obtain the normalized sensor values xnorm
k

(i) , the nor-
malization value normk is subtracted from all sensor values 
xold
k
(i) for ∀i ∈ {WE + 1,… , I} according to Eq. (16)

The actually realized distribution of the envelopes deter-
mines the monitoring quality. Therefore, it is examined 
whether the envelopes follow a normal distribution. Statistical 

(15)normk =

∑WE

i=WB
xk(i)

WE −WB
.

(16)xnorm
k

(i) = xold
k
(i) − normk.

Fig. 1   Experimental Setup and data acquisition system

Fig. 2   Reference workpiece

Table 1   Description of the generated process anomalies

Process type Process anomaly Process notation

Turning Worn tool ZT01-ZT07
Metal pin ZT08
Missing material ZT09-ZT10

Pocket milling Metal pin ZT07-ZT10
Removed edge ZT01-ZT02
Wrong tool length ZT03-ZT05
Missing material ZT11-ZT12

Circular milling Metal pin ZT03-ZT06
Removed edge ZT01-ZT02
Missing material ZT07-ZT08

Drilling Metal pin ZT06-ZT10
Removed edge ZT01-ZT02
Missing material ZT11-ZT12
Wrong tool length ZT03-ZT05
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hypothesis tests are used to check whether the assumption of 
a normal distribution (null hypothesis) of a sample can be 
accepted. A well-known statistical hypothesis test is the Sha-
piro–Wilk test [16]. In cases where the computed test statistic 
W is smaller than a critical value Wcrit, the sample deviates sig-
nificantly from a normal distribution. The SciPy library for the 
Python programming language was used to calculate the test 
statistic [17]. The largest deviations from a normal distribu-
tion are determined for circular milling and turning. Figure 4a 
shows 48 training processes for turning. The computed test 
statistic W for the upper envelopes is depicted in Fig. 4b. It 
can be noticed that most of the values of the test statistic W are 
below the critical value Wcrit = 0.929 at a 1% significance level. 
Therefore, the null hypothesis can be rejected at a confidence 
level of 99% for most of the test instances. In summary, it can 
be stated that significant deviations from a normal distribution 
can arise.

5 � Assessment of the monitoring quality

In this section, the proposed statistical methods for process 
monitoring are evaluated using predefined performance 
indicators. The detection rate (DR) corresponds to the 
ratio between the number of detected faulty processes 
and the total number of faulty processes. For example, a 
faulty process includes anomalies such as shank or cutting 
edge breakage, worn tool, missing material or incorrectly 
calibrated tool. In addition, the false alarm rate (FR) indi-
cate the ratio between the number of incorrectly classified 
processes (without an anomaly) and the total number of 
normal running processes. The monitoring system classi-
fies a process as faulty if at least one data point is declared 
as an anomaly.

The performance indicators are calculated as follows:

Fig. 3   Visualization of the different process anomalies; a shaft breakage, b missing material, c worn tool and d incorrect calibrated tool length
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After data scaling, the proposed methods are evaluated 
according to the described performance indicators. In 
the first evaluation step, the FR is determined iteratively. 
Both methods are first trained using a training set of ten 
normal running processes. For all other normal running 
processes, the system checks iteratively whether false 
alarms are issued. After each iteration, the tested process 
is included in the training set. The sequence of iteratively 
considered processes is the same for both monitoring 
approaches. After determining the FR, the DR is measured 
using the faulty processes. A value of 250 ms is chosen for 
the expected shift � . The memory factor a is set to 0.4 for 
the first 10 processes and to 0.1 for all further processes. 
A safety factor of C = 6 is chosen in order to avoid false 

(17)DR =
detected faulty processes

number of faulty processes
,

(18)FR =
misclass. normal processes

number of normal processes
.

alarms. These values are used by our industrial partners for 
robust monitoring. The final decision boundaries for both 
methods are shown in Fig. 5. The results of the parametric 
approach are presented in Table 2.

No false alarms are issued for pocket milling. For the 
drilling process, a FR of 5.0% is achieved. For turning and 
circular milling, a FR of 5.7% and 2.5% are measured. For 
those turning processes leading to false alarms, a higher 
torque level is recognized. However, there were no optically 
visible defects on the surface, so that the processes are char-
acterized as running correctly.

It can be seen that all process anomalies are detected 
for drilling. One anomalous process is not recognized for 
turning and pocket milling, respectively, leading to a DR of 
90.0% and 91.7%. In pocket milling, a manually broken cut-
ting edge (ZT01) is not detected by the monitoring system. 
Additionally, a worn tool (ZT07) could not be detected dur-
ing turning. For circular milling, a DR of 75.0% is achieved. 
A manual broken cutting edge (ZT02) and a broken cutting 
edge after metal pin collision (ZT06) are not detected.

For the evaluation of the non-parametric approach, dif-
ferent values for � = 10−2 , 10−3, 10−7 are examined and the 
effect on the created decision boundaries are investigated. 
Table 3 summarizes the evaluation results for the non-par-
ametric approach. It can be observed that the FR decreases 
for smaller values of � for all processes.

In pocket milling, a DR of 100.0% is achieved using a 
� = 10−2 . Smaller values for � = 10−3 , 10−7 resulted in a 
decreased DR (91.7%, 75.0%). This is due to the fact that 
manually broken cutting edges (ZT01/ZT02) and an incor-
rect calibrated tool length (ZT03) lead only to slight signal 
changes.

A DR of 100.0% is measured for circular milling using 
values for � = 10−2 , 10−3 respectively. Using � = 10−7 , a 
DR of 75.0% is achieved. Due to a high scatter of the enve-
lopes, a higher FR is achieved compared to the pocket mill-
ing process. Larger values for � = 10−2 , 10−3, 10−7 result in 
an increasing number of false alarms (25.0%, 5.0%, 2.5%).

For drilling, a DR of 100.0% is achieved independent 
from the chosen � . The observed chip clamps result in an 
increased number of false alarms. Smaller values for � lead 
to a decreased FR (62.5%, 32.5%, 15.0%). In order to com-
pensate these uncertainties, the monitoring system requires 
significantly more processes for training or information from 
different sensors.

Compared to the parametric approach, the non-parametric 
approach reaches a higher DR (100.0%) for the turning pro-
cess. However, the FR is slightly higher (8.6%) for � = 10−2 , 
10−3. Using � = 10−7 , the FR is reduced to 2.9%.

Two main reasons explaining the lower DR of the para-
metric approach. It is observed that the standard deviation 
of the envelopes are very low in time periods without 
material removal. Since a high safety factor C is chosen 

Fig. 4   a Visualized training processes for turning, b Computed test 
statistic W and critical value Wcrit using Shapiro–Wilk test for the 
upper envelopes
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Fig. 5   Measured signal values and boundaries using the parametric approach (left side) and the non-parametric approach (right side)
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globally, wide decision boundaries are computed in time 
periods in which the tool is engaged. Due to the high 
process scatter, this is observed especially for the circular 
milling process. The lower DR for the turning process can 
be explained by deviations from a normal distribution of 
the envelopes leading to wider boundaries.

6 � Conclusion

Statistical approaches are suitable for process monitoring in 
machining. In this paper, a new non-parametric approach has 
been presented for the computation of decision boundaries 
based on envelopes. The proposed method is compared with 
a parametric approach regarding the monitoring quality for 
several machining processes. It is shown that the presented 
method can be used for complete machining of components.

For evaluation, two performance indicators (detection 
rate, false alarm rate) were introduced. The parametric 
approach is characterized by a low false alarm rate over all 
processes. This is due to the fact that a high safety factor is 
chosen in practice. The distribution of the envelopes can 
deviate from a normal distribution, leading to wider dis-
tances between the boundaries. Since only two parameters 
(mean, standard deviation) have to be estimated, the para-
metric approach is robust using a small number of available 
processes for training. However, several anomalies in turn-
ing, pocket milling and circular milling were not detected.

The non-parametric approach computes decision bounda-
ries based on a given risk factor � . Using � = 10−2 , the non-
parametric approach is able to achieve higher detection rates 
for turning, pocket milling and circular milling. A larger 
number of false alarms were generated for drilling due to 
chip clamps. These false alarms can be significantly reduced 
by small values for the chosen risk factor. For circular and 
pocket milling, the detection rate is reduced for a small risk 
factor � = 10−7.

Table 2   Performance indicators using the parametric approach

Legend: ● detected, ○ not detected

Process Turning Drilling Circular milling Pocket milling

ZT01 ● ● ● ○
ZT02 ● ● ○ ●
ZT03 ● ● ● ●
ZT04 ● ● ● ●
ZT05 ● ● ● ●
ZT06 ● ● ○ ●
ZT07 ○ ● ● ●
ZT08 ● ● ● ●
ZT09 ● ● – ●
ZT10 ● ● – ●
ZT11 – ● – ●
ZT12 – ● – ●
DR (%) 90.0 100.0 75.0 91.7
FR (%) 5.7 5.0 2.5 0.0

Table 3   Performance indicators 
using the non-parametric 
approach

Legend: ● detected, ○ not detected

Process Turning Drilling Circular milling Pocket milling

� � � �

10−2 10−3 10−7 10−2 10−3 10−7 10−2 10−3 10−7 10−2 10−3 10−7

ZT01 ● ● ● ● ● ● ● ● ○ ● ○ ○
ZT02 ● ● ● ● ● ● ● ● ○ ● ○ ○
ZT03 ● ● ● ● ● ● ● ● ● ● ● ○
ZT04 ● ● ● ● ● ● ● ● ● ● ● ●
ZT05 ● ● ● ● ● ● ● ● ● ● ● ●
ZT06 ● ● ● ● ● ● ● ● ● ● ● ●
ZT07 ● ● ● ● ● ● ● ● ● ● ● ●
ZT08 ● ● ● ● ● ● ● ● ● ● ● ●
ZT09 ● ● ● ● ● ● – – – ● ● ●
ZT10 ● ● ● ● ● ● – – – ● ● ●
ZT11 – – – ● ● ● – – – ● ● ●
ZT12 – – – ● ● ● – – – ● ● ●
DR (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 75.0 100.0 91.7 75.0
FR (%) 8.6 8.6 2.9 62.5 32.5 15.0 25.0 5.0 2.5 10.0 5.0 0.0
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Future work may focus on the transferability to other 
type of processes and the use of signal data from sensory 
machine components to increase the reliability of the moni-
toring system.
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