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1 Introduction and summary

There is a vast literature on quantum Calogero (or Calogero-Moser-Sutherland) models as
a paradigm for a superintegrable system with a finite number of degrees of freedom [1, 2].
Since these systems admit an analytic computation of basically every detail, a variety of
rich mathematical structures has been uncovered (for reviews, see e.g. [3, 4]; for a recent
generalization, see [5]). Nevertheless, some of the latter have not been displayed very
explicitly or are hidden in mathematical literature difficult to penetrate for most physicists.

Among these aspects is the nonlinear algebra formed by the 2N—1 (or, for integral
coupling, 2N) independent conserved charges in the case of the rational rank-N Calogero
model [6, 7]. A related feature is the form of the intertwiners (or shift operators). These
relate the simultaneous eigenstates of the N Liouville charges at integer-spaced coupling



values, thereby providing an alternative access to those states for integral couplings and
allowing for the 2/ Nth extra charge Q.

For this reason, we provide completely explicit formulee for the rank-3 rational quantum
Calogero models, based on the Coxeter reflection groups A1@® A, AD3 and BC3 (but not
Hs), for the nonlinear algebras, the intertwiners and the energy eigenstates. In contrast to
the customary A;®A model (describing three nonrelativistic unit-mass particles on the
infinite line and interacting pairwise via an inverse-square two-body potential), the ADs
and BC3 models have been investigated much less. Yet, even the AP As case has not
been fully analyzed: the center-of-mass sector (associated to the A; part) is usually free,
as one imposes translational invariance as a physical prejudice. However, nothing prevents
one from giving it its own (external) inverse-square potential. In fact, such is completely
natural in the bigger scope, and here we present all details for this generalized three-particle
system as well.

The organization of the paper is as follows. In the remainder of this introduction, we
introduce the Dunkl operators [8, 9] as our major tool for the construction of conserved
charges, then review how the conformal algebra can be used to extend the set of Liouville
charges to an infinite (but functionally dependent) set of higher integrals of motion, and
finally present the concept of intertwining operators and how they give rise to additional
conserved charges in the special situation of integral coupling(s). Sections 2, 3 and 4 then
treat the cases of A1®As, AD3 and BC5 in turn, showing in each instance a full set of
independent conserved charges, a formula for the energy eigenstates, the concrete form of
the basic intertwiners, and finally the nonlinear algebra of all charges including the extra
ones at integral coupling. Some lengthy expressions and lists of low-lying energy eigenstates
are delegated to an appendix.

1.1 Liouville charges

Let us consider a set RT of positive roots o for a Coxeter group W of reflections s, in
RY > z. Then, the Dunkl operators associated to the standard Cartesian basis {e;} with
t=1,...,N are given by

D; =0; — Z Jai Sa with (o, z) =a(z) and a; = (a,€;) =ale;),  (1.1)
aERT (a’x>

where 0; = 0/02" for © = e;x', and we canonically identify RY with its dual. The real
coupling constants g, depend only on the Weyl orbit of «, so we shall encounter at most
two values, either g5 for the short roots and g, for the long roots, or a single coupling g
in the simply-laced case. A key role is played by the Weyl-invariant polynomials oy (z) of
degree k, because the restriction “res” of oy (D) for D = {D;} to Weyl-invariant functions
yields constants of motion [ known as Liouville integrals, for any (generalized) Calogero
model. Since the Dunkl operators mutually commute [8, 9], the Liouville integrals also com-
mute with one another. The N lowest-order such polynomials will provide N functionally
independent Liouville charges.
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A universal Weyl-invariant polynomial is o9(z) = (z,2) =: r°. The corresponding

integral I3 is (minus twice) the Hamiltonian of the system,

1 a,
H= —ires (D, D) sz Z Ja ga @) with p;, = —i0;, (1.2)

aceRt )

and is invariant under g, — 1—g, for any a. For g, = 0 or g, = 1, the (free) Liouville
charges are simply given by
I = oy(p) .- (1.3)

1.2 Energy spectrum

The energy spectrum is continuous with £ > 0 but highly degenerate. The H eigenstates
may be labelled by the energy E and by N —1 additional quantum numbers £, corresponding
to the Weyl-invariant polynomials oy, (other than o2) and combining in the generalized

0= ga+> kb (1.4)

o {k}

where the prime indicates leaving out k=2. They are conveniently found by separating the

angular momentum

Schrodinger equation in spherical coordinates (r, 5), yielding a basis of eigenfunctions
WD (@) = rm N2 g vy p(vaET) {1950 () (15)

with a Bessel-type radial dependence. The angular part of the wave function is best
expressed as

oD (@) = rm A D5V (@) with A =] (a, 2)% (1.6)

«

and a Dunkl-deformed harmonic polynomial®

— , — J—
h%ﬁ})( ) = PN—2+2¢ {{1;[} Uk(D)Z’“}T’ N+2-23%°  ga (1.7)

of degree Zf{k} k ¢. It may be noted that these states generally are not eigenstates of the
other Liouville charges but can be linearly combined to jointly diagonalize all of them.

1.3 Conformal algebra

The Hamiltonian (1.2) and the two operators

A , AR 1
D= Zi iz K= - AV ’ 1.
3 L (@pitpia®) and K =53 (@) = (00 (1.8)

form the basis of a conformal algebra sl(2,R),

[D,H]=2iH, [D,K]=-2iK, [K,H]=iD, (1.9)

Tt is annihilated by H = A" "H A = —13°.07 + O(g).



where D generates the scale transformations (or dilatations) and K the special conformal
transformations.

This dynamical symmetry is enhanced by extending H to the entire set {I;} of Liouville
charges, which produces an infinite quadratic algebra [6, 7]. The dilatation operator yields
a Z grading, but each commutation with K provides a new layer of operators, starting with

1
CK L) = (1.10)

satisfying the commutation relations
1 1
TI:D, Jk] = (k*2)¢]k and T[H, Jk] = *Ik . (1.11)
i i

Note that J; = 3, 2° and Jy = D. There are two obvious ways to build further integrals
of motion, which will not be in involution however. The first one admits explicit time
dependence,

_ d - 7 7
Jp = Jp —t I = a‘]k:ath‘*‘i[Hka] =0. (1.12)

The second one forms the antisymmetric combinations

i
(Ing—i—JkIg) = [H,th] = —i(IkIg—l-IgIk—IgIk—IkIg) =0.
(1.13)
The J;, or the Ly, o form overcomplete sets of constants of motion, and there exist many

1 1
kag = §(ijg+<]g[k) — 5

options for a functionally independent complete subset. Here, we choose
1
Fy == Loy =1{H,J;} — §{Ik’D} (1.14)

with the same N lowest values for k determined by the first Weyl-invariant polynomials oy.
Since F» = 0 by definition, these provide N—1 additional integrals of motion, revealing the
complete superintegrability of the rational quantum Calogero model. Our choice of extra
integrals bears a close relation to the Casimir element of the conformal algebra,

C=KH+HK — %DQ, (1.15)
which generates the F}, directly from the I,
%[C’,Ik] — kP (1.16)
The quadratic algebra spanned by the I} and Fj has been presented in [7].

1.4 Intertwining operators

The previous results were obtained for generic real couplings g,. For integer coupling val-
ues, there appears one additional independent constant of motion, due to the invariance
of H under ¢ — 1—g and the existence of intertwining (or shift) operators M(g). The
latter are constructed from Weyl anti-invariant polynomials 7, (z), again by replacing the
arguments 2! with the Dunkl operators D; and restricting the result to Weyl-symmetric



functions, as we did for the construction of the Liouville integrals. The degree m of those
polynomials and the number of independent ones depend on the root system under con-
sideration. In this sense, intertwining operators have been studied under this approach in
angular and trigonometric Calogero models [10-12].

Let us be more concrete for the simply-laced situation, g, = g. Any intertwiner M (g)
establishes a relation between the Liouville integrals at integrally shifted couplings,

M(g) Ix(9) = Ix(g+1) M(g) and M(1—g) Ix(g9) = Ix(9—1) M(1—g), (1.17)

and hence transports eigenstates of Ix(g) to eigenstates of I(g+1) (or zero). In particular,

e/
M(g) W), (@) = 3 e} ) ) (@), (1.18)
{k}

with some coefficients cgg(g). In this way, simultaneous Ij eigenstates at integer cou-
pling can be obtained from free eigenstates by a successive application of shift operators.
As another consequence, by shifting the coupling up and then down again, the operator
M(—g)M(g) commutes with all Liouville charges,

[M(—g)M(g), Ix(9)] =0, (1.19)

but it is not a new integral of motion since it is expressed in terms of them,
M(-g)M(g) =R(I(g))  for I={I}. (1.20)

This polynomial of the I}, must not depend on g explicitly (take all (o, z) — o0). Therefore,
one may easily compute it from the free case g=0 ,

R(I) = M(0)%. (1.21)

A novel feature appears for integral values of the coupling, say g = 2, 3,4, .... Shifting
it all the way from 1—g to g, the combined intertwiner

Q(g) = M(g—1)M(g=2)--- M(1)M(0)M(=1)--- M(2—g) M (1—g) (1.22)

also commutes with all Liouville charges but, as a product of an odd number of intertwiners,
it is functionally independent. Only its square belongs to the ring of Liouville charges,

Q(9)* =R(I(9)*". (1.23)

Adjoining Q(g) to the 2N —1 conserved quantities {Ij, F}} provides a Zy grading and makes
our model analytically integrable, with 2N independent integrals of motion. We suspect
other @) intertwiners based on different shift operators M to be functionally dependent.
The full set of commutators (also with the Fy) is given in [7] for the A, _1 @ A; root system.

In the non-simply-laced case, one expects to find polynomials 7/, antisymmetric un-
der short-root reflections but symmetric under long-root ones, as well as polynomials 7,
with the opposite behavior. Inserting Dunkl operators as arguments and performing the



symmetric restriction, we produce Iy intertwiners Mj(gs, g¢) and My(gs, g¢), which shift by
unity only one coupling but not the other. Also here, those shift operators allow one to
build the joint I}, eigenstates for (gs, g¢) € Z X Z by repeated application on the free eigen-
states. Since we can independently “wrap” from 1—g to g for the short roots or for the long
roots, there exist two grading operators, Qs and )y, which we expect to be functionally
independent of one another.

2 The A; @ A model

2.1 Integrals of motion

This is the traditional rational three-particle Calogero model, enhanced by an external
inverse-square potential for the center of mass. It is reducible because the center-of-mass
coordinate and momentum,

1
X ==
5(

can be separated from the other degrees of freedom. Therefore, we may introduce two

z' 22 +2%) and P =p;+p2+p3, (2.1)

coupling constants, say ¢g and ¢’. The Hamiltonian of the system (1.2) is given by (i,j =
1,2,3)

1 2 g(g—1) 39'(g'-1)
i = 2 Zpi + Z (i—ad)? * 2(zl 422 4a3)?
7 1<)

g gD }Z( )+ Y 9=l _ g 22
= 6 6X2 6 ~ Di pj P (xl—xJ)Q - 1 2 -

One can choose the positive roots as
Ry ={e1—ea, e1—es, ea—e3, erteates}, (2.3)

such that the Dunkl operators (1.1) read

/
g g
Dim0 = 2 Gl T g (24)
§(#0)

where the s;_; are the two-particle permutation operators,

S1—9: —

S9_3: —

( ) = ( )
si_z: (xh, 22 2%) — (23,22 21),
( ) = )
and sp: ( ) = ( )

The lowest three Weyl-invariant polynomials are
aa(x) = (1) + (%)% + (2)?,
Go(z) = (z'—22)? + (22 —23)? + (23 —21)?, (2.6)

53(z) = (2t +22—223) (22 + 23— 221 ) (2321 —22?) |



where the center-of-mass coordinate is only contained in os.

In this basis, the first three Liouville integrals read

Iy = —res(Di+D3+D3) =2 H,
fg = —res((Dl—D2)2 + (DQ—D?,)Z + (Dg—D1>2) =6H,,

I3 = ires((D1+D2—2D3)(D2+D3—2D1)(D3+D1—2D2)) (27)
> P-3 P-3 P-3
= T1P=3m) 90061 (s + (gt + (i)

and they are functionally independent and in involution,
[Io, Io) = [I2, I3]) = [I5,13] = 0. (2.8)

The two lowest additional integrals of motion, which are not in involution, are

- ~ 1 - N ~ 1 -
F2 = {H, JQ} - §{IQ,D} and F3 == {H, Jg} — 5{[3,D}, (29)
where
. 33 .
Jy = _5 Z{X_xlapi}7 (210)
i=1
3 1 2 3

~ i X—z X—z X—z
J3 = ;(P—?)pl)(X—CE )(P_3pz) - gg(g_l) ((1‘2_1:3)2 (333—331)2 (561—372)2) :

2.2 Energy eigenstates

The Hamiltonian eigenfunctions for this case are

\Pg’éi/7)£3(x) = (z| €2,€3>g7g, = j,(vV2ET) r1AY x7 hég:g;)(x) with g =3g+¢ +20,+305,

(2.11)
where A = (z!—2?)(2?—23)(23—21) is the basic anti-invariant, j, denotes the spherical
Bessel function, and

hg:?;) (z) ~ p0ot29/+1+ab+66 A7 x 52(D)* 53(D)% X9 A9 p1-69-2 (2.12)

~ T69+29’+1+4€2+6€3 5_2(15)42 5’3(ﬁ)£3 r—l—Gg_Qg/

is a deformed harmonic polynomial of degree 2¢54-3¢5. Conjugation with X 9'AY defines
the “potential-free” Dunkl operators

D Ja ¥y g g,
Di=0 1=s4) = 0 2 (1—s,_; — 7 (1—s0). (2.13
L +aezl~::+ (a,x)( o +j(z;£:i) xl_ﬂ( sima) x1+x2+x3( s0). (2.13)




The first polynomials read (up to a normalization constant)

hel (@) =

W% (z) = <39+1>ag — (69+29'+3)2,

h (@) =

ng) () =36 (3g+1) (3g+2)05 + (69+29'+5) (69 +29'+7)55 — 12(3g+2) (6g+29'+5) 02572,
) () = (69429 +9)5253 — 6(3g+4) 0253,

hé?zg () = K16502 + K2G205 + K303 + K453 ,

h:(flog (2) = K505 + K203 + K7G302 + ks

hé{llg () = KgG305 4 K10G26302 + k115553 , (2.14)

where the coefficients k; are given in appendix A.

2.3 Intertwining operators

The A1 A model features two independent anti-invariant polynomials,
m(z) = 2" +2?4+2® =3X and 73(x) = (o' —2?) (2?2 (P —2t) = A, (2.15)

where the first one is invariant under s;_; and anti-invariant under sp, and the second one
behaves oppositely. They lead to the two intertwining operators

M'(g,¢") = res(D1+D2+Ds) and M(g,g') = res((D1—D3)(D2—D3)(Ds—D1)) (2.16)

satisfying (1.17) for one of the couplings but not shifting the other one. For the first inter-
twiner one easily finds M'(g,¢") = >, 0; — ¢’/ X independent of g. The second intertwiner
is a more complicated expression; the explicit form of M(g,¢'=0) is given in [7]. The
operators R(I) (1.20) associated to M are obtained from the free case (g=¢'=0),

R(I) = M(0,0)* = (91 —02)*(92—05)* (93 —01)?
= —i((51+32—263)(624-33—281)(83—1-81—232))2 + 5%((81—02)2 + (92—05)? + (83—81)2)3

ﬁl3 5412 (2.17)

For the ¢’ intertwiner M’ we have

R/ (I)=M"(0,0)*= (0 +0a+03)2 =3(03+-05403) — (01 —02)? — (02— 03)* — (93— 01 ) * = [, —3 1.

(2.18)

Applying a (g—1)-fold Darboux dressing with M (h,0) for h = 1,2,...¢g—1 and
M(h,0)* = M(—h,0) to

Q(1,0) = M(0,0) = (91 —35)(9o—35) (95— , (2.19)

we obtain an exceptional independent conserved charge Q(g,0) in the case of integer cou-
pling g and ¢’=0. Likewise, Darboux dressing with M’(0, k) and M'(0,r")* = M'(0,—h")
of

Q'(0,1) = M'(0,0) = 01 +02+03 (2.20)



produces such a charge Q'(0,¢’) for g=0 and integer ¢’. Combining both, by following a
sequence of M and M’ intertwiners starting either from (1—g, ¢’) to (g, ¢’) or from (g,1—g’)
o (g,4'), we can extend these special charges to Q(g, ¢’) and Q'(g,¢’), respectively, for all
integral values of both couplings. In such cases, the two extra charges

Q(g9,9")=M(g—1,9'") M(9-2,9")---M(1,9") M(0,9") M(—1,9")---M(2—g,9") M(1—g,9"), (2.21)
Q'(9,9)=M'(g9,9'-1)M'(g,9'=2)--- M'(g,1) M"(g,0) M"(g, —1)--- M'(g,2—g") M"(g,1—¢')

enhance the nonlinear algebra of integrals of motion to a Zo ¢ Zo graded one,

i[Iy, Fy) = 2(3L 1, — 12), i[5, Fy) = 3(31315 — I 13),

(T, ] = 235305 — Ts) | (T, Fy] = 3 (_fg + ;’1;212) ,

[Py, ) = L(Fsly + Tofs) — (Rl + Do F), (2.22)
i[Q, F3] = —=3(29—-1)Q(I; — 312) , i[Q, Fs] = =3(29-1)QIs,

i[Q, ] = —(2¢'-1)Q']3, i[Q, Fy] = —(29/—1)6273,

Q= RI™ ", Q*=RI)¥ ", [QQ]

2.4 Translation-invariant limit

It is instructive to consider the special case of ¢’=0, where translation invariance is recov-
ered and the center of mass feels no potential. In this limit, the reflection sqg disappears
from the consideration, and the total momentum appears as a first-order conserved charge.
It is then more convenient to replace (2.6) with the Newton sums

o1(x) =zt + 22 +2° =3X,
(fﬂ) ( ) +( 22+ (2°)%, (2.23)

resulting in the basic Liouville integrals

L = —ireS(D1+D2+D3) =P,

I, = —res(D{+D3+D3) =2H, (224

I3 = ires(D%—i—D%—i—D;g sz + 32 pri‘Pg)

z<]
In this case, the two further integrals establishing superintegrability may be chosen as
1 1
F, ={H,3X} — Q{P,D} and F3={H,Js3} — 5{[3,D}, (2.25)

with

1 2 2 3 3 1
_ 1 2 3 T+ Tt +x z° +x
J3 = pra” p1+pexpatpsaps + 9(9—1)<<x1 o + (22 — 2372 + @iz ) (2.26)




Due to the new first-order charge P, the energy eigenfunctions carry a label ¢; rather
than /s,

VY, (2) = jo(VaEr)r AT, (x)  with  q=3g+ 0 + 303, (2.27)
where now

W2y, (@)~ rOTHIF2AEOl AT (D 4Dy D) (DY +DE+DE) AT 10

6g+14+201+603 (75 | 75 L N (33 L3, 3\ . —1-6 (2.28)
~ OOt (D 4 DY+ Ds) ™t (D3 4+D3+D3) v 7%

is a deformed harmonic polynomial of degree ¢1+3¢35. The first polynomials can be written
as

=

W =01,

Bl = 29+ 1)t -0,

hg?% = 3(2g+1)0102—(69+5)03,

h:(s?) = —(6g+5)0 490201,

1) = —3(29+1)(69+5)020% +(6g+5) (69+T7) 0301 —60%,

hglg(% = (6g+5)(6g+7)0t—18(6g+5)o003+2702

W) = (20+41)(69+7)720% — (69-+7) (20+3) 7302 —3(2g—1) 031 +(6g+T) 72073,
hg,]) = —(69+7)(29+3)0? + 10(6g+T7)o90% — 4503071,

(2.29)

hgg% = 110501 +7205 + 130207 + V4020301 + Y503 ,

h:(gg% = 7602011 + ’)/7030{’ + ”ygaga% + v9090301 + 3005’ ,

hf(ig(% - 7100’1 + 7110—20'1 + 7120'20'1 1350’2 ,

where the coefficients v; are given in appendix A. Roughly half of these polynomials (as
linear combinations) can be obtained as the translation-invariant limit hégﬁ;zo) of the
Aj ® As polynomials, but new states arise in the limit, due to the new first-order invariant
o1q.

Only the third-order intertwiner M (g)=M/g,0) based on A remains, and via Darboux
dressing it generates the extra charge Q(g)=Q(g,0) for integral values of g, which enlarges
the nonlinear algebra spanned by {I, I2, I3, Fi, F3} to

i, Fi] =3I, — I}, i[I3, Fi] = =331, + 313,
3 1
i[I, F) = —IsT, + 12, i[I3, F3) = =313 4+ AI3 11, + 515’ — 3317 + 5121;*,
1
i[Fl,Fg] = 5(F1]3+]3F1+F3[1+11F3), (2.30)

{Q.F) = ~3(2-D QN QP =-329-)Q(L~ b ). @ =R,

~10 -



3 The AD; model

3.1 Integrals of motion

This rank-3 system is irreducible and simply-laced, so contains just a single coupling g.
Depending on the choice of variables, it takes the Az or the D3 form. Here, we choose the
latter. The Hamiltonian reads

H=- sz +Z< éﬁ;;) (3.1)

1<)

One can choose
Ry = {e1+ea, eite3, eates, er—ea, er—e3, ea—es}, (3.2)

leading to the Dunkl operators

g g
D; =0; — Z (Msi—j+ it Z+j> (3.3)
J(#1)
with reflections s;_; given in (2.5) an
S1+2 ¢ (xlvx a$3) — (_$27_$ 7173)7
5143 ¢ (‘rl?m y L ) = (—.'173,$2,—331), (34)

5243 ¢ ($1,$2,$3) = (I’ y =& 7_$2)'

The lowest three Weyl-invariant polynomials are
oao(z) = (a')2 + (2?)2 + (2%)?, o3(x) =2t 2?2, ou(x) = (2N + (2% + (2®). (3.5)
Hence, the corresponding Liouville integrals read
I,=—res(D{+D3+D3)=2H,

= ire = - _ z'a’ps 2’ z°py 23zt ps
Iz= S(D1D2D3)*p1p2p3 49(g 1)(((:61)2_(552)2)24'((1,2)2 (@)2)2 " ((23)2— (w1)2)2>’
= res(D‘f—l—Dé-}—D;‘):p‘f+zg(g_1)z{pi (001—1334)2 + (xljxfﬁ }+169(9—1)Mp1p2

0#£1

219(91)2{1’17 (! _le/)s + (m1_|}me)3 }

041
5 9 ($1)4+({IJ2)4 ($1)2+(l‘2)2 ($1)2+(£C3)2 )

Hogto) (<<x1>2—<x2>2>4+<<w1>2—<w2>2>2 (COE=FO) . (36)

where the term “cyclic” refers to adding the cyclic permutations of the labels (1,2,3). The

two lowest additional conserved charges are
1 1
Fs={H,Js3} — §{I3,D} and Fy={H,Jy} — 5{]4,D}, (3.7)

with
1
J3= 3 (' paps+a°pspr+a’pip2)

4 1 1 1 Lo s
_3g(g_l)<(x1x2)2(x1+x2)2+(x2x3)2(:r2+:c3)2+(:c3:cl)Q(x3+x1)2>$ rz, (3.8)

_1 xl 3 B (1‘1)2+2($2)2 (:121)2—|—2(.T3)2 ml —9i _ M cvelic
J4—2{ ap1}+4g(g 1)(((x1)2_(x2)2)2+(($1)2_($3)2)2> P 29(9 1)(($1)2_($3)2)2+y1 .

- 11 -



3.2 Energy eigenstates

For the eigenvalue problem
HYY, , (@)=EVY, , (z) (3.9)
one obtains the energy eigenfunctions

) (x) = (@[ L3,4s), = jg(V2ET) A9 héﬁ?& () with ¢q=6g+ 303+ 444, (3.10)

B304
where A = (z'—2?) (2 4+2?) (22 —23) (2®+23) (23 —21) (23+2!) is the basic anti-invariant,
and

hég)&(x) ~ 1204146034801 A —g (D1D2D3)€3 (D%+D§+D§)e4 A9 —1-129

L, (3.11)
~ r12g+1+6£3+8€4 (D1D2D3) 3 (D%+'D§—|—'D§) 4 7“_1_12g

is a deformed harmonic polynomial of degree 3¢3+4¢,. Conjugation with AY defines the
“potential-free” Dunkl operators

Di= 0 + Z (xzﬁxj (1=si—j) + M(I_Si—&-j)) : (3.12)
J(F#0)
The first polynomials read
hiip(x) =1,
hip(@) = o3,
h)(x) = (12g+5)04 — (89+3)03 ,
hg‘?())(x) = 04103 + 042U§ + a30204,
hg?%(x) = 40503 + 050403,
h)(x) = apos + az0203 + aso3os + ago?, (3.13)
hé‘?())(x) = 04100:3’ + 11020304 + 120503,
hg?i (z) = 1305 + 140503 + 150504 + 160504 + Q170907
h%(m) = 130503 + 019020§’ + 90030304 + 210307 ,
h((f% (z) = aggog + aggagag + 04240304 + 04250203)04 + aggagoi + 70y,
hfﬁ%(ﬂﬂ) = 0‘2803 + @2905’0% + 04300§ + 04310304 + 0432020304 + 04330302 ,

where the coefficients «; are given in appendix A.

3.3 Intertwining operators

The basic anti-invariant of the ADs model reads

76(z) = (2t —2?)(z'+22) (2?2 —23) (2*+23) (2P —2H) (23 +2) = A, (3.14)

- 12 —



which produces the intertwiner
M(g) = res((D}—D3)(D3—-D3)(D3-D1)), (3.15)
satisfying (1.17). The polynomial R(I) can be computed from the free case (g=0),

R(I) = M(0)* = (97-05)*(95—05)* (95 —07)°

1, 5 1 (3.16)
= 51;3 - 11}13 — I, T30 + Iy I3 — 2714 + 5I3T5 — ng .
When the coupling g takes an integral value, there exists a sixth independent conserved
charge
Q(g) = M(g—1) M(g—2)--- M(1) M(0) M(~1)--- M(2—g) M(1-g), (3.17)

which extends the nonlinear algebra spanned by {Is, I3, Iy, F3, F4} to
. 1 . 4
ills, s = G (I3 -1l =1813),  ills, Fy) = S (I 15—31413),
i[I3, Fy| = I3s13—31, 13, i1y, Fy) = 2(—I3+31,I3+613 1,213,
] 1 ) (3.18)
i[F3, Fy| = {F4, 13} — §{F3J4—12 I,

Q. =~6(29-1) @1, iQ.Fi=6(9-1)Q (35-1) . @ =R,

4 The BC;5; model

4.1 Integrals of motion

This is the only irreducible non-simply-laced rank-3 model, so we have to deal with two
coupling constants, gy and gs. It is described by the Hamiltonian

1 gzge 1 gege 1) gs(
HZ*ZPZ‘ +Z< T i) +Z 20 “1)

A 1<]

We take the set of positive roots as
Ry ={e1, e, e3, eites, ertes, eates, ej—er, e1—e3, ea—es}, (4.2)

so the Dunkl operators read

ge ge 9
Di :81 — Z ( - 82_J+m H‘]) - ;jSi, (43)

rt—xd

3(#9)

where the reflections are given in (2.5) and (3.4) and by

,—x2,23), (4.4)

~13 -



The three lowest Weyl-invariant polynomials may be chosen as
o2(z) = (¢1)? + (2*)? + (2%)?,  ou(w) = (@) + (@) + (2),  os(x) = (2127 2%)* = of,
(45)
but one may also remain with the even Newton sums, replacing o¢ with o§(z) = (21)® +
(JJ2)6 + (563)6.
For the basis (4.5), the first three Liouville integrals take the form
Iy = —tes(Di+D3+D3) =2 H,
Iy = res(Di+D3+D3), (4.6)
Is = —res(D; D3 D3)

2
3
5

with the explicit form of I and Ig displayed in appendix B. Two additional integrals of
motion (not in involution) are

1 1
Fy={H,Js} — 5{[4, D} and Fy={H,Js} — 5{16, D}, (4.7)
where Jy and Jg are also given in appendix B.

4.2 Energy eigenstates

The eigenvalue problem
H \I,(gbgs) ( ) E \Ij(ge,gs) ( ) (48)

By, ls By, ls
is solved by
W9) ()= (2] €4,b5) , o = g (VEET)r IAY AL RIS (2)  with  q=6ge+3gs+40s+6L,
(4.9)
where Ay = (2! —2?)(2'+2?) (2?2 —23) (22 +23) (23 —2') (23 +2') and A, = 2! 2223, as well
as
hgéégs)($) ~ T12915+6gs+1+8€4+12€6 Agngs—gs (Dil—}—D%—{—Dg)& (DngDg)% A9 p—1-1290—6gs
~ p1290+69s+1480a+12¢g (15111+75§1+5§)Z4 (151152253)% p 17 1290-6gs (4.10)

being a deformed harmonic polynomial of degree 4¢4+6fg. The “potential-free” Dunkl
operators read

= 9 +](§ < )+ xii’;j(l—siﬂ)) + %(1—31-). (4.11)
The first polynomials read
hs® (@) =1,
W99 (x) = —(8gi+29:+3)03 + (12g,+6g.+5)04 |
h59 (x) = 103 + p20204 + p3s |
gl’gs (z) = paos + ps50504 + 603 + 70206 (4.12)
gz’gs () = 803 + 1190304 + 1002075 + 1110506 + [1120406 ,
h§%9) (x) = 11308 + 140504 + 150307 + 1160306 + 17020406 + 15O
gl’gs () = 1905 + p200504 + 2105075 + 11220506 + 123020406 + p2407 -

~ 14 -



where the coefficients u; are given in appendix A. It is obvious that putting g; = 0 and
g¢ = g brings us to the corresponding states (3.13).

4.3 Intertwining operators

The short-root and long-root anti-invariant polynomials are

Té(a;):xla:Qx?’:As and  75(x)=(2'—2?) (2?+2?)(2®—2®) (2% +23) (23 —2') (2® 421 = A
1

yielding the short-root and long-root intertwiners

M(ge,9s) =res[[Ds and  My(ge, gs) = res [[(D;—D7), (4.14)

i i<j
respectively. They satisfy the relations (1.17), such that

MS (géa gs) Ik(gf7 gs) - Ik(g€7 gs+1) Ms(ge) gs) )

(4.15)
Mf(yfags) Ik(géags) = Ik(gé‘i‘l’gs) MZ(.g@agS) .

From the free case (gs=gs=0), one can compute the operators Rs(I) and Ry(I) (1.20),

Rs(I) =[]0} =—1Is,

Z222 2 3, l3 5.9 4 1o (4.16)
Re(l) = H(@i —8j) = 2715 — 91141z + S1cly + 514 — 11412 + I4I5 — Z12 .

i<j

Finally, for integral values of both couplings we can construct two more conserved
charges,

Qe(ge,9s) = My(g9e—1, gs) -+ My(1, gs) My(0, gs) My(—1,9s) -+~ Me(1—gy¢,9s),

(4.17)
Qs(957g€) = Ms(Qﬂ»Qs_l) ce Ms(géa 1) Ms(gbo) Ms(QZa _1) ce Ms(gb 1_95) .

Together with Fj and Ij, they satisfy the following nonzero relations,
1[Iy, Fy)|=2(— 34314 134+61s1,—2I7), i[Is,Fy)|=2(Is 12 —3I61y),
1[14,F6]:§I6I§—4I6I4, 1[16,F6}:%(16I3—16I412—18I§),
i[Fy,Fo)={Fs,2I4—I3}—{Fy,I¢},
. 1 . 1 1
Q. Fil=3(20, -1 (=313 ). Q. Fil =3(20,~ 1)@, (To+ 1 L= 18,
. 2 .
1@ Fi)= 629~ )Qe (1313, Q1. F] =~ 6(290-1)Qu

ng(RS(I))2gS_17 Q%:(RE(I))2W_17 [QSan:Ou (418)

which define a Zo®Zsy graded polynomial algebra of conserved charges.
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A Polynomials coefficients

A1DAs model.

K1=—27(6g+29'+7)(69+2g'+9),

Ko =162(3g+2)(6g+2¢'+7),
k3=—324(3g+1)(39+2),
Kk1=2(69+29'+7)(6g+29'+9) (6g+2g'+11),
Kk5=—648(g+1)(39+1)(3g+2),
r6=2324(g+1)(3g+2)(69+2¢'+7),

Ao model.
11 = 6(69+7) (4g>+11g+10) ,
vy = —3 (4gQ+14g+17) ,
73 = —3(29+3)(69+7),
v = —12(29+3)*(69+7),
¥5 = 2(29+3)(69+7)(69+11) ,
Y6 = —3(29+1)(29+3)(69+7),

Ky =—54(g+1)(69+29'+7)(69+24'+9),

ks=(6g+29+7)(69+2¢ +9)(6g+2¢ +11),

k9=—36(3g+4)(39+5),
k10=12(3g+5)(6g+2¢'+11),
r11=—(6g+2¢'+11)(6g+2¢'+13).

(A1)
v7 = (29+3)(69+7)(6g+11),
78 = 3(69—1)(69+7),
Yo = —9(29-+3)(69+7), (A.2)

Y10 = (29+3)(69+7)(69+11),
Y11 = —45(29+3)(69+7),
v12 = 135(6g+7) .
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AD3; model.

ar=—(28g+17),
a2 =6(12g+7)(12g+11),
a3=3(12¢+7),
as=(8g+5),
as=—(12g+11),
a6 =(64g"+152g+99),
ar=—48(12g+13),
ag=—6(32¢>+769+47),
9 =3(4g+5)(12g+13),
a10=—2(12¢g+13)(12¢+17),
a1 =—3(12g+13),
a12=(28¢+27),
13 =(2244g°+4929+255),
a14=—6(4g+5)(12¢9+11)(249+29),
15 =—4(12g+11)(13g+18),
16 =6(12g+11)(12g+17)(129+19),
17 =3(12g+11)(12g+17),
15 =—(64¢>+184¢+159),

10=48(12g+19),

20 =6(32¢g>+1009+83),

a1 =—3(4g+7)(12g+19),

a2 =—(73728¢°+5898249" +1898752¢° +30453289>+2416240¢g
+754803),

o3 =48(129+13)(12g+17)(288¢>+8689+651),

24 =3(12g+13)(9216¢* +63360g° +164912¢°+1913369+83097),

o5 =—432(4g+7)(12¢413)(129+17)(12g+19),

a6 =—3(129+13)(12¢+17)(129+19) (969> +364g+357),

o7 =3(4g+7)(129+13)(12g+17) (12g+19) (129+23),

28 =(3136g°+12656¢>+167649+7269),

o9=—12(12¢+13)(129+17)(112¢°43449+263),

30=12(4g+7)(12g+13)(12¢+17)(129+19) (129+23),

as1=—6(12g+13)(112¢°+336g+251),

32 =36(4g+7)(12g+13)(129+17)(12g+19),

33 =3(129+13)(129+17)(12g+19).

(A.3)

BC3 model.
p1 = —(2gs+1)(28g + 10gs+17),
2 = 3(29s+1)(12g, + 695+7) ,
pu3 = 6(12g¢+695+7)(12g,+6gs+11),
pa = (6497 +492+5695+894(4g5+19)+99) ,

ps = —6(3297 +492+329.+4g (695 +19)+47) ,

= 3(49¢+295+5)(12g,+695s+13) ,
= —48(12gp+6gs+13),

T X
N O
(.

ps = (295+1)(22493 +2092 41689, +49, (3495 +123)+255) ,

o = —4(29s+1)(13g,+495s+18)(12g,+6gs+11),

w10 = 3(295+1)(12g,+695+11)(12g,+6gs+17) ,

pi1 = —6(12gp+6g5+11)(96g; +1292+104g5+4g (1895 +59)+145) ,
w12 = 6(12g¢+69s+11)(129,+695s+17)(129,+69s+19),

113 = (295+1)(295+3) (490 (4191+31649,+78497 )+16g0 g5 (64542389, +95g5)+295 (3447+1046g5+100g2)+7269) ,
pi4 = —6(2g5+1)(295+3) (129, +69s+13) (1129, (g, +3)+144g,+96g, g5 +209% +251)

w15 = 3(295+1)(29s+3) (129, +695+13) (129, +695s+17) (129, +695s+19) ,

nie = —12(293+3)(129£+693+13)(12ge+695+17)(1129%-’-495 (595 +38)+8g¢(12g5+43)+263) ,

w17 = 36(295+3)(49¢+295s+7) (129, +69s+13)(129,+695s+17)(12g,+695+19) ,

p1g = 36(4gp+29s+7)(129,+695+13)(12g,+695s+17)(12g,+69s+19)(12g,+69s+23) ,

p1o = — (7372895 428895 +11952¢% +12715295 +55258492 +1064386g5+1843297 (Tgs+32)+25695 (34292 +3555g+7417)

+16g7 (1800g° 43250892 41465349, +190333) +16g, (2889~ +81369° +595969% +1633509, +151015)+754803) ,

120 = 3(12g,+695+13) (921695 +144g% +40329° +300729% +855209,+1152g5 (12g5+55)+16g3 (4689 +4824g5+10307)

+89¢ (21694385292 +17722g5423917)+83097) ,

p21 = —3(12g,+695+13)(129,+69:+17) (1290 +69.+19) (967 +1297 +160g+4g, (189 +91)+357) ,
p22 = 48(12g,+69s+13) (129, +69s+17) (28897 +3695 +3289,+4g, (217+5495)+651) ,
pog = —432(4g,+29s+7)(1290+69s+13)(129,+69s+17)(129,+695+19) ,

poa = 3(49p+29s+7)(12g,+69s+13) (129, +69s+17) (129, +69s+19)(12g,+6gs+23) . (A4)
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B Formulae for BCjy

Explicitly, the integrals of motion read

3
1 1 1
Iy=pi+gs(gs—1){p], @ 1)2 }Ho2(gs—1) 7(961)4+29e(9571)2{pf,7(x1_x5)2+7($1+x8)2}
0£1

—2igg(ge— 1)2{1’1, — (zl+ @itas bz (9e—1) Z(m (zl+1zJ)4)

L#£1 L0#£1
L 120y 1)? 3 L @462 @)
@I=a?)2  (@lte2)2 )TN (D m @22 T (2= @2)2)2 ((@1)2-(29)?)2

+49¢(g9¢—1) (

+890(9¢—1)gs(gs—1) ( (m112)2 + ((z1>2f(z2)2>2 ) +cyclic. (B.l)
1 1 2

1999 2 1 2 2
Ig=— +9s(gs— 1 —— >+ s —1)" —————
6=3P1P2P3 9s(9s—1) ——5 p3p3—9e(9¢—1) P1P2D] Gl 222 (alia2) 95(gs—1) D@22’

(z 1)2
(z'2?)? 2 1 2 2 2 3 (x?)?
G222yt 2)2)4p3+Sgs(gs—1)92(92—1)7«&)27(12)2)2p3+169@(ge—1) p1p3,((zl)27(362)2)2((362)27(703)2)2
zlad 5 5 48(zta?)?((a1)2+(22)?)+160(zt2223)?
95(9@*1) (

+164 (90—1)*

—49s(9s—1)ge(ge—1)

pips (z?)?((zS)? (@1)?)2 @2 —(22)2)2((22)°—(2%)2)? ((@®)2—(a1)2)2

+95(9s—1)g; (g0 —1)*

N 1 32(z1)? )
(x1)2 (z —z3)4 " (21)2 <12+15)4 ((@1)2=(22)2)2((23)2—(x1)2)2

1 1 g3(gs—1)° .
—295(9s—1)g(g9¢—1) (9@(9171)7495(9571)) ((z1)2((z2)2_(z3)2)2+§ D)2 (22)2(25)2 +cyclic. (B.Q)

1 1 1 1 1
—3 1 1
2J4={p1,x }+gs(9s=D{r1, }Jrgz(ge*l)(b‘ E ((zl—z€)2+(zl+zz)2)r p1— E {pl’zl_z2+zl+zf })
e#1 e#1

+cyclic,

— + . 2
6J6:pipé{m,zl}+2igz<ge—1>(%+%){ps,z3}+gs<gs—1)p§ ({m = 2)2}+{p2 = 1)2})

21022 2la223 - 22)2
—392(92—1)W (%+p2 >P3—1694(g€ 1)m?1p2p3+“92(5@-”ﬁ?%
' 2la? 1 (o12?)?

+8192<QE*I)WP1P2+9§(95*1)2m{zw,13}+89g(ge71)(29572%79)W{P3@3} (B?))
()2 @?)? s 1 s

749“”71)95(9571){”3’((w2)2<(x3>2—(x1)2>2+<x1>2((x3)2—<x2>2)2 i et i e e S PR

(214 4 (22)* (x122)2 1 1 ‘
12000 e ey (o0 1098 o) (e {”” ( @202 (@22 )’”3}”’"’1""
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