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The virtual element method has been developed over the last decade and applied to problems in solid mechanics. Different formu-
lations have been used regarding the order of ansatz, stabilization of the method and applied to a wide range of problems including
elastic and inelastic materials and fracturing processes. This paper is concerned with formulations of virtual elements for higher
gradient elastic theories of solids using the possibility, inherent in virtual element methods, of formulating C1-continuous ansatz
functions in a simple and efficient way.
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1. Introduction

Modeling of materials displaying size effects has attracted
ongoing attention. Size effects have been observed in the re-
sponse of materials by Bažant [1], for concrete, [2] for metals
and in Ref. [3] for metal composites. Size effects can be re-
lated to microstructural behaviour and are observed for spec-
imen of a small size that is of the order of the microstructure.
At this length scale, specimens with similar shape but dif-
ferent dimensions depict different mechanical behavior [4].
Within the classical continuum theory these size effects can-
not be captured, since internal length scales are negelected.
Hence an extension of standard continuum mechanics is re-
quired.

Extensions of the classical continuum theory are more than
hundred years old. Additional rotational degrees of freedom
were introduced at the micro level and can be found in Ref.
[5] which is now frequently used in shell theories. The poten-
tial of such generalization was discussed in the contribution
by Hellinger [6], but there was no follow up work until in
the early sixties. At that time scientists became interested
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in the continuum description of generalized and higher order
theories [7-12].

The theoretical formulations of gradient theories are based
on the introduction of higher order gradients that lead to
boundary value problems which require higher continu-
ites within discretization schemes used in numerical simu-
lations. The higher order gradient elasticity theory leads
to a weak form which can only be discretized consis-
tently with C1-continuous ansatz functions. In this pa-
per we aim at using the advantage of the virtual element
method to derive higher order ansatz functions which are C1-
continuous. Hence the virtual element method can be directly
applied to a special class of problems related to strain gra-
dient elasticity when the micro deformation coincides with
the gradient of macroscopic displacements, see also Ref.
[10].

In the theory of gradient elasticity, the strain energy is a
function as well of the strain as of its derivative [13]. Con-
sequently, classical stress measures and higher order ones
have to be introduced that depend on higher-order deriva-
tives of the displacements. Since the aim of this contribu-
tion is to demonstrate that the virtual element method can be
efficiently employed to solve such problems, we restrict the
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theoretical framework to the simplest possible formulation
of strain gradient elasticity [14]. In this work the strains and
derivatives of the strain are introduced together with one ad-
ditional material parameter, which describes the internal ma-
terial length scale. It was shown in Ref. [15] that this specific
gradient elasticity theory models size effects in a sufficient
way. The results related to the theoretical model were proven
by experiments [16], and also the recent survey in Ref. [17].
Extensions of gradient theories to finite strain problems can
be found [18, 19].

Numerical models that treat the strain gradient theory for
elasticity can be found [20-23], which employed special fi-
nite elements. In Ref. [24], a new method was applied to
higher order parial differntial equations that combined con-
cepts from the continuous Galerkin method, the discontinu-
ous Galerkin method and stabilization techniques. Among
other applications, it was used to treat strain gradient elastic-
ity. Further applications of strain gradient elasticity can be
found by Lesičar et al. [25], who applied the theory within a
two-scale description of solids. Strain gradient elasticity was
also treated in beam theories [26, 27]. In Ref. [28], special
natural and finite element discretizations are compared and
applied to higher order continua. Furthermore, Fischer et al.
[29] employed an isogeometrical formulation of strain gradi-
ent theories which allows the construction of C1-continuous
discretizations. A concise treatment of different approaches
including also C1-continuous Hermitian ansatz spaces can be
found in Ref. [30].

The development of virtual elements for problems in elas-
ticity started with Refs. [31-33]. Other applications in the en-
gineering range can be found for nonlinear elasticity in Refs.
[34,35], contact mechanics in Ref. [36] and phase field meth-
ods for fracture in Ref. [37] among others.

In case of higher order virtual element formulations, basic
work regarding Cn-continuous ansatz functions was firstly
described in Ref. [38] who treated Kirchhoff plates. Fur-
ther work in this direction can be found in Refs. [39-43].
Other formulations using C1-continuous virtual elements are
dedicated to Cahn-Hillard equations [44], and to general bi-
harmonic equations [45]. The basic ideas which lead to
the virtual element ansatz functions for a Kirchhoff plate
can be applied to strain gradient elasticity. However, here
two displacement components have to be considered and ro-
tations are nonexistent. In this contribution, we will pro-
vide a virtual element formulation for geometrically linear
and finite deformation responses in gradient elasticity. Af-
ter a short review of the underlying continuum mechanics
formulation, we will provide details of the virtual element
formulation. Examples demonstrate the applicability and
good approximation properties of the new virtual element
scheme.

2. Continuum equations for higher order elas-
ticity

Consider an elastic body that occupies the bounded domain
Ω ⊂ R2. The body Ω has a boundary Γ which comprises
non-overlapping sections ΓD and ΓN such that ΓD ∪ ΓN = Γ

(Fig. 1).
The position x of a material point initially at X is given by

the motion

x = φ(X, t) = X + u(X, t), (1)

where u(X, t) is the displacement. We also define the defor-
mation gradient F by

F(X, t) = Gradφ(X, t) = ∇X φ(X, t) = 1 + ∇X u(X, t), (2)

the gradient being evaluated with respect to X.
As a measure for the homogeneity of the strain, the strain

gradient is defined as the gradient of F:

G(X, t) = Grad F(X, t) = ∇2
X φ(X, t) = ∇2

X u(X, t), (3)

with the components [∇2
X u]i jk = ui, jk.

The internal potential energy is assumed to depend on the
stored mechanical energy:

Uint =

∫
Ω

W(F ,G) dΩ, (4)

where the strain energy W(F ,G) is now a function of the
deformation gradient and the strain gradient. The external
energy can be formulated for the volume and surface loads
as

Uext = −
∫
Ω

b̄ ·φ dΩ −
∫
ΓN

t̄1 ·φ dΓ −
∫
ΓN

t̄2 · ∇N
X φ dΓ, (5)

where the volume load b̄ and the traction load t̄1 are defined
in Fig. 1. In Eq. (5), the projection of the derivative

∇X(•) = [1 − N ⊗ N] · ∇X(•) + ∇X(•) · [N ⊗ N]

= ∇S
X(•) + ∇N

X (•) ⊗ N, (6)

t

f

Figure 1 Solid with boundary conditions.
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onto a tangential and normal direction was used where ∇N
X =

∇X(•) · N.
The internal and external part of the energy yields the total

potential:

U = Uint + Uext, (7)

which is basis for the derivative of the virtual element.
Variation of the internal potential yields

δUint =

∫
Ω

∂W(F,G)
∂F

: δF +
∂W(F,G)
∂G

∵ δG dΩ, (8)

where

P =
∂W(F,G)
∂F

(9)

is the first Piola-Kirchhoff stress tensor, and

Q =
∂W(F,G)
∂G

(10)

is the double stress. This leads to the stress divergence term
for gradient elasticity

δUint =

∫
Ω

P : δF +Q ∵ δG dΩ

=

∫
Ω

Pik δFik + Qi jk δGi jk dΩ . (11)

The Dirichlet and Neumann boundary conditions are for-
mulated for the first order ()1 and second order terms ()2, re-
spectively:

u = ū, on Γ1
D,

∇N
Xφ = ∇N

X φ̄, on Γ2
D,

[P − ∇X ·Q] · N + [∇S
X · N]Q : [N ⊗ N]

− ∇S
X · [Q · N]T = t̄1

, on Γ1
N ,

Q : [N ⊗ N] = t̄2
, on Γ2

N ,

(12)

with N the outward unit normal vector and using Eq. (6). The
prescribed displacement ū and the prescribed gradient ∇N

X φ̄

are acting on the surfaces Γ1
D and Γ2

D. The prescribed surface
traction t̄1 and the prescribed double stresses t̄2 are related
to the surfaces Γ1

N and Γ2
N , respectively. Note that one re-

covers for constant Q and N the classical Neuman boundary
condition P · N = t̄1 on Γ1

N .
Generally the strain energy is constructed using an additive

split:

W(F,G) = W1(F) +W2(G), (13)

where for the classical strain energy W1(F) a homogeneous
compressible isotropic hyperelastic material is formulated.

The simplest choice is a neo-Hookean strain energy function.
This yields for the two-dimensional (2D) case:

W1(F) =
λ

4
(J2 − 1 − 2 ln J) +

µ

2
(F : F − 2 − 2 ln J), (14)

where λ and µ are the Lamé constants. The Jacobian J of the
deformation is given as J = det F. This leads to

P =
∂W1(F)
∂F

=
λ

2
(J − 1)F−T + µ (F − F−T) . (15)

The simplest choice for the part W2(G) is given by

W2(G) = µ l2 G ∵ G +
λ

2
l2 (1 : G) · (1 : G),

W2(Gi jk) = µ l2 Gi jkGi jk +
λ

2
l2 G j ji Gkki ,

(16)

with the second order unit tensor 1. Here l is a length scale
that governs the influence of the part W2 within the model
for the strain gradient elasticity. It has to be determined from
experimental observations. Equation (16) yields the double
stress:

Q =
∂W2(G)
∂G

= µ l2 G + λ l2 I : G, (17)

where I is the fourth order unit tensor which maps a second
order tensor onto itself Ai j = Ii jlm Alm. Often the second term
will be neglected in Eq. (16) which then simplifies the strain
energy and double stress to

W2(G) = µ l2 G ∵ G ⇐⇒ W2(Gi jk) = µ l2 Gi jkGi jk,

Q = µ l2 G ⇐⇒ Qi jk = µ l2 Gi jk .
(18)

In case of a kinematically linear gradient theory the strain
energy W1 can be expressed by the strain tensor, being the
symmetric part of the displacement gradient:

ε =
1
2

(∇Xu + ∇T
Xu), (19)

with the index notation εi j =
1
2 (ui, j + u j,i). The second part of

the strain energy W2 is given in terms of the strain gradient
γ, being the gradient of the strain tensor:

γ = ∇Xε, with γi jk = ε jk,i =
1
2

(u j,ki + uk, ji). (20)

The strain energy is now given by the linearization of Eqs.
(14) and (16) as

W(ε,γ) =
1
2
λ(εii ε j j + l2 γ j ji γkki) + µ (εi jεi j + l2 γi jk γi jk),

(21)

which can be written in direct notation as

W(ε,γ) =
1
2
λ
[

[tr ε]2 + l2 (1 : ∇Xε) · (1 : ∇Xε)
]

+ µ (ε : ε + l2∇Xε ∵ ∇Xε). (22)
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3. Development of the ansatz for the virtual el-
ement based on strain gradient theory

Due to the appearance of the gradient of the deformation gra-
dient G = ∇XF in the potential energy (4), also the strain en-
ergy (13), it is necessary to employ a C1-continuous ansatz
within the discretization.

3.1 Ansatz function

In this section we will provide ansatz functions for 2D gradi-
ent elasticity. A C1-continous formulation can be found for
virtual plate elements, in e.g., Refs. [39,46], for Cahn-Hillard
equations in Ref. [44] and for general biharmonic equations
in Ref. [45]. The procedure, to derive the ansatz functions
for the virtual element method, is provided next.

Since elements for the strain gradient elasticity need a C1-
continuous ansatz, the following space for an ansatz of order
n is introduced:

Vh|Ωv = {uh ∈ [H2(Ωv)]2,∆2uh ∈ Pn−4(Ωv),

uh,t ∈ Pr(Γe),uh,n ∈ Ps(Γe)}, (23)

where we set Pn−4(Ωv) = {0} for n < 4. The parameters r
and s describe the ansatz order for the derivatives in normal
and tangent direction uh,t and uh,n, respectively, and can be
chosen differently. The condition ∆2u ∈ Pn−4(Ωv) is funda-
mental for the element to be uni-solvent which ensures the
uniqueness of the displacement u inside the element.
With this definition it is straight forward to design virtual
shell elements that fulfill C1-continuity, note that the ansatz
for uh has only to be formulated at the boundary.

The ansatz function for the displacement uh has to be for-
mulated in two dimensions. It has the properties:

(1) uh ,uh,t and uh,n are known at the vertices k of the poly-
gon Ωv;

(2) uh is a polynomial Pn of degree n at each edge Γe ∈ Γv;
(3) uh,t is a polynomial Pr of degree r = n− 1 at each edge
Γe ∈ Γv;

(4) uh,n is a polynomial Ps of degree s at each edge Γe ∈ Γv

with additional unknowns of uh,n at s − 1 equally spaced
points at Γe;

(5) uh , uh,t and uh,n are continuous at all edges Γe ∈ Γv of
the polygon Ωv;

(6) ∆2uh is a polynomial of degree Pn−4 on the polygon
Ωv.
With these definitions the ansatz for the displacement uh is
a harmonic function inside Ωv which is only known at the
edges Γe of Ωv with Γv = ∪Γe.

To connect the ansatz defined in (1) to (6) to the strains
and strain gradients in the virtual element Ωe a special pro-
jection onto the polynomial ansatz space uh 7→ Π(uh) = uπ is

employed. In this paper we construct two elements that use
a polynomial Nn

π of the ansatz order n = 2 and n = 3. The
projection is denoted by

uπ =

[uπ]1

[uπ]2

 = a Nn
π, with [uπ]i = ai Nn

π , (24)

with the constants ai = {ai1, ai2, ai3, . . . , aip} for each of the
components of [uπ]i. Note that p = 6 for an a quadratic ansatz
with (n = 2) and p = 10 for a cubic ansatz (n = 3). In index
notation we can write [uπ]i = aip [Nn

π]p.
Additionally w = aw Nn

π is introduced which has the role
of a test function where aw

i = {aw
i1, a

w
i2, a

w
i3, . . . , a

w
ip} are the

p = 6/10 parameters for each of the components wi of the
test function w for elements 1 and 2, respectively.

The projection uh 7→ Π(uh) = uπ is based on the orthogo-
nal projection of the strain gradient ∇∇uh:∫
Ωv

(∇∇uh − ∇∇uπ) ∵ ∇∇w dΩ = 0, (25)

which can be written in index notation as∫
Ωv

[uπ]i, jk wi, jk dΩ =
∫
Ωv

[uh]i, jk wi, jk dΩ. (26)

This equation is accompanied for the computation of the
constant and linear terms in the ansatz (24) by the equality of
mean displacements:∫
Γv

uπ dΓ =
∫
Γv

uh dΓ ⇐⇒
∫
Γv

[uπ]i dΓ =
∫
Γv

[uh]i dΓ,

(27)

and the equality of the mean gradients:∫
Ωv

∇uπ dΩ =
∫
Ωv

∇uh dΩ

⇐⇒
∫
Ωv

[uπ]i, j dΓ =
∫
Γv

[uh]i n j dΓ, (28)

where n j are the components of the outward normal vector at
the element boundary.

A quadratic and a cubic polynomial are selected for Nn
π to

approximate the deflection [uπ]i. They produce a constant
(n = 2) and linear strain gradient (n = 3):

N2
π = (1, X, Y, X2, XY, Y2), for n= 2, (29)

N3
π = (1, X, Y, X2, XY, Y2, X3, X2Y, XY2, Y3), for n= 3. (30)

In Fig. 2, the virtual element for the ansatz (n = 3) is
depicted with the nodal degrees of freedom at the edge e:
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X

Y

Figure 2 Virtual element for linear strain (n = 3).

ue =

u1

u2

 =


u1

v1

u2

v2


, and ∇ue =


u1,X

u1,Y

u2,X

u2,Y


, (31)

and the normal derivatives um,n = {u,n , v,n} at the midpoints
of the edge. This amounts to six degrees of freedom per node
and additional two degrees of freedom per edge. In case of
the ansatz (n = 2), the nodal degrees at the mid points of the
edge will not be used.

To ensure the C1 continuity requirement of the ansatz func-
tions, the values of ui and its derivatives in normal, ui,n, and
tangential, ui,t, direction have to match along the edge be-
tween two adjacent elements. The following relations hold
for the derivatives in normal and tangential direction for the
component of ui:

∇ui · te = ui,t, and ∇vi · te = vi,t,

∇ui · ne = ui,n, and ∇vi · ne = vi,n .
(32)

In the 2D case, normal and tangent vectors are given for a
segment e as

ne =

nX

nY


e

=
1
le

−(Yr
2 − Yr

1)

Xr
2 − Xr

1


w

and te =

tX

tY


e

=
1
le

Xr
2 − Xr

1

Yr
2 − Yr

1


e

, (33)

where le is the length of the segment e and (Xr
i , Y

r
i ) with

i = {1, 2} are the nodes of the vertices defining the segment.
Now the derivatives in normal and tangential direction at

an edge Γe can be written as

ui,n =

ui,n

vi,n

 and ui,t =

ui,t

vi,t

 , (34)

where i = 1, 2 denotes the node at the edge.
A cubic Hermitian ansatz for the displacement uh is se-

lected at the element edge Γe for both element types:

(uh)e = H1(ξe) u1 + leH′1(ξe) u1,t + H2(ξe) u2 + leH′2(ξe) u2,t,

(35)

where the basis functions are defined in terms of Hermite
splines:

H1(ξe) = 2ξ3e − 3ξ2e + 1, H′1(ξe) = ξ3e − 2ξ2e + ξe,

H2(ξe) = −2ξ3e + 3ξ2e , H′2(ξe) = ξ3e − ξ2e .
(36)

The differentiation in tangential direction u,t in Eq. (32) is
then obtained by the scaled derivative of Eq. (36) with re-
spect to the local coordinate ξe at the element edge Γe:

(u,t)e =
1
le

d(uh)e

dξe
, (37)

which has the explicit form

(u,t)e =
6
le

(ξ2e − ξe), u1 + (3ξ2e − 4ξe + 1) u1,t

+
6
le

(−ξ2e + ξe), u2 + (3ξ2e − 2ξe) u2,t (38)

for both elements.
The normal derivative u,n at the edge Γe is defined by a linear
ansatz for element 1 and a quadratic ansatz for element 2:

(u,n)e = (1 − ξe) u1,n + ξe u2,n, for element 1, (39)

(u,n)e = (2ξ2e − 3ξe + 1) u1,n + (2ξ2e − 1) u2,n

+ 4(ξe − ξ2e ) um,n, for element 2. (40)

This results to one additional unknown um,n for the quadratic
ansatz of element 2 at the mid point of the edge, as demon-
strated in Fig. 2.

Before inserting the ansatz function (35), (39) and (40)
into the right hand side of the projection (26) and the equiv-
alence of the mean values for the displacement (27) and the
gradient (28), one has to relate the derivatives (ui,n, ui,t) to the
global derivatives (ui,X , ui,Y ). This follows from the transfor-
mation:ui,X

ui,Y

 =
nX tX

nY tY


T ui,n

ui,t

 and

vi,X

vi,Y

 =
nX tX

nY tY


T vi,n

vi,t

 (41)

with the tangential and normal vectors (te, ne) that change
from edge to edge of the virtual element.

The projection of the component [uπ]i of uπ =

{[uπ]1, [uπ]2} = {uπ, vπ} is approximated like w by [uπ]i =

aip [Nn
π]p leading to the strain gradient

[uπ]
(2)
i, jk = aip [N2

π]p, jk and [uπ]
(3)
i, jk = aip [N3

π]p, jk (42)

and the virtual strain gradient

w(2)
i, jk = aw

ip [N2
π]p, jk and w(3)

i, jk = aw
ip [N3

π]p, jk (43)
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for the first end second virtual element, respectively. By com-
bining (25), (27) and (28), we obtain for the right hand side:

gb =

∫
Γv

aw
i1 [uπ]

(n)
i dΓ +

∫
Ωv

[
aw

i( j+1)[uπ]
(n)
i, j + [uπ]

(n)
i, jk w(n)

i, jk

]
dΩ

=⇒ Gb =
∂2gb

∂aw∂a
. (44)

An exact integration is possible for all integrals in gb since
they only contain polynomials. It will lead to a matrix Gb

that forms the equation system:

Gb a = bb, (45)

where now only the right hand side has to be computed from
integrating the right hand side in Eqs. (25) and (28) by parts
[46]:∫
Ωv

[uh]i, jk wi, jk dΩ =
∫
Γv

wi, jk [uh]i, j nkdΓ

−
∫
Γv

wi, jkk [uh]i n j dΓ

+

∫
Ωv

[uh]i wi, j jkk dΩ . (46)

Note that the ansatz function for the test function wh is of
third order and thus the term wi, j jkk vanishes. Hence one ob-
tains

bb =

ne∑
e=1

∫
Γe

(
av

i1 + aw
i j+1 ne

i − wi, jkk ne
i

)
[uh] j dΓ

+

∫
Γe

wi, jk [uh]i, j ne
k dΓ . (47)

For the assumed straight edges of the element, the normal ne

is constant and furthermore div(∇∇v) is constant for n = 3
and even zero for a quadratic ansatz (n = 2). Hence Eq. (47)
can be simplified as

bb =

ne∑
e=1

(aw
i1 + aw

i j+1 ne
i − wi, jkk ne

i

) ∫
Γe

[uh] j dΓ

+

∫
Γe

wi, jk [uh]i, j ne
k dΓ

 . (48)

The derivative of this equation with respect to the parameters
of the test function yields finally:

bb =
∂bb

∂aw , (49)

which is required in Eq. (45). With the ansatz functions for
[uh]i, provided in Eqs. (39) and (40), all integrations can be
carried out in Eq. (48).

By using both ansatz functions for [ui]h, the projected
ansatz [ui]π can be deduced from Eqs. (24) and (45) for the
two different elements. This yields a general mapping that
defines the displacement field of the virtual element in terms
of the nodal unknowns:

uπ = Bβ(X, Y) Ueβ, (50)

where β = 1, 2 stand for the different elements. In more de-
tail, the nodal unknown vectors uβ of the two elements with
nv vertices are given by

Ue1= {u1, u1,X , u1,Y , u2, u2,X , u2,Y . . . , unv , unv,X ,unv,Y }T,
Ue2= {u1, u1,X , u1,Y , u1-2,n,u2, u2,X , u2,Y , u2-3,n, . . . ,unv ,

unv,X , unv,Y }T,
(51)

where u1−2,n is the degree of freedom denoting the derivative
in normal direction at the edge between nodes 1-2 etc.

For the actual generation and implementation of the two
elements and the associated stabilizations, the software pack-
age AceGen [47, 48] was employed. In the following the es-
sential steps and matrices are summarized that are basis of
the code derivation.

3.2 Consistency part

The projection uπ has now to be inserted into the potential
(7) with the strain energy function for large strains (13) and
small strains (22). This yields the so called consistency part.
Using the general mapping (50), the displacement gradient
follows as

∇uπ = ∇Bβ(X) Ueβ, (52)

and its gradient as

∇∇uπ = ∇∇Bβ(X) Ueβ . (53)

Hence the small strain tensor is given within a virtual element
Ωe by

εe =
1
2

{
∇Bβ(X) Ueβ +

[
∇Bβ(X) Ueβ

]T
}
, (54)

and its gradient by

∇Xεe =
1
2

{
∇∇Bβ(X) Ueβ +

[
∇∇Bβ(X) Ueβ

]T
}
. (55)

For small strains, the potential internal part (4) of (7) yields
together with (22) for a virtual element Ωe:

U lin
e (Ueβ) =

∫
Ωe

{
λ

2

[
(tr εe)2 + l2 (1 : ∇Xεe) · (1 : ∇Xεe)

]
+ µ (εe : εe + l2∇Xεe ∵ ∇Xεe)

}
dΩ.

(56)
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In this case, all terms in the integral are polynomials and can
be evaluated for an arbitrary polygon exactly as integrals over
the element edge since Green’s theorem yields∫
Ω

xpyqdΩ =
1
2

∫
Γ

(
xp+1yq

p + 1
nx +

xpyq+1

q + 1
ny

)
dΓ . (57)

In case of finite strain elasticity the strain energy, Eq. (13)
has to be employed which depends in a nonlinear way on the
deformation gradient F and the strain gradient G. Both kine-
matic measures can be computed using Eq. (52), which leads
to

Fe = 1 + ∇uπ = 1 + ∇Bβ(X) Ueβ,

Ge = ∇∇uπ = ∇∇Bβ(X) Ueβ.
(58)

The nonlinear strain energies (14) and (16) have to be in-
cluded in the internal part (4) of the potential (7) leading to

Unl
e (Ueβ) =

∫
Ωe

{
λ

4
(J2

e − 1 − 2 ln Je)

+
µ

2
(Fe : Fe − 2 − 2 ln Je)

+µ l2 G ∵ G +
λ

2
l2 (1 : G) · (1 : G)

}
dΩ, (59)

where Je = det Fe.
Since this potential is a nonlinear function of the gradi-

ents, integration cannot be shifted to the boundary and has
to be performed over the element area of Ωe. By introduc-
ing a triangular submesh of each polygonal virtual element,
the integration can be carried out using a Gauss point inte-
gration [34]. Note that by definition uh is not known within
the element, and this is overcome by the approximation of uh

by uπ within the element which can be done without loss of
accuracy [49, 50].

A similar argument as above has also to be applied for the
evaluation of the external part of the potential (5) which is
related to the loading terms. Here we use only the first two
parts related to the volume and the surface loads. Insertion of
the virtual element ansatz functions yields

Uext(Ueβ) = −
∫
Ω

b̄ · Bβ(X) Ueβ dΩ −
∫
ΓN

t̄1 · uh dΓ. (60)

The volume load has to be integrated over the element area.
For a volume load b̄ with a polynomial form the integral can
be shifted to the boundaries. For all other distributions of b̄,
the integration has to be performed in the same way as de-
scribed for Eq. (59). Since uh is known at the element edges,
the ansatz in Eq. (35) can be applied directly to compute the
second integral related to the surface loads.

The residual Re and tangent matrix Ke of the consistency
part follows in case of the linear or nonlienar formulation for

a virtual element Ωe by differentiation of Eqs. (56) or (59)
and (60):

Re =
∂[U lin,nl

e (Ueβ) + Uext(Ueβ)]
∂Ueβ

, Ke =
∂Re(Ueβ)
∂Ueβ

. (61)

It is possible to compute the different parts of the tangent ma-
trix that are related to the contribution of displacement gra-
dient ∇u and its gradient ∇∇u. These will be denoted by K∇e
and K∆e , respectively.

3.3 Stabilization

Within the virtual element Ωe, the strain gradient of the pro-
jected part of the displacement u is approximated by a con-
stant and linear part, depending on the element type, as dis-
cussed in the last sections. A virtual element which is based
purely on this projection leads clearly to a rank deficient el-
ement. Thus the formulation has to be stabilised as it was
done for plates in Refs. [38, 41, 51] and in Ref. [44] for the
Cahn-Hillard equation. Here we can use basically the same
stabilization as discussed in these papers. This leads to a sta-
bilization operator which includes all element nodes (vertices
and midpoints):

Ûe
stab(uh − uπ) =

[
trK∆e
2 h2

e
+

trK∇e
2

]
Ŝ e

stab,

with Ŝ e
stab =

nV∑
i=1

[̂
u(Xi)2 +

∥∥∥∥∥Li−1 + Li

2
∇û(Xi)

∥∥∥∥∥2

+
∥∥∥Li û,n(Xi)

∥∥∥2
]
, (62)

and û(Xi) = uh(Xi) − uπ(Xi) ,

∇û(Xi) = ∇uh(Xi) − ∇uπ(Xi),

and û,n(Xi) =

 uh,n(Xi) − uπ,n(Xi), for el 2,

0, for el 1.

Here he is the maximum diameter of the virtual element e,
thus h2

e can be interpreted as the element area Ae. The func-
tion wh and the projection Π(wh) have to be evaluated at the
vertices Xi.
The stabilization (62) can be reformulated as an integral de-
scribing the total error along the edge instead of using the
discrete values. This alternative stabilization takes account
of the distribution of each degree of freedom along the edge
Γk:

Ûe
stab(uh − uπ) =

[
trK∆e
2 h2

e
+

trK∇e
2

] nE∑
k=1

1
Lk

∫
Γk

[̂
u(Xk) · û(Xk)

+∥Lk∇û(Xk)∥2dΓ
]
. (63)
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Here Ae can be used in this equation instead of h2
e . The edge

integral in Eq. (63) is evaluated numerically using Gauss
quadrature:

∫
Γk

f (xk)dΓ = Lk

ng∑
g=1

wg f (xg), (64)

where for the assumed straight edges the Jacobian Jξ of
the transformation dΓ = Jξdξ is the length of the kth edge
Jξ = ∥ ∂X∂ξ

Γ∥ = Lk and ξ ∈ [0, 1] is the local coordinate.
When employing stabilization (63) the resulting tangent

matrix has full rank. Note that stabilization (62) is easier to
implement than the second one in Eq. (63).

4. Examples

Several examples will illustrate the general behaviour of the
derived C1-continuous virtual elements for gradient elastic-
ity. These cover an investigation of the convergence be-
haviour using an analytical solution of a small strain prob-
lem and the finite strain analysis of a problem with re-entrent
corner.

4.1 Convergence behaviour of the C1-continuous vir-
tual element

A thick hollow cylinder is subjected to an external pressure
as depicted in Fig. 3. The inner radius of the calinder is
Ri = 0.05 and the outer radius is given by Ra = 0.5. The com-
putation is performed using the constitutive equations pro-
vided by the strain energy function in Eq. (22). The Làme
constants are λ = 7000 and µ = 3000. The length scale
is given as l = 0.01. The cylinder is subjected to a pressure
load p = 1.0. Due to symmetry, only a quarter of the cylinder
is discretized using the symmetry conditions u(X = 0) = 0
and v(Y = 0) = 0, as shown in Fig. 3.

p

Figure 3 Geometry and loading of the hollow cylinder.

The mesh is created using the same number of elements
in radial and cirumvential direction. The mesh consists of
4 noded (Q1) elements and eight noded (Q2S) elements, as
depicted in Fig. 4.

The small strain results can be compared with the analyti-
cal solution in Appendix, see also Ref. [22]. Figure 5 reports
the convergence results for the prediction of the strains in the
hollow cylinder at length scale l = 0. Here also comparison
of the virtual element discretization can be made with stan-
dard finite elements. We note that all element yield basically
linear convergence where the virtual element VE2 yields the
best results for a mesh consisting of eight noded elements,
here called Q2S.

Convergence results for the length scale l = 0.01 are de-
picted in Fig. 6. As expected, we can observe that the VE2
element converges with a higher rate than the VE1 element.
We note however that the convergence rate deteriorates for
a very fine mesh with more than 104 elements. This is re-
lated most probably to the scaling of the stabilization term.
A similar behaviour is also reported in Ref. [22] for a C1-
element based on a penalty formulation where the solution
for finer meshes is influenced by the penalty parameter and
thus a detoriation of the convergence rate is visible for the
hollow cylinder problem. Since the stabilization in Eqs. (62)

Figure 4 16×16 Q2S mesh used for the numerical simulation of the hollow
cylinder.

l

l

l

l

l

l

Figure 5 Convergence study of the strain εrr for the hollow cylinder
(l = 0).

https://www.sciengine.com/doi/10.1007/s10409-022-22306-x
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l

l

l

l

Figure 6 Convergence study of the displacement ur for the hollow cylinder
(l = 0.01).

and (63) acts in a way like a penalization the same behaviour
is observed. Here additional research effort is needed to ob-
tain a consistent convergence rate for fine meshes. However
for engineering applications the accuracy of the results are
more than sufficient.

4.2 Small strain response of a L-shaped structure

In the second example, an L-shaped domain is considered,
see Fig. 7. This example can be found in Refs. [28,29] where
the authors employed different element formulations and the
isogeometric analysis to construct C1-continuous discretiza-
tions. The domain is loaded at the left side by a constant
distributed load t̄ = 100. The width is given by W1 = W2 = 4
and the height has the dimension H1 = H2 = 4. Young’s
modulus of this problem is E = 8100 and the Poisson ratio
has the value ν = 0.35.

In Fig. 8, the strain component εxy is plotted for differ-
ent length scales on the deformed configuration which is
scaled by a factor of 3. Observe that a very small length
scale (l = 5/2048) yields a high value of the strains at the
re-entrant corner. When compared to a solution with length
scale l = 0, the strains are almost the same: εl=0

xy = 0.05372
versus εl=5/2048

xy = 0.05360. Hence for very small values of
the length scale the gradient effect is negligible. However
for larger length scales the influence of the gradient theory is

 

! 

!!

" "!

Figure 7 Geometry and loading of the L-shaped domain.

clearly visible. The stiffness of the solid increases for higher
values of the length scale, leading to a smaller deformation,
as can be observed in Fig. 8, where the deformed shape of
the L-shaped domain is provided. Furthermore, the strain
concentration at the re-entrant corner is smeared out due to
the gradient effect. This becomes even more obvious for a
very high length scales of l = 5/4 and l = 40 where, in the
latter, the structural response is almost rigid. The results are
in line with the findings reported in Refs. [28, 29].

4.3 Large deflection response of a thin arc

The last example illustrates the ability of the new element
formulation to compute the highly nonlinear response of thin
structures. The deep arc, depicted in Fig. 9 has a radius
of R = 100. The angle α is set to α = 17.50. This re-
sults in a height H = 130.07 and a width L = 190.74. The
height of the cross section is h = 3.464. Young’s modulus is
E = 2.887 · 105 and the Poisson ratio is set to ν = 0.2.

The arc is loaded by a single force F in its center and
clamped at both ends. Since the response of the deep arc
is governed by a snap-through behaviour, the load is applied
by a given displacement. Hence the force F is obtained as
the reaction force related to the applied displacement.

The load deflection curves are computed for the length
scale l = πR

44 of the gradient elastic material given in Eqs.
(14) and (18). For comparison with finite element solutions,
also a length scale of l = 0 is used. The arc is discretized with
four and eight noded elements. Four elements are used over
the thickness and 64 elements along the length of the arc.

The case l = 0 leads to a load deflection curve reported
in Fig. 10. It is evident that a Q1 linear finite element locks
when applied to solve this problem of a thin arc. Further-
more, it is evident that also the virtual element VE1 with
linear approximation of the derivative at the edge is stiffer
for both discretizations with 4 and 8 noded virtual elements.
The virtual element VE2 which has a consistent approxima-
tion of the derivatives results in a converged solution that is
also obtained using a Q2S quadratic finite element.

For the case of l = πR
43 and l = πR

44 the force deflection curve
in Fig. 11 depicts a much stiffer response of the arc which un-
derlines the stiffening effect due to the strain gradient which
was also observed in experimental observation for beams, see
Ref. [27]. Especially for the four times larger length scale of
l = πR

43 the load deflection curve shows a disproportionate in-
crease of the limit load and clearly the stiffening effect of the
gradient term.

The solution, computed with the virtual element VE1,
which approximates the strain gradient as a constant, yields a
very high limit load which is about 60 % higher than the limit
load computed with the VE2 element where the strain gradi-



P. Wriggers, et al. Acta Mech. Sin., Vol. 39, 722306 (2023) 722306-10

Figure 8 Strain εxy for length scales l = 5/2048, l = 5/16, l = 5/4 and l = 40.

ent is approximated by a linear function. Hence for bend-
ing situations the virtual element VE2 has to be employed
in order to obtain a correct solution, see also Fig. 11. The

L

H

h

R

F

Figure 9 Geometry and loading of the thin arc.

l

l

l

l

l

l

Figure 10 Load-deflection curve for the arc using the length scale l = 0.

deformed configuration of the arc is depicted in Fig. 12 for
the case of l = πR

44 . It is related to the beginning of the snap-
through (limit point).

The deformed shape illustrates the large deflection of the
arc. It includes the contours of the strains Exx which have
their maximum values at the location of the point load.

For a four times larger length scale of l = πR
43 , the deformed

configuration at the onset of the limit point is depicted in Fig.
13. Again the contours of the strains Exx are included. By
comparison with the strain field in Fig. 12, one can see that
the strains are now differently distributed, which is due to the
length scale effect of the strain gradient elasticity.

5. Summary and Conclusions

We have presented a virtual element method for gradient
elasticity with respect to small and finite strains. The C1-
continuous formulation only used nodal degrees of freedom
which are the displacements and its gradients. It could be
shown that the method converges well and provides a simple
but efficient and robust scheme for higher order continua. As
denoted in the examples, the scaling of the stabilization term
needs still to be improved. Here eventually also enhanced
formulations could be applied as recently discussed in Refs.
[52, 53].

The method proposed here is amenable to extensions of
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Figure 11 Load-deflection curves for the arc using the length scales l = πR
43 on the left and l = πR

44 on the right.

Figure 12 Deformed shape of the arc for the length scale l = πR
44 .

Figure 13 Deformed shape of the arc for the length scale l = πR
43 .

various kinds. Here we mention three dimensional applica-
tions, other nonlinear problems involving e.g., inelastic ma-
terial behaviour or gradient plasticity formulations for crystal
plasticity.
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