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Recently, a universal formula for the Nicolai map in terms of a coupling flow functional differential 
operator was found. We present the full perturbative expansion of this operator in Yang–Mills theories 
where supersymmetry is realized off-shell. Given this expansion, we develop a straightforward method 
to compute the explicit Nicolai map to any order in the gauge coupling. Our work extends the previously 
known construction method from the Landau gauge to arbitrary gauges and from the gauge hypersurface 
to the full gauge-field configuration space. As an example, we present the map in the axial gauge to the 
second order.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Nicolai map We consider unbroken N = 1 supersymmetric gauge theories in the Wess–Zumino gauge in D-dimensional Minkowski 
spacetime R1,D−1 � x. The fields (A, λ, D) are in the adjoint representation of the gauge group which for simplicity we take to be SU(nc)

with real antisymmetric structure constants f abc such that

f abc f abd = ncδ
cd , a,b, . . . = 1,2, . . . ,n2

c−1 . (1)

The Nicolai map [1–3] can be defined [4] as a nonlinear and nonlocal field transformation

T g : Aa
μ(x) �→ A′a

μ (x; g, A) (2)

of the Yang–Mills fields Aa
μ (μ = 0, 1, . . . , D−1), invertible at least as a formal power series in g , that satisfies

⟪X[A]⟫
g

= 〈
X[T −1

g A]〉0 ∀ X . (3)

This enables one to compute quantum correlators in the interacting theory by using a free, purely bosonic functional measure. The 
correlators1 are given by

⟪X[A]⟫
g

:=
∫

DADλDDDCDC̄ eiSSUSY[A,λ,D,C,C̄] X[A] ,

〈
X[A]〉g :=

∫
DA eiS g [A] �MSS[A] �FP[A] X[A] ,

(4)

where the latter is obtained from the former by integrating out the auxiliaries D and the anticommuting gauginos λ and ghosts C , C̄ . This 
produces the Faddeev–Popov determinant �FP[A] and the Matthews–Salam–Seiler determinant �MSS[A] (a Pfaffian for Majorana fermions). 
From the full action
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1 Note that by the vanishing of the vacuum energy in supersymmetric theories, these correlators are normalized such that ⟪1⟫g = 〈
1
〉
g = 1.
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SSUSY[A, λ, D, C, C̄] =
∫

dD x
{
− 1

4 F a
μν F a μν − 1

2ξ
G(A)2 + fermions + ghosts + auxiliaries

}
, (5)

only the gauge-field action

S g[A] =
∫

dD x
{− 1

4 F a
μν F a μν − 1

2ξ
G(A)2} (6)

remains, with the Yang–Mills field strength

F a
μν = ∂μ Aa

ν − ∂ν Aa
μ + g f abc Ab

μ Ac
ν ⇐⇒ Fμν = ∂μ Aν − ∂ν Aμ + g Aμ × Aν . (7)

The gauge dependence of the Nicolai map enters through the choice of the ’t Hooft parameter ξ and the gauge fixing function Ga(A), for 
example

Ga(A) = ∂μAa
μ (Lorenz gauge) or Ga(A) = nμAa

μ (axial gauge) . (8)

For g → 0, one obtains the free-field correlator in (3),

〈
X[A]〉0 = 1

Z

∫
DA eiS0[A] X[A] with 1

Z = �MSS[0] �FP[0] . (9)

Universal form In a recent work [4], we demonstrated that the Nicolai map can be written as an ordered exponential

T g A = −→P exp
{
−

g∫
0

dh Rh[A]
}

A (10)

in terms of a coupling flow differential operator R g [A], which is defined via

∂g
〈
X[A]〉g = 〈(

∂g + R g[A])X[A]〉g . (11)

If the original local theory possesses an off-shell supersymmetric formulation, then the coupling flow operator can be canonically con-
structed in any gauge. The procedure is outlined in Section 2. Our main result is the compact form (45) and explicit perturbative expansion 
(46) for

R g[A] =
∞∑

k=1

gk−1Rk[A] = R1[A] + g R2[A] + g2R3[A] + . . . , (12)

which allows us to compute the Nicolai map2 via

T g A =
∑

n

gn cn Rns [A] . . . Rn2 [A]Rn1 [A] A , (13)

n = (n1,n2, . . . ,ns) with ni ∈N and
∑

i

ni = n , (14)

where 1 ≤ s ≤ n, the n=0 term is the identity and

cn = (−1)s[n1 · (n1 + n2) · · · (n1 + n2 + . . . + ns)
]−1

. (15)

Writing out the first few terms gives

T g A = A − g R1 A − 1
2 g2(R2 − R2

1

)
A − 1

6 g3(2R3 − R1R2 − 2R2R1 + R3
1

)
A

− 1
24 g4(6R4 − 2R1R3 − 3R2R2 + R2

1R2 − 6R3R1 + 2R1R2R1 + 3R2R2
1 − R4

1

)
A + O(g5) .

(16)

Conventions and notation We work with the mostly plus metric ημν = diag(−1, +1, ..., +1) and the Clifford algebra {γ μ, γ ν} = −2ημν . 
We generally suppress color indices and position labels, adopting the shorthand notations from section 4 in [5]. All objects are multiplied 
as color matrices or vectors, and integration kernels are convoluted with insertions of A. In the following we summarize the quantities 
that appear in the coupling flow operator. The fermionic propagator S is the Green’s function of the covariant derivative Dμ = ∂μ + g Aμ×
contracted with the gamma matrices (we also suppress Majorana spinor indices α, β, . . .),

S = /D−1 = iλ λ̄ , (17)

whereas the ghost propagator is given by

G = (
∂G(A)
∂ Aμ

Dμ

)−1 = C C̄ . (18)

2 And its inverse, by an equally simple formula.
2
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They can be expanded in the coupling as

S = S0 − g S0 /A S =
∞∑

l=0

(−g S0 /A)l S0 = S0

∞∑
l=0

(−g /A S0)
l ,

G = G0 − gG0
∂G(A)
∂ Aμ

AμG =
∞∑

k=0

(
−gG0

∂G(A)
∂ Aμ

Aμ

)k
G0 = G0

∞∑
k=0

(
−g ∂G(A)

∂ Aμ
AμG0

)k
,

(19)

in terms of their free (g = 0) versions

G0 = (
∂G(A)
∂ Aμ

∂μ

) −1
, S0 = /∂

−1 = −/∂C , C = �−1 , (20)

with the scalar3 propagator C .

Projectors and gauge-field decomposition It is useful to introduce the covariant gauge projector

Pμ
ν = δμ

ν − DμG ∂G(A)
∂ Aν

= �μ
σ
{
δσ

ν − g Aσ

∞∑
k=0

(
−gG0

∂G(A)
∂ Aμ

Aμ

)k
G0

∂G(A)
∂ Aν

}
, (21)

which in the free limit reduces to the projector

�μ
ν = δμ

ν − ∂μG0
∂G(A)
∂ Aν

. (22)

They obey the identities

∂G(A)
∂ Aμ

Pμ
ν = 0 = ∂G(A)

∂ Aμ
�μ

ν and Pμ
ν Dν = 0 = �μ

ν ∂ν . (23)

A decisive advantage of the Lorenz gauge ∂G(A)
∂ Aν

= ∂ν is that G0 ≡ C so that � is equivalent to the standard transversal projector

�μ
ν = δμ

ν − ∂μC∂ν , (24)

which fulfills the relations

�μ
ρ �ρ

ν = �μ
ν , �μ

ρ �ρ
ν = �μ

ν , (25)

and splits the Yang–Mills fields into transversal and longitudinal components

Aμ = AT
μ + AL

μ , AT
μ = �μ

ν Aν , AL
μ = (δμ

ν − �μ
ν)Aν = ∂μC ∂ · A . (26)

For further convenience, we abbreviate ∂ · A = ∂μ Aμ and B = C ∂ · A. The longitudinal component of the gauge field AL
μ lies in the kernel 

of both projectors,

�μ
ν AL

ν = �μ
ν AL

ν = 0 . (27)

Note that on the Landau gauge hypersurface (∂ · A = 0, ξ → 0) the longitudinal component of the gauge field vanishes while AT ≡ A. In 
general gauges (or outside of the gauge hypersurface of the Landau gauge), this is not the case. There, it turns out to be useful to define 
the ‘conjugate’ Yang–Mills field

A∗
μ := AT

μ − AL
μ = Aμ − 2∂μB , (28)

related to Aμ by an involution

�μ
ν := �μ

ν − (δμ
ν − �μ

ν) , A∗
μ = �μ

ν Aν . (29)

It satisfies various helpful properties like ∂μ A∗
μ = −∂μ Aμ and ∂[μ Aν] = ∂[μ A∗

ν] . For the explicit construction of the Nicolai map, it is 
convenient to further define

�∗
μ

ν = �μ
ρ �ρ

λ �λ
ν = �μ

ρ �ρ
ν = 2 �μ

ν − �μ
ν , (30)

which is also a projector. Note the important simplification �∗ ≡ � for the Lorenz gauge.

3 It should be noted that we differ in our convention of C by a minus sign compared to other texts, since we prefer �C = 1.
3
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2. Coupling flow operator

Rescaled construction In the canonical construction of the coupling flow operator, the g derivative of the action is written as a supervari-
ation. This requires that the supersymmetry is realized off-shell, in which case the action is the highest component of a superfield. In the 
following we therefore restrict ourselves to D = 4. However, at least in the Landau gauge, the Nicolai map generalizes [5] to the critical 
dimensions D = 3, 4, 6, 10 [6]. In gauge theories, the g derivative of SSUSY cannot be written as a supervariation. A convenient solution is 
a rescaling of the field content with a suitable power of g [7], such that the dependence on the coupling presents itself only as an overall 
factor in front of the action (except for a factor of g multiplying the ghost term):

SSUSY[ Ã, λ̃, D̃, C̃,˜̄C] = S inv[ Ã, λ̃, D̃] + Sgf[ Ã, C̃,˜̄C] ,

S inv[ Ã, λ̃, D̃] = 1
g2

∫
d4x

{
− 1

4 F̃ μν F̃μν − i
2
˜̄λ/̃D̃λ + 1

2 D̃2
}

,

Sgf[ Ã, C̃,˜̄C] = 1
g2

∫
d4x

{
− 1

2ξ
G( Ã)2 + g ˜̄C ∂G( Ã)

∂ Ãμ
D̃μC̃

}
,

(31)

where quantities with a tilde are rescaled. In particular, Ã = g A such that

D̃μ = ∂μ + Ãμ × and F̃μν = ∂μ Ãν − ∂ν Ãμ + Ãμ × Ãν . (32)

In this scaling we can write the g derivative of the action as a supervariation up to a Slavnov variation,

∂g SSUSY = − 1
g3

{
δα�α[ Ã, λ̃, D̃] − √

g s �gh [̃C̄ , Ã]} , (33)

with the superfield component

�α[ Ã, λ̃, D̃] = 1
4

∫
d4x

{
− 1

2γ μν λ̃ F̃μν + γ5 λ̃ D̃
}
α

, (34)

the ghost contribution

�gh [̃C̄ , Ã] =
∫

d4x
{˜̄C G( Ã)

}
, (35)

the supervariations

δα Ãν = −i(̃λ̄γν)α , δαλ̃β = − 1
2 (γ μν)βα F̃μν − D̃(γ5)βα , δα D̃ = i(D̃μ

˜̄λγ5γ
μ)α , (36)

and the Slavnov variations

s Ãμ = √
g D̃μC̃ , s̃λ = √

g λ̃ × C̃ , s̃λ̄ = √
g ˜̄λ × C̃ ,

sD̃ = √
g D̃ × C̃ , sC̃ = −

√
g

2 C̃ × C̃ , s˜̄C = 1√
g

1
ξ
G( Ã) .

(37)

It is convenient to integrate out the auxiliaries (with equation of motion D = 0), so that

�α[ Ã, λ̃] = − 1
8

∫
d4x

{
γ μν λ̃ F̃μν

}
α

. (38)

An intermediate rescaled coupling flow operator is then given by [7,8]

R̃[ Ã] = −i�α[ Ã] δα + i√
g �gh[ Ã] s − 1√

g �α[ Ã] (
δα�gh[ Ã]) s . (39)

One can perform the contractions explicitly, obtaining gaugino and ghost propagators. Acting to the left, we write in compact notation

←
R̃ [ Ã] = − 1

8

←
δ

δ Ãμ
P̃μν [ Ã] tr

(
γ ν S̃[ Ã]γ ρλ

)
F̃ρλ

=
←
δ

δ Ãμ
Ãμ − 1

8

←
δ

δ Ãμ
P̃μν [ Ã] tr

(
γ ν S̃[ Ã] [2∂ · Ã − /̃A × /̃A

])
=

←
δ

δAμ
Aμ − 1

8

←
δ

δAμ
Pμν [A] tr

(
γ ν S[A] [2∂ · A − g /A × /A

])
,

(40)

where the first two lines are related by the identity

γ ρλ F̃ρλ = 2 /̃D /̃A + 2∂ · Ã − /̃A × /̃A , (41)

and we have inserted Ã = g A in the third line.
4
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Unrescaled coupling flow In [4] we demonstrated that the original (unrescaled) coupling flow operator is given by

R g[A] = 1
g

(
R̃[ Ã] − E

)
with E = A δ

δA . (42)

Hence, we can write with 2 S0 ∂ · A = −2 /AL = /A∗ − /A:

g
←
R g [A] = − 1

8

←
δ

δAμ
Pμ

ν tr
(
γν S

[
2∂ · A − g /A × /A

])

= − 1
8

←
δ

δAμ
Pμ

ν tr
{
γν

[ ∞∑
l=0

(−g S0 /A)l × ( /A∗ − /A) −
∞∑

l=0

(−g S0 /A)l S0 g /A × /A
]}

= − 1
8

←
δ

δAμ
Pμ

ν tr
{
γν

[ ∞∑
l=0

(−g S0 /A)l × ( /A∗ − /A) +
∞∑

l=1

(−g S0 /A)l × /A
]}

= − 1
8

←
δ

δAμ
Pμ

ν tr
{
γν

[ ∞∑
l=1

(−g S0 /A)l × ( /A∗ − /A) +
∞∑

l=1

(−g S0 /A)l × /A
]}

+ 1
4

←
δ

δAμ
Pμ

ν tr
{
γν /AL

}

= − 1
8

←
δ

δAμ
Pμ

ν tr
{
γν

∞∑
l=1

(−g S0 /A)l × /A∗}−
←
δ

δAμ
Pμ

ν AL
ν

= + g
8

←
δ

δAμ
Pμ

ν tr
{
γν

∞∑
l=0

(−g S0 /A)l S0 /A × /A∗}−
←
δ

δAμ
Pμ

ν AL
ν

= + g
8

←
δ

δAμ
Pμ

ν tr
{
γν S /A × /A∗}−

←
δ

δAμ
Pμ

ν AL
ν .

(43)

The necessity that R g [A] contains no term of order O(g−1) directly follows from �μ
ν AL

ν = 0 (27). More explicitly, we can expand the 
covariant projector (21) to find

Pμ
ν AL

ν = �μ
σ
{
δσ

ν − g Aσ

∞∑
k=0

(
−gG0

∂G(A)
∂ Aρ

Aρ

)k
G0

∂G(A)
∂ Aν

}
AL

ν

= − g�μ
σ Aσ G ∂G(A)

∂ Aν
AL

ν = −g�μ
σ Aσ

∞∑
k=0

(
−gG0

∂G(A)
∂ Aρ

Aρ

)k × B .

(44)

Therefore, the coupling flow generator can be written succinctly as

←
R g [A] = 1

8

←
δ

δAμ
Pμ

ν tr
{
γν S /A × /A∗} +

←
δ

δAμ
�μ

σ Aσ G ∂G(A)
∂ Aν

AL
ν , (45)

or in its full perturbative expansion as

←
R g [A] = 1

8

←
δ

δAμ
�μ

σ
{
δσ

ν − g Aσ G0

∞∑
k=0

(
−g ∂G(A)

∂ Aρ
Aρ G0

)k
∂G(A)
∂ Aν

}
tr

{
γν S0

∞∑
l=0

(−g /A S0)
l /A × /A∗}

+
←
δ

δAμ
�μ

σ Aσ

∞∑
k=0

(
−gG0

∂G(A)
∂ Aρ

Aρ

)k × B ,

(46)

which is the main result of this work. Together with (13), equation (46) offers a straightforward way to compute the Nicolai map in 
any gauge and to any order by collecting the powers of the gauge coupling. The first term generalizes4 the Landau-gauge on-shell flow 
operator of [5], with the distinct modification of the last factor A to A∗ . For our linear gauges, the second term reduces on the gauge 
hypersurface to

←
δ

δAμ
Aμ × B , (47)

but outside the gauge hypersurface it appears in even the Landau gauge. For gauge-invariant functionals X[A], our coupling flow operator 
simplifies considerably. Such situations are left for further study.

3. Axial gauge

Map construction As an example, we calculate the D = 4 Nicolai map in the axial gauge up to the second order. This includes the light-
cone gauge. Inserting G(A) = n · A, we obtain the coupling flow operator

4 Moreover, a similar graphical representation with Feynman-like graphs is possible.
5
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←
R g [A] = 1

8

←
δ

δAμ
�μ

σ
{
δσ

ν − g Aσ G0

∞∑
k=0

(
−gn · AG0

)k
nν

}
tr

{
γν S0

∞∑
l=0

(−g /A S0)
l /A × /A∗}

+
←
δ

δAμ
�μ

σ Aσ

∞∑
k=0

(
−gG0n · A

)k × B ,

(48)

with S0 = −/∂C , we can read off (see (12))

←
R 1 =

←
δ

δAμ
�μ

σ

[
Aσ × B − 1

8
tr

(
γσ /∂C /A × /A∗)]

,

←
R 2 =

←
δ

δAμ
�μ

σ
[−Aσ G0n·A×B + 1

8 Aσ G0nν tr
(
γ ν /∂C /A× /A∗) − 1

8 tr
(
γσ /∂C /A /∂C /A× /A∗)]

.

(49)

Evaluating the traces gives

R1 Aμ = −�μ
ν A(1)

ν with A(1)
ν := Cρ A[ρ A∗

ν] + 1
2 Cν Aρ A∗

ρ − Aν B , (50)

and

R2 Aμ = �μ
ν
[

AνG0n · A(1) − 3Cρ AλC[ν Aρ A∗
λ] + 2Cρ A[ρ A(1)

ν] + 2Cρ A[ρ Aν]B
]

, (51)

where we further simplified notation by writing ∂ρ C ≡ Cρ and with the understanding that the last object in each line is a color vector 
instead of a color matrix. For the second order we also need

R2
1 Aμ = �μ

ν
[

B�ν
λ A(1)

λ − AνCσ �σ
λ A(1)

λ + Cρ A[ρ�∗ λ
ν] A(1)

λ + Cρ A∗[ρ� λ
ν] A(1)

λ

]
, (52)

which we can simplify by inserting �∗ = 2 � −� and identifying (A − A∗)ρ = 2AL
ρ = 2∂ρ B:

R2
1 Aμ = �μ

ν
[

B�ν
λ A(1)

λ − AνCσ �σ
λ A(1)

λ + 2Cρ A[ρ �ν] λ A(1)
λ − 2Cρ∂[ρ B �ν]λ A(1)

λ

]
= �μ

ν
[
−AνCσ �σ

λ A(1)
λ + 2Cρ A[ρ �ν] λ A(1)

λ + 2Cρ B∂[ρ A(1)
ν]

]
.

(53)

In the second step we have used integration by parts5 in the last term and used

�μ
νCν = 0 , Cρ

ρ = 1 , ∂[ρ�ν]λ = ∂[ρδν]λ . (54)

With

Cσ �σ
λ = Cλ − G0nλ , (55)

when combining (51) and (53) to(
R2

1 A − R2 A
)
μ

= �μ
ν
[
−AνCλ A(1)

λ − 2Cρ A[ρCν]λ A(1)
λ + 2Cρ B∂[ρ A(1)

ν] + 3Cρ AλCν Aρ A∗
λ − 2Cρ A[ρ Aν]B

]
, (56)

we have found a structure where the ghost contribution only resides in the projector � at the beginning of each term.6 Inserting A(1)
λ of 

(50), with relations

CλCλ = CCλ
λ = C , C [ρλ] = 0 , etc. (57)

one quickly finds the following expression for the Nicolai map T g A = A − gR1 A + g2

2 (R2
1 − R2)A +O(g3) in the axial gauge for D = 4:

T g Aμ = Aμ + g�μ
ν
{

Cρ A[ρ A∗
ν] − Aν B

}
+ g2

2 �μ
ν
{

3Cρ AλC[ν Aρ A∗
λ] − 2Cρ A[ρ Aν]B − 2Cρ B∂[ρ(Aν]B)

+2Cρ A[ρCν]λ AλB − Cρ A[ρCν] Aλ A∗
λ + AνCλ AλB − 1

2 AνC Aλ A∗
λ

}
+g2�μ

[νCρ]BCρ
σ A[σ A∗

ν] + O(g3) .

(58)

Note that when setting B = 0, A = A∗ and � = �, one recovers the known expression for the Landau gauge (on its gauge hypersurface). 
From nμ� ν

μ = 0 it follows trivially that this map respects the gauge condition n · T g A = 0. The free-action and determinant-matching 
conditions,

S0[A′] = S g[A] and det
(

δA′
δA

)
= �MSS[A] �FP[A] , (59)

must also be obeyed, as they follow from the general construction. They may be verified as a cross-check of the expression in (58).

5 When integrating by parts away from B we obtain two terms: One where the derivative moves to the left, without a minus sign due to the structure of the position 
labels and one where the derivative moves to the right with a sign flip.

6 It is left for further study whether this can be achieved at higher orders.
6
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4. Conclusions and outlook

For N = 1 off-shell supersymmetric Yang–Mills theory with arbitrary gauge fixing, we have recast the coupling flow operator in a 
compact form with the help of the gauge projector � and a ‘conjugate’ gauge field A∗ = AT − AL. This allows for an efficient construction 
of the Nicolai map even off the gauge hypersurface, as we demonstrated for the axial gauge to second order in the coupling. It also 
elucidates the special character of the Landau gauge. Our formulation should also facilitate applications of the Nicolai map, like the ones 
initiated in [9,10].

Various further investigations come to mind, such as a study of the light-cone gauge, the effect of gauge transformations on the Nicolai 
map, a graphical representation of its perturbative expansion, its convergence properties, possible non-uniqueness related to the kernel of 
the coupling flow operator, a chiral variant of the map, an on-shell extension to higher dimensions and, not the least, the case of extended 
supersymmetry, in particular of N = 4 super Yang–Mills theory in four dimensions.

When writing up the present paper we received the preprint [11], which has substantial overlap with ours, but organizes the coupling 
flow operator in a different fashion. We have checked that their result for the axial gauge agrees with ours.
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