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ABSTRACT:

Public space is a scarce good in cities. There are many concurrent usages, which makes an adequate allocation of space both
difficult and highly attractive. A lot of space is allocated by parking cars - even if the parking spaces are not occupied by cars all
the time. In this work, we analyze space demand and usage by parking cars, in order to evaluate, when this space could be used for
other purposes. The analysis is based on 3D point clouds acquired at several times during a day. We propose a processing pipeline
to extract car bounding boxes from a given 3D point cloud. For the car extraction we utilize a label transfer technique for transfers
from semantically segmented 2D RGB images to 3D point cloud data. This semantically segmented 3D data allows us to identify
car instances. Subsequently, we aggregate and analyze information about parking cars. We present an exemplary analysis of the
urban area where we extracted 15.000 cars at five different points in time. Based on this aggregated we present analytical results

for time dependent parking behavior, parking space availability and utilization.

1. INTRODUCTION

Streets, sidewalks, roads or public spaces in general are places
where advantages and disadvantages of urban life lead to over-
lapping challenges (de Magalhaes and Carmona, 2009). Public
space is characterized by shared use through different actors.
As the demands on cities intensify, shared use becomes a com-
petition for this limited resource. To address this development,
it is crucial to quantify public space itself and its usage. In this
paper we propose to solve this task by exploiting the continuous
acquisition of environmental data with vehicle sensors and the
subsequent application of a deep learning (DL) model tailored
to semantic segmentation of mobile mapping data (Peters and
Brenner, 2019). The segmented data is aggregated to retrieve
spatial and statistical usage information.

Public space is characterized by the accessibility for all users
with as little restriction as possible. This open definition is nec-
essary in densely populated urban spaces and has the advantage
of the flexibility and the maximization of usage (Oranratmanee
and Sachakul, 2014). Different types of users (private, com-
mercial, governmental) use public spaces in the context of dif-
ferent applications (transportation, commercial activity, recre-
ation, etc.). The disadvantages of shared use are competition
for limited space and resulting poor planning ability (situational
for users, global for administration). The quantification of the
available space in the terms of mapping and dynamic recording
of temporal usage opens the possibilities for the administration
and users to compensate for the disadvantages described above,
and increases the potential usage.

The problem of identifying on-street parking statistics has al-
ready been tackled by (Bock et al., 2015), using classical ma-
chine learning methods for the semantic segmentation of the
points clouds. In our approach, we perform the semantic seg-
mentation by means of a DL model. This makes the approach
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more robust and flexible for investigation of different object
types (semantic classes), which also allows us to perform fur-
ther analyses, e.g., the pedestrians, cyclists. Identification of
unique objects within a semantically segmented point cloud (or
image) is the task of instance segmentation. Or, if organized
in an end to end manner it is called panoptic segmentation (Kir-
illov et al., 2019). This kind of task can be tackled with machine
(Deep) learning approaches, as proposed in (Liu et al., 2020),
(Schlichting and Brenner, 2016) or (Hong et al., 2020). In our
case the training data is missing for supervised machine learn-
ing approach. As a consequence we rely on a unsupervised
approach to generate a sufficient amount of data for analysis.
This study bases on car position information extracted from
semantic segmentation of 3D point cloud with corresponding
RGB images (Peters and Brenner, 2019). Such a semantic seg-
mentation can be created independent of our approach with dif-
ferent models like the 3D point cloud driven model (Zhou et
al., 2020) or by projecting semantic segmentation labels from
RGB images to 3D point cloud (Kochanov et al., 2020). The
point-wise semantic segmentation is then refined into the in-
stance segmentation of the relevant objects. The lateral extents
(bounding boxes) are transformed to global coordinates and ac-
cumulated over time in an occupancy grid. The acquisition of
data for this study is done using a Mobile Mapping System
(MMS). The MMS consists of two planar laser scanners and
four RGB cameras coupled with global navigation satellite sys-
tem (GNSS) receivers. The MMS allows recording of detailed
spatial information. Use of MMS in smart city applications is
common. In this study the temporal dimension of area usage is
captured by acquiring several measurements in a defined area
in a given temporal interval. This data set is used as a proof of
concept of our approach. However, in the future, such a concept
can potentially be carried out on large scale based on the sensor
data of future (autonomous) vehicles.

The remainder of this paper is structured as follows: Section 2
presents the approach to determine and map the concurrent us-
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ages of the space. In section 3 we conduct an experiment using
real data and present its results, which are discussed in the sub-
sequent section 4. With the temporal evaluation of the parking
space we show different applications which are based on our
mapping of the MPS. We conclude this paper by giving a sum-
mary and different aspects, which will be addressed in future
work.

2. APPROACH

Although on-street parking spaces usage or availability is a rele-
vant information, they are hardly mapped in today’s navigation
systems. Therefore, the idea of this paper is to automatically
extract this information by road users and their sensors (Figure
1 left). The basic assumption is that the available space can be
automatically determined by observing the whole space’s us-
age over time. With the focus on public spaces in the vicinity
of roads, Mobile Mapping Systems are a suitable measurement
tool, as they scan the environment around the vehicle with Li-
DAR and/or cameras. As it is rather difficult to automatically
detect a parking space, our approach follows the idea of (Bock
et al., 2015) and observes parked cars, as a proxy. Those ob-
jects can be easily and reliably detected with today’s Machine
Learning approaches (Tao et al., 2020). However, a parked car
does not necessarily mean that there is a (legal) parking place.
Thus, the temporal behavior of parking also has to be analyzed.

The approach to implement this idea consists of the three con-
secutive steps “car extraction”, “information aggregation” and

“information analysis and visualization”. In the following,
these steps are described in detail.

_, [Labeled _, Car
> Extraction

Parking space

RGB Semantic
MMS analysis

Segmentation . Point cloud —> [Car instances| — Aggregation >

Figure 1. Overview of the processing pipeline.

2.1 Car extraction

Given a point cloud capturing a street scene our goal is to as-
sign all unique car instances a unique ID and map this to all
3D points belonging to the respective car. In our workflow we
extract the car bounding boxes by means of six serially applied
processing steps (Figure 2). Since we are interested in the spa-
tial coverage of vehicles in on-street parking, the process is de-
signed to extract parked vehicles on the street covered by the
MMS data captures. The vehicles in the crossed side streets are
not relevant in this context. In this way, it is not necessary to
interpret the less dense, more distant parts of the point cloud.
The processing workflow is designed in such a way that vehi-
cles are extracted without outliers as far as possible, so that the
spatial information about the occupancy is not distorted. This
means in the trade-off between precision and recall, precision
was prioritized. The resulting lower number of extracted vehi-
cles is compensated for by the number of repeated recordings
and thus still a complete picture of usage is generated.

Besides cars, also other objects e.g. pedestrian, cyclist and
parked bicycles in the road environment can be identified us-
ing the same workflow, which, however, is not considered in
this paper.

Semantic
Segmentation

1

Region based Ground Region Filtering Boundi
Improvment Subtraction Growing by Rule Boxes

Figure 2. Overview of the workflow for bounding box
extraction.

(1) The point-wise semantic segmentation of the point clouds is
performed using the label transfer framework by (Peters and
Brenner, 2019), which avoids the time consuming and error
prone labeling of 3D point clouds. The input data is composed
of LiDAR data and RGB images. In the first step, the RGB
images are pre-segmented by the pre-trained (dataset: (Cordts
et al., 2016)) DeepLabV3 (Chen et al., 2017) model. In the
next step, the pixel-wise predictions from the RGB images are
projected to the LiDAR data (Peters and Brenner, 2019). The
output contains predictions of each 3D point into 14 classes,
namely building, bicycle, fence, wall, traffic sign, person, pole,
vegetation, car, sidewalk, rider, road. Our car class definition
differs from the original one in (Cordts et al., 2016); we con-
sider points labeled as bus and truck also as cars.

(2) In order to reduce the influence of the projection errors and
labeling errors in general, we apply a second processing step
which utilizes information about homogeneous regions (Bren-
ner, 2016) to filter falsely classified points (Felzenszwalb and
Huttenlocher, 2004).

Figure 3. Example homogeneous regions.

(3) In the third step of the process we remove not only the points
that are classfied as ground points bat also suchthat have similar
height values. In this way the objects are separated into isolated
clusters and an additional result is that falsely classified ground
points are also removed from the scene. To identify ground
points we investigate the heights distribution of the points la-
beled as ground in earlier steps. We ignore 5% of the highest
points as outliers and use the maximal height of the remaining
95% we use to crop of all ground points.

(4) The points labeled as car from the remaining point cloud are
clustered by means of the Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN) algorithm
(Mclnnes and Healy, 2017) (Campello et al., 2013).

(5) The cluster from the previous step contain outliers, namely
points from neighboring clusters which have been wrongly as-
signed in the previous step. Furthermore, not all the points de-
picting a car are assigned to the car clusters. In this step the the
outliers are removed and the clusters are miximized to the all
points depicitng a car. This step is executed isolated per single
identified cluster C as set of 3D points. We calculate centers of
mass (com) for all cluster points C'. We select within a radius r
to com as car labeled points which are most probable to be part
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of a car and call this points seed C C'. Then we select points
within a radius 7. to com from the result from the step (3)(com-
plete point cloud without the ground points). These points con-
tain all potential car points. We call them candidates. Sub-
sequently, we voxelize both seed and candidates and use the
region growing algorithm to identify all car points within the
candidate grid based on the seed input.

(6) Finally, the instances represented by different clusters are
filtered based on a set of rules. A car instances is assumed to be
valid if all following criteria are met.

e The car instance consists of more than minp minimal
number of points.

o The length of the bounding box is less than max! the max-
imal length.

e The width of the bounding box is more than minw the
minimal width.

2.2 Information aggregation

Subsequently, similar to the work of (Schlichting and Brenner,
2016), the footprints of the extracted cars are put into rela-
tionship with the street geometry to identify potential parking
space. For this purpose, prior environmental information like
street and building geometries and the previously extracted car
observations at certain locations are taken into account. In order
to represent the temporal dynamics of the car occupancies, the
space is discretized by an occupancy grid, in which each grid
cell holds the information about the car observations and their
observation times. The observation data model for each cell is
given by

observations = {01, 02,...,0n}. €]
0; = {xl,yl, 22,92, x3,y3, x4, y4,t, type} )
and
where o0; = the i-th observation

x;,y; = bounding box of the object’s footprint
t = the observation time
type = the object’s type.

The prior information about the environment is used to exclude
certain regions which usually cannot be used for parking or
other purposes. To this end, building footprints and the lanes
of the street are left out during the discretization. The infor-
mation about the footprints and the street lanes are obtained
from OpenStreetMap (OSM) (contributors, 2017). The latter
are approximated by applying a buffer operation to the line ge-
ometries of the roads, because OSM does not provide any areal
information for roads. Further, we also omit spaces, which are
too far from any street. The resolution of the grid, i.e. the cell
dimensions, is adjustable to the later use case. In general, with
increasing resolution, the accuracy of the approximation of the
space but also the processing effort will increase, too.

2.3 Information analysis and visualization
The above-described pipeline allows us to present an easy up-

dateable map of parking space. Furthermore, for this map the
usage over time is available. In addition, the generated data

allows us to compile an overview of possible alternating us-
ages. For instance, free parking slots can be temporarily used
for other purposes such as mobile electrical charging stations
or mobile logistics delivery hubs. Such instances can be deter-
mined using GIS-analyses by searching for locations of a cer-
tain size, which are available for a certain duration in time.

3. EXPERIMENT AND RESULTS

In order to evaluate the proposed approach, we conducted an ex-
periment based on data obtained from an already existing map-
ping campaign. In the following, the application and the results
of the individual intermediate steps will be described in detail.

3.1 Mapping campaign and data

The campaign provides data from a defined round course (cf.
Figure 4) on different days and day times. This round leads to
the northern part of the city of Hanover, Germany, and covers
26 km. During the campaign, it has been completed 5 times in
total. Certain locations have been visited twice in one round.

Figure 4. The route of the mapping campaign which provides
the data is in the northern part of Hanover, Germany (basemap:
Stamen Maps).

For the acquisition of the required data the mobile mapping sys-
tem Riegl VMX-250 (cf. Figure 5) has been used. This system
uses two 2D lasers VQ-250 with a sampling rate of 300k mea-
surements per second, a precision of 5 mm and an accuracy
of 10 mm. The lasers are mounted on the roof of a Volkswa-
gen T4 and are directed backwards. For the positioning of the
system, position high-precision global navigation satellite sys-
tem (GNSS) is used with an Inertial Measurement Unit (IMU)
(Applanix POS-LV 510) with a position accuracy of 15-30cm in
height and 20cm in lateral plane. The RGB images are captured
by 4 rear- and side-facing cameras.

3.2 Car Extraction

Applying the car extraction process (2.1) to the experiment pro-
vides the following results.

The result of the first processing step (1) for the car extraction
is presented in the upper part of the Figure 6. The visualization
of the 3D point cloud colored by the assigned semantic label
is mostly valid. The trees are classified as vegetation. Wall,
fence, road and sidewalk are also mostly classified correctly.
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Figure 5. Riegl VMX-250 mounted on the top of the
volkswagen T4.

The classification of the fence at the left side of the upper Figure
6 includes several artifacts. Several blocks of points are falsely
classified as sidewalk, vegetation and car. The three cars visible
(in blue) at this scene are also mostly classified correctly. At
the bottom part of the care in the foreground on the left several
misclassifications as road are visible. After applying the second
processing step (2) from the car extraction process several mis-
classification are fixed. Three prominent examples of such an
improvement are marked on the left side of the bottom part of
Figure 6.

Figure 6. Visualization of the 3D labeled data. At the top we see
the results of the projected semantic segmentation from the
processing step (1). Bottom part shows the improved
segmentation from the processing step (2). The color map: Blue
- Car, Purple - Road, Pink - Sidewalk, Green - Vegetation, Light
Green - Terrain, Yellow - Traffic Sign, Grey - (Wall, Pole,
Fence), Light Blue - Accent Marker

In the third step of the car extraction process (3) the ground
points are removed. In Figure 7 an exemplary result is shown.
Single objects like trees and cars on the street are separated
into isolated clusters. Furthermore this step removes some false
positive car classifications. In Figure 8 points classified as car
are shown before the subtraction of the ground points (top) and
after the processing step (3). The light blue circle shows an

area where ground points falsely classified as car have been re-
moved.

Figure 7. Visualization of the 3D labeled data with removed
ground points. The result of the third car extraction processing
step (3). The color map: Same as in Figure 6

Figure 8. Visualization of the points labeled as car. Top part
shows point cloud before removing the ground points and at the
bottom part after removing the ground points.

Following the removing of the ground points, the remaining
points labeled as car are clustered in the fourth processing step
(4). The result is shown in the upper part of the Figure 9. The
three cars in the scene are assigned to unique clusters. The clus-
ter of the car on the left contains a large number of outliers. In
addition, some of the points falsely classified as car have been
also assigned to unique clusters, they can been seen in Figure
9 marked with green and yellow color . This assignments to
the clusters are used in the fifth processing step (5) - the region
growing - to generate seed points and the data shown in Figure
7 is used to generate candidate points for the region growing
algorithm. Here we set r; and r. to 0.5m and 3m respectively.
The result of the region growing step is shown in Figure 9, bot-
tom part. The shown point clouds follow a homogeneous grid
as they show centroids of the voxel generated within the region
growing step. All three cars present in the scene are identified
as unique cluster with no visible outliers included. The only re-
maining outliers are two identified clusters based falsely as car
classified fence points. This false classified clsuters can be seen
on the left side of the Figure 9 marked with green and yellow
color.

In the final step we apply rules to filter not reasonable car clus-
ters. Nonparallel lateral bounding boxes are estimated for each
cluster. Such cluster with width less then 0.5m and length larger
then 6/ are removed as they don’t fit the typical extent of a car.
Also sparse and/or small clusters with less then 500 points are
ignored. The result is shown in Figure 10. All three cars in
scene are identified as unique, separate instances.

After processing 183GB of data and 5.2 billion points in total
15.914 cars are extracted. Their footprints are depicted in Fig-
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Figure 9. Visualization of the points labeled as car clustered and
colored in single random color per cluster: before (upper part)
and after region growing (lower part).

Figure 10. Visualization of the final result of the car extraction.
The points are colored in single random color per car instance.

ure 11 with red color. In this example, besides the cars located
along the streets also those cars on a dedicated parking place
(center left) are detected. To verify the accuracy, We investi-
gated manually three randomly selected sections of data. Out
of 100 cars present in the data 72 have been instantiated cor-
rectly and 7 objects have been falsely identified as cars.

3.3 Information aggregation

According to the aggregation step (subsection 2.2) the occu-
pancy grid (Figure 13) is generated. To have a good trade-off
between approximation accuracy and computational effort, we
use a cell size of 1 m x 1 m. This leads to about 11M grid cells
in total.

In order to calculate the occupancies, the extracted cars are pro-
jected into the grid. This results in 37235 cells, which own at
least one car observation. The maximum count of observations
on the grid per cell corresponds to the number of visits during
the campaign. This means that this location has been occupied
each time it has been visiting during the experiment. In contrast
to that, we can also observe cells holding only a single obser-
vation. Figure 12 shows the percentage of cells according to
the count of observations. Approximately 25 % of the cells are
visited at least 5 times.

The results are visualized in Figure 13. Each grid cell holds
the information about the different objects and their observation

Figure 11. The extracted cars (red boxes) on top of a basemap
(Stamen maps).
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Figure 12. Proportion of the cells according to the count of
stored observations.

times as shown in the top part of the figure. The color intensity
encodes the observation frequency. In this example, a row of
cars (black footprints) has been observed in several rounds of
the campaign. This can be a hint that there is a potential space
for parking. However, the observation frequency is not the same
for all the locations. For instance, the red marked cell is occu-
pied more often than the blue cell. The obvious reason for this
is that the underlying parking possibility seems not to be used
that regularly. By having a closer look at the occupancy times,
it seems that blue location is usually used during lunch time,
whereas the red one is also used in the morning.

3.4 Information analysis and visualization

Based on the generated occupancy grid different analyses can
be performed. The first and directly derivable evaluation is the
characterization of the popularity of the parking spaces based
on their occupancy rates. The higher it is, the higher the popu-
larity is. On the opposite, low occupancy rates indicate unpop-
ular or atypical parking possibilities. Please note, that we con-
sidered cells with at least one parking car as a potential parking
space - of course, before doing so, the distinction into legal and
non-legal has to be made. Cells with no observation at all are
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Figure 13. The number of occurrences of extracted cars are

encoded by the color intensity of the grid cells (basemap:
Stamen Maps).

/

not considered for this analysis as there is no evidence that there
is parking space in general.

Another analysis is performed by evaluating the usual occu-
pancy times. To this end, the time of the day is split up into
different intervals. Subsequently, the cells are classified by the
occupancy during those time intervals. If there is at least one
observation in an time interval, the latter will be treated as oc-
cupied. Otherwise it will be treated as free. In the example
given by Figure 14, there are two intervals: 1 - 12 am and 13
- 24 pm. While the green and blue cells indicate spaces which
are usually occupied during the first and second interval, the red
cells show regions which are occupied in both intervals. In this
example, the framed street shows a different behavior than the
neighboring streets. The occupancy is limited to the first inter-
val. From this it can be inferred that it is a residential street,
where most cars have left during the day.

The latter analysis can be generalized to enable a search for free
parking spaces, which can be used for other usages, in a certain
time interval. For this purpose, the cells’ occupancy time-series
have to be evaluated. It has to be checked whether the cells are
free of observations during this interval. An example is illus-
trated by Figure 15. There, the result of a search for the time
period between 12 am and 2 pm is visualized on the map. Sim-
ilar to this, the search for places which offer maximum time
periods can be determined accordingly.

Figure 14. The usage before and after 12 am is encoded by
different colors. Green: occupied before 12 am, blue occupied
after 12 am, red occupied all the time. (basemap: Stamen Maps).

Figure 15. The availability of the space during the requested
time period (12 am to 2 pm). Green cells encode free, red cells
occupied space (basemap: Stamen Maps).

4. DISCUSSION

The car extraction step of our approach provided 15.000
unique car bounding boxes. This number made a sufficient
analysis of the space usage possible. Nevertheless the manual
validation of the results showed that 28 out of 100 cars have not
been identified correctly and 7 objects has been misclassified.
This error has been compensated by the large amount of data
processed and analyzed and should not have influenced the an-
alytical results. Nevertheless improvements in this step would
allow analyzing smaller data sets and allow complementary as-
sumption, if no vehicles are sighted. For example, if there is
no vehicle presence at a location, we would be able to assume
that there were actually no vehicles there. At the moment we
can only assume that if several cars are observed at certain po-
sitions the false positive error is not decisive.

The reasons for the errors in identification of car instances can
be suspected in single processing steps as follows: (1) The pro-
jection of the semantic segmentation from RGB images in to
3D point cloud allows making use of larger available reference
data to combine with effective models tailored for RGB images.
The results shown here suffer from projection errors. Some of
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the errors introduced in this step errors cannot be corrected by
the subsequent step. A possible strategy to tackle this problem
is to switch the paradigm and to use 3D point cloud oriented
models. (2)Segmentation improvement step is capable of re-
ducing number of segmentation errors which are few in number
and located within a homogeneous region. Obviously it is not
suficient as the larger erroneously classified areas have a higher
potential to become source for instantiation failure. Although
this homogeneous region based error filtering is not suitable for
the instantiation of objects with small homogeneous areas or no
homogeneous areas at all like pedestrians ob bicycles. A pos-
sible alternative could be to apply a more elaborate framework
for label transfer like (Kochanov et al., 2020) or (Boulch et al.,
2018). (3) The ground removal approach used in this study is
straightforward and simple yet effective for small scenes with
no or little ground height variation. For a more robust behavior
this ground removal step should be applied to tiles of limited
size. (4) The used clustering approach is suitable for the earlier
defined requirements of identifying on-street parking of unique
cars. The drawback is the limited robustness regarding the vari-
able density of point clouds. In this study this problem is not
crucial due to its focus on on street parking withing the homo-
geneously and densly scanned space. For future studies with
other objects classes, alternative approaches like in (Hong et
al., 2020) can be considered. Generally, this methodology can
be similarly applied to analyze space usage by other traffic par-
ticipants like pedestrians or cyclists. The prerequisite for this is
the availability of corresponding semantically segmented data.

The information aggregation step discretizes the MPS into a
grid and takes into account underlying environmental informa-
tion. During that process the street areas are only approximated
by a buffer operation to the OSM street center line. A more ac-
curate way can be the integration of official cadastral map data
provided by the municipalities.

Further, as this work is based on a limited amount of data, a
temporally more dense and better distributed data acquisition
will provide even more reliable results. Especially, the temporal
analyses will significantly benefit by this.

5. CONCLUSION AND OUTLOOK

In this work we present an approach to determine parking space
and its concurrent usage possibilities. The proposed method
processes Mobile Mapping Data and consists of three consec-
utive steps. During the car extraction step a semantic segmen-
tation is applied to the LiDAR data and RGB image data to
extract the required car objects. The following information ag-
gregation step generates an occupancy grid, which also stores
information about the observation counts and times. In the last
Information analysis and visualization step the occupancy grids
are evaluated to obtain the results for different proposed analy-
ses. Finally, this approach is evaluated by conducting an exper-
iment, which uses a real data set with 5 acquisitions of the same
area.

Although the used methods provide promising results, there are
different open aspects to be tackled in future work. As we only
focus on cars in this work, our approach can be extended to also
consider other object types like pedestrians or bicycles, which
share the available MPS. To this end, only the extraction process
has to be adjusted to provide the footprints of those objects.
The occupancy grid generation is already designed to handle
different object classes.

In future work, we will also investigate and analyze possible
measurement schemes in order to acquire the temporal infor-
mation in a necessary resolution and quality. To this end, a
sensitivity study should be performed.

Finally, analyses, which also take into account cell neighbor-
hood relations, can be applied to the occupancy grid. In this
way, it is possible to search for certain constellations by adding
neighborhood constraints. For instance, in order to place mo-
bile charging stations, one has to look usually free spaces,
which are adjacent to popular and highly used parking spaces.
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