

11 Leibniz 102 Universität 1094 Hannover

Applying phase center corrections also to code observables? - A PPP case study

- 28th IUGG General Assembly 2023 -G01g :: Reference systems and frames

> T. Kersten, J. Kröger Y. Breva and S. Schön

Institut für Erdmessung Leibniz University Hannover

Kersten et al. | July 12th - 20th, Berlin, Germany

GNSS receiver antenna uncertainties

Is the topic of receiver antenna calibration finally answered?

Yes, it has been adequately answered!

No, far from it!

Kersten et al. | 28th IUGG General Assembly 2023 | July 12th - 20th, Berlin, Germany

GNSS receiver antenna uncertainties

Is the topic of receiver antenna calibration finally answered?

Yes, it has been adequately answered!

- Calibration facilities: available, independent approaches (chamber, field-robot)
- Receiver antenna calibration values: available for carrier phase (PCC), global and regional
- Multi-GNSS PCCs: available for more and more antennas

No, far from it!

GNSS receiver antenna uncertainties

Is the topic of receiver antenna calibration finally answered?

Yes, it has been adequately answered!

- Calibration facilities: available, independent approaches (chamber, field-robot)
- Receiver antenna calibration values: available for carrier phase (PCC), global and regional
- Multi-GNSS PCCs: available for more and more antennas

No, far from it!

- Lack of quality measures to validate calibration institutions or approaches
- Open questions regarding the impact of group delay variations (code observable, GDV/ CPV)
- Lack of updates for PCC exchange (ANTEX update) and quality measures

Phase Centre Correction requirements

Phase centre corrections (PCC) need to be

- Accurate prerequisite for precise GNSS applications and products
- Reliable value of integrity (differences of robot and chamber, updates of PCCs)
- Consistent products such as ITRF, orbits, clocks, GNSS IWV require reliable antenna information

Receiver antenna as a bottleneck

- Inconsistencies in GNSS time series (e.g. antenna change, change of LNA)
- Instrumentation (antenna design, surroundings etc.) and interaction (DFG project MAESTRO)
- Location / installation (visibility, geographic location etc.) (Kröger et al., 2022)
- Data processing (methods, cut-off, ambiguity resolution, mapping function etc.)

Kröger et al. (2022). How Do Different Phase Center Correction Values Impact GNSS Reference Frame Stations?, IAG REFAG 2022

Phase Centre Correction requirements

Phase centre corrections (PCC) need to be

- Accurate prerequisite for precise GNSS applications and products
- Reliable value of integrity (differences of robot and chamber, updates of PCCs)
- Consistent products such as ITRF, orbits, clocks, GNSS IWV require reliable antenna information

Same is valid for code phase variations [group delay variations] (CPV /GDV)

Receiver antenna as a bottleneck

- Inconsistencies in GNSS time series (e.g. antenna change, change of LNA)
- Instrumentation (antenna design, surroundings etc.) and interaction (DFG project MAESTRO)
- Location / installation (visibility, geographic location etc.) (Kröger et al., 2022)
- Data processing (methods, cut-off, ambiguity resolution, mapping function etc.)

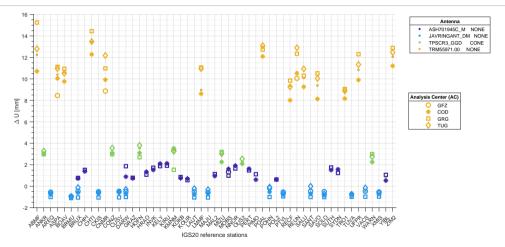
Requirement: We need tools for a sound verification of antenna information!

Kröger et al. (2022). How Do Different Phase Center Correction Values Impact GNSS Reference Frame Stations?, IAG REFAG 2022

Effects due to change of updates in ANTEX type-mean files

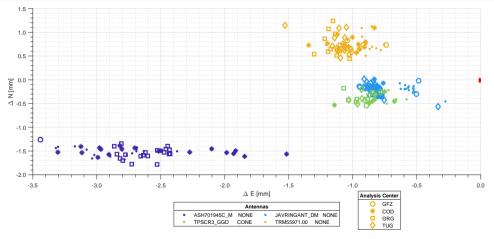
Reported effects on IGS20 reference coordinates (IGSR3.atx to IGS20.atx update)

- PCC-update of four antenna types affects 53 IGS reference stations
- Study the effect to assess uncertainty and derive statistical boundaries
- Check for displacements and variability on parameter doamin


Parameters to check for antenna updates and variations in global networks (multi GNSS)

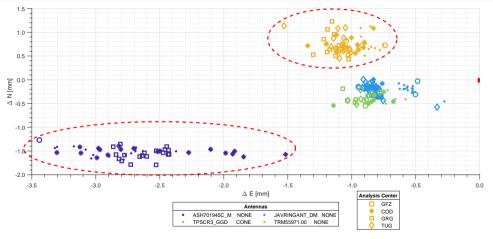
- Each antenna separately processed with PPP time series, data by IGS-IGN (IGS IGN, 2023)
- > PPP results provided by different analysis centers (ACs), individual software
- Differences on topocentric position deviation vs. known reference coordinates (N, E, U)

Effects on topocentric Up-component



Data source: IGS IGN, 2023

Effects on topocentric North- and East-component



Data source: IGS IGN, 2023

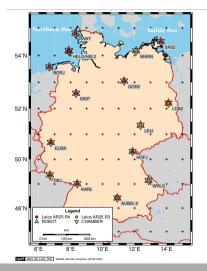
Effects on topocentric North- and East-component

Data source: IGS IGN, 2023

Results on type-mean ANTEX update

Outcome

- Effects on position domain due to ANTEX-updates (multi GNSS) and processing parameters
- ▶ North-/East-component: ±1 mm, deviations with up to of 3-4 mm for ASH701945C_M (NONE)
- Up-component affected by up to +15 mm for TRM55971.00 (NONE)


Important results

- Discontinuities for station specific time-series (geometry) due to PCC updates
- Discontinuities in derived parameters, such as e.g. troposphere, clock (other than geometry)
- > Affected precision for PPP and network processings (due to linear combinations, multi-GNSS etc.)

Case study - individual calibration sets from different facilities

Data sets

- Analysed sites (BKG, one ROB) with individual antenna calibrations for methods robot and chamber (amount: 25 samples)
- Calibrations from Geo++ and Uni Bonn from the years 2010 to 2018
- Main antenna type: LEIAR25.R3/R4 (LEIT/NONE)

Strategy

- Observation domain: PCC comparisons
- Parameter domain: PPP, analyse PCC uncertainties
- CPV/GDV: assess effect of code/carrier phase consistency

Comparison strategies – scalar metrics

Differences of PCC (simplified approach)

- Differences in azimuth and elevation
- Differences in elevation only
- Loss to comprehensive information for both cases

Scalar measures (extended approach)

- Standard deviation: quadratic deviation between PCC sets: $\sigma_{\Delta PCC}$
- Range: maximum range between the PCC sets: $r_{\Delta PCC} = (max(\Delta PCC) min(\Delta PCC))$
- Spread: maximum in range: $s_{\Delta PCC} = (r_{PCC_i} r_{PCC_i})$
- Correlation coefficient: overall similarity between two patterns (Pearson correlation coefficient)

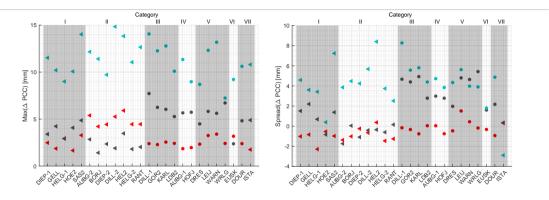
Kersten et al. (2022), J Geod 96, 48, doi: 10.1007/s00190-022-01635-8

Comparison strategies – scalar metrics

Differences of PCC (simplified approach)

- Differences in azimuth and elevation
- Differences in elevation only
- Loss to comprehensive information for both cases

Scalar measures (extended approach)

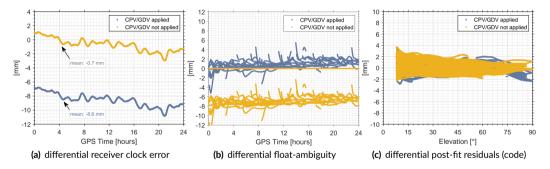

- Standard deviation: quadratic deviation between PCC sets: $\sigma_{\Delta PCC}$
- Range: maximum range between the PCC sets: $r_{\Delta PCC} = (max(\Delta PCC) min(\Delta PCC))$
- Spread: maximum in range: $s_{\Delta PCC} = (r_{PCC_i} r_{PCC_i})$
- Correlation coefficient: overall similarity between two patterns (Pearson correlation coefficient)

Kersten et al. (2022), J Geod 96, 48, doi: 10.1007/s00190-022-01635-8

Comparison strategies – scalar quality metrics for \triangle PCC between robot and chamber

\triangle PCC (chamber - robot) with following chamber calibrations									
 L1 - chamber 	(< 2013)	L2 - chamber (< 2013)	٠	L0 - chamber (< 2013)					
 L1 - chamber 	(2013 - 2018) 🛛 ٵ	L2 - chamber (2013 - 2018)	٩.	L0 - chamber (2013 - 2018)					

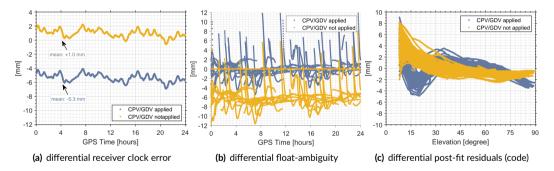
Kersten et al. (2022), J Geod 96, 48, doi: 10.1007/s00190-022-01635-8


Kersten et al. | 28th IUGG General Assembly 2023 | July 12th - 20th, Berlin, Germany

Impact of PCC on estimated parameters - PPP approach (code and carrier phase)

GNSS-Site Lindenberg (LDB2, DEU, indiv. PCC chamber versus robot)

Outcome


- Value of differential receiver clock error and differential ambiguity swaps
- Differential PCO offset reveals inconsistency of carrier phase and code

Impact of PCC on estimated parameters - PPP approach (code and carrier phase)

GNSS-Site Augsburg (AUBG, DEU, indiv. PCC chamber versus robot)

Outcome

- Value of differential receiver clock error and differential ambiguity swaps
- Differential PCO offset reveals inconsistency of carrier phase and code

Next steps in receiver antenna calibration

Current status

- Variations due to hardware (antenna, receiver etc.), software (processing software) and processing concepts (double differenced vs. undifferenced approach)
- Multi-GNSS calibration values not always available
- Usability of individual vs. type mean calibrations (station & network operators, analysis centres)

Initiation of ring calibration and validation campaign

- Assess quality metrics in procedures and facilities
- Coordinated concept of PCC exchange (magnitudes, stability etc.)
- Definition of standards and a rigorous process for consistent comparison of PCC sets

IGS receiver antenna calibration and validation ring campaign (ringCalVal): overview

Procedure

- Start Sept. 2022, with focus to finish calibrations in 2023
- Meeting in July/August 2023 to coordinate the evaluation part and concept

Participants

- Different robots and approaches: National Geodetic Survey (NGS), Topcon Italy, ETH Zurich, GNSS Research Center Wuhan (GNSS-RC)
- Same robots different approaches: Geo++, Inst. f. Erdmess. (IfE), GeoScience Australia (GSA)
- Anechoic chamber: Uni Bonn, German Aerospace Center (DLR) Oberpfaffenhofen

Calibration samples

Geodetic grade antennas: 4 x choke ring antennas, 1 x Zephyr II, 1 x rover antenna

IGS receiver antenna calibration and validation campaign (ringCalVal): current status

Region	Method	Institution	TPSCR.G5C	TPSG5.A1	JAVRINGANT_DM	TRM57971.00	LEICA25.R3	HXCCGX601A
Australia	robot	GSA - Geoscience Autralia	9	9	1	1	9	9
China	robot	GNSS Research Center of Wuhan University (WHU- GNSSRC)	8	8	3	3	8	1
Europe	chamber	DLR German Aerospace Centre Institute of Communications and Navigation	5	5	9	9	4	8
		Uni Bonn	4	4	8	8	3	7
	robot	Geo++ GmbH	3	3	7	7	2	6
		TOPCON AGRICULTURE S.R.L.	1	1	5	5	5	4
		ETH Zurich	6	6	4	4	6	3
		LUH-IfE	2	2	6	6	1	5
USA	robot	NGS/NOAA	7	7	2	2	7	2

Legend

1:= last stop in rotation antenna(s) not arrived/calibrated antenna(s) under testing/calibration waiting position for receiving antenna(s) as next finished testings/calibration

Summary and conclusions

Summary

- Effect of PCCs on PPP with carrier phase and code divergences shown (IGS & EPN sites)
- Comparison strategy for receiver antennas with dependencies of calibration facilities
- Independent scalar metrics helpful for PCC comparisons

Conclusions

- Reduce the instrumental impact of calibration methods and facilities
- Need for verification strategies for carrier-phase and code calibration sets (consistency)
- IGS ring calibration (IGS ringCalVal) provides further insight into the stability of PCC (and CPV/GDV) sets

Dr. T. Kersten, J. Kröger, Y. Breva & Prof. Dr. S. Schön Institut für Erdmessurg Schneiderberg 50 D-30167 Hannover, Germany phone + 49 - 511 - 762 5711 web http://www.ife.uni-hannover.de mail & kersten@ife.uni-hannover.de

created with LATEX beamer

i.

IGS IGN (2023). "Position offsets of IGS20 reference frame stations due to ground antenna calibration updates from igsR3.atx to igs20.atx". In: ITRF2020-IGS2020. URL: igs-rf.ign.fr/pub/IGS20.

Kersten, Tobias, Johannes Kröger, and Steffen Schön (July 2022). "Comparison concept and quality metrics for GNSS antenna calibrations". In: Journal of Geodesy 96.7. DOI: 10.1007/s00190-022-01635-8.

Kröger, Johannes, Tobias Kersten, Yannick Breva, and Steffen Schön (2022). "How Do Different Phase Center Correction Values Impact GNSS Reference Frame Stations?" In: IAG International Symposium on Reference Frames for Applications in Geosciences (REFAG 2022), October 17-20, Thessaloniki, Greece.