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Abstract

Safe and e�cient tra�c systems constitute a cornerstone of modern life. This thesis

provides a comprehensive treatment of the topic of risk in tra�c systems. Based on an

interdisciplinary research approach, novel models and methodologies are developed to

investigate the impact of individual driving style, technological innovation, and tra�c

system design on safety and e�ciency. For this purpose, perspectives and techniques

from tra�c modeling and insurance mathematics are combined.

First, we develop a microscopic tra�c model that can describe the occurrence of tra�c

accidents due to random misperception, a type of error that is relevant for both human

drivers and sensors of autonomous vehicles. The model allows us to characterize the

real-world tradeo� between safety and e�ciency in case studies.

Second, we generalize the microscopic tra�c model to study the important scenario

of an unsignalized urban intersection, a particularly accident-prone area. We apply the

concept of random misperception to model the occurrence of accidents and discuss the

numerical solution of the random ordinary di�erential equations involved using state-of-

the-art methods. In case studies, we analyze the impact of driving styles on di�erent

types of con�icts; we also consider the important case of heterogeneous tra�c participants

where human drivers and autonomous vehicles coexist.

Third, we devise a methodology that makes microscopic tra�c models accessible for

a statistical study of tra�c accidents and corresponding �nancial losses. The approach

enables comprehensive risk management for tra�c systems: We study the impact of

changes in the design of vehicles and transport systems on functionality and road safety,

and price insurance contracts that cover residual risks.

Fourth, we complement the above microscopic approaches with a macroscopic per-

spective: We investigate stochastic cell transmission models of tra�c networks. The

performance of tra�c systems is evaluated based on preference functionals and accept-

able designs. The numerical implementation combines simulation, Gaussian process

regression, and a stochastic exploration procedure.

Keywords: Acceptable design, accidents, active learning, autonomous vehicles, car-

following models, cell transmission models, digital twins, Gaussian process regression,

insurance premiums, machine learning, microscopic tra�c models, MODIS, perception

errors, random ordinary di�erential equations, SUMO, tra�c �ow.
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1 Introduction

Mobility provides a basis for economic activity and social interaction. E�cient tra�c

systems are indispensable for the exchange of goods, the daily commute to work, or

even travel. They lay the foundations for prospering economies and growing welfare.

Yet, mobility has a price in terms of safety. Be it conscious or not, entering a vehicle

is always an individual decision to take a risk: Tra�c accidents, ranging from minor

rear-end collisions to fatal crashes, occur every year all over the world. The resulting

losses are signi�cant and potentially tragic:

� The global economic cost of tra�c crashes is estimated to be $1.8 trillion from

2015�2030 (cf. Chen et al. (2019)).

� Around 1.3 million people die in tra�c accidents worldwide each year (cf. World

Health Organization (2019)).

These �gures underscore the need for improvement. The key to tackling this lies in the

interplay between technological innovation, tra�c rules, and driving behavior.

In the future, autonomous vehicles are expected to replace human drivers as the main

source of errors that lead to tra�c accidents. Broadly, the idea is that these vehicles

will use computer vision and machine learning to perceive their environment and make

better decisions in less time. Autonomous vehicles are supposed to increase both safety

and e�ciency. It is a disruptive technology that allows us to rethink and redesign tra�c

systems (e.g., Bertoncello & Wee (2015)).

Nevertheless, tra�c accidents will never be completely avoided � the risks can only be

mitigated. A key question here is: How can we examine the risks associated with future

technologies? Classically, one would use statistical methods to evaluate historical data

and quantify potential impacts. However, this has limited applicability because historical

data on future transportation systems are, by de�nition, unavailable. In this thesis, this

fundamental challenge is addressed as follows: We develop models and generate arti�cial

data through simulation. Counterfactual case studies allow us to envision and evaluate

developments in a controlled simulation environment.

More generally, the optimal design and operation of vehicles and tra�c systems is an

important subject of study. Challenging problems arise in both academia and practice,

even in the theoretical absence of accidents. Technological improvements and adapted

tra�c rules can mitigate accident risks and improve the tradeo� between safety and e�-

ciency; tra�c systems can be designed to yield acceptable outcomes. This is an engineer's

9



10 Introduction

view of risk in tra�c systems. A comprehensive risk management approach for tra�c

systems adds an actuarial perspective to the traditional engineering perspective: When

residual risks are identi�ed and appropriately quanti�ed, insurance contracts enable the

�nancial transfer of risks to insurance companies. The computation of adequate premi-

ums that re�ect technology and driving behavior requires a thorough understanding and

precise quanti�cation of losses.

In line with this general motivation, this thesis develops models and corresponding

methodology for studying risks in tra�c systems. In particular, the following speci�c

topics are addressed:

� Models of Tra�c Accidents. We develop microscopic tra�c models to better un-

derstand the formation of accidents in relation to driving styles and errors. Our

approaches allow us to characterize the real-world tradeo� between safety and ef-

�ciency for potential future transportation systems.

� Risk Management of Tra�c Systems. A comprehensive view of the risk manage-

ment of tra�c systems considers not only e�ciency, but also the �nancial losses

caused by accidents. We develop a methodology to make microscopic tra�c models

accessible for the quanti�cation of such �nancial losses. This allows us to study

the in�uences of driving style and technology not only on e�ciency, but also on

the distribution of total losses and the prices of corresponding insurance contracts.

� Design of Tra�c Systems. We investigate general cell transmission models that

capture the motion of tra�c participants at a high level of aggregation. These

macroscopic models allow to study the performance of large-scale tra�c systems

depending on their design. To control and compare di�erent tra�c systems in

the face of randomness and risk, we suggest the notion of acceptable design as a

normative classi�cation and categorization.

All contributions presented in this thesis are the result of an interdisciplinary research

approach. The ubiquitous combination of engineering and insurance perspectives makes

the study of risk in tra�c systems an important research question in the context of

operations research. A stylized representation of the underlying approach can be found

in Figure 1.1; it is an ongoing process that thrives on taking the di�erent perspectives

and connecting them. Here, a pluralism of models, both microscopic and macroscopic,

allows di�erent aspects to be illuminated: While microscopic tra�c models focus on

the behavior of individual road users, macroscopic models enable investigations at the

system level.

The following chapters of this thesis are self-contained and point out speci�c references

to related research. The contributions can be summarized as follows:

Contributions of Chapter 2. In Chapter 2, we extend an existing microscopic traf-

�c model by the concept of random misperception: This refers to randomly occurring
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Figure 1.1: Stylized research approach.

perceptional errors which are relevant to both human drivers and autonomous vehicles.

We model errors dynamically by stochastic processes and investigate their impact on the

safety and the e�ciency of tra�c systems through Monte Carlo simulations.

(i) This chapter yields insights into the occurrence of accidents and their e�ects on

tra�c �ow. Particular emphasis is put on the interplay between safety gaps and

margins of perceptional errors.

(ii) We characterize the tradeo� between safety and e�ciency in simple scenarios (one-

lane road and t-junction).

Contributions of Chapter 3. In the third chapter, we develop a more general mi-

croscopic tra�c model of an unsignalized intersection to which we apply the concept of

random misperception. Besides, we extend the previous work of Chapter 2 in multiple

directions:

(i) We provide a methodological analysis of a general class of random di�erential equa-

tions arising in the context of model development. For their numerical treatment,

we use a state-of-the-art technique and explain necessary adjustments.

(ii) We investigate a tra�c scenario where di�erent types of tra�c accidents are jointly

present, namely, rear-end collisions and frontal crashes.

(iii) We also analyze the important case of heterogeneous tra�c participants in which

human drivers and autonomous vehicles coexist.

The case studies presented in Chapter 2 and 3 are based on the microscopic tra�c

simulator MODIS. Appendix A contains a documentation of this software.

Contributions of Chapter 4. The objective of this chapter is to develop a method-

ology to make microscopic models of tra�c systems accessible for a statistical study of

accidents and corresponding �nancial losses.

(i) We develop a powerful methodological framework to generate accident data based

on microscopic tra�c models in analogy to the concept of digital twins.
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(ii) We illustrate the potential of our approach in comprehensive case studies. Specif-

ically, we construct an implementation based on the state-of-the-art open-source

tra�c simulator SUMO.

(iii) Structurally, we characterize the total loss distribution approximately as a mean-

variance mixture. This also yields alternative valuation procedures.

(iv) Based on Stein's method, we can improve the valuation with a correction term,

derived from the results of El Karoui & Jiao (2009).

Detailed tables supplementing the case studies in Chapter 4 can be found in Appendix

B.

Contributions of Chapter 5. In the �nal chapter of this thesis, we complement

the previous microscopic approaches with a macroscopic perspective. We investigate

stochastic cell transmission models that capture the motion of tra�c participants at a

high level of aggregation and study the performance of tra�c systems depending on their

design.

(i) We provide a rigorous framework for cell transmission models in general tra�c

networks. Tra�c participants traveling in di�erent directions interact with each

other locally. Tra�c volumes and conditions can vary stochastically.

(ii) To classify and categorize tra�c systems, we propose the notion of acceptable

design inspired by preference functionals and systemic risk measures.

(iii) The numerical estimation of acceptable designs combines Monte Carlo simulation,

Gaussian process regression, and a stochastic exploration procedure in the pa-

rameter space. The performance of this algorithm is demonstrated through case

studies.



2 Modeling Tra�c Accidents Caused by

Random Misperception

The original version of this chapter1 was previously published in the proceedings of the

2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp.

2568�2574, see Berkhahn et al. (2018).

2.1 Introduction

Classically, the problem of determining the probability of tra�c accidents has been of

statistical nature: On the basis of empirical data, the probabilities of accidents are

estimated by the corresponding relative frequencies. However, the automotive industry

is undergoing a massive disruption with the appearance of autonomously driving vehicles

(cf., e.g., Bertoncello & Wee (2015)). Tra�c, as we know it, will change; in particular,

in terms of e�ciency and safety � but little to no data is available, yet! As long as

operations are protected from large-scale cyber attacks, existing studies (e.g., Blanco

et al. (2016)) indicate that the number of accidents will signi�cantly be reduced when

vehicles are controlled by computers. To overcome the lack of empirical accident data

for future transportation systems, we propose a simulation based approach that yields

insight into the occurrence of accidents and their e�ects on tra�c �ow.

Both human drivers and control systems of autonomous vehicles need to process large

amounts of information about their environment. In most theoretical tra�c models,

decisions are based on exact information � in reality, errors may occur when positions

and velocities of other vehicles are determined. The size of these errors depends on

external conditions (e.g., weather) and on the driving style of a human operator or

control algorithm. Another factor are potential malfunctions of systems. This chapter

presents a stylized model for potential errors and investigates the impact on accidents

and tra�c �ow. The key idea is to focus on random misperception as an omnipresent

cause for accidents. Particular emphasis is put on the interplay between safety gaps

and margins of perceptional errors. On a methodological level, the model facilitates an

understanding of risks that are associated to bene�cial future developments. Ultimately,

our approach and techniques may form a basis for management decisions on the design

of safety measures for autonomous driving systems.

1The case studies presented in this chapter are based on the microscopic tra�c simulator MODIS.
Appendix A contains a documentation of this software.

13



14 Modeling Tra�c Accidents Caused by Random Misperception

We choose the Intelligent Driver Model (IDM) (cf. Treiber, Hennecke & Helbing

(2000)) as the underlying model for describing the movement of vehicles on lanes. Ad-

ditionally, we incorporate adjustments allowing for driving errors that may lead to acci-

dents. The IDM sets the acceleration of a vehicle based on the distance to its preceding

vehicle and the di�erence of their velocities, i.e., the approaching rate. As originally

proposed, this model is accident-free since the maximal deceleration is unbounded and,

consequently, vehicles may execute unrealistic emergency braking maneuvers when they

encounter dangerous situations. We modify the IDM at this point and also include the

possibility of random misperception. The consequences of these changes are investigated

in the context of two scenarios.

In Scenario A (�One-Lane Road Segment�), tra�c is considered on a segment of a one-

lane road on which vehicles drive in a consecutive order. We include two adjustments

to the IDM: First, instead of assuming that the input variables (distance and approach-

ing rate) are known with absolute precision, we include stochastic deviations in order

to model random misperception; both distance and approaching rate may be over- or

underestimated. Second, we limit the deceleration when braking, i.e., negative accelera-

tion is bounded from below. With these two components, the model admits accidents.

Whenever an accident occurs, the road is blocked and a tra�c jam emerges. We assume

that the collided vehicles are removed from the road after a random time and then tra�c

resumes. In this scenario, we focus on the occurrence of rear-end collisions. By means

of Monte Carlo simulations, we study the tradeo� between safety and e�ciency in terms

of the number of accidents and tra�c �ow.

Scenario B (�Left-Turning on T-Junction�) is an extension that builds on the �rst sce-

nario. We consider a more complex element of a road system: a simpli�ed t-junction.

We capture this by considering two one-lane road segments which intersect. On each

lane, the movement of vehicles is modeled as before; moreover, a con�ict detection and

reaction is implemented for vehicles which turn left. Turning vehicles extrapolate tra-

jectories of con�icting vehicles on the basis of several observations. If the analysis of

these trajectories suggests a collision, the turning vehicle will decelerate to allow con-

�icting vehicles to pass. We implement random misperception in the con�ict detection

and reaction behavior and use Monte Carlo simulations to analyze tra�c at t-junctions,

focusing again on the number of accidents and tra�c �ow.

The chapter is organized as follows: Section 2.2 reviews mathematical prerequisites.

Section 2.3 presents the tra�c model. Section 2.4 describes numerical case studies and

analyzes the tradeo� between safety and e�ciency. Section 2.4 concludes and discusses

further research.

Literature. The analysis of the tradeo� between safety and e�ciency of autonomous

vehicles is a novel area of research. Most closely related to our approach is Segata &

Cigno (2013) who analyze emergency braking scenarios on the basis of a deterministic
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IDM. This paper also observes the necessity to bound deceleration in order to observe

accidents. The focus lies on the impact of inter-vehicle communication on safety, and the

computation terminates whenever an accident occurs. Similar ideas can also be found

in Nekovee & Bie (2013). Stochastic extensions of the IDM are introduced in Treiber,

Kesting & Helbing (2006). Random misperceptions provide a rationale for the empirical

behavior of human drivers that is characterized by �uctuating accelerations. Such an

approach is also studied in Treiber & Kesting (2017), Laval, Toth & Zhou (2014), and

Lehmann (2000). These papers add white noise to the acceleration terms of car-following

models. Accidents are, however, not investigated.

2.2 Mathematical Foundations

In this section, we review random ordinary di�erential equations and Ornstein-Uhlenbeck

processes. These are ingredients to our tra�c model with random misperception.

2.2.1 Random Ordinary Di�erential Equations

The classical IDM is described by ordinary di�erential equations (ODEs). Random mis-

perception leads to a stochastic analogue of the equations, random ordinary di�erential

equations (RODEs). We brie�y describe RODEs and how to solve them; a comprehensive

presentation of RODEs can be found in Han & Kloeden (2017).

De�nition 2.2.1 (Random Ordinary Di�erential Equation). Let (εt)t≥0 be a

stochastic process on some probability space (Ω,F , P ) with values in Rm and continuous

paths. Suppose that f : Rd × Rm → Rd is continuous. A random ordinary di�erential

equation in Rd for some function y : [0,∞)→ Rd is given by

dy

dt
= f(y, εt).

For each scenario ω ∈ Ω, a RODE de�nes a non-autonomous ordinary di�erential

equation via
dy

dt
= Fω(t, y) := f(y, εt(ω)).

Given y(0) = y0 ∈ R, this is a standard initial value problem and classical ODE-theory

(e.g., Theorem of Picard-Lindelöf) applies when characterizing existence and uniqueness

of solutions. Pathwise RODEs are ODEs which also allows to use standard numerical

methods for ODEs in order to solve RODEs. This approach can be applied whenever

su�ciently many realizations of the paths of the underlying stochastic process (εt) are

available.
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2.2.2 Ornstein-Uhlenbeck Process

In the extended IDM we model misperceptions as random deviations from the true

values. This can be captured by a mean-reverting process in continuous time. A well-

known Gaussian process of this type is the Ornstein-Uhlenbeck process.

De�nition 2.2.2 (Ornstein-Uhlenbeck Process). Let β ∈ R and α, σ > 0. A

stochastic process (εt)t≥0 is called an Ornstein-Uhlenbeck process, if ε0 = a ∈ R and

(εt)t≥0 solves the following stochastic di�erential equation:

dεt = α(β − εt)dt + σdWt,

where (Wt)t≥0 denotes a one-dimensional standard Brownian motion.

Following Glasserman (2003), an Ornstein-Uhlenbeck process can iteratively be simu-

lated exactly on an equidistant time grid 0 = t0 < t1 < · · · < tN with ti+1− ti = ∆t > 0

for all i ∈ {0, 1, . . . , N − 1} by

εti+1 = hεti + β (1− h) + σ

√
1− h2

2α
Zi+1,

where h := e−α∆t and (Zi) is a sequence of i.i.d. standard normal random variables.

In Figure 2.1, we show typical simulated paths of the Ornstein-Uhlenbeck process for

di�erent values of σ. The parameter σ is the volatility of the process and captures both

its tendency to �uctuate as well as the size of the in�nitesimal random innovations.
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Figure 2.1: Simulated paths of an Ornstein-Uhlenbeck process (εt) for di�erent values of
σ with α = 1, ε0 = 1, β = 1.
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2.3 The Tra�c Model

The tra�c models we consider are car-following models: cars react to preceding vehicles

in order to maintain a minimum safety distance and to avoid crashes. Among car-

following models, the IDM has attracted a lot of attention.

In this section, we extend the IDM and de�ne the novel Intelligent Driver Model with

Random Misperception: �rst by bounding the maximal deceleration, and second by

introducing random misperception. As a consequence, accidents may occur.

2.3.1 Movement of Vehicles

We denote byM := {1, 2, . . . } the collection of vehicles. Each vehicle i ∈ M drives on

a one-lane road modeled by a one-dimensional line [0, L] of length L > 0; it enters the

road at a time ti0 ≥ 0. The time sequence is increasing, i.e., t10 < t20 < . . . .

The velocity of each vehicle is determined according to the Intelligent Driver Model

with Random Misperception (IDMrm): Let (εi,1t )t≥0, (ε
i,2
t )t≥0, (ε

i,3
t )t≥0, i ∈ M, be inde-

pendent stochastic processes with continuous paths. The IDMrm sets the velocity vi(t)

and the position xi(t) of vehicle i ∈ M at time t ≥ 0 according to the following initial

value problem composed of a system of coupled random ordinary di�erential equations





d
dtx

i(t) = max{vi(t), 0},
d
dtv

i(t) = max

{
aimax ·

(
1−

(
εi,1t vi(t)

vid

)δ
−
(
s∗(εi,1t vi(t),∆pervi(t))

∆perxi(t)

)2
)
, aimin

}
,

xi(ti0) = 0, vi(ti0) = vi0, t ≥ ti0, i ∈M

where s∗(s1, s2) = s0 + s1T + s1s2
2
√
aimaxb

and

∆perv
i(t) = εi,1t v

i(t)− εi,2t vi−1(t),

∆perx
i(t) = εi,3t ∆xi(t) = εi,3t (xi−1(t)− xi(t)− li−1),

where li is the length of vehicle i ∈M. Moreover, aimax > 0 is the maximal acceleration,

and aimin < 0 the minimal acceleration (i.e., maximal deceleration) of the i-th vehicle.

The other parameters originate from the classic IDM model, and we refer to Treiber,

Hennecke & Helbing (2000) for a detailed explanation. For the �rst vehicle i = 1, we set

the interaction term s∗(ε1,1
t vt(t),∆perv

1(t)) · (∆perx
1(t))−1 := 0 as there is no preceding

vehicle.

2.3.2 Accidents

The stochastic processes (εi,1t ), (εi,2t ) and (εi,3t ), i ∈ M, may be interpreted as di�erent

sources of errors. The classic IDM determines the velocity on the basis of the distance

to the preceding vehicle and the approaching rate. In contrast, the IDMrm assumes
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that all these quantities are subject to perceptional errors. The perceived quantities

are inputs to the calculation of the acceleration of each vehicle. Vehicle i uses for this

computation instead of the true velocities (vi(t), vi−1(t)) of itself and the preceding

vehicle the distorted values (εi,1t v
i(t), εi,2t v

i−1(t)); in addition, instead of the true distance

to the preceding car ∆xi(t) the randomly distorted value εi,3t ∆xi(t) is the third input

to the calculation. There are no errors, as long as εi,1t = εi,2t = εi,3t = 1. Our model

is su�ciently �exible to admit many stochastic error processes. In our numerical case

studies, we will assume that (εi,1t ), (εi,2t ) and (εi,3t ), i ∈ M, are independent Ornstein-

Uhlenbeck processes that randomly �uctuate around 1. This can be interpreted as noisy

perception of the true values. Misperception can cause accidents.

An accident occurs when vehicles collide. Up to this point, their movement is described

by the RODEs above. However, we assume that this is not the case anymore after a

collision. If an accident occurs, collided vehicles will remain at their position for some

time. Then they will be removed from the system. In the following, we will make this

precise.

For i ∈ M, let Ai(t) denote the area of the road which is occupied by vehicle i

at time t > 0. In the one-dimensional case this corresponds to the interval Ai(t) =

[xi(t) − li/2, xi(t) + li/2] where li denotes the vehicle's length and xi(t) is the position

of the vehicle's midpoint. Formally, an accident occurs, if

∃ i, j ∈M, i 6= j, ∃ t > 0: Ai(t) ∩Aj(t) 6= ∅.

Now, if two vehicles collide, their velocities are immediately set to 0. Depending on the

tra�c constellation, further vehicles may crash into an existing collision or perform a

safe emergency braking maneuver. We assume that at the time of the �rst collision, an

exponentially distributed waiting time tremoval ∼ Exp(γ), γ > 0, is triggered; as this time

has passed, all vehicles that collided disappear from the model. The expected waiting

time until vehicles are removed is E (tremoval) = γ−1 > 0. We note that other accidents

may occur at di�erent locations in the system; the removal time at di�erent locations is

triggered independently in each case.

In summary, if an accident occurs, the one-lane road is blocked and a tra�c jam

emerges. Later � after a random time tremoval � vehicles that collided are removed from

the road; remaining vehicles will continue their journey, and the tra�c jam dissipates.

2.4 Case Studies

In this section, our approach will be illustrated in the context of two tra�c scenarios: In

the �rst scenario, a one-dimensional road segment is considered. The vehicles enter at the

beginning of the road segment, the origin, and disappear at its other end. We analyze

the evolution of tra�c over a �xed period of time and focus on safety and e�ciency.

The second scenario describes a more complex situation: a t-junction composed of two
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intersecting one-lane road segments.

Our tra�c model is capable of capturing heterogeneous vehicles. Note that each

vehicle is endowed with its own set of parameters and associated stochastic processes.

This allows to model individual driving behavior and corresponding error patterns. In

this chapter, we focus on a simpli�ed version of the model with homogeneous tra�c

participants, highlighting the e�ects of varying parameters. Misperception is captured by

the processes (εi,1t ), (εi,2t ), . . . , (εi,5t ), i ∈ M, which we assume to be Ornstein-Uhlenbeck

processes �uctuating around 1.

We �x a terminal time Tsim > 0 for the tra�c simulation. Vehicles are consecutively

enumerated by 1, 2, 3, . . . and enter each lane-segment at its origin paying attention to

existing tra�c. The exact procedure will be described below, but we already stress at

this point that due to the randomness of tra�c �ow also the collection of vehicles M
that are generated until terminal time Tsim is random. We simulate the tra�c system

and compute statistics characterizing safety and e�ciency from m ∈ N independent

simulation runs.

Measure of E�ciency. As a measure of e�ciency for the tra�c system we choose

tra�c �ow per time unit, measured at position d (in our simulations, we choose d as the

end of the road):

Q =
card

{
j ∈M : ∃ t ≤ Tsim : xj(t) = d

}

Tsim
.

Here, card denotes cardinality. In the following, we denote sample averages that we

compute from our simulation runs by a circum�ex. For example, the sample average of

the �ow is Q̂.

Measure of Safety. A measure of tra�c safety is the number of accidents per time

unit. The term accident refers to an event where at least two vehicles collide. If more

vehicles crash into an existing collision, this does not create a new accident according to

our convention.

Recall that the area occupied by vehicle i ∈ M at time t ≥ 0 is denoted by Ai(t);

additionally, for M ⊆M we de�ne AM (t) :=
⋃
i∈M Ai(t). The number of accidents per

time unit, denoted by facc, is given by

facc =
1

Tsim
· card

{
∅ 6= M ⊆M : ∃ t ≤ Tsim ∀ i ∈M : Ai(t) ∩AM\{i}(t) 6= ∅

and ∀ t ≤ Tsim : AM (t) ∩AMc
(t) = ∅

}
,

where M c denotes the complement of M . The �rst condition ensures that all vehicles

in M collide, the second that all vehicles involved in the accident are identi�ed. The

corresponding sample average is denoted by f̂acc.
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2.4.1 One-Lane Road Segment
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Figure 2.2: Averaged �ow and number of accidents for varying T and �xed σ with 1, 000
independent simulations for each parameter combination: Dashed lines cor-
respond to number of accidents, solid lines to �ows.

This scenario consists of a segment of a one-lane road, a one-dimensional line [0, L]

of length L = 2, 000 m. Vehicles are generated at the origin and are removed when

they reach the end of the road. Their generation is de�ned by the following algorithm:

Vehicles are created deterministically with a constant demand (here, 1, 500 veh/h), if there

is enough space available at the beginning of the road. More precisely, a vehicle i ∈ M
may be generated according to the desired demand, if there is no other vehicle in the

�rst 7.5 m of the road (which equals the vehicle length plus an additional safety margin

of 1.5 m); otherwise, the generation of the new vehicle is delayed until this condition is

satis�ed. The initial velocity of any new vehicle matches the velocity of the preceding

vehicle. In summary, the initial generation of vehicles avoids arti�cial accidents; instead,

accidents may be caused by random misperception at a later point in time somewhere

on the lane.

Table 2.1: Parameter choice for the scenarios.

Scenario amax vd δ amin s0 T b l α β σ γ

A 2.0 15 4 −3.5 1.2 · 1.67 6 1 1 · 1/60

B 2.0 10 4 −3.5 2.0 1.5 1.67 6 1 1 · 1/300

The remaining parameters used for our simulation are given in Table 2.1. Traf-

�c is simulated for a duration of Tsim = 600 s according to IDMrm. The error pro-

cesses (εi,1t ), (εi,2t ),(ε
i,3
t ) are independent and identically distributed copies of an Ornstein-

Uhlenbeck process with α = β = 1 and di�erent values of σ; in order to guarantee that

we may observe su�ciently many accidents in our small-scale example, we choose rela-
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tively high volatilities. Smaller volatilities require longer simulations and larger roads to

observe a su�cient number of accidents which increases the computational e�ort. This

does not alter the methodology, and the corresponding case studies may be analyzed in

the future.

In the analysis of the model we focus on the e�ect of a varying error volatility σ and

a varying time headway T . The volatility σ is a measure for the size of the random

misperception in the model. The time headway T is a parameter in the IDMrm that

in�uences the safety distances. In the absence of random misperception, the bigger the

time headway, the greater is the distance between vehicles and the lower the tra�c �ow.

If errors are present, a larger time headway will decrease the number of accidents. Since

a large number of tra�c accidents may also decrease �ow, we expect that the dependence

of �ow on time headway is not always monotone anymore.

We analyze the behavior of the system after the �rst vehicle has reached the end of

the road. Both �ow and the number of accidents are random. We display their sample

averages (approximating their expectations) in Figure 2.2 for varying T and di�erent

�xed values of σ. The case σ = 0 corresponds to no misperception with no accidents. As

a consequence, minimizing T leads to the maximal �ow � almost equal to the demand of

1, 500 veh/h. With increasing σ, we observe decreasing �ow. The rational is that accidents

lead to tra�c congestion which decreases �ow. If we �x σ but vary the time headway T ,

we can �nd a T that maximizes the �ow. This shows the interplay between safety and

e�ciency: Accidents decrease the tra�c �ow. A larger time headway T decreases the

number of accidents, but, if there are only few accidents, also decreases �ow. Thus, for

small T , �ow increases with increasing T due to a decreasing number of accidents, but

for large T �ow decreases with increasing T .

This tradeo� can also be observed in Figure 2.3. The �gure displays the sample

averages of both �ow and the number of accidents for varying σ and di�erent �xed

values of T . Of course, with increasing σ, f̂acc increases and Q̂ decreases. The key point

is to observe that the �ow curves intersect! At a certain level of misperception (with too

many accidents occurring), it becomes more e�cient to select a larger time headway T

that decreases the number of accidents and increases e�ciency.
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Figure 2.3: Averaged �ow and number of accidents for varying σ and �xed T with 1, 000
independent simulations for each parameter combination: Dashed lines cor-
respond to number of accidents, solid lines to �ows.

2.4.2 Left-Turning on T-Junction

In Scenario B, we analyze tra�c at a t-junction with vehicles that turn left. We focus

on the simpli�ed setting shown in Figure 2.4: Vehicles on the bottom lane always turn

left, following the green path � while vehicles on the top lane never turn, following the

black path. On an abstract level, this scenario can be decomposed into two one-lane

road segments with the additional property that these segments intersect. By creating

an intersection, we introduce con�icts: vehicles can collide at the t-junction. We assume

that left-turning vehicles give way to oncoming vehicles on the upper lane. For example,

they might need to stop at a certain point (denoted by xstop; cf. Figure 2.4) in order to

let the con�icting vehicles pass the junction (i.e., reach xexit; cf. Figure 2.4). We assume

that vehicles on the upper lane insist on their right of way and are oblivious to oncoming

tra�c, i.e., they do not react.

In this case study, the horizontal lane has a length of 300 m with the junction placed

at 97.5 m. Green and black path intersect at 94.5 m and xstop is located at 85.0 m.

We generate vehicles similarly to Scenario A, but instead of assuming a �xed rate we

create them with an exponentially distributed headway with mean 500 veh/h on the upper

lane and mean 200 veh/h on the lower lane. This stochastic generation of vehicles yields

interesting dynamics with vehicles on the lower lane reacting to the upper lane: vehicles

need to wait for emerging gaps in order to turn; gaps occur at random times.

We implement IDM on the upper lane with the same adjustments as for IDMrm, i.e.,

we implement IDMrm with perfect perception. We do the same on the lower lane, but

introduce as an additional feature con�ict detection and reaction. Random misperception

could be introduced at di�erent points of the model, but we focus in this chapter only on

errors in the con�ict detection and reaction which may create accidents in the context
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of left-turning maneuvers.

We heuristically describe the implementation of the con�ict detection and reaction

for a turning vehicle i and one oncoming vehicle j. Vehicle i follows the green path

according to the implemented car-following model. Additionally, as a turning vehicle it

can detect con�icts. Turning vehicles are aware of oncoming vehicles and extrapolate the

trajectories of potentially con�icting vehicles based on observations of their movement.

They also extrapolate their own trajectories. Vehicle i checks if braking is necessary in

order to turn safely. For this purpose, a distance d̂ij(t) of vehicle i to the approaching

vehicle j is estimated. The situation is classi�ed as a con�ict, if the estimate d̂ij(t) is

smaller than a given safety threshold ds at some point in time. We refer to Pascucci et al.

(2015) for a detailed description of con�ict detection. If no con�ict arises, the vehicle

turns. Otherwise, it decelerates according to the following algorithm. To simplify the

notation, we omit dependency on t. First, we compute a naive deceleration anaive such

that vehicle i stops at xstop with a constant (negative) acceleration given by anaive =

−(vi)2/
(
2
(
xstop − xi

))
. For this, the vehicle needs a time of tnaive = −vi/anaive. We let

t̂j be the time vehicle j needs to reach xexit which is computed by numerically inverting

the extrapolated trajectory. If t̂j > tnaive, vehicle i sets anaive as its acceleration, stops

at xstop and waits until it can turn safely. If t̂j ≤ tnaive (i.e., vehicle i does not need to

stop since vehicle j will have passed the junction by that time), we choose the following

acceleration

ai,jsmooth =

(
xstop − xi

t̂j
− vi

)
2

t̂j

which is determined such that vehicle i reaches xstop when vehicle j arrives at xexit.

Stopping is not necessary in this situation. These computations are carried out for all

possibly con�icting vehicles, and the minimal resulting acceleration is chosen, while also

taking into account possible car-following behavior.

Random misperception is implemented as follows: For the con�ict detection, vehicle i

extrapolates trajectories and computes an estimated distance d̂ij(t) from the con�icting

vehicle. Only this distance measure is the quantity that triggers i's reaction as described

above. The extrapolation of i's own trajectory is based on its velocity vi(t). We assume

that both vi(t) and d̂ij(t) are subject to misperception: We implement two independent

and identically distributed Ornstein-Uhlenbeck processes (εi,4t )t≥0 and (εi,5t )t≥0 (as in

Scenario A) to distort these values, i.e., replacing them with εi,4t v
i(t) and εi,5t d̂

ij(t) where

d̂ij(t) is already computed on the basis of the misperceived velocity εi,4t v
i(t). As a

consequence, both the con�ict detection and the con�ict reaction may be erroneous.

We begin with our measurement when the �rst vehicles reach the ends of both lanes. As

before, we simulate tra�c for 600 s and implement an exponentially distributed removal

time tremoval for vehicles that collided. We evaluate the dependency of �ow and number

of accidents on safety distance ds and volatility σ of the Ornstein-Uhlenbeck processes.

In Figure 2.5 we �x ds = 1.5 m and present the e�ect of increasing volatility on num-
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ber of accidents and tra�c �ow for both lanes. The �gure displays similar phenomena

as Figure 2.3, con�rming our expectation that random misperception causes accidents.

Compared to Scenario A, we observe fewer accidents which is due to more conservative

parameter choices in the implementation of the turning maneuver (cf. Table 2.1). How-

ever, one can still see that with higher volatility more accidents occur, causing a decline

of tra�c �ow.

Next, we investigate the impact of ds for �xed volatilities σ. We analyze the tra�c

�ow on the lower lane (see Figure 2.6) and on the upper lane (see Figure 2.7) separately.

The case σ = 0 corresponds to no misperception; accidents may still occur in this case

due to extrapolation errors for ds too small. For di�erent values of σ, tra�c on the

lower lane exhibits a similar behavior as in Scenario A, see Figure 2.2: If ds is too small,

many accidents occur such that tra�c �ow is impaired. With increasing ds, the number

of accidents decreases. This initially improves the tra�c �ow, but if ds becomes too

large, tra�c �ow again decreases. In this situation, vehicles cannot easily �nd gaps in

the oncoming tra�c that permit turns. On the upper lane, in contrast, �ow is strictly

increasing with increasing ds. This is not surprising, since the tra�c �ow on the upper

lane is only distorted, if turning vehicles cause accidents.

xexit

xstop

Figure 2.4: Simpli�ed left-turning scenario on t-junction.
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Figure 2.5: Averaged tra�c �ow (turn and straight) and number of accidents for varying
σ and ds = 1.5 m with 10, 000 independent simulations.
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Figure 2.6: Averaged turn �ow (lower lane) and number of accidents for varying ds and
�xed σ with 10, 000 independent simulations for each parameter combination:
Dashed lines correspond to number of accidents, solid lines to �ows.
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Figure 2.7: Averaged straight �ow (upper lane) and number of accidents for varying ds

and �xed σ with 10, 000 independent simulations for each parameter combi-
nation: Dashed lines correspond to number of accidents, solid lines to �ows.

2.5 Conclusion & Future Research

We introduced a tra�c model that admits accidents. The accidents are caused by ran-

dom misperception, a type of error that a�ects both human drivers and autonomous

vehicles. The simulation model admits a characterization of the tradeo� between safety

and e�ciency of tra�c systems. While empirical data on the tra�c systems of the future

are not available yet, our causal stochastic model produces simulated data that provide

guidance to the design and risk management of future tra�c systems.

In our case studies, we studied homogeneous tra�c participants and one particular

error pattern, modeled by independent Ornstein-Uhlenbeck processes. However, our

approach can also capture heterogeneity, i.e., multiple driving styles and error types.

In particular, the model can be used to analyze e�ects of systems that include both

human drivers and autonomous vehicles. Such tra�c systems will be relevant in the

near future. Moreover, one could try to generalize the model to include the e�ects of

V2V-communication that might be subject to random errors.

We have demonstrated that optimality in terms of tra�c �ow does typically not imply

that accidents are absent; accidents cause harm to the society. Future research should

de�ne and include the cost of accidents to the analysis. This requires a model of the

severity of accidents, an issue that was neglected in the current chapter. From a com-

putational point of view, the e�ciency of the simulation might be improved by applying

well-designed variance reduction techniques. Since accidents are rare events, variance

reduction techniques for rare-event simulation, such as importance sampling, might be

promising.

© 2018 IEEE. Reprinted, with permission, from Volker Berkhahn, Marcel Kleiber,

Chris Schiermeyer, and Stefan Weber, Modeling Tra�c Accidents Caused by Random
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Misperception, 21st International Conference on Intelligent Transportation Systems (ITSC),

2018.





3 Tra�c Dynamics at Intersections

Subject to Random Misperception

The original version of this chapter1 was previously published in IEEE Transactions on

Intelligent Transportation Systems 23(5), pp. 4501�4511, see Berkhahn et al. (2022).

3.1 Introduction

The self-organization of tra�c is a highly complex phenomenon. Tra�c �ow is distorted

by accidents which are often triggered by errors in perception or judgement of tra�c

participants. It seems plausible that in a future world of autonomous vehicles improved

technology will substantially reduce, but not completely eliminate tra�c accidents (cf.,

e.g., Bertoncello & Wee (2015), Blanco et al. (2016)). In particular, accidents will still

occur whenever autonomous vehicles and human drivers coexist. For these future sce-

narios, a su�cient amount of real world statistical data on tra�c systems with di�erent

proportions of autonomous vehicles is not yet available. To overcome this lack of infor-

mation, we propose a stochastic model that generates arti�cial data on both tra�c �ow

and accidents. In this setting, we study the tradeo� between safety and e�ciency as a

function of the driving style of the individual vehicles. In the absence of real data, the

sound design of future tra�c systems requires such a strategy. Simulations that generate

arti�cial data are a prerequisite for the anticipation of both future capabilities and risks

associated with autonomous vehicles and their algorithms, advanced driver-assistance

systems, and human drivers.

Vehicles in tra�c systems are constantly in con�ict with each other; autonomous

vehicles and human drivers have to observe their environment, predict its future behavior

and react accordingly in order to avoid accidents. Thereby, they control the distance to

preceding vehicles, or � when turning or overtaking � they give way to other vehicles in

order to avoid collisions. This requires the extrapolation of trajectories of potentially

con�icting vehicles, the estimation of the size of safety gaps and decisions about when

to stop and to wait, and when to proceed. These issues jointly appear at intersections

turning them into a particularly risky location in tra�c systems; Dresner and Stone

Dresner & Stone (2008) state that �vehicle collisions at intersections account for anywhere

between 25% and 45% of all collisions�.
1The case studies presented in this chapter are based on the microscopic tra�c simulator MODIS.
Appendix A contains a documentation of this software.

29
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In this chapter, we focus on the tra�c dynamics at intersections. We propose a model

and present case studies for unsignalized intersections and discuss possible extensions for

signalized ones. Intersections are modeled as multiple intersecting one-lane roads. On

each of these roads, the basic movement of the vehicles is described by a microscopic

car-following model. Cars need to control their distance to other vehicles in order to

avoid rear-end collisions. At an intersection, additional con�icts between turning vehicles

arise. We implement a con�ict detection, �x a priority regime (right has right-of-way)

and assume that vehicles will wait for emerging gaps if they have to give way. In reality,

the three components � car-following, con�ict detection, and con�ict reaction � may be

subject to errors of human drivers, possibly assisted by suitable technology. We model

perceptional errors by stochastic processes which randomly �uctuate around the correct

quantities.

The stylized model provides a conceptual framework for understanding the causal rela-

tionship between perceptional errors, (parametrized) driving style, accidents, and tra�c

�ow. We study these features for di�erent penetration rates of error-free autonomous

vehicles in the tra�c system. Our model captures the occurrence of two possible collision

types: rear-end collisions resulting from low headways and frontal crashes in the context

of turning maneuvers.

We provide a methodological basis and explain how tra�c at intersections can be

modeled by a system of coupled random ordinary di�erential equations.

This chapter extends previous work (see Berkhahn et al. (2018)) in multiple directions:

� Berkhahn et al. (2018) primarily focuses on the Intelligent Driver Model with

random misperception in the context of one-lane roads and heuristically discusses

extensions to t-junctions. Rear-end collisions and collisions at t-junctions were

analyzed separately. Now, we present a general and rigorous framework comprising

both cases.

� This chapter provides a comprehensive methodological analysis of a general class of

random di�erential equations modeling both con�ict detection and potential mis-

perception. We use a state-of-the-art simulation technique and explain necessary

adjustments in the context of the suggested model.

� In numerical case studies, we analyze the tradeo� between safety and e�ciency.

� Besides scenarios with homogeneous tra�c participants, we also analyze the het-

erogeneous case in which human drivers and autonomous vehicles coexist.

The chapter is organized as follows: Section 3.2 reviews related literature, Section 3.3

introduces our model of intersections, Section 3.4 explains the simulation methodology

which we apply in various case studies. Simulation results are presented and discussed

in Section 3.5. Section 3.6 concludes.
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3.2 Literature Review

Literature on tra�c modeling is vast. Our approach is based on a stochastic extension of

microscopic tra�c models which describe the movement of each vehicle individually. In

particular, we adapt the Intelligent Driver Model (IDM), originally proposed by Treiber,

Hennecke & Helbing (2000). It belongs to the class of car-following models (also called

follow-the-leader models). Random misperception may also be implemented in other

car-following models, e.g., the Optimal Velocity Model (cf. Bando et al. (1994) and

Bando et al. (1995)).

Several papers develop stochastic extensions of car-following models: Random �uctu-

ations to the Optimal Velocity Model are implemented in Lehmann (2000); Laval, Toth

& Zhou (2014) proposes and analyzes a stochastic �desired acceleration model�; Treiber,

Kesting & Helbing (2006) and Treiber & Kesting (2018) include stochastic processes

within IDM. All these studies use randomness to explain naturally occurring �uctua-

tions in tra�c �ow. In contrast, this chapter focuses on stochastic processes that model

perceptional errors which might trigger accidents, and it thereby rigorously extends our

preliminary analysis in Berkhahn et al. (2018). In the context of (deterministic) emer-

gency braking scenarios, accidents are also analyzed in Segata & Cigno (2013); similar

ideas are discussed in Nekovee & Bie (2013).

The stochastic character of perception and other cognitive processes of drivers is stud-

ied in Hamdar et al. (2008); Tversky and Kahneman's prospect theory is used as a

framework for decision making in the face of risk. Closely related to the present chapter

is Mitra et al. (2018) where perception errors of autonomous vehicles are studied. Based

on real data of Geiger, Lenz & Urtasun (2012), errors are calibrated using methods from

time series analysis. The calibrated error models are incorporated into a commercial

tra�c simulation software, and the e�ects of errors are studied in test cases. The ap-

proach in Mitra et al. (2018) is complementary to ours. While we study the impact

of errors on the number of accidents and tra�c e�ciency on an aggregate level, Mitra

et al. (2018) does not capture the global impact of errors via variables such as tra�c

�ow or the number of accidents, but focuses on its microscopic implications. Also, pre-

sumably due to substantial computational costs, the authors do not provide a statistical

analysis of the consequences of the implemented errors � only four test trajectories in a

braking scenario are presented, where an autonomous vehicle approaches a pedestrian.

While Mitra et al. (2018) constructs a model that re�ects many details of the collision

dynamics of individual vehicles, our parsimonious model is su�ciently simple to study

implications on the level of the whole tra�c system.

The preceding papers mainly focus on unidirectional tra�c, modeling vehicles on one-

lane roads without intersections. Other models were developed for con�icting streams

of tra�c, e.g., unsignalized intersections or overtaking. Early contributions developed

the idea of a gap-acceptance function: a certain time is needed to perform a potentially
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con�icting maneuver, de�ning a critical gap. If two successive con�icting vehicles exceed

this critical gap, the maneuver is accepted, otherwise rejected. Gap-acceptance func-

tions and assumptions on arrival times of vehicles at an intersection admit an analysis of

delay times and capacities (c.f., e.g., Tanner (1962) or Hawkes (1968)). Typically, het-

erogeneous human drivers obey di�erent critical gaps. To re�ect this issue, probability

distributions are estimated from empirical data (e.g., Daganzo (1981), Mahmassani &

She� (1981)). Various re�nements have been suggested; for example, Pollatschek, Polus

& Livneh (2002) includes risk assessments when entering an intersection; impatience is

re�ected by increasing the risk tolerance, the longer a vehicle waits.

Besides queuing theoretic approaches, some microscopic tra�c models for intersections

include the concept of gap-acceptance. A model based on cellular automata is suggested

in Esser & Schreckenberg (1997): a vehicle enters the intersection, if and only if enough

cells of the con�icting stream of tra�c are vacant. In the open source project SUMO,

intersections are realized by comparing time slots in which potentially con�icting ve-

hicles occupy the intersection (cf. Erdmann & Krajzewicz (2014)). An application of

the gap-acceptance paradigm for lane-changing maneuvers was developed in Kesting,

Treiber & Helbing (2007). In comparison, our model continuously detects potentially

con�icting vehicles via trajectory extrapolation; potential con�icts trigger adjustments

of the velocity of vehicles.

In the context of autonomous vehicles, models have been developed to demonstrate

how tra�c e�ciency can be increased due to novel communication technologies. The

bene�ts of inter-vehicle communication or communication with a central controller are

studied in the context of autonomous intersection management, cf. Dresner & Stone

(2008). The paper discusses incident mitigation techniques, but does not incorporate the

possibility of endogenously occurring accidents. Auction and reservation based strate-

gies for intersection management are, e.g., analyzed in Carlino, Boyles & Stone (2013).

Sophisticated intersection management is not considered in this chapter; a comprehen-

sive analysis of autonomous intersection managements in the face of risk and uncertainty

would be an interesting topic for future research.

3.3 The Tra�c Model

In this chapter, we model tra�c on intersecting lanes and incorporate the possibility of

accidents caused by perceptional errors. We assume that all vehicles move on prespeci�ed

paths, attempting to reach a target velocity. A vehicle accelerates, if its velocity is too

low, unless con�icts with other vehicles are detected. We model two types of con�icts,

namely an insu�cient distance to the directly preceding vehicle, and vehicles crossing

at intersections. In order to avoid collisions vehicles decelerate; the exact procedure is

described below. Our model of an uncontrolled four-way intersection is illustrated in

Figure 3.1.
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Figure 3.1: Left-turning at an intersection.

We �rst explain how we model a priority regime that mimics existing tra�c regula-

tions. Second, we describe a car-following model governing the movement on individual

lanes. Third, we present a methodology for con�ict detection. Fourth, we explain how

vehicles adjust their speed. Our model incorporates errors due to random misperception.

Estimates of distances and velocities are input quantities to the car-following model; con-

�ict detection and reactions of vehicles depend on these variables. Our model assumes

that the estimates of human drivers are subject to randomly �uctuating errors that are

captured by suitable stochastic processes.

We begin with formal notation. The set M = {1, 2, 3, . . . } consists of all considered
vehicles. We associate each vehicle i ∈M with three stochastic processes with continuous

paths, denoted by (εi,1t )t≥0, (ε
i,2
t )t≥0, (ε

i,3
t )t≥0 that �uctuate around the value 1. The

processes are multipliers that distort the true values of velocities and distances and

thereby capture random misperception. Throughout the chapter, for each vehicle i, the

�rst process (εi,1t ) refers to the misperception of vehicle i's own velocity; the second

process (εi,2t ) models errors in the estimation of the velocity of other vehicles; the third

process (εi,3t ) captures estimation errors of relevant distances. Further assumptions on

the structure of these processes will be described in Section 3.5.

3.3.1 Priority Regime

The dynamics of uncontrolled intersections mimics German tra�c regulations; of course,

the approach could be amended to capture other countries. In Germany, �vehicles coming

from the right have the right of way� unless speci�ed otherwise.

While often applicable, this simple rule does not always produce a solution: If vehicles

come from all directions at the same time, tra�c may be deadlocked. In these situations,

the following additional tra�c rule applies Bundesministerium für Verkehr und digitale

Infrastruktur (2017, Section 11 Special tra�c situations, (3)):

Moreover, anyone who, according to tra�c rules, may proceed or otherwise
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has the right of way must relinquish this priority if the tra�c situation so

requires; a person not having the right of way may proceed only if the person

having the right of way has signaled to them to do so.

In our model, we check if there is a cycle in the chain of priority. If this is the

case, all waiting vehicles i observe independent exponentially distributed waiting times

tisolve ∼ Exp(λ), λ > 0, with expectation E(tisolve) = λ−1; the vehicle whose clock rings

�rst will give up its priority.

Remark 3.3.1. Of course, the behavior stipulated by tra�c regulations is not e�cient.

For autonomous vehicles, one could envision control algorithms that lead to both safer

and more e�cient outcomes. Research on this topic runs under the keyword autonomous

intersection management (cf. also Section 3.2).

3.3.2 Car-Following Model

The paths of vehicles, also called trajectories, lie on one-dimensional curves that describe

the geometry of the tra�c system; this is illustrated in Figure 3.1. In our model, the

paths of vehicles are prespeci�ed and �xed; speed can be adjusted. Vehicles with the same

trajectory follow each other. Their behavior is modeled by the Intelligent Driver Model

with Random Misperception (IDMrm) as developed by our research group in Berkhahn

et al. (2018). IDMrm is a stochastic extension of the classical IDM with a bound on

maximal deceleration in which perceptional errors are incorporated. On each of the one-

dimensional curves that capture potential paths of vehicles, we �x an origin. For any

vehicle i that moves along this curve we denote by xi(t) the distance of the vehicle's

position at time t to the origin along the section of the curve, i.e., the arc length of the

corresponding segment of its trajectory; the time derivative vi(t) of xi(t) is the velocity

of vehicle i at time t.

Vehicles are controlled on the basis of measurements of distances and velocities. But

these measurements are subject to errors. Distortions are captured by multiplicative

factors (εi,1t ), (εi,2t ), and (εi,3t ). On its one-dimensional trajectory, each vehicle computes

its acceleration based on the perceived values of its own velocity εi,1t v
i(t), its perceived

distance to the preceding vehicle ∆perx
i(t) and its perceived approaching rate ∆perv

i(t).

The identity of the preceding vehicle may change, since vehicles can turn at the inter-

section, and we denote this vehicle by ipre(t). Letting ∆xi(t) be the exact distance to

the preceding vehicle along the path, we may formally de�ne the perceived quantities:

∆perv
i(t) := εi,1t v

i(t)− εi,2t vipre(t)(t), (3.3.1)

∆perx
i(t) := εi,3t ∆xi(t) (3.3.2)
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For a vehicle i on a one-dimensional line its acceleration is computed as

aiIDMrm(t) := aimax


1−

(
εi,1t v

i(t)

vid

)δ
−
(
s∗(εi,1t v

i(t),∆perv
i(t))

∆perxi(t)

)2

 ,

where s∗(s1, s2) = s0 + s1T + s1s2
2
√
aimaxb

; we set s∗(εi,1t v
i(t),∆perv

i(t)) · (∆perx
i(t))−1 := 0

if there is no preceding vehicle. The quantity aimax > 0 is the maximal acceleration of

the i-th vehicle, and vid > 0 denotes its desired velocity. The other parameters originate

from the classic IDM model, and we refer to Treiber, Hennecke & Helbing (2000) for a

detailed explanation.

Remark 3.3.2. In (3.3.1) & (3.3.2), misperception of human drivers is modeled by

multiplicative errors. Multiplicative errors are relative errors, and their advantage is

that their size scales with the magnitude of the true values. Alternatively, additive errors

could be chosen. The simulation method described in Section 3.4 could easily be adapted.

3.3.3 Con�ict Detection at Intersections

The control of individual vehicles and tra�c �ow depends on priority regimes. For each

vehicle i, we denote byMi
rel(t) ⊆M the family of vehicles to which it has to give way.

These are vehicles approaching the intersection which are coming from the right; this

includes oncoming vehicles when vehicle i is turning left.

Vehicles always stay on their prespeci�ed paths, signaling their turning intentions

correctly. At time t, trajectories of other vehicles are extrapolated into the future for a

�xed time horizon of length t∗ on the basis of potentially distorted estimates of distances

and velocities (see Pascucci et al. (2015) for more details on trajectory extrapolation).

Using the extrapolated trajectories, one computes an estimate of vehicle i's distance to

another vehicle j at future time u which is denoted by d̂ij(u); vehicles' paths may be

located on di�erent one-dimensional curves, and for this reason we measure d̂ij(u) as the

usual Euclidean distance in the two-dimensional plane into which the trajectories are

embedded. Note that d̂ij(u) implicitly depends on t, but we suppress this dependence

in the notation, since it will always be clear from the context. As in the context of

car-following, we assume that distances to other vehicles are misperceived. Analogously,

we assume that vehicle i perceives its own distance to vehicle j as εi,3t d̂
ij(u), i.e., the

estimate d̂ij(u) is distorted by the multiplier εi,3t .

If j ∈ Mi
rel(t), vehicle i detects a con�ict at time t, if εi,3t d̂

ij(u) < ds for a safety

threshold ds ≥ 0 and t ≤ u ≤ t + t∗, i.e., the (distorted) extrapolated distance between

the two vehicles i and j falls below the safety threshold at a future time horizon. In

addition, if vehicle i is in the area of the intersection and detects a con�ict with another

vehicle j that has the right of way, vehicle i keeps the con�ict in mind until vehicle j

leaves the area of the intersection. In order to make this precise, we introduce �xed
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locations xistop, x
i
entry, and x

j
exit:

� xistop is the position on i's trajectory where vehicle i should stop in order to let

con�icting vehicles j pass;

� xientry is the position such that vehicle i, driving with desired speed vid, is able to

come to a complete stop at xistop using its maximal deceleration;

� vehicle j has passed the intersection if it has reached xjexit;

� we say i is in the area of the intersection at time t if xientry < xi(t) < xiexit.

In summary, we de�ne the setMi
conflict(t) of con�icting vehicles by

Mi
conflict(t) :=

{
j ∈Mi

rel(t) | ∃ u ∈ [t, t+ t∗] : εi,3t d̂
ij(u) < ds

}

∪
(⋃

u<t

{
j ∈Mi

conflict(u) | xientry < xi(u), xj(t) < xjexit

})
.

3.3.4 Con�ict Reaction

If the set of con�icting vehiclesMi
conflict(t) is nonempty, vehicle i reacts to this situation.

We distinguish two cases: stopping, or decelerating when stopping is unnecessary.

� Complete stop: If vehicle i is in position xi(t) with velocity vi(t), the constant

(negative) acceleration to stop at xistop equals

aistop(t) := − (vi(t))2

2(xistop − xi(t))
.

The duration of this maneuver is tistop(t) := −vi(t)/aistop(t).

� Deceleration: Stopping is not always necessary. Consider a vehicle i and a con-

�icting vehicle j. We assume that vehicle i bases its acceleration on a simpli-

�ed prediction of vehicle j by assuming that j's velocity is �xed. The time

it would take for vehicle j to leave the intersection with �xed speed vj(t) is

tjexit(t) := (xjexit − xj(t))/vj(t). If tistop(t) > tjexit(t), vehicle i does not intend

to stop, but only to slow down. The constant deceleration such that vehicle i

arrives at xistop at the predicted time equals

aijbreak(t) :=

(
xistop − xi(t)
tjexit(t)

− vi(t)
)

2

tjexit(t)
.

Con�ict reaction to vehicles j ∈ Mi
conflict(t) is modeled by bounding the acceleration

from above by

aijconflict(t) :=




aijbreak(t), if tistop(t) > tjexit(t),

aistop(t), if tistop(t) ≤ tjexit(t).
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We do, however, not assume that these quantities depend on the correct distances or

velocities, but on their perceived values and replace the arguments of the functions

accordingly, i.e., vi(t) by εi,1t v
i(t), xistop − xi(t) by εi,3t (xistop − xi(t)), xjexit − xj(t) by

εi,3t (xjexit − xj(t), and vj(t) by ε
i,2
t v

j(t), j ∈M \ {i}.

3.3.5 Intersection Dynamics Subject to Random Misperception

The motion of the vehicles can be expressed as a system of coupled random ordinary

di�erential equations:





d
dtx

i(t) = max{vi(t), 0},
d
dtv

i(t) = max
{
aimin,min

{
aiIDMrm(t), minj∈Mi

conflict(t)
aijconflict(t)

}}
,

xi(ti0) = 0, vi(ti0) = vi0, t ≥ ti0, i ∈M

(3.3.3)

Velocities are bounded from below by 0. The minimal acceleration of vehicle i is set to

aimin; this is both realistic and necessary, if accidents are admissible. The acceleration of

a vehicle i is the minimum of aiIDMrm(t) (to control the distance to the preceding vehicle)

and minj∈Mi
conflict(t)

aijconflict(t) (to solve all con�icts in the intersection simultaneously).

Each vehicle i enters the system on its path with an initial velocity vi0 ≥ 0 at time ti0
and is removed from the system once it reaches the end of its path.

Remark 3.3.3. The described con�ict reaction is closely related to microscopic gap-

acceptance models. Instead of critical gaps in time, we measure the distance to con�icting

vehicles and adjust the velocity accordingly. Gap-acceptance models re�ect heterogeneity

via probability distributions. A similar approach could be applied to the safety threshold

in our model and the adjustment of the velocities.

Remark 3.3.4. In this chapter, we study uncontrolled bi-directional two-lane intersec-

tions. Our approach can be generalized to other priority regimes:

� Prioritized roads can be modeled by adjusting Mi
rel(t), i.e., the set of vehicles to

which one needs to give way.

� To model a signalized intersection, one could include another time-dependent ac-

celeration term aisignal(t) forcing vehicle i to decelerate on red. The resulting accel-

eration would be min{aiIDMrm(t), aisignal(t),minj∈Mi
conflict(t)

aijconflict(t)}. Also, other

relevant con�icts and other types of misperception could be integrated in a more

comprehensive model.

Remark 3.3.5. Mathematically, the model in (3.3.3) is a system of coupled random

ordinary di�erential equations. Random ordinary di�erential equations (RODEs) are

ordinary di�erential equations whose right-hand side depends on some stochastic process.

Pathwise, these are non-autonomous classical ordinary di�erential equations and can be
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solved by deterministic calculus. Local existence of a weak solution is guaranteed by

Theorem 3.7.1 (cf. Section 3.7), i.e., we �nd trajectories xi(t) which satisfy (3.3.3) for

Lebesgue almost all times. However, many classical numerical methods are inappropriate

due to the roughness of the paths of the stochastic processes. Suitable schemes will be

explained in the next section.

Computing aijconflict(t) is expensive. This e�ort can be reduced by virtue of the following

simple lemma: If vehicle i anyway intends to stop due to some con�icting vehicle j, it

does not need to analyze other con�icting vehicles anymore. The proof is trivial.

Lemma 3.3.6. Let i ∈M and j ∈Mi
conflict(t). The following statements hold:

(i) aistop(t) ≤ aijbreak(t),

(ii) If there exists j∗ ∈Mi
conflict(t) such that aij

∗

conflict(t) = aistop(t), then

min
j∈Mi

conflict(t)
aijconflict(t) = aistop(t).

Random misperception may trigger accidents, i.e., collisions of vehicles. In order to

capture this, we denote by Ai(t) the area that is occupied by vehicle i ∈ M at time

t; this is modeled by an ellipse in the two-dimensional plane. A collision occurs if

Ai(t)∩Aj(t) 6= ∅ for i, j ∈M and t ≥ 0. In this case, we set the velocity of the vehicles

i and j to 0 and adjust the dynamics of the tra�c system (3.3.3) accordingly. Moreover,

we trigger an exponentially distributed waiting time

tremoval ∼ Exp(γ), γ > 0,

with expectation E(tremoval) = 1/γ. Meanwhile, other vehicles may crash into the existing

collision; however, after tremoval has passed, all vehicles that are involved in this particular

accident are removed from the model. Of course, simultaneously other accidents may

occur at other places.

3.3.6 Calibration

The model includes three dimensions: car-following, con�ict detection and reaction, and

misperception. The aim of the model is to provide an experimental lab that allows to

envision future tra�c systems. In particular, future advanced driver-assistance systems

will modify the behavior of human drivers, and we will also study the coexistence of

human drivers and autonomous vehicles. This implies that the model cannot fully be

calibrated to statistical data. In fact, the purpose of the model is to generate arti�cial

data of novel tra�c systems that do not yet exist. However, calibration needs to be

discussed in the context of suitable benchmarks. Our model will deviate from these

benchmarks, and it can be compared to them.
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� Car-following models can be calibrated from either aggregate or disaggregate

tra�c data (see, e.g., Treiber, Hennecke & Helbing (2000), Kesting & Treiber

(2008), Ossen & Hoogendoorn (2008), Punzo, Ciu�o & Montanino (2012), Sharma,

Zheng & Bhaskar (2019)). These may also serve as benchmark models of au-

tonomous vehicles; however, their behavior will deviate from current tra�c data

due to the increased capabilities of the vehicles and their �exible and partially

unknown future design.

� Con�ict detection and reaction is captured by a stylized model in this chapter.

A benchmark can be estimated on the basis of similar methodologies previously

suggested for gap-acceptance models (see, e.g., Daganzo (1981), Mahmassani &

She� (1981), Pollatschek, Polus & Livneh (2002)).

� Perception errors of human drivers could be estimated on the basis of statistical

data (see, e.g., Evans & Rothery (1974), Taieb-Maimon & Shinar (2001)). In the

future, the size of these errors may be further reduced by improved technology,

e.g., advanced driver-assistance systems.

3.4 Simulation Method

On a pathwise level, RODEs are non-autonomous ordinary di�erential equations; classi-

cal �rst order methods from deterministic calculus can be applied to solve them. RODEs

depend, however, on stochastic processes which typically possess paths of unbounded

variation that are nowhere di�erentiable. Typical examples are (fractional) Brownian

motion and related processes such as the Ornstein-Uhlenbeck process that we will con-

sider in this chapter. Due to their insu�cient smoothness, many classical numerical

methods are not appropriate; the reason is that standard arguments for the error anal-

ysis of numerical schemes are not applicable anymore, since these are often based on

Taylor expansions requiring su�cient regularity (we refer to Han & Kloeden (2017) for

a more detailed discussion of this issue).

These challenges are addressed by simulation schemes that are speci�cally taylored

for RODEs. To approximate the solutions, we employ the γ-RODE-Taylor scheme (cf.

Jentzen & Kloeden (2009)). This method requires that there exists θi = (θi,1, θi,2, θi,3)> ∈
(0, 1]3 such that each component process (εi,kt )t≥0 is Hölder continuous for all exponents

ηi,k satisfying 0 < ηi,k < θi,k, k = 1, 2, 3 (cf. Assumption 3.1 in Jentzen & Kloeden

(2009)).

We consider a time discretization T = {t0, t1, ...}; for the individual time points and

for all i ∈M we determine an approximate solution

(
xik
vik

)

k=0,1,2,...

to our system (3.3.3).

Consider the iteration interval [tk, tk+1]. In order to compute for a �xed i ∈ M

the update

(
xik+1

vik+1

)
we treat

(
xjk
vjk

)
for j 6= i as �xed exogenous input values. We
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computeMi
conflict(tk) and ipre(tk), and �x these values for the iteration interval [tk, tk+1].

Under these assumptions, the right-hand side of the evolution equation for i, as given

in (3.3.3), can be rewritten in terms of a function f : R3 × R2 → R2 with arguments

(εi,1t , ε
i,2
t , ε

i,3
t )> ∈ R3 and (xi(t), vi(t))> ∈ R2. We replace f by a suitable in�nitely

di�erentiable approximation that we again denote by f .

In the case studies in the next section, we consider error processes (εi,1t )t≥0, (εi,2t )t≥0,

(εi,3t )t≥0 with θi = (1
2 ,

1
2 ,

1
2)> (cf. Section 3.5.1). Setting γ = 1, we obtain the pathwise

γ-RODE-Taylor scheme

Φ1(z, t, h) := z + h · f(εit, z) +
h

n

3∑

k=1

∂wkf(εit, z)

n−1∑

j=1

∆εi,kt,τj ,

where τj = t+ j
n ·h, ∆εi,kt,τj = εi,kτj −εi,kt and n =

⌈
h

1− 2
1−2ξ

⌉
for ξ > 0 small. Here, d·e is a

Gauss-bracket, and ∂w1 , . . . , ∂w3 denote the partial derivatives with respect to the three

error components of f . The derivatives of f are approximated by di�erence quotients.

The stepwise order of convergence equals γ = 1. The approximation of the solution of

(3.3.3) for vehicle i ∈M at time tk+1 is given by

(
xik+1

vik+1

)
= Φ1

((
xik
vik

)
, tk,∆tk+1

)

with ∆tk := tk − tk−1.

3.5 Case Study

Performance Measures. We evaluate our model in terms of risk and e�ciency. We

study

� the number of accidents, the number of collided vehicles, and the number of collided

vehicles per accident as quantitative measures of the riskiness of the system, and

� network tra�c �ow as a measure of system e�ciency.

The length of the simulation period is denoted by Tsim.

Network Tra�c Flow. We assign to each vehicle i ∈ M a �nal destination desti on

its path. Network tra�c �ow Q is measured by the number of vehicles i ∈ M per time

unit that reach their destinations:

Q =
card

{
j ∈M : ∃ t ≤ Tsim : xj(t) = destj

}

Tsim
,

where card denotes the cardinality. The corresponding sample mean is denoted by Q̂.
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Number of Accidents. A �rst proxy for the safety of tra�c systems is given by the

number of accidents per time unit

facc = T−1
sim · card

{
∅ 6= M ⊂M : ∃ t ≤ Tsim ∀ i ∈M : Ai(t) ∩AM\{i}(t) 6= ∅
and ∀ t ≤ Tsim : AM (t) ∩AMc

(t) = ∅
}
,

where M c := M \M and AM (t) :=
⋃
i∈M Ai(t). The corresponding sample mean is

denoted by f̂acc. An accident is the event that multiple cars are jointly involved in

collisions. A collision occurs, if the associated areas of two vehicles intersect.

Number of Collided Vehicles. The number of vehicles per time unit that are in-

volved in accidents is given by

fveh = T−1
sim · card

{
i ∈M : ∃ t ≤ Tsim ∃ j ∈M \ {i} : Ai(t) ∩Aj(t) 6= ∅

}
.

The corresponding sample mean is denoted by f̂veh.

Number of Collided Vehicles per Accident. A measure for the average severity

of an accident is the number of collided vehicles divided by the number of accidents:

gveh/acc =
fveh

facc
.

Its sample mean is denoted by ĝveh/acc.

3.5.1 Misperception Model

Perception of the environment is subject to errors. In our multiplicative error model,

mean-reverting processes are capable of capturing noisy deviations; mean-reverting pro-

cesses are stochastic processes that randomly �uctuate around �xed values. In contrast,

permanent malfunctions can, for example, be modeled by jump processes such as con-

tinuous time Markov chains. Both aspects may also be combined in a joint model.

In this chapter, we focus only on the �rst dimension of misperception, i.e., random

noise that distorts perceived quantities around their true values. An important example

of a mean-reverting stochastic process that �uctuates around a constant level is the

Ornstein-Uhlenbeck process. This process was also used in Berkhahn et al. (2018) to

model perceptional errors. We refer to Mitra et al. (2018) for potentially more realistic,

but less tractable alternative approaches.

De�nition 3.5.1 (Ornstein-Uhlenbeck Process). Let β ∈ R and α, σ > 0. A

stochastic process (εt)t≥0 is called an Ornstein-Uhlenbeck process, if ε0 = a ∈ R and

(εt)t≥0 solves the following stochastic di�erential equation:

dεt = α(β − εt)dt+ σdWt,
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where (Wt)t≥0 denotes a one-dimensional standard Brownian motion.

Typical simulated paths are shown in Figure 3.2. For more details regarding simulation

and interpretation, we refer to Berkhahn et al. (2018) and Glasserman (2003).

In our case studies, we analyze two scenarios � a homogeneous and a heterogeneous

scenario:

(i) In the homogeneous case, we assume that all (εi,1t ), (εi,2t ) and (εi,3t ) are independent

and identically distributed Ornstein-Uhlenbeck processes with parameters a = β =

α = 1 and varying values of the parameter σ which controls the volatility of the

process.

(ii) In the heterogeneous case, we assume that vehicles with and without mispercep-

tion coexist. For the latter, we assume εi,1t = εi,2t = εi,3t ≡ 1, capturing perfect

perception.
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Figure 3.2: Simulated paths of an Ornstein-Uhlenbeck process (εt) for di�erent values of
σ with α = 1, ε0 = 1, β = 1.

3.5.2 Scenario Description

The intersection consists of two two-lane roads of length 210 m, each having a width of

10 m. For this case study, we generate vehicles in the following way: The intersection

can be approached from four directions, i.e., vehicles are generated at four origins. We

create vehicles with an exponentially distributed headway such that the expected rate

of vehicles per time unit at each source is 150 veh/h. Larger gaps may randomly emerge

between vehicles � allowing vehicles to turn that wait at the intersection. If substantial
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tra�c jams occur, our simulation delays the generation of new vehicles such that tra�c

�ow cannot completely break down.

When a vehicle is generated, it chooses with probability 1/3 one of the following paths:

turn right, go straight, turn left. Its initial velocity is set to the velocity of the preceding

vehicle. If there is no preceding vehicle, it starts with its desired velocity.

We simulate the tra�c system for a duration of Tsim = 600 s. To reach a representative,

potentially stationary state of the Markovian model, we implement a burn-in period of

100 s. Data for the computation of the relevant statistics are recorded afterwards. The

model is simulated on an equidistant time grid with ∆tk ≡ 0.1 s. We sample repeatedly

and compute averages of Q, facc, and fveh from the empirical distributions.

Remark 3.5.2. A generation rate of 150 veh/h per source corresponds to a scenario of low

to moderate tra�c volume. In the error-free case, the generation rate could be increased.

Real-world tra�c regulations require the installation of tra�c signals if tra�c volumes

are slightly larger: According to German regulations (cf. Reinhold Baier et al. (2006)), a

tra�c light should be installed if total tra�c �ow exceeds 800 veh/h; US regulations (cf. U.

S. Department of Transportation, Federal Highway Administration (2013)) specify that

the sum of tra�c �ow on the major lanes should not exceed 500 veh/h and the maximum

of �ow on the minor lanes should be below 150 veh/h. In our case study, all sources have

the same generation rate of maximally 150 veh/h without any distinction between major

and minor lanes.

3.5.3 Simulation Results

We independently simulate the four-way intersection 20, 000 times. The parameters

underlying the simulation are displayed in Section 3.8. We separately analyze the ho-

mogeneous and the heterogeneous case and study the e�ect of two important control

parameters:

� We vary the time headway T of the vehicles (T is a parameter of the car-following

model IDMrm), and

� the safety distance ds which controls whether an oncoming vehicle is classi�ed as

con�icting or not.

Homogeneous Tra�c. We assume that all vehicles are subject to misperception as

described in Section 3.5.1. This occurs if only human drivers are present. Figure 3.3

displays the quantitative measures of the risk of the system: Figure 3.3a shows the

number of accidents, Figure 3.3b the number of collided vehicles. Of course, safety

increases when time headway and safety threshold are increased. Both graphs are quite

similar in shape, since for all parameters accidents involve on average about 2 to 2.2

vehicles, see Figure 3.3c. Due to low velocities (10 m/s) and a moderate rate at which

vehicles are generated, vehicles are able to react to most collisions.
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Figure 3.3: Number of accidents, number of collided vehicles and number of collided ve-
hicles per accident for σ = 0.2 and varying ds and T with 20, 000 independent
simulations for each parameter combination.
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Figure 3.4: Average tra�c �ow for σ = 0.2 and varying ds and T with 20, 000 independent
simulations for each parameter combination.

The e�ciency of the tra�c system is shown in Figure 3.4: Figure 3.4a shows a surface

plot, Figure 3.4b a top view of the same graph. The function is strictly concave and

has a unique maximum. This captures the tradeo� between risk and e�ciency: If ds

or T are small, the number of accidents is high and the intersection is blocked. Hence,

tra�c �ow is low. With increasing ds and T , the number of accidents decreases and

tra�c �ow increases. However, tra�c becomes ine�cient, if ds or T are large, i.e., if

vehicles drive too carefully; in this case, tra�c �ow decreases. Accidents do still occur

in the most e�cient tra�c �ow scenario. The �ndings generalize our preliminary results

in Berkhahn et al. (2018).

Our model admits two types of collisions: rear-end collisions and collisions at the

intersection. Figure 3.5 depicts the fraction of rear-end accidents among all accidents.

Within the considered parameter range, T has a stronger in�uence, but also ds has an

impact by reducing the number of collisions at the intersections. The dependence of Q
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Figure 3.5: Fraction of rear-end accidents for σ = 0.2 and varying ds and T with 20, 000
independent simulations for each parameter combination.

and facc on σ is shown in Figure 3.6: Of course, with increasing volatility more accidents

occur and tra�c �ow decreases. These e�ects are superlinear.
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Figure 3.6: Average network tra�c �ow and number of accidents for ds = 5 m, �xed
T , and varying σ with 20, 000 independent simulations for each parameter
combination. Dashed lines correspond to number of accidents, solid lines to
�ows.

Heterogeneous Tra�c. We now consider the coexistence of vehicles with perfect

perfection and misperception, analyzing their impact on tra�c e�ciency and accidents.

Perfect perception might be associated with autonomous vehicles, while random misper-

ception occurs in human drivers, possibly using advanced driver-assistance systems that

tame the size of errors. The parameter ρ ∈ [0, 1] denotes the penetration rate of vehicles

with perfect perception. Sampling independent Bernoulli-distributed random variables

with parameter ρ, we randomly pick the type of each vehicle.

Figure 3.7 shows the average tra�c �ow and number of accidents. As in the homoge-
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neous case, we vary the time headway T and the safety distance ds. Here, we consider

penetration rates ρ ∈ {10%, 50%, 90%}. Increasing the penetration rate of error-free

vehicles, reduces the number of accidents and, consequently, increases tra�c �ow. Figure

3.8 studies this behavior in more detail for selected values of T and ds. While these qual-

itative features are expected, key to our model are exact quantitative characterizations

of tradeo�s for each given set of model parameters.
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Figure 3.7: Average network tra�c �ow and number of accidents for di�erent penetration
rates ρ, σ = 0.2, and varying ds and T with 20, 000 independent simulations
for each parameter combination.
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3.6 Conclusion

This chapter studies safety and e�ciency of future tra�c systems. We develop a rigorous

microscopic model for tra�c at intersections. Random misperception of human drivers

may trigger accidents. The system is captured by random ordinary di�erential equations

(RODEs) that require speci�c numerical schemes for their e�cient simulation. The

proposed setup is general and can be extended to more complex tra�c scenarios.

Accidents are a consequence of perceptional errors of human drivers whose probability

and size may depend on advanced driver-assistance systems. Our case study clearly

illustrates the tradeo� between risk and e�ciency. If too many accidents occur, tra�c

breaks down; but if the safety margins are very large, the system becomes ine�cient.

Besides delivering these expected qualitative results, the model provides a quantitative

simulation lab of future tra�c systems. Our model captures both homogeneous vehicles

and the coexistence of autonomous vehicles and human drivers. Our techniques can

easily be modi�ed to allow for more than two types of drivers.

The proposed approach can also be implemented in more comprehensive models, yet

computational costs increase. Other road types, such as roundabouts and multi-lane

roads, could be modeled accordingly. In the context of lane-changing, misperception will

also imply the occurrence of accidents. The model is capable of characterizing improved

or even optimal designs of autonomous vehicles if human drivers that make errors are

present and coexist with autonomous vehicles. Another interesting issue are errors of

autonomous vehicles, e.g., misclassi�cation of objects; but this important subject requires

a more comprehensive model than ours which includes also other participants besides

cars.
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Finally, future research should, on the one hand, derive surrogate models from the

microscopic tra�c system. On the other hand, a more detailed analysis of accidents that

includes incurred losses may provide additional guidance for the design of tra�c systems

with autonomous vehicles and for suitable risk management solutions.

3.7 Appendix: Theoretical Existence Result

General existence results for ordinary di�erential equations can be found in the litera-

ture, e.g., the Theorem of Constantin Carathéodory, see Carathéodory (1918) or Han &

Kloeden (2017, Chapter 2.1).

Let Br(x0) ⊆ Rd be the open ball with radius r > 0 centered in x0 ∈ Rd.

Theorem 3.7.1 (Carathéodory's Existence Theorem). Let f : [0, T ]×Br(x0)→ Rd

such that

(i) f(t, x) is continuous in x for almost every t ∈ [t0, T ],

(ii) f(t, x) is Lebesgue measurable in t for all x ∈ Br(x0),

(iii) |f(t, x)| ≤ M(t) for all x ∈ R and almost every t ∈ [t0, T ] for some absolutely

continuous function M(t).

Then there exists an absolutely continuous function x∗ : [t0, t0 +δ]→ Rd with x∗(t0) = x0

which solves the initial value problem

dx

dt
= f(t, x), x(t0) = x0, x ∈ Rd,

for Lebesgue almost all t ∈ [t0, t0 + δ].

The three conditions are also referred to as Carathéodory conditions.

3.8 Appendix: Choice of Parameters

The parameters for our simulations are displayed in Table 3.1.

Table 3.1: Parameter choice for the scenario.

amax vd δ amin s0 T b l

2.0 10.0 4 −3.5 2.0 · 1.67 6

γ α β σ ds t∗ ∆t λ

1/300 1 1 0.2 · 10 0.1 1/3

© 2022 IEEE. Reprinted, with permission, from Volker Berkhahn, Marcel Kleiber,

Johannes Langner, Stefan Weber, and Chris Timmermann, Tra�c Dynamics at Intersec-
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tions Subject to Random Misperception, IEEE Transactions on Intelligent Transporta-

tion Systems 23(5), May 2022.



4 Microscopic Tra�c Models, Accidents,

and Insurance Losses

The original version of this chapter has been submitted for publication, see Kim, Kleiber

& Weber (2022).

4.1 Introduction

Every year, tra�c accidents cause substantial damage, both property damage and in-

juries and deaths. For example, nearly 43,000 people died in road tra�c accidents in the

USA in 2021 (NHTSA (2022)). The frequency and severity of these accidents depends

on the driving behavior of vehicles, on the one hand, and on the characteristics of tra�c

systems themselves, on the other. Improvements in road safety are achieved, for exam-

ple, by reducing serious injuries in accidents through the design of vehicles, by car body

design, airbags, seatbelts, etc. However, the frequency and type of accidents can also

be in�uenced by modifying the transportation system itself and by changes in driving

behavior. From a higher-level perspective, at least two dimensions are central, and we

will examine them in this chapter:

(i) Engineering. From an engineering perspective, the focus is on the good design of

vehicles and tra�c systems, combining functionality and safety. Instruments in

this respect include tra�c rules and their implementation, the layout of streets,

and innovation in vehicle technology. Improvements of this type may reduce the

number of accidents and their severity, but cannot completely prevent accidents.

(ii) Insurance. Residual risks remain, and accidents cannot be completely prevented.

However, at least in �nancial terms, the associated losses can be covered by in-

surance contracts. The role of actuaries is to develop adequate contract struc-

tures, calculate correct premiums, and implement quantitative risk management

in insurance �rms. These tasks require the modeling and analysis of probability

distributions of accident frequencies, corresponding damages, and insurance losses.

The objective of this chapter is to develop a methodology to enable microscopic models

of transportation systems to be accessible for a statistical study of tra�c accidents. Our

approach is intended to permit an understanding not only of historical losses, but also of

incidents that may occur in altered, potential future systems. Through this, it is possible,

51
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from both an engineering and insurance perspective, to assess changes in the design of

vehicles (e.g., the driving behavior of autonomous vehicles) and transport systems in

terms of their impact on functionality and road safety.

To understand current tra�c events or structural relationships in the past, historical

data can be used. Historical data can also be applied to test whether a model frame-

work is appropriate in principle to describe tra�c systems realistically. These data also

constitute the essential basis for the speci�c pricing of insurance contracts in practice.

But how can we examine risks associated with new technologies and with novel future

strategies for tra�c systems? Consider autonomous vehicles, for example: due to their

altered driving behavior, these will reshape existing tra�c patterns, and in turn, accident

occurrences and associated losses. Insurance companies presumably will have to adapt

their business models as well; in the future, premiums for auto insurance may depend

upon the driving con�guration of the vehicle rather than the risk pro�le of the driver.

In order to investigate future developments, we are suggesting to devise simulation

tools in analogy to digital twins of real transport systems, which allow counterfactual

case studies of possible future transport systems. The digital twin paradigm refers to the

triad of a �physical entity, a virtual counterpart, and the data connections in between�

(Jones et al. (2020)). In our application, the physical entity is the (future) real-world

transportation system for which data on losses are not yet available. Its virtual counter-

part is the model we are building. Counterfactual case studies can be used to generate

data, evaluate future driving technologies and their impact on accident losses. Based on

the results, newly developed concepts (e.g., modi�ed tra�c rules, novel insurance cover-

age and their insurance premiums, etc.) can be adapted in the real world. The concept

of the digital twin makes it possible to experiment with technologies and policies, and

their e�ects on accident damage without having to implement risky tests in reality.

Methodologically, this chapter combines existing microscopic tra�c models with prob-

abilistic tools from actuarial science and quantitative risk management to study accident

damage and insurance losses in the context of simulations. In particular, we use the

well-established tra�c simulator SUMO (Lopez et al. (2018)) to realistically model traf-

�c systems. We extend this to include random accidents and corresponding losses. The

losses are modeled as random variables whose distributions depend on microscopic data.

Since insurance contracts typically cover annual periods, we set up a model for aggre-

gate losses over a one-year time horizon. We also show that aggregate losses can be

approximated by a mean-variance mixture of Gaussian distributions. This provides an

alternative perspective on the distribution of the aggregate loss and a second method

of evaluation besides crude Monte Carlo sampling. For certain insurance contracts, we

improve the accuracy of the approximation-based valuation by using a correction term.

This was originally developed by El Karoui & Jiao (2009) for the e�cient pricing of com-

plex �nancial instruments, there in the context of a classical Gaussian approximation.

Our digital twin approach enables a comprehensive analysis of risk in transportation
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systems: We study the impact of �eet sizes and their driving con�gurations on system

e�ciency and insurance prices. System e�ciency is measured using traditional tra�c

statistics based on local tra�c counts such as tra�c �ow, average speed, and density.

Insurance claims are examined in terms of their probability distributions and selected

statistical functionals.

The main contributions of this chapter are:

(i) We develop a powerful methodological framework to generate accident data based

on microscopic tra�c models in analogy to the concept of digital twins.

(ii) Speci�cally, we construct an implementation based on the state-of-the-art open-

source tra�c simulator SUMO and illustrate the potential of the approach in com-

prehensive case studies.

(iii) Structurally, we characterize the total loss distribution approximatively as a mean-

variance mixture. This also yields alternative valuation procedures.

(iv) Based on Stein's method, we obtain a correction term in the valuation, derived

from the results of El Karoui & Jiao (2009), which enables surprisingly accurate

pricing of insurance contracts.

4.1.1 Outline

The chapter is organized as follows. Section 4.1.2 discusses related contributions in

the literature. Section 4.2 presents the microscopic tra�c model that captures also

accidents. Section 4.3 discusses the evaluation of the losses. Case studies are presented

in Section 4.4. Section 4.5 concludes and discusses further research challenges. The

supplementary material in Section 4.6 contains details on the implemented sampling

procedure; additional simulation results, not presented in Section 4.4, are documented

in Appendix B.

4.1.2 Literature

This chapter combines microscopic tra�c models with probabilistic tools from actuarial

science and quantitative risk management to study risks in tra�c systems. The literature

can be predominantly classi�ed along the two dimensions described in the introduction,

the engineering perspective and the actuarial perspective.

The Engineering Perspective. An important �eld of operations research is the anal-

ysis and optimization of road tra�c systems (see, e.g., Gazis (2002)) with respect to their

e�ciency. Tra�c models are indispensable tools for this purpose: Macroscopic models

are based on the functional relationships between macroscopic features such as tra�c

�ow, tra�c density, and average speed. These models allow the study of issues such
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as the e�cient routing of vehicles under di�erent constraints (see, e.g., Acemoglu et al.

(2018), Colini-Baldeschi et al. (2020)). Stochastics can be used to extend such risk con-

siderations in terms of uncertain travel times (e.g., Nikolova & Stier-Moses (2014)). In

the context of various applications of transportation systems, tailored stochastic models

provide suitable analytical tools; the literature is extensive and includes, for example,

the e�cient routing of ambulances (Maxwell et al. (2010)) or the allocation of capacity

in bike-sharing systems (Freund, Henderson & Shmoys (2022)).

To model transportation systems at a level of higher granularity, microscopic traf-

�c models are used (see, e.g., Helbing (2001)). These models typically determine the

acceleration behavior of individual vehicles. Their simulation, i.e., the computation of

trajectories from accelerations, is computationally more demanding. There are estab-

lished software solutions that facilitate the application of microscopic models. In this

work, we use SUMO (see the Section 4.2.3 for an overview). Examples of competing

microscopic tra�c simulators include VISSIM (Fellendorf & Vortisch (2010)) and Aim-

sun (Casas et al. (2010)). While SUMO is open source software, these competitors are

commercial.

Leveraging the simulator Aimsun, Osorio & Bierlaire (2013) address questions regard-

ing optimal operation of tra�c networks using microscopic tra�c models; the authors

develop a stochastic optimization framework based on coupling the Aimsun simulator

with a metamodel to optimize tra�c e�ciency � here for signal plans in a city. Osorio &

Nanduri (2015) extend the microscopic tra�c model for fuel consumption to determine

energy-e�cient tra�c management strategies.

In addition to model building (if data are available), whether macroscopic or micro-

scopic, calibration can be a challenge. Flötteröd, Bierlaire & Nagel (2011) propose a

Bayesian approach to calibrating travel demand. Zhang, Osorio & Flötteröd (2017) dis-

cuss the calibration of large-scale tra�c simulators; Osorio & Punzo (2019) focus on the

calibration of car-following models for the simulation of a tra�c network.

In addition to the traditional focus on e�ciency, there is another strand of literature

that evaluates the safety of transportation systems. Up to now, mainly historical data

have been used to examine accident frequency and severity. For reviews, we refer to Lord

& Mannering (2010) and Tsoi & Gabler (2015). Statistical modeling approaches permit

inference when su�cient data are available on the level of the granularity of the analysis.

For example, Yu et al. (2019) estimate the impact of microscopic tra�c variables on

crash risks. Ortelli, Lapparent & Bierlaire (2021) analyze the impact of public tra�c

policies on crash severity.

In the absence of data, physical models of tra�c can be used to generate arti�cial data.

In our research group, we have shown how perceptual errors can be added to microscopic

tra�c models to endogenously model the occurrence of accidents (cf. Berkhahn et al.

(2018) and Berkhahn et al. (2022)) � a topic that is particularly relevant for sensors of

autonomous vehicles. The models allow characterizing the trade-o� between safety and
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e�ciency of transportation systems.

To deploy autonomous vehicles in the real world, lengthy and expensive testing phases

are required. Acceleration strategies are being developed to shorten these times (e.g.,

Zhao et al. (2018)). These approaches rely on importance sampling techniques to over-

come the rare-event nature of safety-critical situations. Arief, Glynn & Zhao (2018)

develop simulation-based testing methodologies in order to analyze autonomous vehicles

in relevant scenarios that are constructed using collected data. Norden, O'Kelly & Sinha

(2019) create a framework for the black-box assessment of the safety of autonomous ve-

hicles. They apply their framework on a commercial autonomous vehicle system. Our

work focuses on aggregate losses over relatively long time horizons. By considering one-

year losses via a conditional loss modeling approach, we bypass the problem of simulating

rare events.

The Actuarial Perspective. The ambitious goal of achieving maximum e�ciency

and complete safety through engineering design cannot be realized in reality; accidents

can never be completely excluded, even if residual risks can be kept very small. Insurance

is an instrument to deal with infrequent losses. They make �nancial transfer payments in

the event of claims. We refer to McNeil, Frey & Embrechts (2015) and Wüthrich (2013)

for overviews of mathematical and statistical methods in quantitative risk management

and non-life insurance.

An important task of actuaries is pricing; the premiums of motor insurance contracts

are based on historical claims data collected by insurance companies. Insurance premi-

ums are calculated based on individual characteristics of the driver (age, driving experi-

ence, etc.) and the vehicle (type, location, etc.). These tari�s are often complemented by

bonus-malus schemes (see, e.g., Denuit et al. (2007)) to incentivize more careful driving

and prevent insurance fraud.

Novel pricing approaches use telematics technology (see, e.g., Husnjak et al. (2015) for

an overview). This involves collecting GPS data from vehicles, which can be analyzed

and classi�ed. Machine learning techniques are suitable to process these large amounts

of data. We refer to Gao, Meng & Wüthrich (2022) for a methodological overview.

Verbelen, Antonio & Claeskens (2018) discuss telematics pricing and use generalized ad-

ditive models to interpret the impact of telematics variables on accident frequency. More

recently, Henckaerts & Antonio (2022) develop a usage-based auto insurance product in

which a base premium is dynamically updated based on newly available telematics data,

depending on the policyholder's driving behavior.

Our approach can be understood as complementary to telematics pricing: Instead

of analyzing driving data to determine the driving behavior of individuals, we specify

the behavior of vehicles as a driving con�guration and subsequently generate driving

data and insurance claims. Our approach is in particular suitable, if novel autonomous

technologies are studied. To our knowledge, there is no other work that develops a
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microfounded model of tra�c accidents that can be leveraged to study insurance pricing.

4.2 Model Components

Our microfounded simulation model for investigating accident losses is based on two

components:

(i) At its core is a deterministic microscopic tra�c model that realistically character-

izes the motion of vehicles in a tra�c system typically represented by a system of

ordinary di�erential equations.

(ii) This microscopic tra�c model is extended to include the possibility of random acci-

dents. At random accident times, local tra�c data are observed which characterize

the probability distribution of the occurring losses. In our speci�c implementation

of this general conceptual approach, the SUMO microscopic tra�c simulator is

applied to realistically represent and simulate the underlying tra�c scenarios.

In this section, we introduce the notation and construct microscopic tra�c models that

integrate random accident occurrences and losses. We also explain in more detail how

SUMO is used.

4.2.1 Microscopic Tra�c Networks

We consider a road network that is typically embedded into a two-dimensional area

A ⊆ R2. The network may consist of roads, junctions, roundabouts, intersections,

highways, etc. on which vehicles move. The collection of all vehicles in the network is

denoted byM. Each vehicle i ∈M is assigned an origin-destination pair (Oi, Di) ∈ A.
We consider a �xed time horizon T > 0. Vehicles move over time from their origin

to their destination on a (potentially changing) path. We denote by xi(t) the posi-

tion of vehicle i at time t ∈ [0, T ], by vi(t) = d
dtx

i(t) their velocity, and by ai(t) =
d
dtv

i(t) their acceleration. We make the implicit assumption that vehicles are located

in Oi until some release time and remain in Di once reached. Thus, we let M(t) ={
i ∈M : xi(t) /∈ {Oi, Di}

}
be those vehicles which are currently inside the network, i.e.,

they have left their origin but not reached their destination, yet. If we only consider

vehicles which belong to a certain group of vehicles (also called a �eet) Φ ⊆ M, we

will writeMΦ(t). This could, for example, be a �eet of vehicles with the same driving

characteristics.

At the core of many microscopic tra�c models are car-following models1. These de-

termine the acceleration behavior of an individual vehicle i along its path on the basis

1Prominent examples include the Intelligent Driver Model (Treiber, Hennecke & Helbing (2000)), the
Optimal Velocity Model (Bando et al. (1994) and Bando et al. (1995)), and the Krauÿ model (Krauÿ
(1998)).
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of information on the positions and velocities of the vehicles, typically in a neighbor-

hood of i, and the properties of the system. Often, only the preceding vehicle on the

road is relevant, and the acceleration of i is constructed such that vehicles move for-

ward while maintaining a minimal distance. Through speci�c choices more complex

tra�c scenarios (e.g., intersections, overtaking) can still be represented in such a man-

ner. Mathematically, car-following models correspond to systems of coupled ordinary

di�erential equations.

Tra�c State. We denote by γ(t) =
(
xi(t), vi(t), ai(t)

)
i∈M the state of the tra�c

system at time t. It records the position, velocity, and acceleration of any vehicle. The

evolution of the tra�c system over time is depicted by the (high-dimensional) trajectory

t 7→ γ(t).

Macroscopic tra�c statistics aggregate these microscopic data. Typical examples in-

clude tra�c �ow (number of vehicles that pass a certain point per time unit), tra�c

density (number of vehicles per length unit), and average speed. These measures quan-

tify the performance of tra�c systems.

Local Tra�c Conditions. In order to model the occurrence of accidents depending

on local tra�c conditions, we partition A in regions. More precisely, we partition A into

a �nite number of disjoint sets Ar ⊆ A such that A =
⋃R
r=1Ar and R ∈ N. We call the

elements Ar of the partition a tra�c module.

We let Mr(t) =
{
i ∈M(t) : xi(t) ∈ Ar

}
⊆ M(t) denote those vehicles that are in

Ar at time t (with MΦ
r (t) de�ned in analogy). The local tra�c state of the module is

γr(t) = (xi(t), vi(t), ai(t))i∈Mr(t). Key local tra�c characteristics (density, �ow, speed,

etc.) can then be expressed as functions of γr(t) and its evolution over small time

windows.

4.2.2 Microscopic Tra�c Model with Accident Losses

So far, the evolution of the tra�c system is a deterministic function of time. The

advantage of microscopic models is that they enable a detailed simulation of tra�c

systems. The driving behavior of the vehicles can be varied, likewise their number and

paths, road conditions, etc. in order to generate many di�erent scenarios. Such models

provide a detailed picture, similar to digital twins of reality, and can be used to analyze

potential future tra�c systems or to understand the impact of new technologies.

We consider a �nite collection of di�erent tra�c scenarios γk := (γk(t))t∈[0,T ] with

k ∈ {1, 2, . . . ,K} for a short time horizon T > 0. The aim is to analyze characteristics

of tra�c over the long time horizon NT , e.g., one year, for some large N ∈ N; this is
modeled by a �nite sequence of tra�c scenarios (k1, k2, . . . , kN ) ∈ {1, 2, . . . ,K}N . The
N subintervals of length T are called time buckets. We will be interested in quantities

aggregated or averaged over the whole time horizon NT . Examples include the average
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tra�c �ow, the total number of accidents, the aggregate losses due to accidents, etc.

These quantities do not depend on the order of the tra�c scenarios during this time

period, but only on their number of occurrences.

We denote by µk the number of occurrences of scenario k divided by N , i.e., the

relative frequency of this tra�c scenario over the considered time horizon NT . The

vector µ = (µ1, µ2, . . . , µK)> lies in the simplex ∆K−1 = {x ∈ RK+ :
∑K

k=1 x
k = 1}. We

assume that µ is not deterministic, but a random variable. This is to account for the

fact that the relative frequencies of tra�c scenarios �uctuate over di�erent years due to

varying weather conditions, random changes in tra�c demand, or other factors. From a

mathematical point of view, this construction leads to a mixture model with exogenous

factor µ.

Accident Occurences. We now introduce our tra�c accident model that will permit

an analysis of aggregate losses and corresponding insurance contracts. The likelihood

of the occurrence of an accident is modeled as a function of the tra�c scenario. We

consider two speci�cations, a Binomial and a Poisson model.

(i) Binomial Model. Accidents are rare events. For a given tra�c scenario k, we

assume that the probability pk of an accident is close to zero. This probability

may, of course, depend on the evolution of the tra�c scenario, i.e., on the path

t 7→ γk(t), and we will discuss concrete speci�cations later. Given a realization

of µ, accidents are assumed to be independent across time buckets. This implies

that tra�c scenario k occurs for Nµk time buckets corresponding to a duration

of NTµk, and the number of accidents Ck during this period has a conditional

Binomial distribution with parameters pk and Nµk:

Ck | µ ∼ Bin(pk, Nµk).

(ii) Poisson Model. An alternative model assumes that accidents occur at random

times with a distribution governed by an intensity λk/T that depends on the traf-

�c scenario k. More speci�cally, the number of accidents Ck during the period

governed by scenario k of duration NTµk is conditionally Poisson distributed with

parameter λkNµk:

Ck | µ ∼ Poiss(λkNµk).

Accident Losses. Loss sizes conditional on the occurrence of accidents are assumed

to be independent across tra�c scenarios and across time buckets. We assume that the

conditional loss distribution with conditional distribution function F k depends only on

the tra�c scenario k. We will discuss examples below. Random total losses over the
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considered time horizon NT are equal to

L =
K∑

k=1

Ck∑

c=1

Xk
c ,

where the random variables Xk
c , k = 1, 2, . . . ,K, c ∈ N, are independent and Xk

c ∼ F k,

c ∈ N, for any k.

Concrete Speci�cations. Microscopic tra�c models are experimental environments

that allow to simulate the behavior of systems where no real data are yet available. Tra�c

planning can be supported by such models, and the impact of new technologies can be

tested in a counterfactual analysis. Here, we specify the general principles how accident

occurrences and losses can be based on microscopic tra�c models. An implementation

will in this chapter be based on SUMO, see Section 4.2.3, but could also rely on any

other suitable tra�c model.

Initially, K tra�c scenarios need to be selected as a basis for the model. While running

any deterministic tra�c scenario k over the time window [0, T ], information can be

extracted about the tra�c states γkr in each module r ∈ {1, 2, . . . , R}. In SUMO typically

not complete data on the whole paths are extracted, but only selected information at

loop detectors in the network that are part of the implementation.

In reality, the likelihood of accidents typically increases with higher tra�c density and

higher velocities, ceteris paribus. Also the distribution of losses is in�uenced by quantities

of this type. Examples are described in Section 4.4. This allows a computation of pk and

λk as a function of the data. Using the data associated with the modules, we may specify

probabilities and intensities for the modules such that pk =
∑R

r=1 p
k
r and λ

k =
∑R

r=1 λ
k
r .

In the Binomial model, pkr/p
k is the conditional probability that the accident is in module

r given that an accident occurs. In the Poisson model, the intensities λkr , r = 1, 2, . . . , R,

determine the accident times for each module. The resulting sequence of random times

in the whole tra�c system possesses the intensity λk. Conversely, if we �rst simulate

random times with intensity λk and then randomly choose a corresponding module with

probability λkr/λ
k in a second step, the random times associated with each module r

possess intensity λkr . Both procedures produce a number of accidents Ck that occur

during the period governed by scenario k.

The distributions of losses given a single random event will be chosen as follows. For

each tra�c scenario, we consider a collection of distribution functions (F k,ψ)ψ∈Ψ where

ψ corresponds to data that may be extracted from the tra�c simulation. In order to

do so, we uniformly simulate a random time in [0, T ] and extract at this time the data

from scenario k that determine ψ. The resulting distribution F k is a mixture of the

distributions (F k,ψ)ψ∈Ψ. The mixing distribution is derived on the basis of the tra�c

data of scenario k that are generated from our microscopic tra�c model.
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Insurance Contracts & Statistical Functionals. The microscopic tra�c model

with accidents will be the basis for the generation of aggregate losses. We study sta-

tistical functionals and insurance contracts. The analysis will be based on Monte Carlo

simulations, but we also compare approximation techniques that we describe in Sec-

tion 4.3.

The focus is on functions of aggregate losses L. Letting h : R → R be an increas-

ing function, we analyze h(L). In particular, we investigate the following functions

corresponding to three types of insurance coverage: h(x) = x (full coverage), h(x) =

max(x− θ, 0), θ ≥ 0 (constant deductible), h(x) = min(x, θ), θ ≥ 0 (stop loss). In each

case, we evaluate various statistical functionals:

(i) Expectation. E(h(L)),

(ii) Variance. Var(h(L)) = E((h(L))2))− E(h(L))2,

(iii) Skewness. ςh(L) =
E[(h(L)−E(h(L)))3]

(Var(h(L)))3/2 ,

(iv) Value-at-Risk. VaRp(h(L)) = inf{x ∈ R : P (h(L) ≤ x) ≥ p},

(v) Expected Shortfall. ESp(h(L)) = 1
1−p

∫ 1
p VaRq(h(L)) dq.

These functionals allow also the computation of insurance premiums on the basis of pre-

mium principles such as the expectation principle, the variance principle, or the standard

deviation principle.

4.2.3 Tra�c Scenarios in SUMO

4.2.3.1 A Brief Overview

A state-of-the-art open source software that allows us to generate tra�c scenarios is

SUMO, �Simulation of Urban MObility�. A reference publication on SUMO is Lopez

et al. (2018); in addition a detailed user documentation can be found online2. Freely

available since 2001, SUMO was originally developed by the German Aerospace Center

and extended by an active research community. It allows for a plethora of modeling

choices at di�erent levels and has been successfully applied to tackle many important

research questions addressing3, e.g., tra�c light optimization, routing, tra�c forecasting,

and autonomous driving.

In the following, we give a short overview. At its core, SUMO is a software which

generates a tra�c scenario γ = (γ(t))t∈[0,T ] from a given set of input �les:

(i) Network File. In SUMO, a tra�c network is described by a directed graph whose

nodes represent intersections and edges roads. All nodes and edges have attributes

including positions, shapes, speed limits, tra�c regulation, etc. As an example,

the city of Wildau is represented as a SUMO network in Figure 4.1.
2See sumo.dlr.de/docs/index.html.
3See eclipse.org/sumo/about/.

sumo.dlr.de/docs/index.html
eclipse.org/sumo/about/
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(ii) Route File. Vehicles are generated on the basis of tra�c demands between origins

and destinations. Routes can either be de�ned for each vehicle as a trip or as

recurring �ows along a speci�c path. If only origin and destination are provided,

the corresponding route is computed4 when the vehicle enters the system.

The vehicle type determines the microscopic characteristics of the vehicle such

as the governing car-following model, driving parameters (e.g., maximal speed,

maximal acceleration, time headway), size, color, etc. By default, vehicles are

passenger cars. Other modes, such as pedestrian, bicycle, or truck can also be

selected.

(iii) Additional Files. Further components are speci�ed in additional �les. An im-

portant example are induction loop detectors. These collect time series data on

aggregate tra�c statistics by counting the vehicles which pass a certain position

during a short time interval.

The collection of input �les determines the tra�c evolution, also called the SUMO

scenario. The computation can be executed either as a command line application or

with a GUI that visualizes the movement of the vehicles through the network over time.

Data Extraction. One particularly appealing extension of SUMO is the �Tra�c

Control Interface�, TraCI (see Wegener et al. (2008)). TraCI provides online access

to the microscopic tra�c simulation and permits, at each time step, through a compre-

hensive list of commands5 to retrieve data and to change the states of objects such as

vehicles, roads, tra�c lights, etc. Available in standard programming languages6, TraCI

yields easy access to SUMO without the need to modify the underlying code. We use

TraCI to extract microscopic data on positions, velocities, and accelerations of randomly

selected vehicles.

4.2.3.2 Generation of Tra�c Scenarios

To represent tra�c in a given area over a longer time horizon (e.g., NT = 1 year), we

generate a diverse collection of tra�c scenarios γ1, . . . , γK of duration T in SUMO by

varying the input �les. Tra�c over a longer time horizon is represented by a random com-

position of these tra�c scenarios. Our general construction has already been discussed

in Section 4.2.2.

SUMO Scenario. SUMO provides tools that facilitate the creation of input �les,

e.g., the graphical network editor netedit7 that visualizes a SUMO scenario and allows

4The problem of allocating tra�c demand to routes in a network is referred to as the tra�c assignment
problem. A standard reference is Patriksson (2015).

5A detailed description can be found at sumo.dlr.de/docs/TraCI.html.
6Our case studies are based on the Python implementation.
7See sumo.dlr.de/docs/Netedit/index.html.

sumo.dlr.de/docs/TraCI.html
sumo.dlr.de/docs/Netedit/index.html
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Figure 4.1: SUMO network of Wildau.

to modify its properties. In practice, network �les are typically imported from other

data sources8. For example9, one can build a real-world tra�c network in SUMO from

OpenStreetMap data by selecting an area from a map. The route �le speci�es the trips

of the vehicles and the de�nition of the general vehicle types with their microscopic

characteristics. First, there are several options to generate trips in SUMO10. These can

be obtained from empirical data in the form of tra�c counts, imported to SUMO as

origin-destination matrices, or modeled via ad-hoc choices, e.g., using netedit. Second,

each vehicle is associated to a vehicle type speci�ed on the basis of a comprehensive

list of attributes11. The corresponding values can be set manually in the route �le or

accessed and modi�ed via netedit. In the absence of detailed tra�c data for calibration,

SUMO o�ers an activity-based demand generation12 which deduces tra�c demand from

general assumptions on the structure of the population (inhabitants, households, etc.)

in the considered area. The tool activitygen13 automates the process and produces an

arti�cial route �le.

SUMO admits a large variety of modeling choices. Tailored to the needs of the modeler,

a highly detailed SUMO scenario can be constructed. Our case studies will be based on

publicly available SUMO scenarios14; these consist of network and route �les which are

calibrated to real-world cities.

Varying Tra�c Conditions. The input �les need to be constructed in such a way

that they re�ect varying tra�c conditions over longer time periods. This includes weather

8We refer to sumo.dlr.de/docs/index.html#network_building for an overview on network genera-
tion.

9See sumo.dlr.de/docs/Networks/Import/OpenStreetMap.html.
10We refer to sumo.dlr.de/docs/Demand/Introduction_to_demand_modelling_in_SUMO.html for an

overview on demand modeling in SUMO.
11See sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html.
12See sumo.dlr.de/docs/Demand/Activity-based_Demand_Generation.html.
13See sumo.dlr.de/docs/Demand/activitygen.html.
14See sumo.dlr.de/docs/Data/Scenarios.html.

sumo.dlr.de/docs/index.html#network_building
sumo.dlr.de/docs/Networks/Import/OpenStreetMap.html
sumo.dlr.de/docs/Demand/Introduction_to_demand_modelling_in_SUMO.html
sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html
sumo.dlr.de/docs/Demand/Activity-based_Demand_Generation.html
sumo.dlr.de/docs/Demand/activitygen.html
sumo.dlr.de/docs/Data/Scenarios.html
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conditions, variation of tra�c demand, and other factors.

Maze, Agarwal & Burchett (2006) review empirical studies on the impact of adverse

weather conditions on tra�c. These may induce i) lower tra�c demand, ii) higher risk

of accidents, and iii) modi�ed driving behavior. Based on empirical �ndings, Phanse,

Chaturvedi & Srivastava (2022) implement reduced velocities due to rainfall. In Weber,

Driesch & Schramm (2019), the idea of introducing into SUMO a friction parameter per

road is discussed. Tra�c scenarios under adverse weather conditions can be captured

by suitable driving parameters in the route �le (e.g., by variation of maximal speed,

maximal acceleration, etc.), and this may be combined with a weather-dependent model

of the occurrence and the severity of accidents.

Tra�c demand is traditionally estimated from tra�c counts. We refer to Bera &

Rao (2011) for an overview. With increasing data availability, the estimation can be

enhanced by �oating car data (cf., e.g., Nigro, Cipriani & Giudice (2018)), i.e., data

generated from vehicles over time as they are driving. Tra�c demand varies over time,

but patterns reoccur over longer time horizons (see, e.g., Soriguera (2012)). Demand

depends on the considered tra�c network. Weekdays di�er from days on the weekend;

peaks in demand occur at common commute times. Rush hours are spatio-temporal

phenomena that can be analyzed in detail (see, e.g., Xia et al. (2018)).

To re�ect the heterogeneity of tra�c scenarios, two options are available in SUMO: i) A

variety of route �les is generated that is consistent with the desired modeling granularity.

This process can be automatized via an additional program, a route �le generator, that

produces route �les with the desired characteristics. ii) Another option is to select a

medium time horizon (e.g., TSUMO = 24 h) with a corresponding route �le that depicts

varying tra�c demand over time. From the generated SUMO scenario, a selection of

small time horizon scenarios (e.g., T = 1 min) can be e�ciently generated by utilizing

SUMO's option to save the state of the running simulation at a priori speci�ed times

and load these later.

Besides weather and tra�c demand, many other factors in�uence the tra�c dynamics.

Wagner (2016) discusses the representation of autonomous vehicles in SUMO. Lücken et

al. (2019) utilize SUMO to study control transition, i.e., selected safety critical situations

where the human driver needs to take over control from an autonomously driving vehicle.

Pagany (2020) study the impact of wildlife on tra�c, an issue that is also relevant in the

context of tra�c accidents.

4.3 Evaluation Methods

The accident losses L can be simulated using Monte Carlo methods. The simulations

may be used to estimate the value of statistical functionals and to price insurance prod-

ucts. We will brie�y describe the Monte Carlo methods. In addition, on the basis of the

Binomial model, we construct a Gaussian approximation to E(h(L)) where the function
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h corresponds to the three types of insurance coverage that we consider: full cover-

age, constant deductible, and stop loss. This allows a numerical evaluation similar to

Frey, Popp & Weber (2008) and El Karoui & Jiao (2009). The latter paper provides a

correction term derived by Stein's method that we will exploit in our application.

4.3.1 Monte Carlo Methods

The Monte Carlo simulation of L requires sampling the number of accidents Ck in either

the Binomial or Poisson model and sampling the independent conditional losses Xk
c ,

c ∈ N, for each tra�c scenario k = 1, 2, . . . ,K from the corresponding distribution F k.

These tasks can be performed separately, but require both a prior evaluation of the

microscopic tra�c model.

(i) Prior Evaluation of Tra�c Model. For each tra�c scenario k a single run delivers

data that are the basis for a computation of, respectively, the accidents probabilities

pk and intensities λk as well as the corresponding values pkr and λ
k
r on the level of

the modules r = 1, 2, . . . , R.

(ii) Number of Accidents. Sampling from µ and using the results of the prior evaluation

allows to sample the number of accidents Ck for each tra�c scenario k in both the

Binomial and Poisson model.

(iii) Conditional Accident Losses. Based on the precomputed values of the accident

probabilities respectively the accident intensities, we simulate for each tra�c sce-

nario k the random locations and times of accidents. These data can be stored.

For these locations and times, tra�c data ψ are extracted from an additional single

run of tra�c scenario k. Given ψ, the losses are generated according to conditional

loss distributions F k,ψ as described in Section 4.2.2. Details of the implementation

are explained in Section 4.4.

These Monte Carlo methods can be �exibly applied to all considered functionals. In the

special cases of expectation and variance, Wald's equation can simplify the computation,

since the losses L are given in the form of a collective model.

4.3.2 Gaussian Approximation

Another way to compute E(h(L)) for the considered types of insurance coverage is a

Gaussian approximation, possibly improved by a correction term. A Gaussian approxi-

mation can easily be motivated within the Binomial model. For N su�ciently large, the

distribution of L given µ is approximately normal, implying that L is a mean-variance-

mixture of Gaussian distributions. This is an important structural insight from this

approximation.
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In this section, we condition on µ, i.e., suppose that µ is �xed and given. The general

results for µ random are then a corollary by considering suitable mixtures according to

the distribution of µ. The total random losses in the Binomial model can be rewritten

as

L =
K∑

k=1

Nµk∑

c=1

1kc ·Xk
c ,

where the random variables 1kc , X
k
c , k = 1, 2, . . . ,K, c ∈ N, are independent, Xk

c ∼ F k,

and 1kc are Bernoulli random variables taking the value 1 with probability pk and the

value 0 otherwise, c ∈ N, for any k. Setting15

Y k
c : = 1kc ·Xk

c ,

mk : = E(Y k
c ),

(
σk
)2

: = E
(

[Y k
c −mk]2

)
,

(
ζk
)3

: = E
(

[Y k
c −mk]3

)
,

k = 1, 2, . . . ,K, c ∈ N, a classical normal approximation of L is
∑K

k=1Nµ
kmk + Z with

Z ∼ N
(

0,
K∑

k=1

Nµk
(
σk
)2
)
.

We focus on three types of insurance coverage, h(x) = x (full coverage), h(x) = max(x−
θ, 0), θ ≥ 0 (constant deductible), h = min(x, θ), θ ≥ 0 (stop loss), and obtain an

approximation E(h(Z)) of E(h(L)) in each of these cases.

On the basis of Stein's method16, El Karoui & Jiao (2009) suggest correction terms in

order to improve the approximation, i.e., the approximation E
(
h
(∑K

k=1Nµ
kmk + Z

))

is replaced by the corrected approximation

E

(
h

(
K∑

k=1

Nµkmk + Z

))
+ Ch.

The correction Ch depends on the degree of smoothness of the derivatives of the function

h and thus di�ers17 for the three types of coverage. We de�ne

d1 =

K∑

k=1

Nµkmk, d2 =

K∑

k=1

Nµk
(
σk
)2
, d3 =

K∑

k=1

Nµk
(
ζk
)3
,

and let h̃(x) = h (x+ d1). We obtain the following correction terms:

15The estimation of mk,
(
σk
)2
, and

(
ζk
)3

requires the simulation of the random variables Xk
c , c ∈ N.

The independent terms 1kc , c ∈ N, factor out, are idempotent and have known expectation pk.
16For an overview on Stein's method we refer to Chen, Goldstein & Shao (2011) and Ross (2011).
17See Theorem 3.1 and Proposition 3.6 in El Karoui & Jiao (2009).
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(i) Full Coverage. In the case of full coverage, the correction term of El Karoui & Jiao

(2009) disappears. In general, if h is some Lipschitz function with bounded third

derivative, the correction term equals

Ch = d3

2d2
2
· E
({

Z2

3d2
− 1
}
Zh̃(Z)

)
.

(ii) Constant Deductible. Ch = (θ−d1)d3

6d2
· 1√

2·π·d2
· exp

{
− (θ−d1)2

2·d2

}
.

(iii) Stop Loss. A stop loss x 7→ min(x, θ) can be written as the di�erence between full

coverage x 7→ x and a constant deductible x 7→ max(x − θ, 0). This implies that

the correction term for a constant deductible appears with a negative sign in this

case.

The advantage of the (corrected) Gaussian approximation in comparison to pure Monte

Carlo is that, once the numbersmk,
(
σk
)2
, and

(
ζk
)3

have been computed for each tra�c

scenario k = 1, 2, . . . ,K, no further data need to be stored or sampled in order to compute

E(h(L)). The approximate representation of the distribution of L as a mean-variance-

mixture is a considerable simpli�cation.

4.4 Application

We illustrate the application of our microscopic tra�c model with accidents on the basis

of a publicly available SUMO scenario of a real city.

4.4.1 SUMO Scenario & Accident Data

Wildau is a small German city of approximately 10,000 inhabitants, located around

30 km south-east of the capital Berlin. A SUMO model of the city was developed within

a study project by the Technical University of Applied Sciences Wildau and is publicly

available18.

SUMO Scenario. The implemented road network is visualized in Figure 4.1. It is

speci�ed using 646 nodes connected by 1,426 edges. The city itself is crossed by the rail-

way; the tracks are represented by the gray line. Vehicles are calibrated from real tra�c

counts. The original scenario has a duration of 7, 010 s. Empty in the beginning, vehicles

enter the system with a peak of approximately 240 vehicles that drive simultaneously.

In total, 2502 vehicles are generated.

In the following section, we describe in detail how we adjust this SUMO scenario to

obtain suitable ingredients for our case studies. This yields a collection of tra�c scenarios

that allow us to compare the e�ects of di�erent driving characteristics and �eet sizes on

the total loss and related insurance premiums.

18See github.com/DLR-TS/sumo-scenarios/tree/main/Wildau.

github.com/DLR-TS/sumo-scenarios/tree/main/Wildau
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Varying Tra�c Conditions. For di�erent collections of model parameters represent-

ing di�erent tra�c systems we generate adjusted SUMO scenarios. For each choice of

parameters we proceed as follows to produceK = 100 tra�c scenarios of length T = 60 s.

Tra�c scenarios k = 1, 2, . . . , 50 correspond to selected time intervals from the SUMO

scenario. Tra�c scenarios k = 51, 52, . . . , 100 represent higher tra�c volumes. They are

generated by replacing the original route �le by a route �le that consists of two copies

of the original route �le. This simple procedure generates a larger amount of vehicles

along the original paths. The tra�c scenarios are again selected time intervals from the

corresponding SUMO scenario.

To represent the full year, we set N = 365 · 24 · 60 = 525, 600. We need to specify the

random vector µ = (µ1, . . . , µK)> describing the number of occurrences of the individual

tra�c scenarios divided by N . For the purpose of illustration, we speci�cally assume

that two probability measures νg, νb are given on {1, 2, . . . ,K} which approximately cor-
respond to the relative frequencies of tra�c scenarios in two prototypical years y = g, b.

In addition, we suppose that the type y of the current year is random where both values

g and b have probability 1/2. Given y, we generate µ = (µ1, . . . , µK)> from a multino-

mial distribution corresponding to νy. That is, for all time buckets n = 1, 2, . . . , N , a

tra�c scenario k is chosen independently from the distribution νy on {1, 2, . . . ,K}. Di-
viding the number of occurrences of a scenario k by N , one obtains its random relative

frequency µk for any k = 1, 2, . . . ,K. In our case study, the distribution νg corresponds

to lower tra�c densities on average, while νb is associated with higher tra�c densities,

i.e., we set

νg :=

{
1/75, k = 1, 2, . . . , 50,

1/150, k = 51, 52, . . . , 100
, νb :=

{
1/150, k = 1, 2, . . . , 50,

1/75, k = 51, 52, . . . , 100.

Accident Data. The German Accident Atlas19 depicts the locations of all police-

reported accidents involving personal damage that occurred within one year. In 2020,

within the modeled area of Wildau (approximately) 48 accidents were registered. There

are also aggregate statistics for Germany for all police-reported accidents. In 2020, ap-

proximately 11.8 % of all road accidents involved personal damage20. We use an estimate

of c̄year = 48/11.8 % ≈ 407 accidents for calibration purposes.

4.4.2 Model Speci�cation

Our goal is to analyze accident losses for a �eet Φ over the time horizon of one year.

19The data are provided by the Statistische Ämter des Bundes und der Länder under the �Data licence
Germany � attribution � Version 2.0� and can be accessed via unfallatlas.statistikportal.de/.

20See the online resource:
destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/accidents-

registered-police.html.

unfallatlas.statistikportal.de/
destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/accidents-registered-police.html
destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/accidents-registered-police.html
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Fleet De�nition. In the Wildau scenario, vehicles are de�ned using repeated �ows

from origins to destinations. Passenger cars (next to trucks and the train) are de�ned

via 90 di�erent �ows. Each passenger car belongs to the same vehicle type with �xed

driving characteristics.

To introduce a �eet Φ of vehicles whose driving characteristics we can vary, we de�ne a

new vehicle type Φ and construct corresponding new SUMO scenarios. Fixing a fraction

ρΦ ∈ [0, 1] of vehicles belonging to Φ, we retain approximately 1−ρΦ of the existing �ow

de�nitions and modify ρΦ of the �ow de�nitions suitably in order to model the �eet. In

our case studies, we consider ρΦ = 10 %, 50 %, 90 %.

Driving Con�guration. Vehicles in a �eet Φ are of the same type. Various charac-

teristics can be varied in SUMO; we focus on maximal speed vmax, maximal acceleration

amax > 0, and time headway ζ > 0. The time headway is the distance which is kept

to the preceding vehicle measured in time, i.e., a velocity weighted safety distance. We

refer to a �xed selection of driving characteristics as a driving con�guration.

In our case studies, we will vary the driving con�guration for all vehicles in the �eet Φ

and keep all other vehicles as originally introduced21. A driving con�guration of vehicles

in �eet Φ is denoted by ξ = (vmax, amax, ζ). Speci�cally, we consider22:

ξ1a = (5 m/s, 0.8 m/s2, 3.0 s), ξ1b = (5 m/s, 2.6 m/s2, 3.0 s),

ξ2a = (10 m/s, 0.8 m/s2, 2.0 s), ξ2b = (10 m/s, 2.6 m/s2, 2.0 s),

ξ3a = (15 m/s, 0.8 m/s2, 1.0 s), ξ3b = (15 m/s, 2.6 m/s2, 1.0 s).

The con�gurations 1, 2, 3 increase in terms of �aggressiveness� from driving slowly with a

large headway to fast with a small headway � with two options a and b for the maximal

acceleration.

Accident Occurrence. The best estimate for the total number of accidents in Wildau

is c̄year ≈ 407. From this, we derive a uniform and a non-uniform accident occurrence

model. In both cases, we specify accident probabilities p1,k and p2,k for the binomial

model as well as accident intensities λ1,k and λ2,k for the Poisson model.

(i) Uniform Accident Occurrence. Assuming that accidents occur uniformly over the

year, we obtain a probability per time bucket of an accident in the system of

p1 = c̄year/N ≈ 7.7 · 10−4. This is the accident probability that we allocate to

each tra�c scenario k. We also suppose that accidents occur uniformly across all

21We use the implementation of an Intelligent Driver Model without any speed deviation that does not
include further random e�ects. We refer to sumo.dlr.de/docs/Simulation/Randomness.html for
any random e�ects in SUMO.

22The speci�c choices are inspired by the following considerations: The implemented road speed limit in
Wildau is 50 km/h which is approximately 13.9m/s. Vehicles in the original Wildau scenario have a
maximal acceleration of 0.8m/s2, while SUMO's default value is 2.6m/s2. Similarly, SUMO's default
time headway is 1.0 s.

sumo.dlr.de/docs/Simulation/Randomness.html
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vehicles in the system. This implies that the probability that any accident occurs

in scenario k within the �eet Φ is

pΦ,1,k = ρΦ · p1, k ∈ {1, . . . ,K}.

This probability is used in the Binomial model. For the Poisson model we set

λΦ,1,k = pΦ,1,k, k = 1, 2, . . . ,K, since the intensity approximately equals the prob-

ability of an accident per time bucket.

In the case of uniform accident occurrence, we do not consider any spatial variations

of the likelihood of accidents due to di�erent tra�c conditions. This means that

we do not distinguish any modules, i.e., we set R = 1.

(ii) Non-Uniform Accident Occurrence. In reality, the likelihood of accidents depends

on external factors such as weather and local tra�c conditions, e.g., the velocity

of vehicles and tra�c density. The quantities vary spatially and over time.

From SUMO runs, we obtain for each tra�c scenario k = 1, 2, . . . ,K and each

module r = 1, 2, . . . , R pairs (dkr , v̄
k
r ) on the average density and velocity. These

statistics can be computed in SUMO, for example, from data that are obtained

at induction loop detectors which are placed within the modules; as a proxy for

density, we extract the occupancy of the loop detector, i.e., the fraction of time

which it is occupied by a vehicle.

For r = 1, . . . , R, we choose benchmark values d∗r and v̄∗r for the density and

velocity and specify occurrence probabilities and intensities that vary spatially

and over time:

λΦ,2,k
r = pΦ,2,k

r :=
pΦ,1,k

R
· v̄

k
r

v̄∗r
· d

k
r

d∗r
· e−(ζΦ−1), k ∈ {1, . . . ,K}, r ∈ {1, . . . , R}.

The last term refers to deviations of the time headway from SUMO's default value

of 1.0 s: a larger time headway is associated with less risky driving. We set pΦ,2,k =∑R
r=1 p

Φ,2,k
r and λΦ,2,k =

∑R
r=1 λ

Φ,2,k
r .

In our case studies, we will consider a grid of R = 4 modules and compute dkr and

v̄kr as averages over measurements from 10 induction loop detectors that are placed

in each module (see also Figure 4.2). We use the scenario averages d∗r = 1
K

∑K
k=1 d

k
r

and v̄∗r = 1
K

∑K
k=1 v̄

k
r . If

∑K
k=1 E(µk)v̄kr = v̄∗r ,

∑K
k=1 E(µk)dkr = d∗r , and ζ

Φ = 1,

then we essentially recover on average the case of uniform accident occurrence.

Accident Losses. The distributions F k of accident losses associated with a tra�c

scenario k = 1, 2, . . . ,K are constructed on the basis of tra�c data that are extracted

from the SUMO runs. The general procedure was described in Section 4.2.2; here, we

explain the speci�c implementation that we use in our case studies.
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Figure 4.2: Partition of Wildau and placement of induction loop detectors.

The likelihood of accident occurrence was discussed in the previous section. F k is the

conditional distribution of an accident loss in tra�c scenario k if an accident occurs.

Time in tra�c module k is enumerated by t ∈ [0, T ], and we assume that the time τ of

the accident conditional on its occurrence is uniformly distributed on [0, T ], i.e.,

τ ∼ Unif[0, T ].

We choose a module R at random in which the accident occurs and assume, respectively,

that

P (R = r) =
pΦ,·,k
r

pΦ,·,k , P (R = r) =
λΦ,·,k
r

λΦ,·,k , r ∈ {1, . . . , R}.

These ratios depend in the case of non-uniform accident occurrence on the speci�c �eet,

since the properties of the �eet alter the route �le that is used to generate the SUMO

scenarios; this is true, although the multiplicative terms ρΦ appear in both the numerator

and denominator and cancel out.

In the chosen module we pick one or more vehicles at random, and extract from

the tra�c scenario data for these vehicles. In our concrete implementation, we simply

choose at time τ a single vehicle I uniformly at random in module R, i.e., its conditional
distribution is

I | τ,R ∼ Unif(MΦ
R(τ)).

For the purpose of illustrating our approach, the only data we extract are the velocities vI

of the randomly chosen vehicles that are involved in accidents. We set ψ = vI and assume

that the conditional loss distribution F k,ψ is known23. If we denote the distribution of

23We assume that F k,0 corresponds to a Dirac measure in 0; ifMΦ
R(τ) = ∅, we set ψ = 0, resulting in

0 losses.
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ψ by Lk we obtain the distribution F k as a mixture

F k =

∫
F k,ψ dLk.

In our case studies, we will assume that F k,ψ = Fψ for all k; however, the mixing

distribution Lk will dependend on the tra�c scenario k. We consider the following

examples for Fψ:

(i) Gamma Distribution. We de�ne distributions with varying levels of dispersion24.

For a given coe�cient of variation cv ∈ {1/2, 1, 2}, we choose

Fψ = Γ

(
1

c2
v

,
1

c2
vψ

2

)
.

The expectation of this distribution is ψ2 and increases quadratically with ψ, the

velocity of the vehicle involved in an accident; this is consistent with the fact that

losses scale with kinetic energy. The variance of the distribution Fψ equals c2
vψ

4,

hence the coe�cient of variation is indeed cv.

(ii) Log-Normal Distribution. We consider log-normal distributions with expectation

ψ2 and variance c2
vψ

4, implying that the coe�cient of variation is again cv ∈
{1/2, 1, 2}. This log-normal distribution is obtained as the distribution of exp(Z)

for a normal random variable Z with expectation ln(ψ2/
√

1 + c2
v) and variance

ln(1 + c2
v), i.e.,

Fψ = LN
(

ln

(
ψ2

√
1 + c2

v

)
, ln(1 + c2

v)

)
.

4.4.3 Case Studies

4.4.3.1 Overview

We illustrate our modeling approach in case studies on multiple levels. A selection of

case studies is discussed in detail in Sections 4.4.3.2 & 4.4.3.3. All numerical results for

the following choices are documented in tables in Appendix B:

(i) Fleet Models. We analyze six driving con�gurations with three di�erent �eet pro-

portions.

(ii) Accident Occurrence. In our tra�c system accidents occur uniformly or non-

uniformly in space. Their number is given by a Binomial or a Poisson model

with parameters depending on tra�c condition.

(iii) Accident Losses. We study two parametric families of loss distributions with three

di�erent choices for the coe�cient of variation.
24A measure for the dispersion of a random variable X is the coe�cient of variation de�ned by cv =√

Var(X)/E(X).
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(iv) Insurance Design. Insurance losses are a function of the total losses; we distinguish

three contract designs.

Denoting aggregate losses by L, we evaluate for each type of insurance coverage h the

resulting insurance losses h(L) in terms of their expectation, variance, and skewness,

and the monetary risk measures Value-at-Risk and Average Value-at-Risk, also called

Expected Shortfall. To analyze the distributions in detail, we provide qq-plots and

estimates of cumulative distribution functions and densities. The main tool to access the

random variable h(L) is Monte Carlo sampling; we provide a pseudo-code how we obtain

samples of L in Algorithm 1 in Section 4.6. In Section 4.4.3.3, we compare this approach

to the Normal mean-variance-mixture approximation introduced in Section 4.3.2.

This chapter explores the analysis and management of risks that occur in vehicle �eets

in tra�c systems. We distinguish to perspectives:

(i) The Engineering Perspective. In these case studies, we �x the accident occurrence

and accident loss distributions and vary the �eet models, i.e., driving con�gurations

and �eet proportions. We focus on E(L), Var(L), and complement these with

analyses of the performance of tra�c system.

(ii) The Actuarial Perspective. In these case studies, we �x the �eet model and vary

accident occurrence and accident loss distributions as well as the insurance design.

We study the distribution of L and the insurance prices E(h(L)).

4.4.3.2 The Engineering Perspective

Our micro-modeling approach allows us to study the e�ects of di�erent tra�c-related

controls on total losses L; we investigate the e�ects of �eet size and tra�c con�guration.

Throughout this section, we consider non-uniform accident occurrence in the Binomial

model with Gamma distributed accident losses and a coe�cient of variation cv = 1.

Losses. We evaluate expected loss E(L) and standard deviation std(L) for di�erent

�eet models. To compare losses for di�erent �eet sizes, we normalize losses per 100

expected insured vehicles25. The model speci�cation was explained in Section 4.4.2

which includes in particular a description of the driving con�gurations. The results are

documented in Figure 4.3. The solid lines are the normalized quantities.

In Figure 4.3a, we see that increasing the aggressiveness of driving increases both the

total and normalized expected loss. An impact of the maximal acceleration on losses

is only substantial for the most aggressive driving con�gurations ξ3·. Increasing the

�eet size increases the expected loss which is primarily due to the fact that we count

losses only within the �eet and a higher volume is associated with higher losses. More

25For each tra�c scenario k, the number of insured vehicles is the number of vehicles belonging to Φ as
given in the underlying route �le. We refer to Appendix B for more details.
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Figure 4.3: Impact of �eet size and driving con�guration on the total loss L (solid lines
represent normalized values (left y-axis), dashed lines unnormalized ones
(right y-axis)).

interesting is the normalized case: apparently higher speeds also increase the normalized

losses.

In Figure 4.3b, we have the corresponding standard deviations. Increasing the ag-

gressiveness of driving increases the standard deviation of the total loss. The standard

deviations of the normalized losses are decreasing in the �eet size. The main reason

is that �uctuations normalized for a �xed volume are larger for smaller pools than for

larger pools; a rational for this is provided by the law of large numbers and the central

limit theorem.

The frequency and severity of accidents are, of course, increasing in the aggressiveness

of driving. To demonstrate this, we evaluate the expectation and the standard deviation

of the average accident frequency
∑K

k=1 µ
kpk (both normalized and unnormalized) and

the average accident severity
∑K

k=1 µ
kXk

1 , as displayed in Figure 4.4 and Figure 4.5. A

larger �eet increases frequency and, in aggressive scenarios, also the expected accident

severity. This is, of course, due to the speci�c choice of the driving behavior of the

considered �eets in comparison to the driving behavior of the remaining vehicles and

does not necessarily hold for all tra�c systems in general.26

Tra�c System Performance. Changing the characteristics of the �eet not only

a�ects the losses. At the same time, this has an impact on the performance of the

tra�c system. Using the 40 induction loop detectors placed in the tra�c system, we

evaluate the values of selected tra�c statistics (�ow, average speed, and occupancy).

Denoting them by χ1
k, . . . , χ

40
k for each scenario k = 1, . . . ,K, we compute averages

χ̄k = 1/40
∑40

i=1 χ
i
k. Pairing �ow-occupancy values and speed-occupancy values yields

empirical fundamental diagrams on the urban level (see, e.g., Geroliminis & Daganzo

26In this section, we brie�y discussed losses for selected special cases. A comprehensive set of detailed
tables for all other cases and statistical functionals is provided in Appendix B.



74 Microscopic Tra�c Models, Accidents, and Insurance Losses

ξ1a ξ1b ξ2a ξ2b ξ3a ξ3b

0.5

1

1.5

2

2.5

·10−5

Driving Configuration

E(
∑

K k
=

1
µ
k
p
k
)

(n
or

m
a
li
ze

d
)

ρΦ = 0.1 ρΦ = 0.5 ρΦ = 0.9

0

2

4

6

·10−4

E(
∑

K k
=

1
µ
k
p
k
)

(u
n
n
or

m
al

iz
ed

,
d
a
sh

ed
)

(a) Expectation

ξ1a ξ1b ξ2a ξ2b ξ3a ξ3b
0

0.2

0.4

0.6

0.8

1

·10−6

Driving Configuration

st
d
(∑

K k
=

1
µ
k
p
k
)

(n
o
rm

a
li
ze

d
)

ρΦ = 0.1 ρΦ = 0.5 ρΦ = 0.9

0

1

2

·10−5

st
d
(∑

K k
=

1
µ
k
p
k
)

(u
n
n
o
rm

a
li
ze

d
,

d
a
sh

ed
)

(b) Standard deviation

Figure 4.4: Impact of �eet size and driving con�guration on expectation and standard de-
viation of average accident frequency (solid lines represent normalized values
(left y-axis), dashed lines unnormalized ones (right y-axis)).
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Figure 4.5: Impact of �eet size and driving con�guration on expectation and standard
deviation of average accident severity.
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Figure 4.6: Flow-occupancy fundamental diagrams (high tra�c volume scenarios are
highlighted in red and low tra�c volume scenarios in blue).

(2008)). For the purpose of data exploration, we draw scatter plots of these pairs for the

driving con�gurations ξ1b, ξ2b, ξ3b and �eet sizes ρΦ = 0.1, 0.9 in Figure 4.6 and Figure

4.7. We recover the classical u-shape in the �ow-occupancy plot. The blue points refer

to the low volume tra�c scenarios, the red points to the high volume tra�c scenarios, as

introduced in Section 4.4.1. This is also re�ected by the fact that red points correspond

to higher occupancy. Aggressiveness in driving decreases overall occupancy, increases

speed, and increases �ow, if the �eet is large.

To better understand the impact of individual driving con�gurations and �eet sizes,

we study the scenario averages E
(∑K

k=1 µkχ̄k

)
= 1

K

∑K
k=1 χ̄k. The results are displayed

in Figure 4.8. We see that the performance of the tra�c system improves with the

aggressiveness of driving in the considered case studies; �ows and average speeds increase,

and the occupancy decreases.

4.4.3.3 The Actuarial Perspective

From an actuarial perspective, it is relevant to understand the risk that corresponds

to the insurance losses. This requires a more detailed analysis of the probability distri-

butions. To do this, we pick a particular �eet model and use probabilistic techniques

to evaluate the distribution of h(L). From now on, we consider ρΦ = 0.5 with driving

con�guration ξ2a and non-uniform accident occurrence.

Distributional Analysis of Losses. We start our investigations with the total losses

L. Table 4.1 shows the evaluation of statistical functionals for di�erent accident losses



76 Microscopic Tra�c Models, Accidents, and Insurance Losses

0 5 10 15 20 25
0

2

4

6

8

10

Occupancy (%)

S
p
ee
d
(m

/s
)

(a) ρΦ = 0.1, ξ1b

0 5 10 15 20 25
0

2

4

6

8

10

Occupancy (%)

S
p
ee
d
(m

/s
)

(b) ρΦ = 0.1, ξ2b

0 5 10 15 20 25
0

2

4

6

8

10

Occupancy (%)

S
p
ee
d
(m

/s
)

(c) ρΦ = 0.1, ξ3b

0 5 10 15 20 25
0

2

4

6

8

10

Occupancy (%)

S
p
ee
d
(m

/s
)

(d) ρΦ = 0.9, ξ1b

0 5 10 15 20 25
0

2

4

6

8

10

Occupancy (%)

S
p
ee
d
(m

/s
)

(e) ρΦ = 0.9, ξ2b

0 5 10 15 20 25
0

2

4

6

8

10

Occupancy (%)

S
p
ee
d
(m

/s
)

(f) ρΦ = 0.9, ξ3b

Figure 4.7: Speed-occupancy fundamental diagrams (high tra�c volume scenarios are
highlighted in red and low tra�c volume scenarios in blue).
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Figure 4.8: Impact of �eet size and driving con�guration on tra�c system performance.



Microscopic Tra�c Models, Accidents, and Insurance Losses 77

Table 4.1: Statistical functionals of L for ρΦ = 0.5 and ζ2a.

Binomial Model

Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

E(L) 1577.8 1571.5 1578.4 1581.7 1576.2 1582.7
Var(L) 160179.5 247943.9 626190.6 162067.5 247069.8 614713.4

ςL 0.333 0.561 0.993 0.377 0.660 2.152
VaR0.9(L) 2111.9 2219.1 2634.2 2112.9 2242.4 2526.6

ES0.9(L) 2331.7 2538.8 3233.3 2342.4 2557.5 3280.3
VaR0.95(L) 2275.9 2471.3 3070.5 2288.4 2468.1 2996.2

ES0.95(L) 2468.9 2748.0 3628.9 2491.4 2772.5 3838.4
VaR0.99(L) 2587.3 2891.3 3999.6 2608.8 2943.8 4228.6

ES0.99(L) 2755.9 3188.6 4490.2 2809.0 3234.4 5424.2

The statistical functionals of the total loss are approximated using 10, 000 independent
samples of L.

in the case of the Binomial model. These numbers quantify the risk entailed in the

total losses. Both the distributional family and the chosen coe�cient of variation for the

accident loss model have a substantial e�ect on the risk.

A visual impression of the distributions is provided in Figure 4.9. We compare di�erent

accident loss models while �xing the coe�cient of variation cv = 2. We plot the empirical

distribution functions as estimates of the cumulative distribution function (CDF) and

a kernel density estimate of the corresponding densities. Moreover, Figure 4.9c shows

qq-plots for the quantiles of standardized27 values of the losses against quantiles of a

standard Normal distribution.

We �nd that the Binomial and the Poisson model do not di�er too much. Yet, log-

normal accident losses produce heavier tails than the corresponding Gamma losses. The

qq-plots reveal that the total losses are not normally distributed: In particular, the right

tails are heavier compared to a Normal distribution while the left tails are lighter. The

latter observation simply relates to the fact that the original losses are non-negative

while the Normal distribution takes values on the whole real line.

In Figure 4.10, we analyze the impact of the coe�cient of variation while �xing the

log-normal distribution for the accident losses. We see again that Binomial and Poisson

model do not di�er substantially. However, the e�ect of the coe�cient of variation

is clearly visible: increasing cv produces heavier right tails. Introducing dispersion to

accident losses substantially changes the distribution of the total losses.

Comparison of Losses and Normal Mean-Variance-Mixture Approximation.

In Section 4.3.2, we suggested a Normal mean-variance-mixture approximation for the

total loss. To study the quality of this approximation, we generate 10, 000 samples from

the approximation; in the following, we focus on the case of Gamma distributed accident

27Samples are standardized by subtracting their sample average and dividing by their sample standard
deviation.
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(a) CDF (b) Density (c) QQ-plot

Figure 4.9: Distribution of the total loss for �xed coe�cient of variation cv = 2.

(a) CDF (b) Density (c) QQ-plot

Figure 4.10: Distribution of the total loss for log-normal accident losses and varying
coe�cient of variation.
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Figure 4.11: QQ-Plot of 10, 000 Monte Carlo Samples (y-axis) vs 10, 000 Sam-
ples of Mixture Approximation (x-axis) (the red dots mark the
1%, 5%, 10%, 90%, 95%, 99% quantiles).

losses with coe�cient of variation cv = 1.

To sample from the approximation, we rely on the following computations28 of mk and

(σk)2. Using E(1kc ) = pk and E(Xk
c ) = E(E(Xk

c | ψ)) = E(ψ2) =
∫
ψ2dLk, we obtain for

the Gamma losses mk = pk ·
∫
ψ2dLk and (σk)2 = pk · c4

v ·
∫
ψ4dLk ·

(
1 + 1

c2v

)
1
c2v
− (mk)2.

The involved moments of ψ are approximated using 10, 000 samples from the tra�c

simulation, for each k = 1, . . . ,K. A sample from the Normal mean-variance-mixture

approximation is generated by, �rst, sampling µ and, second (conditional on µ), sampling

the normal random variable
∑K

k=1Nµ
kmk + Z with Z ∼ N

(
0,
∑K

k=1Nµ
k
(
σk
)2)

.

Figure 4.11 shows the qq-plot comparing quantiles of the crude Monte Carlo simulation

with quantiles of the approximation. This demonstrates the quality of our suggested

approximation. It is almost exact between the 5% and 95% quantile as the values lie on

the hal�ine. It is still very good for the 1− 5% and 95− 99% quantiles and is only less

accurate in the extreme tails where also in the Monte Carlo simulation only few data

points are available. These analyses, on the one hand, con�rm the postulated structural

model insight. On the other hand, they also validate the implementation of our crude

Monte Carlo sampling.

Pricing and Evaluation Methods. To conclude our case studies, we study prices

for various insurance contracts. We compare E(L) (full coverage), E(max(L − θ, 0))

(constant deductible), and E(min(L, θ)) (stop loss) for di�erent values of θ. The results

are given in Figure 4.12. We obtain the typical hockey stick pro�les satisfying the parity

E(L) = E(max(L − θ, 0)) + E(min(L, θ)). We note that other insurance contracts can

easily be represented in our framework; also deductibles per accident can be implemented

28For the notation, we refer to Sections 4.3.2 & 4.4.2. The computations are valid for any coe�cient of
variation cv, but we use only cv = 1 in the numerical case study.
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Figure 4.12: Insurance prices.

by changing the accident loss distributions accordingly.

Besides Monte Carlo methods, our Normal mean-variance mixture approximation and

the correction suggested in Section 4.3.2 provide alternative techniques to compute the

prices E(h(L)) for the di�erent types of coverage h. To compute the correction term Ch,

we need to compute29 (ζk)3. For Gamma distributed losses, we obtain

(ζk)3 = pk · c6
v ·
∫
ψ6dLk ·

(
2 +

1

c2
v

)(
1 +

1

c2
v

)
1

c2
v

− 3mk(σk)2 − (mk)3.

Since E(h(L)) = E(E(h(L) | µ)), we may generate samples of µ and evaluate the cor-

responding conditional expectations E(h(L) | µ); in the Normal mean-variance mixture

approximation, these are expectations of functions of normally distributed random vari-

ables. We compute these expectations numerically as integrals with respect to Lebesgue

measure using a normal density.

We compare the estimation errors of the di�erent approaches in Figure 4.13. We

produce 100, 000 samples of L to approximate the �true� value of E(max(L − θ, 0)) of

coverage with constant deductible, for di�erent values of θ. Independently, we generate

10, 000 samples and consider Monte Carlo approximations based on all 10, 000 samples,

and based only on the �rst 1, 000 samples. We also study the Normal mean-variance

mixture approximation with and without correction using 1, 000 samples of µ.

While the absolute error generally decreases in the deductible θ for all methods (apart

from some local e�ects), the relative error increases for larger values of θ which are

associated with a lower price of the contract. At the same time, we observe that, in

29For the notation we refer to Sections 4.3.2 & 4.4.2.



Microscopic Tra�c Models, Accidents, and Insurance Losses 81

0 500 1,000 1,500 2,000 2,500 3,000

0

5

10

15

20

θ

A
b
so
lu
te

E
rr
o
r

1k Samples
10k Samples
Approximation
Correction

(a) Absolute error

0 500 1,000 1,500 2,000 2,500 3,000

0

0.2

0.4

0.6

0.8

θ

R
el
at
iv
e
E
rr
o
r

1k Samples
10k Samples
Approximation
Correction

(b) Relative error

Figure 4.13: Comparison of estimation errors.

terms of the relative error, the Normal mean-variance mixture approximation produces

reasonable estimation results (compared to 1, 000 samples) for moderate values of θ.

This is in line with our previous observations on the quality of our Normal mean-variance

mixture approximation which becomes worse in the extreme tail of L. Interestingly, the

estimation error can largely be reduced using the correction; with the correction, the

estimation becomes quite good even for large values of θ.

4.5 Conclusion

This chapter developed a methodology to study accident losses based on an established

microscopic tra�c simulator, here SUMO. An adaption of the digital twin paradigm

enabled us to test the impact of �eet sizes and their driving con�guration on system

e�ciency, accident losses, and insurance premiums. We illustrated in counterfactual

case studies how accident risk can be successfully analyzed, both from an engineering

and an actuarial perspective. It was shown that � on a one-year horizon � total losses

can be approximated by a mean-variance mixture of normal distributions. This o�ered

an alternative technique to evaluate the model; the numerical e�ciency can be increased

adding a correction term that is derived by Stein's method. The proposed methodology

can be extended and modi�ed, for example, based on tra�c simulators other than SUMO,

and utilized to study future tra�c systems.

Future research should also address the important issues of calibration and validation.

While real data can be used to calibrate models that describe historical and current

transportation systems, simulation models that generate arti�cial data are essential to

evaluate new technologies in future transportation systems. An important question is to

what extent and how historical data can be methodically used to calibrate and validate

such simulation models. For example, real microscopic tra�c data, e.g., on accident
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patterns, collected by means of telematics technologies, could be applied to optimize

models in the future.

4.6 Appendix: Sampling Procedure

We provide a detailed pseudo-code for the procedure to obtain samples from L in Algo-

rithm 1. In our case studies, we useM ′ = M = 10, 000 samples of ψ in each scenario k to

approximate its distribution Lk. We note that, instead of this bootstrapping approach,

one could also pre-sample su�ciently many values.
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Algorithm 1 Sampling of losses L.
Phase 1: Prior Evaluation of Tra�c Model

for k = 1, . . . ,K do

Run SUMO in scenario k.
Obtain data to calculate pkr and λkr for r = 1, . . . , R.
Terminate SUMO.
Set pk =

∑R
r=1 p

k
r and λk =

∑R
r=1 λ

k
r .

end for

Phase 2: Pre-Sampling of ψ conditional on scenario k = 1, . . . ,K.

for k = 1, . . . ,K do

for j = 1, . . . ,M ′ do
Sample t̂j = Unif(0, T ).
Sample r̂j ∼ R where P (R = r) = pkr/p

k (or P (R = r) = λkr/λ
k).

end for

Sort t̂1, . . . , t̂M′ by size (again denoted by t̂1, . . . , t̂M′).
Start SUMO in scenario k.
for j = 1, . . . ,M ′ do

Continue SUMO until time t̂j .

Sample îj ∼ Unif
(
MΦ

r̂j

(
t̂j
))
.

Set ψ̂kj = vîj (t̂j).
end for

Terminate SUMO.
Store ψ̂k1 , . . . , ψ̂

k
M′ .

end for

Phase 3: Sampling of total losses L.

for j = 1, . . . ,M do

Sample ŷj with P (y = g) = P (y = b) = 1/2.
for n = 1, . . . , N do

Sample ν̂j,n ∼ νŷj .
end for

for k = 1, . . . ,K do

Set (µ̂k)j = 1/N
∑N
n=1 1{ν̂

j,n = k}.
end for

for k = 1, . . . ,K do

Sample
(
Ĉk
)j
∼ Bin(pk, N(µ̂k)j) (or

(
Ĉk
)j
∼ Poiss(λkN(µ̂k)j)).

for c = 1, . . . ,
(
Ĉk
)j

do

Sample l̂ ∼ Unif({1, . . . ,M ′}).
Sample X̂k

c ∼ F ψ̂
k
l̂ .

end for

end for

Set L̂j =
∑K
k=1

∑(Ĉk)j

c=1 X̂k
c .

end for

Output: L̂1, . . . , L̂M .





5 Stochastic Cell Transmission Models of

Tra�c Networks

The original version of this chapter has been submitted for publication, see Feinstein,

Kleiber & Weber (2023).

5.1 Introduction

Cell transmission models enable to capture the motion of tra�c participants on a high

level of aggregation. This provides computational advantages in comparison to micro-

scopic tra�c models that capture the motion of tra�c participants in great detail. This

gain in computational e�ciency is sometimes disadvantageously associated with lower

granularity, which complicates the representation of complex tra�c modules and inter-

actions of tra�c participants. In this chapter, we propose a rigorous framework for cell

transmission models that incorporates three important features: a) The cells are iden-

ti�ed with the nodes of a graph. We introduce a precise notation for the directions of

the tra�c participants within each cell. This allows the construction of cell transmission

models for general tra�c networks. b) Within each cell, road users traveling in one

direction interact with road users traveling in other directions. Sending and receiving

functions can capture these interactions of tra�c �ow and density with oncoming tra�c

�ows and densities. c) Tra�c volumes and conditions may vary randomly. Our general

framework allows the inclusion of probabilistic phenomena.

The proposed models enable the evaluation of tra�c systems under a wide range of

conditions. They can also be used for tra�c planning by testing the e�ects of changes

in design parameters. Comparisons can be made not only for deterministic systems,

but also in the face of randomness and risk. We use preference functionals and their

level sets for the normative classi�cation and categorization of transportation systems.

This approach is also closely related to the construction of measures of systemic risk. In

concrete applications, we specify random benchmark �ows and compute the collection

of parameters associated with tra�c systems that are weakly preferred. We call these

sets acceptable designs. They accurately combine the descriptive, possibly random cell

transmission model and the normative evaluation framework.

Although less granular than microscopic tra�c models, the extended �exibility com-

pared to classical cell transmission models and the inclusion of randomness increase the

computational complexity. In particular, stochastic simulation of the system under dif-

85
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ferent conditions for multiple design parameters is costly. To address this problem, we

employ a powerful machine learning technique, Gaussian process regression (GPR). GPR

allows an interpolation of system performance between simulated points while provid-

ing at the same time measures of uncertainty. Our innovation is the adaptive selection

of points to re�ne the estimation of the acceptable designs. For this purpose, we use

the GPR estimation of the boundary of this level set and GPR variance estimates at

candidate points from the previous iteration. We also provide error bounds.

The capabilities of our algorithms in the context of generalized cell transmission models

are illustrated in two case studies. We study two tra�c networks, one with two signalized

intersections and another one with variable capacities of highways and speed limits.

Acceptable designs are identi�ed and interpreted. From an algorithmic point of view,

we compare the squared exponential kernel to Matérn kernels.

Our main contributions are the following:

(i) We provide a rigorous framework for cell transmission models in general tra�c

networks. Tra�c participants traveling in di�erent directions interact with each

other locally. Tra�c volumes and conditions can vary stochastically.

(ii) To classify and categorize tra�c systems, we propose the notion of acceptable

design inspired by preference functionals and systemic risk measures.

(iii) The numerical estimation of acceptable designs combines Monte Carlo simulation,

Gaussian process regression, and a stochastic exploration procedure in the pa-

rameter space. The performance of this algorithm is demonstrated through case

studies.

5.1.1 Structure of the Chapter

The chapter is organized as follows: Section 5.1.2 reviews the related literature on cell

transmission models, systemic risk measures, and Gaussian process regression. Sec-

tion 5.2 presents our general framework for cell transmission models of tra�c networks.

Section 5.3 describes the objective of the machine learning estimation problem: sets of

acceptable designs. Our algorithm is discussed in Section 5.4. It is applied in numerical

case studies in Section 5.5. Questions for further research are presented in Section 5.6.

The appendix contains proofs and auxiliary material.

5.1.2 Literature

We develop a general and rigorous formulation of cell transmission models in a network

environment. Considering general transmission and receiving functions and general di-

rections of travel, we can consider many related contributions in the literature as special

cases. Inspired by the theory of systemic risk measurements, we introduce as a diag-

nostic instrument the notion of acceptable designs of a tra�c system. This constitutes
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a normative instrument of tra�c planning, which enables the evaluation and control of

tra�c systems. To identify the acceptable designs of tra�c systems, we develop an ac-

tive learning method based on Gaussian process regression, a powerful machine learning

technique. In the following, we review the relevant literature and compare it with our

innovations.

Cell Transmission Models. The classical cell transmission model (CTM) was devel-

oped in the seminal work of Daganzo (1994) and Daganzo (1995). It is a deterministic

macroscopic tra�c model that captures the evolution of tra�c �ows and densities in

discrete time. Daganzo (1994) explains how this model can be viewed as a discrete

approximation to the LWR model (Lighthill & Whitham (1955) and Richards (1956));

accordingly, he originally introduces CTM to study homogeneous tra�c �ows on high-

ways.

Since then, CTM has been revisited countless times in the literature. Important

research questions range from estimating tra�c densities (Munoz et al. (2003)) to es-

tablishing variable speed limits on highways (Hadiuzzaman & Qiu (2013))). The intro-

duction of randomness increases the informativeness and allows a representation of more

complex phenomena. Sumalee et al. (2011) develop a version with stochastic demand

and supply constraints. Jin & Amin (2019) study highway dynamics under random

capacity-reducing incidents modeled by an exogenous Markov chain.

However, the popularity of CTM is also due to the fact that it can be used to represent

urban tra�c. For example, Long et al. (2008) examines the formation and dissipation of

congestion in urban networks. Other papers discuss tra�c lights and their optimization

(e.g., Pohlmann & Friedrich (2010), Xie et al. (2013), Srivastava, Jin & Lebacque (2015)).

We refer to Adacher & Tiriolo (2018) for a detailed review on CTM, especially for urban

tra�c.

Another strand of literature generalizes CTM for di�erent tra�c types. Di�erent

tra�c users with their di�erent driving characteristics can share the available space.

Tuerprasert & Aswakul (2010) and Tiaprasert et al. (2017) partition a cell, Levin &

Boyles (2016) add partial densities. Buses can be introduced as moving bottlenecks that

reduce capacity (Liu et al. (2015), Tang et al. (2022)).

In this chapter, we explain how cells can represent di�erent types of roads, including

highways, roundabouts, signalized intersections. Our setup allows for randomness as a

general modeling paradigm. We present a precise formulation of the direction of travel

that allows detailed modeling of the interaction of competing tra�c �ows. Some related

conceptional issues are also discussed by Tampère et al. (2011). We note that con�icting

�ows are common in pedestrian �ow modeling (see, e.g., Flötteröd & Lämmel (2015));

Moustaid & Flötteröd (2021) can be viewed as a special case of our model. We also

brie�y indicate how our model can be generalized for multiple interacting tra�c types.
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Systemic Risk Measures. The axiomatic theory on the quanti�cation of risk dates

back to the seminal paper Artzner et al. (1999). Past contributions have focused primar-

ily on the quanti�cation of �nancial risk: The central construction is based on a notion of

acceptability, i.e., a set of (�nancial) positions with an acceptable risk. A monetary risk

measure quanti�es the risk of a �nancial position in monetary units: It is the minimum

amount of cash that must be added to a position to make it acceptable. We refer to

Föllmer & Weber (2015) for an overview.

This construction can be generalized to quantify the risk of a system of interacting

entities. Systemic risk measures as a precise mathematical notion are introduced by

Feinstein, Rudlo� & Weber (2017) and Biagini et al. (2018). The theory has proven

useful not only for quantifying risk in �nancial networks (e.g., Weber & Weske (2017));

Cassidy, Feinstein & Nehorai (2016) applies it to measuring the risk of power outages in

transmission networks. Salomon et al. (2020) use it to control the resilience of technical

systems.

Borrowing from these measures of systemic risk, we introduce the concept of accept-

ability to assess the e�ciency of tra�c systems. The results, typically measures of

e�ciency such as tra�c �ow, are normatively categorized into acceptable and unaccept-

able outcomes. The set of acceptable designs of a tra�c system then refers to those

design parameters (e.g., noise parameters, tra�c light con�gurations, initial densities)

that lead to acceptable outcomes. As a conceptual di�erence, we recognize that systemic

risk measures are introduced for �nancial systems whose risk decreases with the amount

of available capital. There is no such a priori monotonic dependence of tra�c �ows on

underlying system parameters.

Gaussian Process Regression. Mathematically, the acceptable designs of a tra�c

system form a set of real vectors de�ned in terms of a level set of a function. To estimate

this set, we estimate the underlying function. To address the computational cost in the

context of stochastic simulation, we develop an active learning approach.

We apply Gaussian process regression (GPR), also called kriging, as a Bayesian infer-

ence method to estimate a metamodel from isolated noisy data. The method assumes

a Gaussian process as a prior distribution over functions and is updated with observed

data to produce an estimate. The popularity of this method is due to its probabilistic

foundation, which also allows an evaluation of the uncertainty of the estimate. We refer

to Rasmussen & Williams (2005) as a standard reference and Kanagawa et al. (2018)

and Swiler et al. (2020) for insightful surveys.

Ankenman, Nelson & Staum (2010) examines GPR as a tool for metamodeling in the

context of simulation. Similarly, Binois, Gramacy & Ludkovski (2018) discusses practical

aspects. The focus is on approximating the entire underlying function rather than just a

particular level set. Most closely related to our active learning framework are Gotovos et

al. (2013) and Lyu, Binois & Ludkovski (2021), which also develop iterative procedures
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for approximating level sets with GPR. In contrast to previous work, we construct a

random search algorithm to determine where the function values will be estimated next.

This circumvents the need to rely on complicated optimization methods. In addition, we

introduce a general sandwich principle to impose upper bounds on the approximation

error of set estimation algorithms. Error bounds on the estimated function, as extensively

discussed in Srinivas et al. (2012) and Lederer, Umlauft & Hirche (2019), implicate

bounds on the approximation error of level sets.

5.2 Cell Transmission Models for Tra�c Networks
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Figure 5.1: Highway network.

5.2.1 A Motivating Example

Cell transmission models capture the dynamic evolution of tra�c densities and �ows

in tra�c networks. Figure 5.1 shows a stylized network with 28 cells or nodes. The

nodes can be of di�erent types, for example, the red and green nodes in Figure 5.1

could be sections of highways or roads, and the yellow nodes could be intersections or

roundabouts. The type of each node determines how tra�c participants interact within

the node. The total tra�c volume in the system may vary (possibly randomly) due

to tra�c participants entering or leaving the system. For example, the green areas in

Figure 5.1 could be sources and sinks of the tra�c network.

The model determines how much tra�c is transmitted from one node to the next. In

generalized cell transmission models on graphs, tra�c in the nodes may move in various

directions. This is especially true for nodes that are connected to multiple other nodes,
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such as nodes 1, 12, and 23. It is thus important to indicate di�erent directions or routes

by notation when modeling tra�c dynamics. A rigorous framework is described in the

next sections.

5.2.2 General Framework

To model general tra�c networks, we consider a set of vertices or nodes V denoting all

existing tra�c spaces; these are connected by a collection of edges E ⊆ V × V . The

corresponding graph G = (V,E) is the tra�c network under consideration. Vehicles,

bicycles, and pedestrians move through the graph, and tra�c �ows interact with each

other at the nodes. Tra�c �ows and corresponding tra�c densities in a node v are

distinguished by the preceding location u ∈ I (v) and the subsequent destination w ∈
O(v); here, the sets I (v) = {v′ : (v′, v) ∈ E} and O(v) = {v′ : (v, v′) ∈ E} collect the
nodes from which v can be reached and which can be reached from v, respectively.

Tra�c Dynamics. Tra�c is modeled in discrete time, enumerated as t = 0, 1, 2, . . . .

For simplicity, we consider only one type of tra�c participants, although the formalism

can easily be extended to multiple types. For each node v and each route (u, v, w)

through v with u ∈ I (v), w ∈ O(v), ρ(u,v,w)(t) is the tra�c density of agents at time

t traveling through v along (u, v, w). The �ow into v of tra�c participants traveling

along (u, v, w) through v during the time interval (t, t+ 1) is denoted by qin
(u,v,w)(t+ 1);

the corresponding �ow out of v is qout
(u,v,w)(t + 1). We further assume that sources and

sinks exist in the system, and denote by qnet
(u,v,w)(t + 1) the (possibly random) net �ow

of tra�c participants entering or leaving the system in v on the route (u, v, w) during

the time interval (t, t + 1). Nodes represent tra�c spaces such as roads, intersections,

roundabouts, shared spaces, and can be of di�erent sizes, labeled lv for v ∈ V . Densities
are updated iteratively for each v ∈ V , u ∈ I (v) and w ∈ O(v) at each point in time

t+ 1:

ρ(u,v,w)(t+1) = ρ(u,v,w)(t)+
1

lv

(
qin

(u,v,w)(t+ 1)− qout
(u,v,w)(t+ 1) + qnet

(u,v,w)(t+ 1)
)
(5.2.1)

To model a speci�c tra�c network, its initial conditions and the dynamic behavior of

sources and sinks must be speci�ed exogenously. Tra�c �ows are constrained on routes

(u, v, w) by the characteristics of the corresponding tra�c space, the density of agents

on that route, and other tra�c participants traveling through v; this is modeled by

general supply and demand constraints. In addition, we assume that turning fractions

are conserved, cf. Tampère et al. (2011); this captures the principle of �rst-in-�rst-out

for incoming tra�c. The solution of the tra�c model according to (5.2.1) is de�ned as

the solution of a global optimization problem that maximizes tra�c �ow. This solution

captures a perfect cooperation among tra�c participants to achieve the objective and

provides a benchmark solution; inspired by Tampère et al. (2011), we introduce interac-
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tion rules in Section 5.2.4 that realistically capture non-cooperative behavior. Adequate

tra�c dynamics is the solution of an optimization problem under these additional con-

straints.1

Sending and Receiving Functions. We begin by discussing general supply and de-
mand constraints. Tra�c densities constrain both in�ow and out�ow; this includes both
the density of tra�c on a given route (u, v, w) and the counter-densities of routes that
pass through tra�c space v. The demand constraint is formalized by the sending func-
tion S, which captures existing tra�c participants that would leave a tra�c area in the
next step if they could continue without any constraints in the subsequent modules (�de-
mand for space by tra�c participants�, ��ow that may be sent�). The supply constraint is
formalized by the receiving function R and captures the maximum amount of tra�c that
can be absorbed from preceding tra�c modules (�supply of space for tra�c participants�,

��ow that may be received�). The sending function S and the receiving function R are of
the following form:2

S(u,v,w) :

{
RI (v)×O(v)

+ −→ R+

(ρ(u′,v,w′))u′∈I (v),w′∈O(v) 7→ q(u,v,w)

R(u,v,w) :

{
RI (v)×O(v)

+ −→ R+

(ρ(u′,v,w′))u′∈I (v),w′∈O(v) 7→ q(u,v,w)

They bound in�ow and out�ow, i.e.,

qin
(u,v,w)(t+ 1) ≤ R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
,

qout
(u,v,w)(t+ 1) ≤ S(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
.

For the sending function that bounds the out�ow, we will always require that

S(u,v,w)(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v) ≤ ρ(u,v,w)(t), (5.2.2)

i.e., the out�ow during the time interval (t, t+ 1) cannot be greater than the occupation

of (u, v, w) with tra�c participants.

Sending and receiving functions do not have to be constant in time, but can vary

periodically, randomly or depending on circumstances. This can be modeled by a de-

pendency on additional state variables besides the dependency on the tra�c densities of

the agents on the paths through a node.

1The cooperative benchmark does not guarantee the greatest �ow over a longer time horizon because
myopic optimization focuses on a single time period. When focusing on a longer time horizon,
constrained optimization solutions may be superior in some cases, although they are suboptimal for
each time window given the same state at the beginning of that period.

2Another function with the same domain and range is the fundamental diagram that characterizes the
stationary or long-run tra�c �ow on a given route (u, v, w), if both demand from preceding tra�c
modules and supply of subsequent modules are unrestricted. It can be computed as the minimum of
sending function S(u,v,w) and receiving function R(u,v,w).
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Cooperative Driving Benchmark Model. To be able to specify the cooperative

driving benchmark model, we denote the fraction of tra�c participants on (u, v, w) turn-

ing to y ∈ O(w) by f(u,v,w)→y(t+ 1) ≥ 0 with
∑

y∈O(w) f(u,v,w)→y(t+ 1) = 1. This leads

to the following identity:

qin
(u,v,w)(t+ 1) =

∑

x∈I (u)

f(x,u,v)→w(t+ 1) · qout
(x,u,v)(t+ 1) (5.2.3)

The �ows qout
(u,v,w)(t+ 1) are the solutions of the following myopic global optimization

problem:

argmax
∑

v∈V

∑

u∈I (v), w∈O(v)

qout
(u,v,w)(t+ 1) (5.2.4)

s.t. for all v ∈ V , u ∈ I (v), w ∈ O(v):

� qout
(u,v,w)(t+ 1) ≥ 0,

� qin
(u,v,w)(t+ 1) =

∑
x∈I (u) f(x,u,v)→w(t+ 1) · qout

(x,u,v)(t+ 1),

� qin
(u,v,w)(t+ 1) ≤ R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
,

� qout
(u,v,w)(t+ 1) ≤ S(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
.

Remark 5.2.1. The global problem can be split into decoupled local problems. Since

∑

v∈V

∑

u∈I (v), w∈O(v)

qout
(u,v,w)(t+ 1) =

∑

v∈V

∑

u∈I (v)

∑

x∈I (u)

qout
(x,u,v)(t+ 1),

we can instead solve the decoupled problems

argmax
∑

x∈I (u)

qout
(x,u,v)(t+ 1) (5.2.5)

for all v ∈ V , u ∈ I (v) under the corresponding constraints.3

5.2.3 Examples of Tra�c Nodes

Our general framework allows to capture various tra�c modules, including the cell trans-

mission model of Daganzo (1994), roads, multidirectional pedestrian areas as in Moustaid

& Flötteröd (2021), unsignalized and signalized intersections, roundabouts, and many

other types of tra�c spaces. The model can also be extended to multiple types of tra�c

participants by introducing additional constraints that link these types together.

To describe a few motivating examples, consider a node labeled # and assume for

simplicity that I (#) = O(#) are adjacent nodes in a plane. Its elements are enumerated

3The constraints require that for all x ∈ I (u), w ∈ O(v): qout
(x,u,v)(t + 1) ≥ 0, qin

(u,v,w)(t + 1) =∑
x∈I (u) f(x,u,v)→w(t + 1) · qout

(x,u,v)(t + 1), qin
(u,v,w)(t + 1) ≤ R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
,

qout
(x,u,v)(t+ 1) ≤ S(x,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
.
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counterclockwise by 0, 1, . . . , n − 1 with n := card (I (#)). A convenient approach will

be to identify I (#) with the additive group Zn, i.e., to equip 0, 1, . . . , n − 1 with the

operation + modulo n.

Highways. Lanes of highways are separated, thus interaction between di�erent direc-
tions is not present. Setting I (#) = Z2, a simple linear model for sending and receiving
functions is, with u ∈ Z2,

S(u,#,u+1)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= min

(
smax

# , aρ(u,#,u+1)

)
,

R(u,#,u+1)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
ρmax

#

2
− cρ(u,#,u+1)

)
, 0

)
,

where ρmax
# > 0 is the maximum density, smax

# > 0 is the maximum �ow, 0 < a ≤ 1 is

the free-�ow speed, 0 < b ≤ 1 is the congestion wave speed, and c > 0 is an interaction

parameter.

Bidirectional Linear Interfaces. A generalization of the unidirectional situation is
adequate for pedestrians with bidirectional interacting �ows. We introduce an additional
interaction parameter d > 0 that re�ects the impact of tra�c travelling in opposite
direction and obtain a simple linear model for sending and receiving functions; their
speci�cation is, with u ∈ Z2,

S(u,#,u+1)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= min

(
smax

# , aρ(u,#,u+1)

)
,

R(u,#,u+1)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
ρmax

# − cρ(u,#,u+1) − dρ(u+1,#,u)

)
, 0

)
.

The models may, of course, include nonlinear relationships if the data or expert knowl-

edge suggest other functional forms. An example can be found in Moustaid & Flötteröd

(2021), where the sending function is nonlinear if both the density and the counter-

density are subcritical. Their model can be easily transferred to our notation.

Pedestrian Square. Bidirectional linear interfaces can be generalized canonically to
multiple directions. A fully symmetric geometry with n entries/exits and can be captured
by a node # with I (#) = Zn. Assuming pedestrians do not return to the same entry,
constant turning rates f(x,u,#)→w(t) ≡ 1/(n−1) for all u ∈ Zn, w ∈ Zn \{u} are a simple
choice. For u 6= w, a simple model is

S(u,#,w)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= min

(
smax

# , aρ(u,#,w)

)
,

R(u,#,w)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
ρmax

# − cρ(u,#,w)

− d
∑

u′∈I (#)\{u},
w′∈O(#)\{w}

ρ(u′,#,w′)

)
, 0

)
.
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Roundabouts. In roundabouts the interaction of the various participants is also deter-

mined by the overlap of their paths. This leads to somewhat more complicated sending

and receiving functions, but the main ideas are similar to those outlined above. We

provide a description of the details in Appendix 5.7, including a bidirectional round-

about for pedestrians and an extension of the framework to tra�c models with multiple

populations.

Intersections. Just as with roundabouts, complex interactions of tra�c participants

can also be modeled at intersections. As examples, we consider two cases: a highly sim-

pli�ed model of an unsignalized junction and a rather complex model of an intersection

with a tra�c light.

A possible simpli�ed model of an intersection adjusts the pedestrian space. Since cars
move slower on crowded intersections, we include an exponential damping factor between
0 and 1 in the de�nition of the sending function that depends on a parameter ζ > 0. For
u ∈ I (v) and u 6= w ∈ O(v) we set

S(u,#,w)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= min

(
smax

# , aρ(u,#,w) exp
(
− ζ ·

∑

u′∈I (#),
w′∈O(#)

ρ(u′,#,w′)

))
,

R(u,#,w)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b
(
ρmax

# − c
∑

u′∈I (#),
w′∈O(#)

ρ(u′,#,w′)

)
, 0

)
.

At the other end of the spectrum are models incorporating more details that allow cell
transmission models (albeit still much simpler than microscopic models) to reproduce
complex interaction patterns. As an example, consider a signalized intersection with
I (#) = O(#) = Z4. Consider u ∈ I (#) and right-hand tra�c. The path (u, v, u+ 1)

corresponds to a right turn, while the paths (u, v, u+ 2) and (u, v, u+ 3) represent going
straight and a left turn, respectively. As additional state variables, we consider for each
path the current signal (state 0 � red, or state 1 � green) and the time it has been in
this state. To capture the tra�c lights, we assume that both the sending functions and
receiving functions depend on these states. More speci�cally, LA(u,#,u+i), i = 1, 2, 3,
adjusts the free-�ows speed of tra�c. In signal state LS(u,#,w) = 0, it is set to 0, but in
state LS(u,#,w) = 1 the adjustment LA(u,#,u+i) depends on the time the signal has been
in this state. The tra�c light does not immediately show green in state 0 but with a
delay, so that LA(u,#,u+i) is initially 0 and increases with time due to the acceleration
of tra�c until the maximal free-�ow speed is reached. When turning right and driving
straight ahead, the adjusted sending functions are

S(u,#,u+1)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

, LA(u,#,u+1)

)
= min

(
smax

# , LA(u,#,u+1)aρ(u,#,u+1)

)
,

S(u,#,u+2)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

, LA(u,#,u+2)

)
= min

(
smax

# , LA(u,#,u+2)aρ(u,#,u+2)

)
.

When turning left, the sending function may be decreased due to oncoming tra�c. This
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can be modeled by an exponential term for a parameter ζ > 0, for example:

S(u,#,u+3)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(v)

, LA(u,#,u+3)

)
=

min

(
smax

# , LA(u,#,u+3)aρ(u,#,u+3) · exp

(
− ζ ·

(
ρ(u+2,#,u) + ρ(u+2,#,u+3)

))
)
.

The tra�c node # of the signalized intersection also includes the areas in front of the
tra�c lights. Their capacity is limited by ρmax

u,# , and this is re�ected by the receiving
functions:

R(u,v,w)

((
ρ(u′,v,w′)

)
u′∈I (v),w′∈O(v)

)
= max


b


ρmax

u,# −
∑

w′∈O(#)

ρ(u,#,w′)


 , 0


 .

5.2.4 Interaction Rules

The global optimization problem (5.2.4) captures perfect cooperation to achieve maxi-

mum (albeit myopic) tra�c �ow in the tra�c system. This is unrealistic for models of

real tra�c, since individual participants optimize only their own utility, which may con-

�ict with the goals of others. As explained in Tampère et al. (2011), further constraints

� interaction rules � can mimic the local behavior of agents. We explicitly specify three

formal approaches.

Demand Proportional Flows. Sending functions model the demand of road users

for movement. An interaction rule could specify that realized �ows are proportional to

demand. To be more speci�c, we focus on the decoupled problems (5.2.5) and assume

that there exists a constant λ(u,v)(t+ 1) ∈ [0, 1], independent of x, such that

qout
(x,u,v)(t+ 1) = λ(u,v)(t+ 1)S(x,u,v),k

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
(5.2.6)

Maximizing �ow in (5.2.5) is now considerably simpli�ed and equivalent to solving for
all v ∈ V and u ∈ I (v) the problems argmaxλ(u,v)∈[0,1] λ(u,v) under the constraints
given in Remark 5.2.1. These problems possess the explicit solutions

λ(u,v)(t+ 1) =

min

{
1, min

w∈O(v)

{
R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
∑

x∈I (u) f(x,u,v)→w(t+ 1) · S(x,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
}}

,

yielding the �ows

qout
(x,u,v)(t+ 1) = min

{
S(x,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
,

min
w∈O(v)

{
R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
∑

x∈I (u) f(x,u,v)→w(t+ 1)

}}
.
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Capacity Proportional Flows. Instead of assuming that realized �ows are propor-

tional to demand for the same factor, di�erent directions could have di�erent capacities

that determine the proportionality factors. Letting
∑

x∈I (u) d(x,u,v) = 1 with d(x,u,v) ≥ 0,

x ∈ I (u), one may assume that there exists a constant λ(u,v)(t+1) ∈ [0, 1], independent

of x, such that

qout
(x,u,v)(t+ 1) = min

(
λ(u,v)d(x,u,v), 1

)
S(x,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
. (5.2.7)

The factor min
(
λ(u,v)d(x,u,v), 1

)
ensures that realized �ows cannot become larger than

the sending �ows. As in the case of demand proportional �ows, this leads again to several
one-dimensional optimization problems that can be easily solved explicitly:

λ(u,v)(t+ 1) = min
w∈O(v)

{
inf

{
λ ≥ 0:

∑

x∈I (u)

f(x,u,v)(t+ 1) min
(
λd(x,u,v), 1

)
·

S(x,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
= R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)}
}
.

The interior minimization is simply the solution of an equation in the single variable λ.

The right hand side is continuous and increasing in λ. Due to its piecewise linearity, this

problem can be solved by a �nite number of iterations.

Priority Rules. Priority rules vary from country to country. A common example is
that on an intersection tra�c from the right often has priority. This can be implemented
as an interaction rule in our model. Again, for v ∈ V and u ∈ I (v), as in problem
(5.2.5), we consider the decoupled problems of local optimization of the �ow over the
next time period. To capture priority rules, we assume that based on the current tra�c
state, a �xed enumeration of I (u) = {xu,1, . . . , xu,Iu} is chosen. This order of incoming
nodes is �xed for a certain period of time during which local tra�c �ows are computed hi-
erarchically. Tra�c originating from the nodes listed before the others has priority. The
duration of the regime must be chosen according to the real situation being modeled and
the real time to which each time period in the model corresponds. Formally, we sequen-
tially solve for i = 1, . . . , Iu the problems argmax qout

(xu,i,u,v)(t+ 1) for the corresponding

constraints4 and obtain the solution

qout
(xu,1,u,v)(t+ 1)

= min

(
S(xu,1,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
,
R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)

f(xu,1,u,v)→w(t+ 1)

)
,

qout
(xu,i+1,u,v)(t+ 1) = min

(
S(xu,i+1,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
,

R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
−∑i

j=1 f(xu,j ,u,v)→w(t+ 1) · qout
(xu,j ,u,v)(t+ 1)

f(xu,i+1,u,v)→w(t+ 1)

)
,

4The constraints are qout
(xu,i,u,v)(t+ 1) ≥ 0, qin

(u,v,w)(t+ 1) =
∑i
j=1 f(xu,j ,u,v)→w(t+ 1) · qout

(xu,j ,u,v)(t+ 1),

qin
(u,v,w)(t + 1) ≤ R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
for all w ∈ O(v) and qout

(xu,i,u,v)(t + 1) ≤
S(xu,i,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
.
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for all i = 1, . . . , Iu − 1.

5.3 Acceptable Con�gurations and Designs

5.3.1 The Question

We will be interested in evaluating the performance of tra�c systems under various

conditions. Speci�cally, the in�uence of measures to regulate tra�c should be under-

stood. To this end, we consider a collection of cell transmission models enumerated by

a vector k ∈ D ⊆ Rr for some dimension r ∈ N. The set D is assumed to be bounded.

The components of k specify the characteristics of a tra�c system, such as total tra�c

volume, tra�c control parameters, the magnitude of random variations of various vari-

ables, and weather conditions. For �xed k ∈ D, the (possibly random) time evolution

of the corresponding cell transmission model is described following the approach from

Section 5.2. We will call k a design parameter. For each design parameter k ∈ D, the
tra�c system can be simulated and the corresponding random variables of interest can

be calculated. We assume that we wish to evaluate a random variable Qk and compare

the results across k ∈ D. The random variable Qk could model the total network tra�c

�ow or tra�c �ow per tra�c volume over a given time horizon, for example.

5.3.2 Preference Functionals and Acceptable Designs

By X we denote a normed space of random variables such as Lp, p ∈ [1,∞], and assume

that Qk ∈ X , k ∈ D. We evaluate the performance of the tra�c system by a preference

functional U : X → R. Typically, U is increasing on X , i.e., if Q ≤ Q′ almost surely,

then U(Q) ≤ U(Q′). A special case is expected utility with U(Q) = E(u(Q)) for an

increasing function u : R→ R. In the case studies in Section 5.5, we will study

(i) Expectation: u(x) = x,

(ii) Polynomial Utility: u(x) = −|x− cp|α1{x ≤ cp}, cp ∈ R, α ≥ 1,

(iii) Expectile Utility: u(x) = α(x − ce)+ − (1 − α)(x − ce)−, ce ∈ R, α ≤ 1/2

where x+ = max(x, 0) and x− = max(−x, 0),

(iv) Square Root Utility: u(x) =
√
x.

For the practical evaluation of all tra�c systems enumerated by design parameters

k ∈ D, categorization by performance is a convenient methodology. This is related to

the level sets of the utility functionals. For a utility functional U and a �xed level γ ∈ R,
the set of acceptable designs is

D = DU,γ = {k ∈ D : U(Qk) ≥ γ} .
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This characterizes the tra�c systems with utility of at least γ. In applications, the level

γ is often chosen as the utility of a benchmark distribution, i.e., γ := U(Q) for a random

variable Q with the benchmark distribution.

The acceptable designs are closely related to systemic risk measures as introduced in

Feinstein, Rudlo� & Weber (2017). In the special case that U and k 7→ Qk are increasing

and k parametrizes the design parameters in terms of incremental monetary costs, the

systemic risk measure

R((Qm)m∈Rr ; k) = {m ∈ D : U(Qk+m) ≥ γ} = {m ∈ D : k +m ∈ D} = D − k

is the collection of vectors of additional investments required for the various features of

the tra�c system to achieve the acceptable design.

5.4 Learning the Acceptable Design

We are interested in characterizing acceptable designs D = {k ∈ D : E(u(Qk)) ≥ γ} of
tra�c systems. The challenge is that Qk can only be simulated for �nitely many k ∈ D
and needs to be interpolated in between these points. The selection of points for the

simulation is also an important issue. In this section, we propose a machine learning

algorithm for the accelerated estimation of this set.

We approach the problem by approximating the function5

µ : D→ R, k 7→ E(u(Qk)),

based on simulated data6 (k, µ̂k)k∈D. The simulated data are generated by Monte Carlo

simulation of Qk for selected points k ∈ D. We use an iterative learning algorithm that

successively selects �nite sets Di of points, i = 1, 2, . . . . These sets form an increasing

sequence D0 ⊆ D1 ⊆ D2 ⊆ . . . , and new points Di \ Di−1 are strategically selected. The

corresponding values µ(k) at k ∈ Di \ Di−1 are estimated with increasing accuracy. To

extend the (k, µ̂k)k∈Di to the entire design space D, we use Gaussian process regression

(GPR), a Bayesian inference method. The corresponding estimator of µ is denoted by

mi : D → R. A key feature of GPR is that it not only produces an estimator of µ, but

also captures the corresponding uncertainty.

The acceptable designsD are estimated by the plug-in estimators D̂i = {k ∈ D : mi(k) ≥
γ}, i ∈ N. Gaussian process regression has been used previously for estimating level sets

(Lyu, Binois & Ludkovski (2021)). The main innovation of this section is to develop a

framework for active learning using sequential statistics in conjunction with GPR. For

this purpose, we use a heteroscedastic version of Gaussian process regression.

5To control the approximation error, we assume that D is bounded. This implies that D ⊆ D is
bounded.

6We use the index notation for the data µ̂k at isolated points k and retain the notation µ(·) when
referring to a function de�ned on D.
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5.4.1 Monte Carlo Estimation of Function Values

We �rst describe the Monte Carlo estimation of the simulated data, i.e., the estimation

of the function value µ(k) = E(u(Qk)) given a �xed design parameter k ∈ D in a �xed

iteration i ∈ N. Denote by (τ i)2 > 0 a selected target variance of estimates (k, µ̂k)k∈Di .

Increasing precision is obtained by letting τ i be decreasing for i ≥ 1; however, τ0 is

associated to the initialization of the algorithms and therefore typically chosen smaller

than τ1. We combine a heuristic from the central limit theorem with sequential statistics

to determine a stopping criterion.

If Q̂1
k, Q̂

2
k, . . . is a sequence of i.i.d. samples of Qk, the central limit theorem implies

that, for large n ∈ N, the distribution of the sample mean µ̂nk = 1
n

∑n
j=1 u(Q̂jk) is roughly

N
(
µ(k),

(σ̂nk )2

n

)
where the correct variance is replaced by the sample variance (σ̂nk )2 of

our estimates of expected utility.

We stop sampling when the sample noise (σ̂nk )2/n falls below the desired target noise

(τ i)2. Additionally, we impose a minimal number of simulations nmin and a maximal

number of simulations nmax � nmin so that a known upper bound on computational

resources can be guaranteed � but this does not have to be required. To be precise, we

end our simulations of Qk when

n = min

{
min

{
nmin ≤ n̄ :

(σ̂n̄k )2

n̄
≤ (τ i)2

}
, nmax

}
.

Finally, we set µ̂k := µ̂nk and (with a slight abuse of notation) τ2
k :=

(σ̂nk )2

n .

5.4.2 Gaussian Process Regression

We give a brief overview of Gaussian process regression7, adapted to our framework. A

Gaussian process de�nes a probability law over functions from D to R such that the �nite-

dimensional marginal distributions are normal. The distribution is fully characterized

by its mean function m : D → R and covariance function (also called kernel) c : D ×
D → [0,∞). The corresponding law or process is denoted by GP(m, c). For any �nite

set8 Di ⊆ D, we know that M(Di) ∼ N
(
m(Di),Σ(Di,Di)

)
with M(Di) = (M(l))l∈Di ,

m(Di) = (m(l))l∈Di , and Σ(Di,Di) = (c(l, l′))l,l′∈Di . The kernel c is also associated to

properties of the process such as the existence of regular versions.

Gaussian process regression is a probabilistic procedure for inference on an unknown

function from possibly noisy data on the values of the function at some points. GPR

is a Bayesian approach, i.e., the function is assumed to be an unknown sample from a

prior distribution. The prior is taken to be the law of a Gaussian process. The posterior

distribution is then calculated based on the data.

There are numerous approaches for choosing the prior. In this chapter, we will use the

7We refer to Rasmussen & Williams (2005) as a standard reference for more details
8Note that we retain the index i even though it is not technically required for this section.
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standard choice m ≡ 0 as the prior mean and consider two commonly used covariance

functions9, namely the squared exponential function and the Matérn kernel. Both are

de�ned in terms of hyperparameters σ2
c > 0 (referred to as the signal variance) and l > 0

(characteristic length scale). The squared exponential function is given by

cSE(k, k′) = σ2
c · exp

(
−‖k − k

′‖2
2l2

)
, k, k′ ∈ D,

and, for ν > 0, the Matérn kernel is de�ned as

cM(k, k′; ν) = σ2
c ·

21−ν

Γ(ν)

(√
2ν‖k − k′‖

l

)ν
Kν

(√
2ν‖k − k′‖

l

)
, k, k′ ∈ D,

with Kν being a modi�ed Bessel function. The squared exponential function has mean

square derivatives, yielding smooth behavior of the sample paths. The smoothness prop-

erties of the Matérn kernel are controlled by ν: Small choices lead to rougher sample

paths, while, in the limit ν → ∞, the Matérn kernel equals the squared exponential

function and can, thus, be understood as a generalization. For more details, we refer to

Rasmussen & Williams (2005). In our case studies, we will consider the common choice10

ν = 3/2. The Matérn kernel o�ers advantages when higher curvature is required at some

points to reduce the amplitude of oscillations in the approximation.

To estimate the unknown function from data, the following Bayesian approach will be

applied: The unknown function µ is interpreted as a realization of a Gaussian process

M ∼ GP(m, c) with the given prior distribution. For any �nite set D∗ ⊆ D \ Di, M
evaluated in (Di,D∗) follows a joint normal distribution. This still holds true, if we

introduce independent noise εk ∼ N (µ(k), τ2
k ) with τk ≥ 0 and set M̂k = M(k) + εk,

k ∈ Di. The joint distribution with noise is

[
M̂(Di)
M(D∗)

]
∼ N

([
m(Di)
m(D∗)

]
,

[
Σ(Di,Di) + diag

(
τ2

1 , . . . , τ
2
|Di|

)
Σ(Di,D∗)

Σ(D∗,Di) Σ(D∗,D∗)

])
(5.4.1)

with M̂(Di) = (M̂l)l∈Di = (M(l) + εl)l∈Di , M(D∗) = (M(l))l∈D∗ and Σ(Di,Di) =

(c(l, l′))l,l′∈Di , Σ(Di,D∗) = (c(l, l′))l∈Di,l′∈D∗ , Σ(D∗,Di) = Σ(Di,D∗)>, Σ(D∗,D∗) =

(c(l, l′))l,l′∈D∗ .

We assume that noisy observations are obtained on Di. Then a Bayesian update for

the Gaussian process is computed. A Bayesian estimator of µ is given by the posterior

mean function, and its uncertainty can be captured by the posterior variance. The

posterior distribution, i.e., the distribution of M | M̂(Di) = µ̂(Di), is characterized by

the following theorem.

Theorem 5.4.1 (Gaussian Process Regression). Suppose that the Gaussian process

9Rasmussen & Williams (2005) o�er an extensive discussion on covariance functions.
10For ν = 3/2, the Matérn kernel simpli�es into cM(k, k′; 3/2) =

(
1 +

√
3‖k−k′‖
l

)
exp

(
−
√

3‖k−k′‖
l

)
.
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M ∼ GP(m, c) has a mean function m : D → R and a covariance function c : D ×
D → [0,∞). We assume that M̂k = M(k) + εk, k ∈ Di, where the random variables

εk ∼ N (0, τ2
k ), k ∈ Di, are jointly independent and also independent of M . For given

noisy observations µ̂(Di) of M̂ on Di, the conditional law of the process is (M | M̂(Di) =

µ̂(Di)) ∼ GP(mi, ci) where

mi(k) = m(k) + Σ(Di, k)>
(

Σ(Di,Di) + diag
(
τ2
1 , . . . , τ

2
|Di|

))−1

(µ̂(Di)−m(Di)), k ∈ D,

ci(k, k′) = c(k, k′)− Σ(Di, k)>
(

Σ(Di,Di) + diag
(
τ2
1 , . . . , τ

2
|Di|

))−1

Σ(Di, k′), k, k′ ∈ D.

with µ̂(Di) = (µ̂l)l∈Di , m(Di) = (m(l))l∈Di, Σ(Di, k) = (c(l, k))l∈Di , and Σ(Di,Di) =

(c(l, l′))l,l′∈Di . The standard deviations are given by σi(k) =
√
ci(k, k).

Proof. See, for example, Goldberg, Williams & Bishop (1997).

The previous theorem requires that the hyperparameters are determined in advance.

The prior distribution of the Gaussian distribution and the sampling distribution of the

noisy observation specify the distribution of the observed data given the hyperparam-

eters. To select the hyperparameters θ, we maximize the marginal likelihood11 of the

observed data µ̂(Di) using

M̂(Di) | θ ∼ N
(
m(Di),Σ(Di,Di) + diag

(
τ2

1 , . . . , τ
2
|Di|

))
,

cf. equation (5.4.1).

5.4.3 Active Learning Framework

We propose an algorithm that combines GPR and the successive acquisition of new

sets of points D0 ⊆ D1 ⊆ D2 ⊆ . . . . The goal is to approximate the set of acceptable

designs D. The general structure is described in Algorithm 2, which we will discuss in

more detail in the following subsections. We would like to emphasize that each part of

this algorithm is related to active learning approaches with stochastic kriging that have

been used before (see, for example. Binois, Gramacy & Ludkovski (2018), Lyu, Binois

& Ludkovski (2021), and Gotovos et al. (2013)); however, as far as we are aware, our

particular combination of stochastic search and GPR is novel. Our estimation procedure

consists of two major steps:

� Phase 1: Initialize. First, we create an initial set of points D0 and estimate

values µ̂k with a target noise (τ0)2 for each k ∈ D0. The hyperparameters of the

11Maximizing the marginal likelihood is also referred to as empirical Bayes, evidence approximation, or
type-II maximum likelihood (cf. Rasmussen & Williams (2005) or Schulz, Speekenbrink & Krause
(2018)). This is a non-convex problem and typical methods may converge to local maxima. However,
numerical experiments indicate that prediction based on the squared exponential function is robust
with respect to the estimation of its hyperparameters (see Chen & Wang (2018)). Alternatively, one
could place a hyperprior on θ at the expense of tractability. We refer to Lalchand & Rasmussen
(2020) for more details.
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GPR are estimated by maximizing the marginal likelihood.12 We then compute

our �rst GPR13 estimate m0 : D → R and σ0 : D → [0,∞) according to Theorem

5.4.1.

� Phase 2: Loop. Second, we repeat an active learning procedure to improve our

GPR estimate. We use an acquisition function to randomly construct Di \ Di−1.

Function values at the new arguments are estimated14 and used to improve the

estimates of the posterior mean and variance of GPR (see again Algorithm 6).

The algorithm either terminates after a maximum number of iterations, or an upper

bound for the approximation error can be speci�ed to control the quality of the

approximation.15

The set estimate D̂i is a function of the point estimate of the mean mi. Additionally,

the measure of uncertainty σi will be used to construct Di \ Di−1, i.e., selecting points

to sample. It also provides information on the approximation errors associated with this

procedure.

Selecting Points to Sample. The goal of selecting new points Di\Di−1 after iteration

i − 1 is to improve the estimate of the superlevel set D = {k ∈ D : E(u(Qk)) ≥ γ}. To
examine D, we �rst randomly select new points. Sampled points k ∈ D will only be used

for further improvements in step i in the GPR, if for some constant c1 > 1 the inequality

c1 · τ i < σi−1(k) holds, i.e., if Monte Carlo sampling can substantially decrease the

uncertainty at that point. We use c1 = 5 in our implementations of the algorithm.

Moreover, points that are close to the previously estimated boundary mi−1(k) = γ are

preferred. This can be encoded by an acquisition function Ii : D → [0,∞) that seeks

to capture the informative potential of estimating E(u(Qk)) at a new design parameter

k ∈ D. We use16 Ii(k) : = Φ
(
−ci2 · |mi−1(k)− γ|

)
, i = 1, 2, . . . , where Φ is the standard

normal CDF and ci2 > 0 is an increasing sequence. Up to its normalizing constant, we

treat Ii as a density in order to simulate new points in D.
In order to sample from this acquisition function, we employ rejection sampling (see,

e.g., Glasserman (2003) for more details on the method) to sample from Ii. We note

that Ii(k) ≤ 1/2 for all k ∈ D by construction. Therefore by sampling points uniformly

12The detailed procedure is described in Algorithm 5.
13The details are provided in Algorithm 6.
14The GPR from each iteration yields a prior N (mi−1(k), (σi−1(k))2) which could be exploited in the

subsequent iteration for sampling. This idea of Bayesian sampling is brie�y described in Appendix
5.8.1.

15Such an upper bound is discussed in more detail in Section 5.4.4.
16Alternatively, one could use Ii(k) : = Φ

(
−c2 · |m

i−1(k)−γ|
σi−1(k)

)
, i = 1, 2, . . . , with constant c2 > 0. It is

large when k is close to the estimated boundary and when the posterior uncertainty is large. This
acquisition function is comparable to that used in Lyu, Binois & Ludkovski (2021); in that work, the
acquisition function is optimized using a genetic algorithm to determine a single next point. Here,
one would directly implement a stochastic sampling routine to generate nloop ≥ 1 new points to
construct Di \ Di−1.
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Algorithm 2 Active learning framework.

Phase 1: Initialize

(i) Sample an initial data set D0 of ninitial points uniformly in D

(ii) Estimate values at points k ∈ D0 such that the variance is bounded by the target
variance (τ0)2

(iii) Estimate the hyperparameters for GPR (which will be �xed hereafter)

(iv) Compute the posterior mean and variances according to Theorem 5.4.1

Phase 2: Loop

(i) Build the acquisition function from the last posterior estimates. The acquisition
encodes tradeo�s between the distance from the estimated boundary and the
posterior uncertainty, when selecting additional points

(ii) Sample nloop new points according to the acquisition function via rejection sam-
pling. This set is Di \ Di−1

(iii) Simulate values at points k ∈ Di \Di−1 such that the variance is bounded by the
target variance (τ i)2

(iv) Use all simulated values (i.e., the simulations for Di) to compute the new poste-
rior mean and variance by Bayesian updating of the original prior according to
Theorem 5.4.1

(v) Determine whether to stop
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in D (i.e., with density 1/vol(D)), we can accept the point k with probability 2Ii(k) to

recover samples from our acquisition function Ii.17 This algorithm is modi�ed by �rst

checking the inequality c1 · τ i < σi−1(k). The procedure18 is provided by Algorithm 3.

Algorithm 3 Rejection sampling.

for j = 1, 2, . . . , nloop do
Set flag = true.
while flag = true do
Sample Ûj ∼ Unif(D).
if c1 · τ i < σi−1(k) then
Sample p ∼ Unif(0, 1).
if p < 2Ii(Ûj) then
Set flag = false.

end if
end if

end while
end for

5.4.4 Sandwich Principle and Bounds on the Approximation Error

In this section, we evaluate the approximation error of the estimate D̂i of the set D.
We construct inner and outer approximations D̂i− and D̂i+ of D that sandwich the true

set. We �nd these inner and outer approximations by constructing lower and upper

approximations mi
−,m

i
+ : D → R of µ : D → R, in the context of Gaussian process

regression. We study approximation errors under the assumptions that are described in

Theorem 5.4.1. The metric we use is given by the commonly studied Nikodym metric19

dN

(
D̂i,D

)
= vol

(
D̂i∆D

)
,

where D̂i∆D =
(
D̂i \ D

)
∪
(
D \ D̂i

)
is the symmetric di�erence between D̂i and D,

and the volume vol(·) refers to the l-dimensional Lebesgue measure. Given inner and

outer approximations D̂i− and D̂i+ that sandwich D, we can upper bound the true error

dN

(
D̂i,D

)
as follows.

17The upper bound on the likelihood ratio for the rejection sampling can be given by
supk∈D Ii(k)/(1/vol(D)) ≤ vol(D)/2.

18The implementation of Algorithm 3 includes a maximal number of trials for the while loop. If no
point is found that satis�es c1 · τ i < σi−1(k), the algorithm continues with the next iteration i+ 1.
Moreover, after the estimation of a function value, we check if its sample noise is small enough so
that including the new data point is bene�cial. For c3 > 0 (we use c3 = 2 in our simulations), we
discard a new data point (k, µ̂k) if σ̂k/

√
n ≥ c3 · τ i.

19There are other distance metrics between sets. We refer, for example, to Cuevas (2009) or Brunel
(2018) for an overview. Another common metric is the Hausdor� metric, which has a more visual
character. Here, the distance between two sets A1, A2 ⊆ D is de�ned by dH (A1, A2) = inf{ε > 0 |
A1 ⊆

⋃
k∈A2

B(k, ε) , A2 ⊆
⋃
k∈A1

B(k, ε)} where B(k, ε) is the open ball of radius ε centered in k.
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Lemma 5.4.2 (Sandwich Principle and Error Bound). Let D̂i−, D̂i, and D̂i+ be

estimators of D such that D̂i− ⊆ D̂i ⊆ D̂i+ and P (D̂i− ⊆ D ⊆ D̂i+) ≥ 1− δ for δ ∈ (0, 1).

Then it holds

P
(
dN

(
D̂,D

)
≤ vol

(
D̂i

+ \ D̂i
−
))
≥ 1− δ.

Proof. See Section 5.8.4.1.

We consider two alternatives to de�ne the lower and upper approximations mi
−,m

i
+ :

D → R and apply them in the sandwich principle Lemma 5.4.2. These choices are

associated to uniform and pointwise bounds, respectively.20

Uniform Bounds. Functions mi
−,m

i
+ : D → R are called uniform bounds for some

δ ∈ (0, 1), if

P
(
∀ k ∈ D : mi

−(k) ≤M(k) ≤ mi
+(k) | M̂(Di) = µ̂(Di)

)
≥ 1− δ. (5.4.2)

The region in between is referred to as a credible band for the unknown function µ : D→
R.
Lederer, Umlauft & Hirche (2019)21 discuss the derivation of such uniform bounds

for Gaussian process regression. They impose Lipschitz conditions on the true function

µ : D→ R and the covariance function c : D×D→ R. The uniform bounds can then be

constructed22 by applying a bound on values at sampled points and bounding the values

in between using the Lipschitz assumptions. While a Lipschitz constant on µ is often

unknown, a Lipschitz condition is satis�ed by commonly used covariance functions. As an

immediate consequence, we can relate such uniform bounds to probabilistic bounds of the

set D, so that the sandwich principle can be applied. We set D = {k ∈ D : M(k) ≥ γ}.

Corollary 5.4.3 (Credible Band for the Acceptable Design and Error Bound).

De�ne the estimators D̂i = {k ∈ D : mi(k) ≥ γ}, D̂i− = {k ∈ D : mi
−(k) ≥ γ}, and

D̂i+ = {k ∈ D : mi
+(k) ≥ γ}. If condition (5.4.2) is satis�ed, then

P (D̂i
− ⊆ D ⊆ D̂i

+ | M̂(Di) = µ̂(Di)) ≥ 1− δ,
P (dN (D, D̂i) ≤ vol(D̂i

+∆D̂i
−) | M̂(Di) = µ̂(Di)) ≥ 1− δ

where vol(D̂i+∆D̂i−) = vol(D̂i+ \ D̂i−) = vol
{
k ∈ D : mi

+(k) ≥ γ > mi
−(k)

}
.

Proof. See Section 5.8.4.2.

20Appendix 5.8.2 discusses how to compute the proposed upper bounds. Appendix 5.8.3 presents
additional ideas for robustifying the pointwise bound.

21See, in particular, Theorem 3.1 in Lederer, Umlauft & Hirche (2019). These results are extended in
Lederer, Umlauft & Hirche (2021).

22For s ∈ R+, the bounds can be de�ned by

mi
±(k) = mi(k)±

√
α(s)σi(k)± β(s), k ∈ D,

where α(s) = 2 log
(
M(s,D)

δ

)
and β(s) = (Lmi+Lµ)s+

√
α(s)ωσi(s) for Lipschitz constants Lmi , Lµ ≥

0, ωσi(·) being the modulus of continuity of σi, and M(s,D) the s-convering number of D. We refer
to Lederer, Umlauft & Hirche (2019) for details.
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Controlling the approximation error uniformly with high probability typically results

in a large set D̂i+\D̂i− used to locate the boundary ofD, which is not desirable. Moreover,

uniform bounds require more prior information on the true function µ : D→ R, i.e., the
Lipschitz constant. These problems do not occur with pointwise bounds.

Pointwise Bounds. In practice, it is often su�cient to assess the quality of a single

candidate design k. This issue can be approached as follows.

Lemma 5.4.4 (Pointwise Approximation Error). Let δ ∈ (0, 1). It holds

∀ k ∈ D : P

(
|M(k)−mi(k)| ≤ Φ−1

(
1− δ

2

)
σi(k)

∣∣∣∣ M̂(Di) = µ̂(Di)

)
≥ 1− δ

where Φ−1 denotes the inverse CDF of the standard normal distribution.

Proof. This is a standard argument, see Section 5.8.4.3 for a proof.

This pointwise credible band can be attained with the functions m̄i
−(k) := mi(k) +

Φ−1
(
δ
2

)
σi(k) and m̄i

+(k) := mi(k) + Φ−1
(
1− δ

2

)
σi(k) for the GPR estimates mi, σi,

i.e.,
P
(
m̄i
−(k) ≤M(k) ≤ m̄i

+(k) | M̂(Di) = µ̂(Di)
)
≥ 1− δ ∀ k ∈ D.

To set up a sandwich principle, we de�ne the inner and outer approximations

D̂i± = {k ∈ D : m̄i
±(k) ≥ γ}

and evaluate the Nikodym metric dN
(
D̂i−, D̂i+

)
. For k ∈ D̂i+ \ D̂i−, we have that γ ∈

(m̄i
−(k), m̄i

+(k)], thus, due to Lemma 5.4.4 and the choice of m̄i
−(k) and m̄i

+(k),

P

(
|M(k)− γ| < 2 · Φ−1

(
1− δ

2

)
σi(k)

∣∣∣∣ M̂(Di) = µ̂(Di)

)
≥ 1− δ.

5.5 Case Studies

We study two tra�c networks, one with two signalized intersections and another one

with variable capacities of highways, speed limits and bottlenecks due to roundabouts.

Appendix 5.9.1 provides a pseudocode for the implementation of our tra�c model for

general networks. We investigate acceptable designs based on demand proportional

�ows. For selected design parameters, we compare these with the cooperative driving

benchmark model.

5.5.1 Urban Network

Tra�c signals are essential control elements in modern urban networks. Their main

function is to temporarily block certain tra�c �ows so that competing tra�c �ows can

pass safely. E�cient placement and design are nontrivial problems; issues include the
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choice of tra�c �ow to be interrupted and the duration of the interruption. Complex

interdependencies arise in networks, for example, when there is more than one tra�c

light in a network.

5.5.1.1 Set-Up

1 2 3 4 5 6 7

8 9 10 11

12 13 14 15 16 17 18

19 20 21 22

23 24 25 26 27 28 29

Figure 5.2: Signalized urban network.

Network. We consider a stylized urban network as depicted in Figure 5.2. It consists of

29 nodes V = {1, . . . , 29}, which are interconnected in a grid-like manner. The network

features three types of nodes (cf. Section 5.2.3):

� Signalized Intersection. We consider two signalized intersections R = {14, 16},
marked in red. Both are connected to four adjacent intersections and allow vehicles

to travel horizontally or vertically through the network while blocking vehicles in

orthogonal directions. We study the duration of their green time T g and the

displacement of the two green phases T s of nodes 14 and 16 as important design

parameters. Details on the implementation of the tra�c lights are given in Section

5.9.2.1.

� Unsignalized Intersection. On the periphery are six unsignalized intersections Y =

{3, 5, 12, 15, 25, 27}, highlighted in yellow. Each of these intersections connects

tra�c �ows from three adjacent nodes.

� Bidirectional Road. The remaining nodes of the network are simple bidirectional

roads G = V \ (R∪ Y) which are highlighted in green.

We assume that the signalized and unsignalized intersections have the same diameter

of 40 m while the green connecting bidirectional roads are of length 120 m. Vehicles move

at a free-�ow speed of 50 km/h. We assume symmetric and constant turning fractions.23

23The turning fractions are f(x,u,v)→w(t + 1) = 1 for v ∈ G w ∈ O(v), w 6= u ∈ I (v), u 6= x ∈ I (u)
and, in analogy, f(x,u,v)→w(t+ 1) = 1/2 for v ∈ Y and f(x,u,v)→w(t+ 1) = 1/3 for v ∈ R.
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The connecting bidirectional roads G are of length 120 m. We normalize tra�c densities,

i.e., we let lv = 1 for v ∈ R∪ Y and set lv = 3 for v ∈ G. As an initial con�guration, we

set ρ(·,v,·)(0) = 5 for v ∈ G and ρ(·,v,·)(0) = 1 for v ∈ Y∪R. At 50 km/h, intersections can

be passed in 2.88 s, i.e., the interval [t, t + 1] corresponds to treal = 2.88 s. We simulate

T = 1, 250 time steps corresponding to 1 h of tra�c. The remaining parameters of the

modules are listed in Table 5.1.

Table 5.1: Parameter choice.

smax
v ρmax

v av bv cv ζv

v ∈ R 5 16 1 1 1 1/10
v ∈ Y 5 10 1 1 1 1/10
v ∈ G 5 30 1 1 1 -

Random Environment. We place the tra�c network described above in a random

environment by introducing random sources and sinks. Speci�cally, we implement two

stochastic processes to model qnet
(6,7,11)(t) and qnet

(24,23,19)(t) for t = 1, . . . , T . As building

blocks, we take two autoregressive models with a given dependence structure. The

details are described in Section 5.9.2.2. The key idea is that both time series models

include white noise ε(6,7,11)(t + 1) and ε(24,23,19)(t + 1). For each time step, these are

normal random variables centered around 0 with standard deviations σ(6,7,11) ≥ 0 and

σ(24,23,19) ≥ 0. We assume a particular dependence structure on ε(6,7,11)(t + 1) and

ε(24,23,19)(t+ 1) modeled by the Frank copula24

Cr(u1, u2) = −1

r
log

(
1 +

(e−ru1 − 1)(e−ru2 − 1)

e−r − 1

)
, u1, u2 ∈ (0, 1),

which is parametrized by r ∈ R. The Frank copula interpolates from full countermono-

tonicity for r → −∞ (i.e., ε(6,7,11)(t + 1) is large when ε(24,23,19)(t + 1) is small and

vice versa) to full comonotonicity for r → ∞ (i.e., ε(6,7,11)(t + 1) and ε(24,23,19)(t + 1)

move in the same direction). In the limit r → 0, ε(6,7,11)(t+ 1) and ε(24,23,19)(t+ 1) are

stochstically independent.

5.5.1.2 Acceptable Con�gurations and Design

Construction of Acceptance Sets. To assess the performance of tra�c systems,

we employ the normative approach of Section 5.3.2 and compare acceptable designs

Du,γ = {k ∈ D : E(u(Qk)) ≥ γ} for di�erent utility functions u and levels γ. Speci�cally,

24A copula is a multivariate distribution function with uniform marginals. It captures dependence
among the marginals of a random vector by virtue of Sklar's theorem. We refer to McNeil, Frey &
Embrechts (2015) for more details.
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we consider expectation, polynomial utility, expectile utility, and square root utility.25

The comparison across di�erent utility functions is facilitated by calibrating the thresh-

olds to benchmark �ow distributions Q̃A, Q̃B, Q̃C . For all utility functions, we choose

the corresponding threshold levels26 as γAu = E(u(Q̃A)), γBu = E(u(Q̃B)), and γCu =

E(u(Q̃C)).

Simulation Set-Up. We consider �ve design parameters that characterize tra�c mod-

els, k =
(
r, σ(6,7,11), σ(24,23,19), T

g, T s
)
:

� Sources and Sinks. We vary the dependence structure of the autoregressive models

determining the source and sink �ows, i.e., the dependence parameter r and the

respective standard deviations of the noise terms σ(6,7,11) and σ(24,23,19).

� Signal Control. We vary the duration of the green phases of the two tra�c lights

T g and the displacement of the green phases T s.

Performance is characterized by average network tra�c �ow de�ned by

Q = Qk =
1

T

T−1∑

t=0

∑

v∈V

∑

u∈I (v)

∑

x∈I (u)

qout
(x,u,v)(t+ 1)

for k ∈ D := [−50, 50] × [0, 0.025] × [0, 0.025] × [0, 100] × [0, 100]. The network �ow is

simulated27 and evaluated by our stochastic search algorithm.28

25While the square-root utility is a standard utility function (increasing and concave), polynomial
utility and expectile utility, with appropriately chosen constants cp, ce ∈ R, place special emphasis
on downside risk. We set cp = 2E(Qk∗) and ce = E(Qk∗) for a �good� design parameter k∗ ∈
D. Polynomial utility evaluates only �ows smaller than cp, and expectile utility evaluates random
�uctuations around ce asymmetrically, with a stronger penalty for outcomes below this value.

26Speci�cally, let X = X(β) ∼ Beta(β, β) be a beta distribution with mean 1/2 and standard deviation
σ(X) = 1/

√
8β + 4. We compute βA, βB and βC such that σ(X(βA)) = 0.1, σ(X(βB)) = 0.15 and

σ(X(βC)) = 0.2. We obtain benchmark �ow distributions Q̃A, Q̃B , Q̃C by setting Q̃A = eA ·2X(βA),
Q̃B = eB · 2X(βB), and Q̃C = eC · 2X(βC) for chosen benchmark expectations eA > eB > eC > 0.
Numerical evaluation yields the corresponding thresholds γA = E(u(Q̃A)), γB = E(u(Q̃B)), and
γC = E(u(Q̃C)) for the di�erent utility functions. Beta distributions were chosen as benchmarks
because they are simple two-parametric distributions on compact intervals that generalize the uniform
distribution; they are uniquely speci�ed by their mean and variance.

27Since this is a discrete-time model, this property must be respected for each simulation run by T g, T s.
This issue can be addressed by independently sampling discrete numbers for each simulation run
from {bT gc, dT ge} and {bT sc, dT se} such that their respective expected value is T g or T s. The
implementation used for the case studies is based on an approximation where samples are taken
uniformly from {bT gc, dT ge} and {bT sc, dT se}.

28For the level set estimation, we apply the following computational budget: We consider 8 iterations of
our algorithm, where ninitial = 150 points are sampled uniformly in the initial phase and nloop = 50
are sampled in the following 7 iterations according to the acquisition function. We de�ne target noises
as {5%, 10%, 8%, 6%, 5%, 4%, 3%, 2%}·(γC−γA) for the respective utility functions. We consider
at least nmin = 20 independent simulations and set nmax = 500, 150, 200, 300, 400, 650, 1200, 3000.
In our case studies, we �nd that a design parameter k∗ for the �rst network is good if E(Qk∗) = 60;
therefore, we set eA = 60, eB = 55, eC = 50 and use these to calibrate γA, γB , and γC as described
above.
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5.5.1.3 Results

Impact of Sources and Sinks. Fixing T g = 10, T s = 0, we vary the parame-

ters r, σ(6,7,11), σ(24,23,19) under the condition σ(6,7,11) = σ(24,23,19). The impact of the

dependence structure on performance is small. Increasing noise decreases the system

performance considerably.29

Acceptable Tra�c Lights Design. Second, we �x the parameters of the random

environment as r = 2.5 and σ(6,7,11) = σ(24,23,19) = 0.01, and examine the acceptable

designs of the two tra�c lights. Figure 5.3 shows acceptable con�gurations of green time

duration T g and shift T s. The resulting quantities are nontrivial:

E(u(Q)), as a function of T g and T s, is concave in T g � �rst increasing and then

decreasing, since too short green times lead to low tra�c �ow and are unacceptable,

and the same applies to values that are too high; moreover, it is periodic in T s. The

simulations show that for longer green times T g (i.e., T g ≥ 40), acceptable designs can

also be found on a diagonal in the (T g, T s) plane. The comparison across di�erent

utility functions indicates qualitatively similar behavior. However, di�erent normative

assessments of risk are re�ected in the di�erent sizes of the domains that are preferred

over the three benchmark levels.

Comparison with the Cooperative Driving Benchmark Model. The preceding

results are based on the demand proportional �ows as an interaction rule. We investigate

the benchmark model of cooperative driving as a theoretical alternative for selected

design parameters.30 Table 5.2 compares the expected tra�c �ows for four selected

design parameters. We �nd that the myopically optimized cooperative driving model

yields moderately but consistently higher tra�c �ows in these examples.

Table 5.2: Comparison with the benchmark model
for cooperative driving.

(T g, T s)

(20, 75) (20, 10) (30, 30) (30, 20)

DPF 60.48 60.49 61.75 59.17
CDBM 65.78 64.71 64.29 64.28

Approximation of E(Q) for demand proportional �ows
(DPF) and the cooperative driving benchmark model
(CDBM) based on 500 independent simulations per
tra�c light con�guration.

29This is shown in Figure 5.6 and Figure 5.7 in the appendix.
30The simulations are more complex because they have to solve a linear program for each node per time

step. We use Matlab's built-in solver for these linear programs.
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(a) u(x) = x

(b) u(x) = 0.1(x − 60)+ −
0.9(x− 60)−

(c) u(x) = 0.2(x − 60)+ −
0.8(x− 60)−

(d) u(x) =
√
x

(e) u(x) = −|x−2·60|31{x ≤
2 · 60}

(f) u(x) = −|x−2·60|21{x ≤
2 · 60}

(g) u(x) = −|x − 2 ·
60|3/2

1{x ≤ 2 · 60}

Figure 5.3: Acceptable tra�c lights con�gurations for r = 2.5 and σ(6,7,11) = σ(24,23,19) =
0.01. GPR is based on the Matérn kernel.
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5.5.2 Highway Network

Highways are an important part of the road network as they allow e�cient travel over

longer distances. Vehicles can move at higher speeds, with the risk of accidents limited

by the fact that the directions of travel are physically separated. Control mechanisms

(such as di�erent speed limits, optional driving on the shoulder, etc.) can be used to

increase e�ciency, depending on the tra�c situation.

5.5.2.1 Set-Up

Network. We consider a stylized highway network as shown in Figure 5.1. The network

consists of 33 nodes V = {1, . . . , 33}. Three roundabouts Y = {1, 12, 23} connect two
types of highway modules. Those in the core R = {7, . . . , 11, 18, . . . , 22, 29, . . . , 33} allow
optional driving on the shoulder, while those in the periphery G = V \ {Y ∪ R} do not.
When the shoulder is open to tra�c, the maximum density and maximum tra�c �ow

are increased while the maximum speed is reduced.

All highway modules G ∪R have the same length of 3 km, while the roundabouts have

a diameter of 200 m. We assume a free-�ow speed on the highways of 100 km/h and

an average speed of 40 km/h on the roundabout. Highway modules v ∈ R allow for

an optional driving on the hard shoulder: In this case, maximal �ow and density are

increased by 50 %, while the free-�ow speed is decreased to 80 km/h. We normalize

tra�c densities in terms of the roundabouts, i.e., we let lv = 1 for v ∈ Y and set lv = 15

for v ∈ G ∪ R. Moreover, we specify symmetric and constant turning fractions, i.e.,

f(x,u,v)→w(t + 1) = 1/3 for v ∈ Y and w ∈ O(v), w 6= u ∈ I (v), u 6= x ∈ I (u) and

f(x,u,v)→w(t+ 1) = 1 for v ∈ G ∪R in analogy.

At 100 km/h, a roundabout would be traversed in 7.2 s, i.e., the interval [t, t + 1]

corresponds to treal = 7.2 s. Initially, the system is homogeneously �lled with 5% of the

maximum density.31 We simulate T = 500 time steps corresponding to 1 h of tra�c. The

remaining parameters of the modules are given in Table 5.3. In this section, (CLOSED)

means that the shoulder is closed to tra�c, while (OPEN) denotes the con�guration in

which it is open.

Random Sources and Sinks. We focus mainly on tra�c �owing from the bottom to

the top of the network. For this purpose, we consider sources and sinks at the periphery,

so that the corresponding tra�c has to cross two roundabouts. These can be considered

as bottlenecks in the network. We mix this tra�c with additional tra�c in the core of

31To be precise, let ρ0 =
∑
v∈V

∑
u∈I(v), u6=w∈O(u) ρ(u,v,w)(0)/

∑
v∈V ρ

max
v ∈ [0, 1] denote the total

initial density, as a fraction of the maximal density. For given ρ0 = 0.05, we distribute the density
homogeneously via

ρ(u,v,w)(0) =
ρmax
v

#{(u, v, w) : u ∈ I(v), u 6= w ∈ O(u)} · ρ
0.



Stochastic Cell Transmission Models of Tra�c Networks 113

Table 5.3: Parameter choice.

smax
v ρmax

v av bv cv dv

v ∈ G 20 100 1 1 1 1
v ∈ Y 5 30 2/5 1 1 1
v ∈ R (CLOSED) 20 100 1 1 1 1
v ∈ R (OPEN) 30 150 4/5 1 1 1

the network that uses only the highways, which have a high capacity; however, heavy

tra�c can cause congestion. Opening the shoulder with a lower speed limit can alleviate

this problem.

� Periphery. The sources at the bottom of the network are associated with auxiliary

�ows qaux
(5,4,3)(t+1) = qaux

(14,15,16)(t+1), where qaux
(5,4,3)(t+1) ∼ N (ξ1, ψ

2
1 ·ξ2

1). At the top,

deterministic sinks are de�ned via auxiliary �ows qaux
(27,26,25)(t+ 1) = qaux

(25,26,27)(t+

1) = −2ξ1.

� Core. The additional tra�c on the highways is speci�ed by sources and sinks

associated with the following auxiliary �ows:

qaux
(18,19,20)(t+ 1) ∼ N (ξ2, ψ

2
2 · ξ2

2), qaux
(20,21,22)(t+ 1) = −qaux

(18,19,20)(t+ 1),

qaux
(33,32,31)(t+ 1) ∼ N (ξ2, ψ

2
2 · ξ2

2), qaux
(31,30,29)(t+ 1) = −qaux

(33,32,31)(t+ 1),

qaux
(7,8,9)(t+ 1) ∼ N (ξ2, ψ

2
2 · ξ2

2), qaux
(9,10,11)(t+ 1) = −qaux

(7,8,9)(t+ 1),

qaux
(11,10,9)(t+ 1) ∼ N (ξ2, ψ

2
2 · ξ2

2), qaux
(9,8,7)(t+ 1) = −qaux

(11,10,9)(t+ 1).

All random variables are assumed to be independent. As in Case Study 1, qnet
(u,v,w)(t+1)

is equal to qaux
(u,v,w)(t + 1), if this leads to 0 ≤ ρ(u,v,w)(t + 1) ≤ (ρmax

v )/2; otherwise, the

absolute value of qaux
(u,v,w)(t+ 1) is reduced, such that one of these boundaries is attained.

The quantity qaux
(u,v,w)(t+ 1) should be interpreted as the �ow of vehicles that attempt to

enter the network in the considered time period. In our simulations, we set the coe�cient

of variation to be ψ1 = ψ2 = 0.1 and vary ξ1 and ξ2.

5.5.2.2 Acceptable Con�gurations and Design

We study the impact of varying the design parameters ξ1 and ξ2, which control the

volume and �uctuation of tra�c originating from the periphery and the core, respectively.

We compare two highway con�gurations: driving on shoulder prohibited (CLOSED)

vs. driving on shoulder allowed (OPEN). We focus on the mean performance E(·) and
consider two di�erent performance measures.
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The set N contains all travel directions (u, v, w) that are sources or sinks. Letting

Qa =

1
T

∑T−1
t=0

∑
(u,v,w)∈N

(
qnet

(u,v,w)(t+ 1)
)
−

1
T

∑T−1
t=0

∑
v∈V

∑
(u,v,w)∈N

(
qaux

(u,v,w)(t+ 1)
)

+

,

Qa can be regarded as measure of the actual throughput: The sum of the �ows that

are actually removed from the network is divided by the sum of the available �ows that

attempt to enter the network.

Another performance measure is

Qb =
1

T

T−1∑

t=0

(
qout

(12,18,19)(t+ 1)

ρ(12,18,19)(t)
+
qout

(1,33,32)(t+ 1)

ρ(1,33,32)(t)

)
.

that measures average velocity on (12, 18, 19) and (1, 33, 32) by considering the fraction

of �ow that actually moves divided by the available density. We compute acceptable

designs32 based on the two performance measures Qa and Qb in the two regions33 Da =

[1, 61]× [1, 61] and Db = [1, 31]× [1, 31].

5.5.2.3 Results

We evaluate the two highway con�gurations (CLOSED) and (OPEN) based on the two

performance measures Qa and Qb. To better compare the driving con�gurations, we

also investigate the di�erences for (CLOSED) and (OPEN). The results are presented in

Figure 5.4.

Figure 5.4a, Figure 5.4c, and Figure 5.4e show the set of acceptable designs based on

Qa. We can clearly distinguish the e�ects of ξ1 (tra�c generated in the periphery) and

ξ2 (tra�c generated in the core). If we increase ξ1 (tra�c from the periphery) and keep

ξ2 constant, performance deteriorates because the former tra�c needs to pass through

roundabouts, which are bottlenecks. Increasing ξ2 while ξ1 is �xed initially increases

the overall performance of the system. This is because the highway has enough capacity

for core tra�c; increasing ξ2 increases the proportion of tra�c that performs well. The

statistic Qa measures overall performance, and its expected value is therefore increasing.

If ξ2 becomes even larger, congestion will occur on the highway, again reducing perfor-

mance. Opening the shoulder to tra�c is advantageous when tra�c density is higher,

as can be seen in Figure 5.4e. However, the advantages are less pronounced when the

system as a whole is too congested.

32For the level set estimation, we apply the following computational budget: We consider 8 iterations of
our algorithm, where ninitial = 100 points are sampled uniformly in the initial phase and nloop = 50
are sampled in the following 7 iterations according to the acquisition function. We de�ne target
noises as {5%, 10%, 8%, 6%, 5%, 4%, 3%, 2%} · 0.1. We consider at least nmin = 20 independent
simulations and set nmax = 500, 150, 200, 300, 400, 650, 1200, 3000.

33We assume ξ1, ξ2 ≥ 1 > 0 to exclude simulations with almost no tra�c that might lead to small values
in the denominators of the performance measures.
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(a) Qa: (CLOSED) (b) Qb: (CLOSED)

(c) Qa: (OPEN) (d) Qb: (OPEN)

(e) Qa: Di�erence (f) Qb: Di�erence

Figure 5.4: Acceptable designs and con�gurations.
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Figure 5.4b, Figure 5.4d, and Figure 5.4f show the set of acceptable designs based on

Qb. Qb essentially measures the speed of tra�c originating from the periphery that has

just entered the core area after passing through a roundabout. It can be clearly observed

that the acceptable designs do not depend on ξ1: The roundabouts serve as bottlenecks

that control �ow into the core area so that no additional congestion is caused by these

tra�c participants and therefore no reduction in speed. An increase in ξ2, in contrast,

leads to a decrease in speed; this is due to congestion at nodes 19, 20 and 32, 31. In

low density regimes, tra�c �ows with constant free-�ow speed. Once a critical density is

reached, the speed decreases relatively quickly. Depending on ξ2, there is a clear region

where it is bene�cial to open the shoulder to tra�c (see Figure 5.4d). This e�ect is again

less pronounced when the system is too congested.

5.6 Conclusion

In this work, we introduced a rigorous framework for stochastic cell transmission models

for general tra�c networks. The performance of tra�c systems was evaluated based on

preference functionals. The numerical implementation combined simulation, Gaussian

process regression, and a stochastic exploration procedure. The approach was illustrated

in two case studies that served as proofs of concept.

Future research should address the following tasks: a) Our �exible framework can

be applied to many tra�c systems. This requires careful calibration and validation at

both the tra�c cell level and the tra�c system level. b) These models can then be

used to answer speci�c questions in tra�c planning. c) As shown in a simple example

in the appendix, the setting can be extended to multiple interacting populations. This

requires a closer look at model extensions. d) The algorithm combines stochastic search

and Gaussian process regression. The latter could be replaced by other techniques, e.g.,

Bayesian neural networks (cf. Goan & Fookes (2020)), and the performance of di�erent

techniques should be compared. e) The normative criteria in this chapter were based

on expected utility. Other preference functionals might be appropriate in the face of

uncertainty, for example. Their implementation requires adapted estimation procedures.
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5.7 Appendix: Further Examples of Cells

5.7.1 Roundabout

Unidirectional Roundabout. Consider an unidirectional roundabout # with four

entries/exits enumerated counterclockwise and identi�ed with Z4 = I (#) = O(#) as

shown in Figure 5.5. In right-hand tra�c, vehicles travel counterclockwise through the

roundabout. For simplicity, we assume that the roundabout is completely symmetric.

#

0

1

2

3

Figure 5.5: Symmetric roundabout.

One possibility is to assume that sending functions are as for highways, but receiving
functions capture that di�erent paths overlap in the roundabout. This leads to sending
function of the following form:

S(u,#,w)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= min

(
smax

# , aρ(u,#,w)

)
, w 6= u.

The receiving functions have a similar shape as for bidirectional linear interfaces, but
the counterdensity of vehicles traveling in opposite direction is replaced by the densities
on overlapping paths. These densities must be adjusted by a factor corresponding to the
length of the overlap in the roundabout. This is due to the fact that the densities are
normalized for each node and are proportional to the number of vehicles on each path
within each node. We assume that for each path the vehicles are uniformly distributed
over the segments of the path. Under these assumptions we obtain the following receiving
functions:

R(u,#,u+1)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
ρmax

#

4
− cρ(u,#,u+1) − d

(
1

2
ρ(u,#,u+2)

+
1

3
ρ(u,#,u+3) +

1

3
ρ(u+2,#,u+1) +

1

2
ρ(u+3,#,u+1) +

1

3
ρ(u+3,#,u+2)

))
, 0

)
,

R(u,#,u+2)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
2ρmax

#

4
− cρ(u,#,u+2) − d

(
ρ(u,#,u+1)

+
2

3
ρ(u,#,u+3) + ρ(u+1,#,u+2) +

1

2
ρ(u+1,#,u+3) +

1

3
ρ(u+1,#,u)

+
1

3
ρ(u+2,#,u+1) +

1

2
ρ(u+3,#,u+1) +

2

3
ρ(u+3,#,u+2)

))
, 0

)
,
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R(u,#,u+3)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
3ρmax

#

4
− cρ(u,#,u+3) − d

(
ρ(u,#,u+1)

+ρ(u,#,u+2) + ρ(u+1,#,u+2) + ρ(u+1,#,u+3) +
2

3
ρ(u+1,#,u)

+ρ(u+2,#,u+3) +
1

2
ρ(u+2,#,u) +

1

3
ρ(u+2,#,u+1) +

1

2
ρ(u+3,#,u+1)

+
2

3
ρ(u+3,#,u+2)

))
, 0

)
.

Bidirectional Roundabout. The roundabout model discussed above can be easily
extended to bidirectional tra�c �ows of pedestrians in a bidirectional tra�c area that
has the form of a roundabout. The main di�erence is that the densities of tra�c on
overlapping paths for participants moving in the same direction and in the opposite
direction must be considered in the receiving functions. In addition, pedestrians are
assumed to choose the shortest path in the roundabout. If two paths have the same
length, half of the pedestrians will use the �rst path and the other half will use the
second path. These assumptions lead to the following formalization:

S(u,#,w)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= min

(
smax

# , aρ(u,#,w)

)
, w 6= u,

R(u,#,u+1)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
ρmax

#

4
− cρ(u,#,u+1) − d

(
1

4
ρ(u,#,u+2)

+ρ(u+1,#,u) +
1

4
ρ(u+1,#,u+3) +

1

4
ρ(u+2,#,u) +

1

4
ρ(u+3,#,u+1)

))
, 0

)
,

R(u,#,u+2)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
ρmax

# − cρ(u,#,u+2)

− d
∑

u′∈I (#)\{u},
w′∈O(#)\{u+2}

ρ(u′,#,w′)

)
, 0

)
,

R(u,#,u+3)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
ρmax

#

4
− cρ(u,#,u+3) − d

(
1

4
ρ(u,#,u+2)

+
1

4
ρ(u+1,#,u+3) +

1

4
ρ(u+2,#,u) + ρ(u+3,#,u)

+
1

4
ρ(u+3,#,u+1)

))
, 0

)
.

Roundabout with Vehicles and Pedestrians. The conceptual framework we de-

velop can be generalized to multiple populations. In this chapter, for simplicity, we

focus only on explaining generalized cell transmission models for tra�c participants of

one type. However, in the current example, we describe how an extension to more than

one population is feasible.
Again, we focus on a node # with I (#) = O(#) = Z4 with vehicles (k = 1) moving

as in the unidirectional roundabout. The cell transmission model can be implemented
on di�erent time scales. Here we assume that each time step corresponds to a relatively
short real time span. Pedestrians (k = 2) move in both directions, but � according to
their lower speed � only up to the next exit. Pedestrians have priority in the roundabout.
The dynamics of the pedestrians is independent of the movement of the vehicles. Vehicles
move as in the unidirectional roundabaout, but can be blocked by pedestrians who have
priority. This canonically leads to the following formalization, where we introduce an
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additional subscript for the type (k = 1, 2):

S(u,#,w),1

((
ρ(u′,#,w′),k′

)
u′∈I (#),w′∈O(#),k′=1,2

)
=

min
(
smax

#,1 , a1ρ(u,#,w),1

)
· 1{ρ(w−1,#,w),2 + ρ(w,#,w−1),2 = 0}, w 6= u

(pedestrians may block exit),

S(u,#,w),2

((
ρ(u′,#,w′),k′

)
u′∈I (#),w′∈O(#),k′=1,2

)
=

min

{
smax

#,2 , a2ρ(u,#,w),2

}
, w ∈ {u− 1, u+ 1} (pedestrians move independently of vehicles),

R(u,#,u+1),1

((
ρ(u′,#,w′),k′

)
u′∈I (#),w′∈O(#),k′=1,2

)
=

1{ρ(u,#,u+1),2 + ρ(u+1,#,u),2 = 0} ·max

(
b1

(
ρmax

#,1

4
− c1ρ(u,#,u+1),1 − d1

(
1

2
ρ(u,#,u+2),1

+
1

3
ρ(u,#,u+3),1 +

1

3
ρ(u+2,#,u+1),1 +

1

2
ρ(u+3,#,u+1),1 +

1

3
ρ(u+3,#,u+2),1

))
, 0

)
(pedestrians may block entrance),

R(u,#,u+2),1

((
ρ(u′,#,w′),k′

)
u′∈I (#),w′∈O(#),k′=1,2

)
=

1{ρ(u,#,u+1),2 + ρ(u+1,#,u),2 = 0} ·max

(
b1

(
2ρmax

#,1

4
− c1ρ(u,#,u+2),1 − d1

(
ρ(u,#,u+1),1

+
2

3
ρ(u,#,u+3),1 + ρ(u+1,#,u+2),1 +

1

2
ρ(u+1,#,u+3),1 +

1

3
ρ(u+1,#,u),1 +

1

3
ρ(u+2,#,u+1),1

+
1

2
ρ(u+3,#,u+1),1 +

2

3
ρ(u+3,#,u+2),1

))
, 0

)
(pedestrians may block entrance),

R(u,#,u+3),1

((
ρ(u′,#,w′),k′

)
u′∈I (#),w′∈O(#),k′=1,2

)
=

1{ρ(u,#,u+1),2 + ρ(u+1,#,u),2 = 0} ·max

(
b1

(
3ρmax

#,1

4
− c1ρ(u,#,u+3),1 − d1

(
ρ(u,#,u+1),1

+ ρ(u,#,u+2),1 + ρ(u+1,#,u+2),1 + ρ(u+1,#,u+3),1 +
2

3
ρ(u+1,#,u),1 + ρ(u+2,#,u+3),1

+
1

2
ρ(u+2,#,u),1 +

1

3
ρ(u+2,#,u+1),1 +

1

2
ρ(u+3,#,u+1),1 +

2

3
ρ(u+3,#,u+2),1

))
, 0

)
(pedestrians may block entrance),

R(u,#,w),2

((
ρ(u′,#,w′),k′

)
u′∈I (#),w′∈O(#),k′=1,2

)
= max

(
b2

(
ρmax

#,2

4
− c2ρ(u,#,w),2 − d2ρ(w,#,u),2

)
, 0

)
,

w ∈ {u− 1, u+ 1}, (pedestrians move independently of vehicles)

Here, for types k = 1, 2, ρmax
#,k > 0 is the maximum density, smax

#,k > 0 is the maximum

�ow, 0 < ak ≤ 1 is the free-�ow speed, 0 < bk ≤ 1 is the congestion wave speed, and

ck, dk > 0 are interaction parameters.

5.8 Appendix: The Algorithm

5.8.1 A Bayesian Approach to Sampling

In most applications, generating the samples of the complex system Qk is expensive. A

Bayesian approach exploits the previous GPR (mi, σi) in order to do variance reduction

and, thus, reduce computational costs. Speci�cally, we propose utilizing the GPR (with

its normal distribution) as a prior for the estimation of µ̂k. With this structure, we
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consider Bayesian inference for normal mean conditional on the variance (see, e.g., Ho�

(2009, Section 5.2)) with a single sample taken at a time. Mathematically, we have the

following structure:

� Prior distribution: µ(k) ∼ N (mi(k), σi(k)2),

� Sampling distribution: µ̂nk | µ(k) ∼ N
(
µ(k),

(σ̂nk )2

n

)
as a central limit theorem

heuristic by prior assumptions, and

� Posterior distribution: µ(k) | µ̂nk ∼ N
(
tpost,n, s

2
post,n

)
where

tpost,n =

1
(σi(k))2m

i(k) + n
(σ̂nk )2 µ̂

n
k

1
(σi(k))2 + n

(σ̂nk )2

and s2
post,n =

1
1

(σi(k))2 + n
(σ̂nk )2

.

Note that s2
post,n ≤

(σ̂nk )2

n , i.e., the variance (and corresponding sample size) is reduced

compared to the purely frequentist view described in Section 5.4.3. At the same time, pre-

cision may be reduced as tpost in general may not be an unbiased estimator of E(u(Qk)).

The updated stopping criterion in the Bayesian approach, i.e., so that the sample vari-

ance drops below (τ i)2, is given by

n = min
{

min
{
nmin ≤ n̄ : s2

post,n̄ ≤ (τ i)2
}
, nmax

}
.

5.8.2 Computing the Error Bounds

We wish to return to our discussion of the error bounds with some remarks on its

computation with Monte Carlo estimation. As shown in Section 5.4.4, the estimation

error can be upper bounded by integrals of the form

vol
{
k ∈ D : mi

+(k) ≥ γ > mi
−(k)

}
,

where mi
−,m

i
+ : D→ R are constructed as either uniform or pointwise error bounds.

The computation of these integrals is not trivial as the functions mi
− and mi

+ are

typically not analytically accessible. Yet, values at speci�c positions k ∈ D can be

evaluated. This provides a natural setting for approximation via Monte Carlo simulation:

� For a �xed budget neval ∈ N, let U1, . . . , Uneval
∼ Unif(D).

� An approximation is given by

vol
{
k ∈ D : mi

+(k) ≥ γ > mi
−(k)

}
=

∫

D
1{mi

+(k) ≥ γ > mi
−(k)}dk

≈ vol(D)

neval

neval∑

j=1

1
{
mi

+(Uj) ≥ γ > mi
−(Uj)

}
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� In order to eliminate random �uctuations in the comparison of the error bound for

di�erent iterations i, we �x a particular sequence34 of samples Û1, . . . , Ûneval
.

The details of the evaluation procedure with the Monte Carlo approximation are given

in Algorithm 4.

Algorithm 4 Evaluation procedure for the approximation error.

Input: neval ∈ N, mi
+,m

i
− : D→ R, samples Û1, . . . , Ûneval

∈ D.
Compute

êi =
vol(D)

neval

neval∑

j=1

1

{
mi

+(Ûj) ≥ γ > mi
−(Ûj)

}
.

Output: êi.

5.8.3 Robusti�cation of the Pointwise Error Bound

The pointwise error bound can be extended locally if we impose a Lipschitz assumption

on M . This can be understood as a robusti�cation of the pointwise bounds. We present

the following statement in analogy to the uniform error bounds by Lederer, Umlauft &

Hirche (2019).

Proposition 5.8.1 (Local Credible Band). Let δ ∈ (0, 1) and ε > 0. For �xed k∗ ∈ D
with Bε(k

∗) ⊆ D, let L = L(k∗) > 0 and assume that |M(k∗)−M(k)| ≤ L‖k∗−k‖ P -a.s.
for all k ∈ Bε(k∗). It holds

P

(
∀ k ∈ Bε(k

∗) : |M(k)−mi(k∗)| ≤ Φ−1

(
1− δ

2

)
σi(k∗) + L‖k − k∗‖ | M̂(Di) = µ̂(Di)

)

≥ 1− δ.

Proof. Let k∗ ∈ D be �xed. Applying the pointwise approximation error for k∗, we have

P

(
|M(k∗)−mi(k∗)| ≤ Φ−1

(
1− δ

2

)
σi(k∗) | M̂(Di) = µ̂(Di)

)
≥ 1− δ.

For all k ∈ D, triangular inequality and Lipschitz assumption imply

|M(k)−mi(k∗)| ≤ |M(k)−M(k∗)|+ |M(k∗)−mi(k∗)| ≤ L‖k − k∗‖+ |M(k∗)−mi(k∗)|.

We conclude

P

(
∀ k ∈ Bε(k

∗) : |M(k)−mi(k∗)| ≤ Φ−1

(
1− δ

2

)
σi(k∗) + L‖k − k∗‖ | M̂(Di) = µ̂(Di)

)

≥ 1− δ.
34This is a natural application for Quasi-Monte Carlo methods in order to decrease the approximation

error; here, we use the Sobol sequence. We refer to Glasserman (2003) for an overview on Quasi-Monte
Carlo methods.
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The local credible band gives rise to a local sandwich principle; we can upper bound the

approximation error D̂i locally by intersecting it with Bε(k∗) := {k ∈ D : ‖k− k∗‖ < ε}.
Corollary 5.8.2 (Local Credible Band for the Acceptable Design and Error

Bound). In the setting of Proposition 5.8.1, letmi
±,k∗(k) := mi(k∗)±Φ−1

(
1− δ

2

)
σi(k∗)±

L‖k − k∗‖ and de�ne the estimators D̂i = {k ∈ D : mi(k) ≥ γ}, D̂i−,k∗ = {k ∈
D : mi

−,k∗(k) ≥ γ}, and D̂i+,k∗ = {k ∈ D : mi
+,k∗(k) ≥ γ}. Let D = {k ∈ D : M(k) ≥ γ}

be the corresponding prior for D. Then, for all k∗ ∈ D, it holds

P (D̂i−,k∗ ∩Bε(k∗) ⊆ D ∩Bε(k∗) ⊆ D̂i+,k∗ ∩Bε(k∗) | M̂(Di) = µ̂(Di)) ≥ 1− δ

and

P

(
dN (D ∩Bε(k∗), D̂i ∩Bε(k∗)) ≤ dN

(
(D̂i+,k∗ ∩Bε(k∗), D̂i−,k∗) ∩Bε(k∗)

)

| M̂(Di) = µ̂(Di)
)
≥ 1− δ.

Proof. Clear.

The preceding statement tells us that widening the pointwise lower and upper ap-

proximations locally allows to probabilistically bound the approximation error of the

acceptable design locally. In analogy to the uniform error bounds by Lederer, Umlauft &

Hirche (2019), this requires an additional Lipschitz assumption with a (local) Lipschitz

constant L which, in practice, is typically unknown.

5.8.4 Proofs

5.8.4.1 Proof of Lemma 5.4.2

We compute

vol
(
D̂i∆D

)
= vol

((
D̂i \ D

)
∪
(
D \ D̂i

))
= vol

(
D̂i \ D

)
+ vol

(
D \ D̂i

)
≤ vol

(
D̂i \ D̂i−

)
+ vol

(
D̂i+ \ D̂i

)
= vol

(
D̂i \ D̂i−

)
+ vol

(
D̂i+ \ D̂i−

)
− vol

(
D̂i \ D̂i−

)
= vol

(
D̂i+ \ D̂i−

)
.

Depending on the type of inclusion, also the inequality is guaranteed P -a.s. or with

probability greater than 1− δ.

5.8.4.2 Proof of Corollary 5.4.3

It is clear that, for all k ∈ D, mi
−(k) ≤ mi(k) ≤ mi

+(k). This implies the inclusion of

the corresponding set estimators. More precisely, we have

D̂i− = {k ∈ D : mi
−(k) ≥ γ} ⊆ {k ∈ D : mi(k) ≥ γ} = D̂i ⊆ {k ∈ D : mi

+(k) ≥ γ} = D̂i+.
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Correspondingly, P
(
∀ k ∈ D : mi

−(k) ≤M(k) ≤ mi
+(k)

)
≥ 1− δ implies

P (D̂i− ⊆ D ⊆ D̂i+) ≥ 1− δ.

Thus, Theorem 5.4.2 yields the claimed error bound P (vol(D∆D̂i) ≤ vol(D̂i+∆D̂i−)) ≥
1− δ and, due to the inclusion D̂i− ⊆ D̂i+, it follows

vol(D̂i+∆D̂i−) = vol(D̂i+ \ D̂i−)

= vol
(
{k ∈ D : mi

+(k) ≥ γ} \ {k ∈ D : mi
−(k) < γ}

)

= vol
{
k ∈ D : mi

+(k) ≥ γ > mi
−(k)

}
.

5.8.4.3 Proof of Lemma 5.4.4

The GPR based on observed data µ̂(Di) yields

∀ k ∈ D : M(k) | M̂(Di) = µ̂(Di) ∼ N
(
mi(k), (σi(k))2

)
.

The pointwise approximation error directly follows from standard con�dence intervals

for the mean of the normal distribution N
(
mi(k), (σi(k))2

)
.

5.8.5 Algorithms

Algorithm 5 includes a pre-processing of the data: Subtracting the sample mean resem-

bles the prior assumption m ≡ 0 (see also Schulz, Speekenbrink & Krause (2018)); the

additional standardization of the data by its sample standard deviation serves to cir-

cumvent numerical issues. In our implementation, we use Matlab's built-in optimization

routine. In case of numerical issues, we restart with a random initial point or reduce the

number of points considered in the log likelihood.
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Algorithm 5 Pre-processing and estimation of hyperparameters.

Input:

� Noisy data (k, µ̂k)k∈D0 such that µ̂k = µ(k)+εk with εk ∼ N (0, τ2
k ) independent,

� prior mean m ≡ 0,

� prior covariance function c : D × D → [0,∞) depending on hyperparameters
σc, l > 0.

Pre-Process Data: Let µ̄0 = 1/|D0|∑k∈D0 µ̂k, ς̄0 =
√

1/(|D0| − 1)
∑

k∈D0(µ̂k − µ̄0)2

and de�ne ν̂k = (µ̂k − µ̄0)/ς̄0, k ∈ D0.
Model Selection: Determine (σ̂c, l̂) by maximizing the (log) marginal likelihood

`(ν̂(D0);σc, l) = −1

2
ν̂(D0)>

(
Σ(D0,D0) + diag

(
τ2

1 , . . . , τ
2
|D0|

))−1
ν̂(D0)

− 1

2
det
(

Σ(D0,D0) + diag
(
τ2

1 , . . . , τ
2
|D0|

))
− |D

0|
2

log(2π).

Output: µ̄0, ς̄0, σ̂c, l̂.

Algorithm 6 Estimation procedure with Gaussian process regression.

Input:

� Noisy data (k, µ̂k)k∈Di such that µ̂k = µ(k)+εk with εk ∼ N (0, τ2
k ) independent,

� µ̄0, ς̄0, σ̂c, l̂ from Algorithm 5

Transformation: De�ne ν̂k = (µ̂k − µ̄0)/ς̄0, k ∈ Di.
Bayesian Update: Based on (σ̂c, l̂) and the data (k, ν̂k)k∈Di , compute m

i
ν : D → R

and σiν : D→ [0,∞) given by σiν(k) =
√
cν(k, k) according to Theorem 5.4.1.

Retransformation: De�ne mi : D→ R, mi(k) := mi
ν(k)ς̄0 + µ̄0 and σi : D→ [0,∞),

σi(k) := σiν(k)ς̄0.
Output: D̂i = {k ∈ D : mi(k) ≥ γ}, mi, σi.
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5.9 Appendix: Supplement to the Case Studies

5.9.1 Tra�c Simulation

The implementations of our tra�c models adhere to the structure of the following pseudo-

code.
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Algorithm 7 Basic tra�c simulation.

Input:

� Adjacency matrix: AE ∈ {0, 1}|V |×|V | for a set of enumerated nodes V =
{1, . . . , |V |}.

� Initial tra�c con�guration: ρ(u,v,w)(0) ≥ 0 for all v ∈ V , u ∈ I (v), u 6= w ∈
O(v)

� Parameters (including terminal time: T ∈ N)

for t = 0, . . . , T − 1 do
Phase 1: Compute sending and receiving constraints.
for v ∈ V do
for u ∈ I (v) and u 6= w ∈ O(v) do
Compute sending function S(u,v,w)

(
(ρ(u′,v,w′),k′(t))u′∈I (v),w′∈O(v)

)
and receiving

function R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
.

end for
end for
Phase 2: Compute out�ows.
for u ∈ V do
for x ∈ I (u) and x 6= v ∈ O(u) do
Compute qout

(x,u,v)(t+ 1).
end for

end for
Phase 3: Compute in�ows.
for v ∈ V do
for u ∈ I (v) and u 6= w ∈ O(v) do
Compute qin

(u,v,w)(t+ 1) =
∑

x∈I (u) f(x,u,v)→w(t+ 1) · qout
(x,u,v)(t+ 1).

end for
end for
Phase 4: Compute source/sink �ows.
for v ∈ V do
for u ∈ I (v) and u 6= w ∈ O(v) do
Compute qnet

(u,v,w)(t+ 1).
end for

end for
Phase 5: Update densities.
for v ∈ V do
for u ∈ I (v) and u 6= w ∈ O(v) do
Compute ρ(u,v,w)(t+1) = ρ(u,v,w)(t)+q

in
(u,v,w)(t+1)−qout

(u,v,w)(t+1)+qnet
(u,v,w)(t+1).

end for
end for

end for
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5.9.2 Urban Network

5.9.2.1 Tra�c Light Implementation

Let v ∈ R = {14, 16}. For any u ∈ I (v) and u 6= w ∈ O(v), let LA(u,v,w) ∈ [0, 1] model

the tra�c light adjustment for tra�c users with traveling direction (u, v, w) which is

based on the respective tra�c light signal LS(u,v,w) ∈ {0, 1}.
In the following, we identify {13, 20, 15, 9} and {15, 21, 17, 10} with Z4 and set

S(u,v,u+1)

((
ρ(u′,v,w′)

)
u′∈I (v),w′∈O(v)

, LA(u,v,u+1)

)
= min

{
smax
v , avLA(u,v,u+1)ρ(u,v,u+1)

}
,

S(u,v,u+2)

((
ρ(u′,v,w′)

)
u′∈I (v),w′∈O(v)

, LA(u,v,u+2)

)
= min

{
smax
v , avLA(u,v,u+2)ρ(u,v,u+2)

}
,

S(u,v,u+3)

((
ρ(u′,v,w′)

)
u′∈I (v),w′∈O(v)

, LA(u,v,u+3)

)
= min

{
smax
v , avLA(u,v,u+3)ρ(u,v,u+3)·

exp
(
−ζv

(
ρ(u+2,v,u) + ρ(u+2,v,u+3)

))
}
,

R(u,v,w)

((
ρ(u′,v,w′)

)
u′∈I (v),w′∈O(v)

)
= max

(
bv

(ρmax
v

4
−

∑

w′∈O(v)

ρ(u,v,w′)

)
, 0

)
.

We implement the signal policy as follows. Let T g ∈ N be the duration of the green

phase and T s ∈ N the shift between the green times of the two tra�c lights. Let

I14 = {13, 15}, J14 = {9, 20} and I16 = {15, 17}, J16 = {10, 21}. We set

LS(u,14,w)(t) =





1, t mod 2T g ∈ {0, 1, . . . , T g − 1}, u ∈ I14, w 6= u,

0, t mod 2T g ∈ {0, 1, . . . , T g − 1}, u ∈ J14, w 6= u,

0, t mod 2T g ∈ {T g, T g + 1, . . . , 2T g − 1}, u ∈ I14, w 6= u,

1, t mod 2T g ∈ {T g, T g + 1, . . . , 2T g − 1}, u ∈ J14, w 6= u.

and

LS(u,16,w)(t) =





1, t+ T s mod 2T g ∈ {0, 1, . . . , T g − 1}, u ∈ I16, w 6= u,

0, t+ T s mod 2T g ∈ {0, 1, . . . , T g − 1}, u ∈ J16, w 6= u,

0, t+ T s mod 2T g ∈ {T g, T g + 1, . . . , 2T g − 1}, u ∈ I16, w 6= u,

1, t+ T s mod 2T g ∈ {T g, T g + 1, . . . , 2T g − 1}, u ∈ J16, w 6= u.

We assume that vehicles accelerate comfortably with areal = 1.5 m/s2 when a tra�c

lights switches from red to green. We introduce tsafe = 2 to model the acceleration delay

caused by safety and reaction time and set

LA(u,v,w)(t) = max

{
0,min

{
1,
(
tswitch
(u,v,w)(t)− tsafe

)
· treal · areal

vreal

}}
· LS(u,v,w)(t)
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with the time intervals since the last switch being

tswitch
(u,v,w)(t) = inf{s ∈ N : LS(u,v,w)(t) 6= LS(u,v,w)(t− s)}.

5.9.2.2 Net Flows

Net �ows are modelled as follows: For (u, v, w) ∈ {(6, 7, 11), (24, 23, 19)}, we de�ne
autoregressive models of order 1:

qar
(u,v,w)(t+ 1) = qar

(u,v,w)(t) + ε(u,v,w)(t+ 1)

where ε(u,v,w)(t + 1) ∼ N
(
0, σ(u,v,w)

)
, σ2

(u,v,w) ≥ 0, and innovations are stochasti-
cally independent across time. The initial value is qar

(u,v,w)(0) = 0. The dependence
of ε(6,7,11)(t + 1) and ε(24,23,19)(t + 1) is governed by a Frank copula, parametrized by
r ∈ R \ {0}. In order to respect non-negativity constraints and maximal densities, we
set

qnet
(u,v,w)(t+ 1) = min

(
max

(
qar
(u,v,w)(t+ 1), qout

(u,v,w)(t+ 1)− qin
(u,v,w)(t+ 1)− ρ(u,v,w)(t)

)
,

ρmax
v + qout

(u,v,w)(t+ 1)− qin
(u,v,w)(t+ 1)− ρ(u,v,w)(t)

)
.

5.9.2.3 Dependence Parameter and Noise

To study the e�ects of the random environment, we set T g = 10 and T s = 0 and run

simulations35 in the three-dimensional subset
{(
r, σ(6,7,11), σ(24,23,19), 10, 0

)
∈ D

}
. Figure

5.6 shows acceptable designs in terms of dependence structure and noise (where we set

σ(6,7,11) = σ(24,23,19)) for the considered utility functions. The impact of the dependence

parameter r is small. In Figure 5.7, we set r = 0, corresponding to independent noise

at the sources. The system performance decreases with increasing noise present in the

system.

5.9.2.4 Comparison of Squared Exponential and Matérn Kernel

Figure 5.8 compares the squared exponential and Matérn kernel in the situation of Fig-

ure 5.3. The Matérn kernel can more �exibly adapt to functions that require higher

curvature at some points. The surface plots have smaller amplitudes of the �uctuations

than the squared exponential kernel.

35GRP is based on the Matérn kernel. We also compared this to the squared exponential kernel which
leads to almost the same results.
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(a) u(x) = x

(b) u(x) = 0.1(x − 60)+ −
0.9(x− 60)−

(c) u(x) = 0.2(x − 60)+ −
0.8(x− 60)−

(d) u(x) =
√
x

(e) u(x) = −|x−2·60|31{x ≤
2 · 60}

(f) u(x) = −|x−2·60|21{x ≤
2 · 60}

(g) u(x) = −|x − 2 ·
60|3/2

1{x ≤ 2 · 60}

Figure 5.6: Acceptable dependence and noise. GRP is based on the Matérn kernel.
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(a) u(x) = x

(b) u(x) = 0.1(x − 60)+ −
0.9(x− 60)−

(c) u(x) = 0.2(x − 60)+ −
0.8(x− 60)−

(d) u(x) =
√
x

(e) u(x) = −|x−2·60|31{x ≤
2 · 60}

(f) u(x) = −|x−2·60|21{x ≤
2 · 60}

(g) u(x) = −|x − 2 ·
60|3/2

1{x ≤ 2 · 60}

Figure 5.7: Acceptable noise for r = 0. GPR is based on the Matérn kernel.
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(a) Level sets: Squared exponential kernel (b) Surface plot: Squared exponential kernel
(γ = 60)

(c) Level sets: Matérn kernel (d) Surface plot: Matérn kernel (γ = 60)

Figure 5.8: Comparison of kernels.





A Microscopic Tra�c Simulations with the

MODIS Framework

This chapter is based on the working paper Timmermann, Kleiber & Weber (2023).

A.1 Introduction

The design of safe and e�cient tra�c areas is one of the core tasks of a tra�c planner.

These con�icting goals can be resolved through attentive and appropriate tra�c behavior.

It can be directly enforced or indirectly brought about:

� Direct Measures. Tra�c regulations such as maximal speeds or minimal safety

distances explicitly control individual driving behavior in order to increase safety.

Technological innovations can further improve the driving behavior of vehicles.

� Indirect Measures. Proactive placements of street elements such as road pavement

design, incorporation of natural barriers, etc. allow tra�c to �ow in a controlled

manner.

A comprehensive view is particularly relevant for tra�c areas in which di�erent tra�c

modes such as cars, bikes, and pedestrians coexist, i.e., where vulnerable road users meet

motorized tra�c. Here, tra�c modeling enables the investigation of relevant scenarios

in a controlled simulation environment.

MODIS � the acronym of Multi mODal Intersection Simulation � is a microscopic

tra�c simulator developed to address these questions. MODIS refers to a tra�c modeling

framework and accompanying implementation in which road users move through a given

tra�c space based on minimal assumptions. The simulator is capable of representing

small to medium road sections, with its focus on intersections. The motivating example

for MODIS is the classical Shared Space: An intersection which is crossed by di�erent

tra�c modes without a priori designated lanes. This chapter introduces the main fea-

tures of MODIS and explains how to access it and perform simulations, focusing on the

implementation aspects.

The Modeling Framework. MODIS is a 2D microscopic tra�c model that can rep-

resent the motion of tra�c participants in a bounded two-dimensional space given their

entry point, entry time, destination, and their respective mode. Conceptually, the move-

ment is governed by a system of coupled ordinary di�erential equations which are solved

133
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in discrete time steps. The modeling approach is based on the Social Force Model by Hel-

bing & Molnar (1995). For each tra�c participant a resultant acceleration is computed

as a function of present and past observations of positions and velocities of all visible

participants. In the next time step, velocity and position are updated by integrating the

acceleration.

A key di�erence from most competing microscopic tra�c simulators is that the 2D

tra�c model MODIS does not require pre-de�ned lanes1. Tra�c participants navigate

from their current position towards their destination, performing evasive maneuvers to

avoid collisions. This is achieved by computing appropriate acceleration vectors in a

complex procedure. In the style of an agent-based model, the following actions are

performed to calculate a resulting acceleration for a time step:

� Free-Flow Trajectory. Each tra�c participant computes a desired free-�ow trajec-

tory. On this free-�ow trajectory they would move from their current position to

their destination if they do not encounter con�icting road users.

� Perception. Before moving, each tra�c participant perceives their surroundings

and estimates the positions and velocities of all visible road users.

� Trajectory Extrapolation. From current and past perceived positions and veloci-

ties, each tra�c participant extrapolates the trajectories of the other visible tra�c

participants into the future.

� Con�ict Detection. Each tra�c participant compares their desired trajectory with

the previously extrapolated trajectories. A con�ict is detected when the predicted

minimum future distance to another road user falls below a certain threshold.

� Con�ict Classi�cation. The con�ict situation is classi�ed based on the circum-

stances such as the number of con�icting road users, their tra�c modes, the time

to the �rst con�ict, etc.

� Decision for Strategy. A behavioral model is implemented that distinguishes of-

fensive and defensive strategies to resolve the detected con�icts. At this point, a

strategy is decided which results in subsequent reactions.

� Con�ict Reaction. Depending on the situation and chosen strategy, a con�ict

reaction is applied. This relies on either updating the planned trajectory by re-

routing through a safe point or applying a long range reaction force so that a

collision is avoided (e.g., slowing down or accelerating).

Up to this point, the motion of a vehicle is deterministic. This can be generalized

by including stochastic components such as, e.g., random perception models, random

e�ects, and random environments. The inclusion of randomness broadens the modeling

1Note that lane-based driving behavior can also be represented.
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perspective and allows for more diverse conclusions about tra�c systems in terms of

safety, e�ciency, and risk.

The Implementation. The multi-layered modeling approach requires an accompany-

ing implementation for simulations. The current implementation o�ers three options for

performing tra�c simulations:

� Graphical User Interface. A graphical user interface is provided that allows to

create deterministic tra�c scenarios and visualize the movement of road users as

they are simulated.

� Command Line Interface. Alternatively, the same deterministic simulations can

also be executed with a command line interface. This saves the computational

overhead for the visualization.

� Monte Carlo Simulations. While the �rst two approaches are useful for deter-

ministic simulations, MODIS is also prepared for Monte Carlo simulations, i.e.,

repeated simulations when random components are included in the tra�c system

under consideration. Monte Carlo simulations are also controlled by a command

line interface.

A.1.1 Outline

This chapter describes the main features of the tra�c simulator MODIS with a focus on

its implementation. The �rst section concludes with details on how the code can be ac-

cessed and a brief literature review of applications of MODIS. Section A.2 is intended for

users who are generally interested in performing microscopic simulations with MODIS.

Here, the various input �les, parameters, and required �le formats are described. These

concepts are of general relevance whether the goal is to perform simulations with or

without graphical output on the local computer or extensive Monte Carlo simulations

on an HPC cluster. Section A.3 describes the implementation in more detail. The goal

of this section is to enable the reader to actively work with the code so that they may

perform own modi�cations or extensions of the framework. Section A.4 contains a guided

exercise for making �rst changes to the framework. Appendix A.5 collects longer code

examples that are referred to in the previous sections.

A.1.2 Starting Point

The microscopic tra�c simulator MODIS is publicly available at:

https://gitlab.com/LUH-HOI/modis

The project landing page displays a README.md �le that contains instructions on how

to obtain precompiled executables and run the code. The software itself is implemented

https://gitlab.com/LUH-HOI/modis
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in Java. It is accompanied by code documentation in HTML format generated with

Javadoc. This can be found at:

https://luh-hoi.gitlab.io/modis/

A.1.3 History of MODIS & Applications

Conceptually, MODIS extends the Social Force Model; its code base originates from

the simulation of pedestrian dynamics (see Höcker (2010)). In the initial phase, the

multi-modal tra�c modeling approach and accompanying implementation was developed

jointly between the Institute of Transportation and Urban Engineering at TU Braun-

schweig and the Institute for Risk and Reliability at Leibniz Universität Hannover. From

2013 to 2022, it was �nancially supported by the German Research Foundation2. As of

2017, it was further expanded in collaboration with the House of Insurance at Leibniz

Universität Hannover. MODIS is a collaborative project that many people have worked

on, with Chris Timmermann being the lead developer. To date, it has resulted in several

publications and dissertations.

The basic concept of the research project is described in Pascucci et al. (2015). The

tra�c modeling approach involves many reaction parameters; Schiermeyer et al. (2016)

demonstrate a calibration of these using a genetic algorithm for exemplary con�ict sce-

narios. Rinke et al. (2017) discuss the di�erent reaction mechanisms for cyclists and

pedestrians in more detail. While previously only con�ict situations between exactly

two road users were considered, Schiermeyer et al. (2019) extend the modeling approach

for multiple simultaneous con�icts. Schiermeyer et al. (2017) provide an overall overview

towards the end of the �rst phase of the DFG project. As a further modeling layer, Pas-

cucci et al. (2018) develop a decision model for con�ict situations that can be resolved

by di�erent strategies. The decision model is statistically calibrated using real data.

Trifunovi¢ et al. (2021) demonstrate the research progress of the second phase of the

DFG project: A key focus lies on more detailed and automated collection of real data,

which enables a quantitative analysis of longer observation periods. The results of the

DFG project are also collected in the dissertations by Pascucci (2020) and Timmermann

(2022).

In a second stream of applications, the MODIS framework is extended for Monte

Carlo simulations to include randomness as an additional modeling paradigm. For this,

a sampling of random variables and parallel execution of the previously deterministic

simulations are implemented. The focus of the applications lies on characterizing the

trade-o� between safety and e�ciency of tra�c systems. Berkhahn et al. (2018) suggest

random misperception as a cause of tra�c accidents. To model this, stochastic processes

are included in car-following models. The approach is evaluated in case studies on simple

tra�c scenarios (one-lane roads and t-junctions). Berkhahn et al. (2022) extend this idea

2See DFG project 248905318.

https://luh-hoi.gitlab.io/modis/
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for the more complex scenario of an unsignalized intersection and discuss state-of-the-art

numerical schemes for the involved random ordinary di�erential equations.

A.2 Performing Simulations

This section explains how to run simulations using the provided pre-compiled executa-

bles. This includes single simulation runs with or without a GUI as well as Monte Carlo

simulations (i.e., repeated independent simulations). At the same time, the section intro-

duces important concepts and terms together with the explanation of the corresponding

control elements of the GUI.

Three di�erent executable Java-jar-Files are provided in the MODIS Gitlab reposi-

tory:

� ModisView.jar: For running simulations using the GUI (see Section A.2.2),

� ModisCore.jar: For running a single simulation run without visualization (see

Section A.2.3),

� ModisMonteCarlo.jar: For Monte Carlo simulations (see Section A.2.4).

The commands presented in this section are appropriate for these pre-compiled jar �les.

However, the syntax for specifying required or optional execution parameters is the same

when the code is run from a particular IDE (e.g., when the project is imported using

the provided Gradle build �les). Since the exact procedure in this case depends on the

IDE, it is not discussed further in this section.

A.2.1 Before Getting Started

Regardless of whether the simulation is to be started with or without a GUI, some

prerequisites must be met. These prerequisites and terms are explained in the following

sections.

A.2.1.1 Scenario

The term �scenario� refers to the stationary parts of the simulation. This includes the

di�erent parts of a tra�c area with their surfaces and the intended use of the di�erent

tra�c modes. It also includes elements such as road markings, tra�c lights (if applica-

ble), vegetation, and other obstacles. As a rule of thumb, the scenario includes everything

that is still in place after all simulated road users have left the simulated area.

From a technical point of view, there are three ways to specify a scenario in MODIS:

� It can be hard coded by extending the class ModisScenario (see Section A.3.1.1;

for technical details refer to the Javadoc).
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� It can be loaded from a CityGML3 �le.

� It can be loaded as an OpenDRIVE4 �le.

It should be noted that in the latter two cases some features provided by the speci�c

�le formats are ignored if they are not relevant for the simulation. On the other hand,

some features of the Modis framework can only be used if the scenario is de�ned as an

extension of ModisScenario, e.g., preference rates for tra�c areas (see Section A.3.2).

When working with the GUI, a scenario can be loaded using the corresponding control

elements (see Section A.2.2). When working with the CLI, the scenario must be speci�ed

in the startup arguments (see Section A.2.3).

Example Scenario. A simple scenario, used as an example in several parts of this

chapter, is shown in Figure A.1.

Figure A.1: Example scenario DocumentationDemoScenario.

This demo scenario is intended to resemble a simpli�ed right-turn on an intersection.

The dark gray areas represent a paved roadway and the light gray area marks a sidewalk.

The exact speci�cation of these properties in a ModisScenario is explained in Section

A.3.1.1.

A.2.1.2 Simulation Properties

In order to simulate a speci�c tra�c situation, more speci�cations are required than

the static scenario provides. These include, for example, the initial positions of the

road users, their individual destinations, optionally pre-de�ned free-�ow trajectories or,

if applicable, parameters for the dynamic generation of road users (see also Section

3See www.ogc.org/standards/citygml for more information on this �le format.
4See www.asam.net/standards/detail/opendrive/ for more information on this �le format.

www.ogc.org/standards/citygml
www.asam.net/standards/detail/opendrive/
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A.3.2.1). To store this kind of data, an xml �le named Simulation Properties is used in

the Modis framework. A complete simulation properties xml can be found in Appendix

A.5.1.

For illustration purposes, the following Listing A.1 shows an excerpt from this �le,

specifying the origin and destination of a pedestrian.

Listing A.1: Specifying a pedestrian in a Simulation Properties File.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <properties schemaVersion="1.4">

3 <infrastructureID>DocumentationDemoScenario</infrastructureID>

4 ...

5 <odLocations>

6 <odLocation id="0">

7 <polyline>

8 <point>

9 <x>10.112</x>

10 <y>4.621</y>

11 </point>

12 </polyline>

13 </odLocation>

14 </odLocations>

15 <users>

16 <user id="0" mode="Pedestrian">

17 <position>

18 <x>7.165</x>

19 <y>12.442</y>

20 </position>

21 ...

22 <dest_id>0</dest_id>

23 </user>

24 </users>

25 </properties>

Line 3 speci�es that this simulation properties �le is for use with the Documentation-

DemoScenario. Lines 6�13 de�ne an �odLocation� with ID 0 that serves as the destination

in this example. It consists of a single point with a given x- and y-coordinate. Lines 16�

22 describe a pedestrian with ID, starting position, and destination, which is referenced

by its ID5.

Figure A.2 shows the example scenario presented in the previous section after loading

5It should be noted that IDs need to be unique only within an entity, i.e., both a road user and an
odLocation are allowed to have the ID 0, while, e.g., a pedestrian and a car with the same ID would
raise an error.
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Figure A.2: DocumentationDemoScenario after loading Simulation Properties.

the simulation properties. The pedestrian is represented by a red ellipse labeled with its

ID. The destination is marked by a light blue circle.

A.2.1.3 Real Data

It is possible to import trajectory data into the Modis framework. This can serve various

purposes:

� Qualitative (visual) comparison of simulation results,

� Calibration of model parameters,

� Forced movement of some road users to study the reactions of simulated road users

to certain behaviors.

The trajectory data can be provided either as a simple csv-�le or as a SQLite db-�le.

The requirements for both �le formats are explained in the following sections. In both

cases it is possible to either load only the trajectory data or to automatically generate

simulation properties from the trajectories. In the latter case, a road user with the

respective tra�c mode is generated for each loaded trajectory, using the �rst time stamp

of a trajectory as the entry time. The �rst and the last point of the trajectory are used

as origin and destination.

Trajectories From a CSV File. Any trajectory belongs to a speci�c road user. In a

valid csv �le for trajectory data, the header line must describe ID and tra�c mode of the

respective road user. In the following lines of the �le, each trajectory takes exactly three

columns. Of these three columns, the �rst column contains the time stamp, the second
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TRAJECTORY_ID FRAME_NO X Y LABEL

0 0 16.42 38.4 person

0 1 17.34 38.58 person

...

1 0 19.74 46.85 car

1 1 19.79 46.65 car

Table A.1: Required structure for an SQLite �le.

an x-coordinate, and the third a y-coordinate (both in meters). Multiple trajectories are

stored by concatenating these three columns, as shown in the example.

Listing A.2: Example trajectory csv �le.

1 0, Pedestrian, , 1, Motorist,

2 0, 16.42, 38.4, 0, 19.74, 46.85

3 0.5, 17.34, 38.58, 0.5, 19.79, 46.65

4 1, 18.09, 38.87, 1, 19.8, 46.4

5 1.5, 18.91, 39.19, 1.5, 19.87, 46.12

6 2, 19.75, 39.74, 2, 19.85, 45.86

7 ...

Currently6, valid tra�c modes are Pedestrian, Cyclist, and Motorist. The IDs do

not need to be sequential, the only requirement is uniqueness.

Trajectories From an SQLite Database File. Trajectory data can also be imported

from an SQLite �le (ending with .db). Since this was originally implemented to import

trajectories generated by the automated approach presented by Trifunovi¢ et al. (2021),

the naming and units are slightly di�erent than in the rest of the framework. In Table

A.1, the required table structure is shown.

Valid strings for the column �LABEL� are person, bicycle, car, and truck. At-

tention: This di�ers from the tra�c modes used in csv �les. Both car and truck are

mapped to Motorist.

By default, which is also used when loading a .db �le from the GUI, this �le is expected

to contain a table named trajectories. Also, the units for coordinates must be in cm

and the values in the column �FRAME_NO� correspond to a frame rate of 30 fps. The

class PropertiesFromTrajectoryDB provides methods for loading trajectories with a

di�erent frame rate, table name, or distance unit. This is currently not possible when

using the pre-compiled jar �les.

6An extension for further tra�c modes can be implemented relatively easy in
TrajectoryReader.addUserFromTrajectory().
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A.2.1.4 Structure of the MODIS Framework

The framework is divided into �ve modules, three of which can be executed to run

simulations. A dependency graph between the modules is shown in Figure A.3.

Modis

ModisCalibration

ModisDB

ModisGUI

ModisMonteCarlo

Figure A.3: Structure of the MODIS framework.

� Modis. The module named �Modis� is the core of the model. It contains everything

that is necessary to perform one simulation run. An executable jar-�le containing

this module is provided. Section A.2.3 explains how to enter required parameters

and start a simulation using the CLI.

� ModisDB. ModisDB provides a database of tested scenarios, mostly used and pre-

sented in previous publications. This is only for convenience for the GUI, there is

nothing to execute directly here.

� ModisView. ModisView contains the Modis GUI written in JavaFX. For the reasons

explained, it depends on the Modis core module as well as ModisCalibration and

ModisDB. The use of the GUI is discussed in more detail in Section A.2.2.

� ModisMonteCarlo. ModisMonteCarlo provides helper classes to combine multiple

single simulation runs into a Monte Carlo simulation. These tools mainly manage

parallel execution of simulations, sampling of random variables, and variation of

model parameters. The module depends only on the core Modis module. The

execution of Monte Carlo simulations is described in Section A.2.4.

� ModisCalibration. ModisCalibration corresponds to research presented in Schier-

meyer et al. (2016) and is not discussed further in this chapter. It contains classes

and methods to perform calibration of single or multiple similar scenarios using a

genetic algorithm. The module itself depends only on the core Modis module, but

is controlled via the GUI.

A.2.2 Simulations Using the Graphical User Interface

If one's operating system is con�gured to execute jar �les by double-clicking, one can

navigate to the location where ModisView.jar is stored and start the GUI by double-
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clicking. Otherwise, one can use the CLI to navigate to the location where ModisView.jar

is stored and execute:

java -jar ModisView.jar

No parameters are required, as everything else is con�gured in the GUI. After success-

fully starting the GUI, a view similar to the one shown in Figure A.4 should appear.

1

2 3 4 5 6 7 8 9 10 11 12 13 14

15

16

17

Figure A.4: ModisView after application start.

Overview of GUI Elements.

1. Tab bar for navigating menu categories

2. Clear simulation properties (currently deactivated)

3. Load simulation properties from integrated scenario database

4. Load trajectory data from external database �le

5. Load simulation properties from xml �le

6. Save simulation properties to xml �le

7. Load recent simulation property xml �le

8. Open scenario from CityGML or OpenDRIVE �le

9. Save scenario to CityGML �le (currently deactivated)
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10. Load trajectory data from csv �le

11. Save simulated trajectories to csv �le

12. Open recent trajectory csv �le

13. Save animation as gif �le

14. Load calibration properties �le

15. Main simulation view

16. Simulation details view

17. Status bar

Loading or Creating Simulation Properties. Before a simulation can be started,

at least one road user needs to be created. This can be done either by loading simulation

properties or by creating them interactively using the GUI. Simulation properties can be

loaded from the integrated scenario database (3), automatically created from trajectories

stored in a database �le (4), or loaded from a simulation properties xml �le (5). If one

has previously worked with an xml �le, one can also quickly load the �ve most recent

xml �les using the Recent Simulation Properties button (7).

For interactive creation of road users, one needs to switch to the tab labeled �Scenario�

in the Simulation Details View (16). A tabular view similar to the one shown in Figure

A.5 appears.

The upper of these tables contains road users, the lower destinations for road users.

In the depicted tables, one destination with ID 0 and one pedestrian, also with ID 0,

are already present. If simulation properties were loaded using one of the described

methods, these two tables should also already contain at least one entry. If one starts

with an empty scenario, both tables will be empty. In this case, the �rst step is to create

the �rst destination.

Technically, a destination is modeled by so-called ODLocations, which in turn are

represented by a polygonal line with a theoretically unlimited number of vertices. A

road user has arrived at their polygonal destination when any point on the polyline is

reached. In the GUI, a destination is created using the input �elds labeled with x_1, y_1

and so on below the �Destinations� table. An input of up to three vertices is supported7.

The coordinates for the vertices of the polyline can be entered directly into the input

�elds. After clicking in an input �eld, it is also possible to select a point from the main

simulation view (15). This is also indicated by the message �Waiting for mouse click...�

7More complex polylines need to be speci�ed using xml �les. In this case, only the �rst three vertices
of the polygonal line will be displayed in the table, but for the simulation, the whole polyline will be
used.
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Figure A.5: Scenario tab in the Simulation Details View of ModisView.
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in the status bar (17) at the bottom of the window. Clicking the �Add�-button next to

the input �elds adds the destination to the table and makes it available for user creation.

Road users are created in a similar manner using the controls below the upper table.

First, a user mode must be selected in the drop down menu. A start coordinate can be

entered or selected by mouse click. The drop-down menu labeled �Destination� provides

a choice between all available destinations (note that destinations can be shared by road

users). The input �eld labeled t_0 speci�es the time in seconds after the simulation

start at which the road user will appear at their start coordinate. Finally, a group ID

can be selected. A 0 indicates that the road user does not belong to a speci�c group.

A speci�c group behavior is currently only considered for pedestrians, all other tra�c

modes behave the same way regardless of which group they belong to. Again, clicking

on the �Add�-button adds the selected values to the table.

Finally, when all destinations and users were added to the tables, clicking the �Apply�-

button on the lower right will add everything to the model. This is indicated by the fact

that only now newly created road users appear in the main simulation view.

The save button (6) can also be used to save interactively created simulation properties

as an xml �le for later reuse.

A.2.3 Simulations Using the Command Line Interface

Simulations without the GUI cannot be started by double-clicking the jar-�le, since

at least a Simulation Properties �le has to be supplied. The simulation is started by

executing the following command:

java -jar ModisCore.jar -<options>

To get a summary of the required and optional arguments, use the �help option (or

-h). The output looks as follows:

Listing A.3: Runtime parameters for ModisCore.

1 usage: ModisCore

2 -h,--help print this message

3 --ignoreFollowsRealTrajectory Users specified in a properties xml

4 file to follow a real trajectory are

5 simulated regardless of whether

6 followsRealTrajectory is set.

7 --listscenarios Print list of valid scenario names for

8 use with -s

9 -o,--output <arg> Output filename, ending either with

10 .csv, .db or .h5. If no output is

11 specified, the name of the

12 <propertiesfile>.db will be used to

13 store the simulated trajectories.
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14 -p,--properties <arg> Simulation Properties (required).

15 Either as .xml-file or as trajectory

16 data stored in a .csv or .db file. If

17 simulation properties are derived from

18 trajectory data, specifying a scenario

19 with --scenario is required.

20 -r,--realdata <arg> Real data file, either as .csv or .db

21 (optional). This option is ignored if

22 --properties is already a .csv or .db

23 file.

24 -s,--scenario <arg> Scenario (optional). Either contained

25 in a file (ending with .gml or .xodr)

26 or as a string representation from the

27 list of built-in scenarios (see

28 --listscenarios). Caution: Providing a

29 scenario will override a scenario that

30 may be specified in the simulation

31 properties file. This can lead to

32 errors or unexpected simulation

33 results.

A.2.4 Monte Carlo Simulations

Monte Carlo simulations must also be started from the CLI. The parameters for one

Monte Carlo run (Scenario, properties �le, number of simulations, model parameters to

vary etc.) are speci�ed in a di�erent type of xml-�le called Monte Carlo properties �le.

The structure of such a �le is exemplarily shown in Appendix A.5.2.

Listing A.4: Runtime parameters for ModisMonteCarlo.

1 usage: ModisMonteCarlo

2 -h,--help print this message

3 -i,--input <arg> Input filename (required).

4 If <arg> is a file name ending with .xml

5 it is treated as a single Monte-Carlo

6 properties file. In every other case,

7 a text file containing one xml file name

8 per line is expected.
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A.2.5 Postprocessing / Simulation Results

Microscopic simulations enable the generation of large data sets that describe the detailed

evolution of tra�c systems over time. These data may need to be post-processed for their

speci�c use. For each simulated road user, the GUI provides built-in access to:

� a visualisation of current and past positions (i.e., the traveled trajectory),

� the current velocity and active forces,

� for all perceived users: their predicted trajectories, distance function, con�ict point,

and situation classi�cation,

� distance-time graph and velocity-time graph (these are displayed and, if available,

compared with those of the corresponding trajectories from real data).

Apart from the live supervision of simulation parameters, simulation results can always

be saved as trajectory data. In the context of importing real data to the simulation,

trajectories stored in CSV and SQLite �les were already discussed in Section A.2.1.3.

The export of simulation results to one of these two �le formats follows the same �le

structure.

In addition, simulation results can also be stored in a HDF5 database �le. This is

especially useful for storing the output of Monte Carlo simulations, since HDF5 is a �le

format designed to store large data sets with a homogeneous structure. A HDF5 database

consists of a number of tables, which are organized in a �le-system-like structure. Unlike

the other �le formats, when exporting the simulation results, the trajectory of each

simulated user is saved in a separate table. Figure A.6 shows a screenshot of the software

HDFView8 with an open simulation result .h5 �le.

Figure A.6: HDFView.

8https://hdfgroup.org/downloads/hdfview/

https://hdfgroup.org/downloads/hdfview/
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The left part of the �gure indicates the structure of the �le: A folder is created for

each numbered simulation run. In its subfolder named users a table is stored for each

simulated user, named after the user ID. The table itself contains four columns for time

stamp, velocity, x-, and y-coordinate.

A.2.6 Next Steps

The instructions explained above all rely on the pre-compiled jar �les provided in the

Gitlab repository. These are fully su�cient if the framework is to be used as published.

However, own changes or additions to the existing code9 require compilation of the code.

Compiling the Modis framework requires a number of external dependencies as well

as the interdependency of the Modis modules as explained above. To simplify this task,

build con�guration �les for the build automation software Gradle are supplied. A local

installation of the Gradle software itself is optional, as the repository includes a so-called

�wrapped� version of Gradle. Therefore, to make the following commands work, only a

copy of the repository is required.

In Gradle, pre-con�gured actions such as compilation or execution are called �tasks�.

The task to execute a program is usually called �run�. Task and module names are

seperated by a colon, therefore the run task for a module has the structure

:<ModisModule>:run

A run task is available for the modules ModisCore, ModisView, and ModisMonteCarlo.

The run task automatically checks whether a (re-)compilation is necessary and triggers

it if required. The syntax to use the included wrapped Gradle commands slightly di�ers

depending on the operating system. For Linux and MacOS, a run task, in this example

for ModisView, is triggered by executing

./gradlew :ModisView:run

from the root folder of the project in the terminal. For Windows, a similar command

is

.\gradlew.bat :ModisView:run

If, such as for ModisCore, arguments have to be speci�ed, they have to be passed

enclosed in double quotes as an argument to the Gradle command in the following way:

./gradlew :ModisCore:run --args="-p=properties.xml

-r=trajectories.csv"

Compile to jar Files. The supplied gradle con�guration also provides a con�guration

to build a so-called �fat jar�, a self-contained jar �le which contains all external depen-

dencies apart from the Java runtime itself. A fat jar can be used to distribute packages of

9A �rst example for custom implementations is presented in the exercise in Section A.4.



150 Microscopic Tra�c Simulations with the MODIS Framework

own code to collaborators who in turn only need to execute the commands as explained

in Sections A.2.2 � A.2.4. Jar �les of own implementations are also useful if one wants

to perform simulations on a machine with limited access, e.g., a computation cluster.

To build a fat jar, one needs to execute the Gradle task :shadowJar, for Linux/Mac

OS:

./gradlew -PfatJar :<ModisModule>:shadowJar

or for Windows:

.\gradlew.bat -PfatJar :<ModisModule>:shadowJar

where <ModisModule> has to be replaced by either ModisCore, ModisView, or Modis-

MonteCarlo. For external dependencies that are platform dependent, the con�guration

adds versions for Linux, Mac OS and Windows, independently of the operating system

where the compilation is executed.

A.3 Simulation in Detail

The previous section described how one can interact with the MODIS framework without

any further modi�cations and how to use it for tra�c simulations. This section now dives

deeper into the structure of the code. It serves as a starting point to understand where

and how to implement own modi�cations or extensions to the existing framework.

A.3.1 Simulation Setup

A.3.1.1 Model Data Structure

The main class in which the data required for a simulation is stored is called ModisSce-

nario. Within this class, several other classes are nested. An overview of the class

structure is shown in Figure A.7.

As the class diagram shows, not many attributes are stored in ModisScenario itself.

Instead, most of the attributes relevant for describing a tra�c simulation are stored in a

TrafficNet. The tra�c net describes both the static (static as in immovable, not in the

sense of Java) parts of a tra�c situation (e.g., infrastructure) and the dynamic parts (e.g.,

road users). In the terms introduced in Section A.2.1, the TrafficNet represents both

the Scenario as well as the Simulation Properties. Thus, all attributes of a TrafficNet

listed in the class diagram belong to either of these.

Representation of a Scenario. The scenario itself is represented by a list of Traffic-

Regions, while the information from a simulation properties �le is stored in lists of Users

and ODLocations.

As discussed in Section A.2.1.1, a scenario can either be imported from �les following

the CityGML or OpenDRIVE �le formats or de�ned directly in Java code. Since the
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ModisScenario

+ infrastructureID: String
+ controller: ModisController
+ net: Tra�cNet

Tra�cNet

# regions: List<Tra�cRegion>
+ users: EnumMap<UserMode, List<User>>
+ odLocations: List<ODLocation>

+ addUser(user: User): boolean

ModisController

See details in Fig. A.10

Tra�cRegion

+ ground: SimplePolygon2D
+ name: String
- modes: Map<UserMode, Double>
+ function: Function
+ material: SurfaceMaterial

+ Tra�cRegion(ground: SimplePolygon2D
+ allowUserMode(modes: UserMode...)
+ allowUserMode(mode: UserMode,

preferenceRate: double)

1 1

1

Figure A.7: Class diagram (excerpt) for ModisScenario and nested data classes.
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external �le formats lack some features of the MODIS framework, de�ning a scenario in

code is often the best choice. On the other hand, a scenario de�ned in Java code comes

with the disadvantage that the pre-compiled jar �les cannot be used; in this case, the

newly de�ned scenario needs to be compiled along with the rest of the framework, as

described in Section A.2.6.

The speci�cation of road networks in OpenDRIVE or city models in CityGML is out-

side the scope of this chapter and is better explained in other sources (see the references

in Section A.2.1.1). Instead, this section discusses the internal data format and brie�y

demonstrates it using the simple scenario �DocumentationDemoScenario� that was al-

ready introduced in the previous section.

Listing A.5 shows an excerpt from the de�nition of DocumentationDemoScenario.java.

The full code of the Java class is printed in Appendix A.5.3.

Listing A.5: De�ning the tra�c net.

1 @Override

2 public void initTrafficNet() {

3 // Define the polygonal areas of the Scenario

4 SimplePolygon2D roadStraightPoly = new SimplePolygon2D();

5 roadStraightPoly.addVertex(new Point2D(0, 0));

6 roadStraightPoly.addVertex(new Point2D(0, 15));

7 roadStraightPoly.addVertex(new Point2D(5, 15));

8 roadStraightPoly.addVertex(new Point2D(5, 0));

9 ...

10 // Define traffic regions

11 TrafficRegion roadStraight = new TrafficRegion(roadStraightPoly);

12 roadStraight.allowUserMode(UserMode.Motorist, UserMode.Cyclist);

13 roadStraight.material = SurfaceMaterial.light_asphalt;

14 roadStraight.function = Function.DRIVINGLANE;

15 roadStraight.name = "Straight Road Segment";

16 ...

17 // Add traffic regions to traffic net

18 this.net.addRegion(roadStraight);

19 ...

20 }

A scenario in MODIS consists of one ore more tra�c regions represented by simple

polygons in the two-dimensional plane. The excerpt shows the three mandatory steps to

create a scenario from polygonal tra�c regions:

� Step 1: De�ne Polygon. As can be seen from the class diagram, a TrafficNet

consists of one or more TrafficRegions, whose outer shape is described by an

object of the class SimplePolygon2D. In the example, an empty polygon is �rst
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created (line 4) and its vertices are subsequently added (lines 5�8). The shape of

the polygon is determined by connecting the vertices consecutively, where the last

vertex is again connected to the �rst one.

� Step 2: De�ne Tra�c Region. The newly de�ned polygon serves as the at-

tribute for the constructor of a TrafficRegion (line 11). The user modes that are

allowed to use a tra�c region need to be explicitly speci�ed. This can be done ei-

ther by granting a �full permission�, as in the example code snippet (line 12), or by

specifying a preference rate between 0.0 and 1.0 (the method used here corresponds

to a preference rate of 1.0). The e�ects of preference rates on the navigation are

explained in Section A.3.2.2.

The attributes name, function, and material are not strictly necessary for the

simulation to work, but it is advisable to use sensible values here for displaying the

scenario in the GUI. Both Function and SurfaceMaterial are Java-Enumerations.

A full list of valid values can be found in the Javadoc.

� Step 3: Add Tra�c Region to Tra�c Net. Finally, the tra�c region is added

to the tra�c net (line 18).

An image of the complete DocumentationDemoScenario has already been shown in

Figure A.1. The part of the scenario speci�ed by the excerpt in Listing A.5 is highlighted

in magenta in Figure A.8.

Figure A.8: Part of DocumentationDemoScenario as described by the example code.

This small example demonstrates the minimal steps necessary to specify a scenario. It

is possible to represent more complex scenarios:

� One can specify lanes for cyclists and cars using directed edges. These will be added

to the respective navigation graph; more details on this are given in Section A.3.2.2.



154 Microscopic Tra�c Simulations with the MODIS Framework

<<abstract>>
User

+ id: long
+ mode: UserMode
+ a_max: double
+ b_max: double
+ v_0: double
+ v_0_max: double
+ in_time: double
+ trajectory: Trajectory
+ trip: Trip
...

+ position(): Point2D
...

Figure A.9: Class diagram (excerpt) for the class User.

For now, just note that the logic for lanes is fully integrated in the continuous

movement model, i.e., a road user is not aware whether they move along a lane or

not.

� Tra�c rules can be added using a �right-of-way graph�, which speci�es right of

way relations between tra�c regions. More on this can be found in Diekmann &

Schiermeyer (2019).

Note that when using the importers for CityGML or OpenDRIVE �les, the geometric

descriptions of a scenario are converted into the same structure as described in the

above example. As such, after importing such a scenario, a further distinction between

externally or internally speci�ed scenarios is not necessary.

The User Class. Almost all information previously introduced as Simulation Prop-

erties is stored in the class User. The abstract class User serves as the superclass for all

implementations of the various tra�c modes. Therefore, it contains attributes that are

valid for all tra�c modes, such as position, destination, or current velocity.

The class diagram in Figure A.9 shows an excerpt of the attributes and methods of

the abstract class User. Note that the class has a lot more attributes than listed in

the diagram; the ones listed here are the ones that are necessary when initializing a

simulation. Other attributes of User are omitted for now and will be introduced as

needed.

All implementations of road users extend the abstract class User. For a detailed

overview of the inheritance hierarchy of the implemented subtypes of User please refer

to the accompanying Javadoc (see Section A.1.2).
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A.3.1.2 Populating the Data Structure

Before a simulation can be started, the data structure that was described in the last

sections needs to be populated. As already explained, the scenario can either be speci�ed

in Java code or loaded from standardized �le formats. Simulation properties, on the other

hand, can either be supplied as xml �les as described in Section A.2.1.2 or automatically

generated from trajectory data. The latter serves the purpose that often situations

observed in recorded data should be simulated for comparison. As described in Section

A.2.1.3, the MODIS framework o�ers the possibilities to load trajectory data from csv

�les or SQLite database �les.

The implementations of the di�erent importers can be found in the package modis.io

of the ModisCore module:

� The class PropertiesReader contains methods to import simulation properties

from xml �les.

� TrajectoryReader contains the code to load trajectory data from csv �les.

� Methods to load trajectory data from a database �le are implemented in Proper-

tiesFromTrajectoryDB.

The two implementations to import trajectory data generate objects described by the

class TrajectoryData, which contains only the space-time-coordinates of a trajectory.

The actual generation of road users from TrajectoryData objects is implemented in

TrajectoryReader.addUserFromTrajectory(). In all cases, the generated single road

users are loaded into TrafficNet.users by calling the method TrafficNet.addUser().

Note that from a conceptual point of view, the scenario and the simulation properties

are independent of each other. However, in the MODIS framework, the scenario is always

loaded before the simulation properties. This has the advantage that basic validity

checks are possible when loading simulation properties, e.g., checking whether origins

and destinations of road users are within the coordinates speci�ed by the scenario and

in the tra�c areas permitted for the respective user mode.

A.3.2 Simulation State Flow: The ModisController Class

The entry point for starting and subsequently controlling a simulation is the class named

ModisController. Thus, almost everything described in this section is implemented in

this class, or at least triggered directly by it. Figure A.10 shows a (shortened) class

diagram listing the most relevant methods and attributes of ModisController.

The MODIS framework follows the Model-View-Controller (MVC) design pattern. As

such, ModisController serves as a logical link between the model and the user interface

(user interface in this case refers not only to the GUI, but to any kind of interaction

with the software). As a consequence, the methods implemented in ModisController can

roughly be divided into two groups:
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ModisController

# usersInScenario: Set<User>
# usersNotInScenario: Set<User>
+ tg: Tra�cGenerator

# initStep(): void
+ play(): SimulationState
+ step(): boolean
+ pause(): void
+ unpause(): void
+ stop(): void
# endScenario(): boolean

Figure A.10: Class diagram (excerpt) for ModisController.

� External Controls. The methods play(), step(), pause(), unpause(), stop()

provide the ability to control the simulation10. Therefore, they need to have public

access. These methods usually call the second kind of methods.

� Model Controls. Methods which directly trigger logical parts of the tra�c model,

either once per simulation run (e.g., initiStep() before the �rst time step) or once

per simulation time step (e.g., detectConflicts(), react(), etc.). Most of these

methods have protected or private access. Since the actual tra�c model is mostly

implemented in methods that are called once per time step, the following sections

will mainly focus on the di�erent methods of this type.

A.3.2.1 User Generation

In general, there are two ways to add road users in MODIS. We distinguish �single

road users� and �generated road users�. While single road users are speci�ed separately,

generated road users are created automatically using the so-called TrafficGenerator

class. To make a clear distinction, only the latter road users are referred to as �generated

road users� in this chapter, although technically the single road users are also �generated�

at some point.

Single Road Users. Single road users are de�ned by their speci�c attributes such

as user mode, start coordinate and velocity, destination, and in_time. The in_time

describes the time span in seconds from the simulation start, after which the user appears

at their start coordinate. This implies that each road user has to be speci�ed separately,

regardless of whether they use the same Origin-Destination (OD) relation.

10Even if the controls in the GUI suggest otherwise, the function for reversing time steps is currently
not supported, i.e., simulation in the reverse direction is not possible.
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The single road user is the category that can also be speci�ed using the tabular view

of the GUI, as explained in Section A.2.2. The syntax for specifying single road users in

the input �le has also already been shown in the excerpt in Listing A.1.

Note that, regardless of their in_time, all single road users are already initialized

at initialization of the controller in the method ModisController.initStep(), i.e.,

before the �rst simulation time step. Road users with an in_time of 0 are stored

in ModisController.usersInScenario and those with a larger in_time in ModisCon-

troller.usersNotInScenario, for later entry into the system.

Generated Road Users. The framework provides the TrafficGenerator class, which

is known to the ModisController as its attribute tg. The tra�c generator provides au-

tomated, repeated generation of road users for speci�c OD-relations. The class diagram

in Figure A.11 lists the methods and attributes relevant for understanding the class

TrafficGenerator.

Tra�cGenerator

- odMatrix: ODMatrix
- headwayDistributions:

MultiKeyMap<ODLocation, EnumMap<UserMode, HeadWayDistribution>>
- nextGenerationTimes:

MultiKeyMap<ODLocation, EnumMap<UserMode, Double>>

+ generateTra�c(time: double): Set<User>
+ addDemand(source: ODLocation, dest: ODLocation, mode: UserMode,

demand: double): void
+ addDemand(source: ODLocation, dest: ODLocation, mode: UserMode,

demand: double, distribution: Distribution, trajectory: Trajectory): void

ODMatrix

- odRelation:
MultiKeyMap<ODLocation, EnumMap<UserMode,Double>>

+ setDemand(origin: ODLocation, destination: ODLocation,
mode: UserMode, demand: double): void

+ getDemand(origin: ODLocation, destination: ODLocation,
mode: UserMode): double

Figure A.11: Class diagram (excerpt) for TrafficGenerator.

The implementation of tra�c demand in MODIS utilizes the MultiKeyMap class from

the Apache Commons Collections framework11 in several places. This class provides

11See https://commons.apache.org/proper/commons-collections/ for details.

https://commons.apache.org/proper/commons-collections/
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mappings from combinations of more than one key to single values. For example, a

matrix can be modeled using MultiKeyMaps by using exactly two keys per value, where

each key corresponds to either a row or a column of the matrix.

In the MODIS framework, the demand is stored in an object of the class ODMatrix,

which is known to the tra�c generator as its attribute odMatrix. Within this class, there

is a nested MultiKeyMap that maps OD pairs to a EnumMap<UserMode, Double>. The

nested EnumMap contains the actual demand (measured in road users per hour) for each

user mode. The methods ODMatrix.setDemand() and ODMatrix.getDemand() allow to

interact with the content of the OD matrix, without having to directly access this nested

map structure.

Furthermore, headway distributions for each OD pair are stored in the tra�c gen-

erator in TrafficGenerator.headwayDistributions using the same logic as for the

scalar demand. Headway refers to the duration between the generation of two successive

road users of the same OD-relation. This duration may be deterministic or random;

currently, a constant value, a uniform distribution, or an exponential distribution are

supported. These distributions are implemented such that their expectation equals the

desired demand. Other probability distributions can easily be added by implementing

the interface HeadwayDistribution speci�ed in TrafficGenerator. When the tra�c

generator is initialized or a new demand is added, the next generation time point for

each OD relation is calculated by sampling the headway distribution and stored in the

TrafficGenerator.nextGenerationTimes attribute. Optionally, a pre-de�ned trajec-

tory can be stored in TrafficGenerator.manualTrajectories for each OD pair. If no

manual trajectory is present for an OD pair, the route search is used as described in

Section A.3.2.2.

To avoid having to directly deal with these nested map structures, there are two

implementations of TrafficGenerator.addDemand() methods with di�erent signatures:

The simpler one requires origin and destination of a relation as well as the respective user

mode and the (scalar) demand as road users per hour. The second one takes the headway

distribution as well as a manual trajectory as additional arguments (see operations block

of class Tra�cGenerator in Figure A.11). The �rst one initializes the manual trajectory

as null and the headway as a constant value.

The method TrafficGenerator.generateTraffic() �nally generates the actual road

users. It has to be called by the controller, which supplies the current simulation time.

Internally, the tra�c generator creates a road user for each OD pair where the accord-

ing entry in TrafficGenerator.nextGenerationTimes is less or equal to the current

simulation time.

Listing A.6 shows an excerpt of a Simulation Properties xml �le where parameters for

the tra�c generator are speci�ed. This is a slight modi�cation of the example already

presented in Section A.2.1.2. Instead of a single pedestrian, pedestrians are generated

endlessly in this example, with an exponentially distributed headway with an expectation
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of 200 pedestrians per hour.

Listing A.6: Specifying periodically generated pedestrians in a Simulation Properties

File.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <properties schemaVersion="1.4">

3 ...

4 <odLocations>

5 <odLocation id="0">

6 <polyline>

7 <point>

8 <x>10.112</x>

9 <y>4.621</y>

10 </point>

11 </polyline>

12 </odLocation>

13 <odLocation id="0">

14 <polyline>

15 <point>

16 <x>7.165</x>

17 <y>12.442</y>

18 </point>

19 </polyline>

20 <demand>

21 <dest_id>1</dest_id>

22 <user_mode>Pedestrian</user_mode>

23 <demand_per_mode>200.0</demand_per_mode>

24 <distribution>Exponential<distribution>

25 </demand>

26 </odLocation>

27 </odLocations>

28 </properties>

An important syntactical di�erence becomes apparent: For a single road user, it is not

necessary to explicitly specify an <odLocation> element for the starting coordinate. In

contrast, generated tra�c requires this, since the <demand> element has to be speci�ed

as a child of the <odLocation> element of the origin.

Remark on the Choice of MultiKeyMaps to Implement OD Matrices. In the

�eld of tra�c demand modeling, data are often represented using matrices12. In its

12See, for example, Patriksson (2015) for a general treatment of the tra�c assignment problem and
Bera & Rao (2011) for an overview on estimating the OD-matrix from empirical data.
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simplest form, the entries of an OD matrix are scalar values representing tra�c demand,

usually measured in road users per time span. Here, rows and columns of the matrix

relate to origins or destinations.

Depending on the modeled road network, the resulting matrix may be sparse or densely

populated. Considering, e.g., a simple highway network, there are few origins and desti-

nations in contrast to the geographical size covered by the network. For such networks,

demand exists between most of the possible combinations. Technically, the correspond-

ing OD matrix can simply be implemented as a two dimensional array of �oating point

values, with an additional mapping between array indices and origins or destinations.

However, typical MODIS scenarios deviate from this example: Here, we may have

many origins and destinations (which are modeled using the class ODLocation, as de-

scribed earlier), some on the road, some on the sidewalk, etc. Yet, for most of the possible

OD relations, there is no tra�c demand (e.g., no demand between road and sidewalk).

This results in a large but sparse matrix. Using methodology from numerical mathe-

matics, it would be feasible to implement the OD matrix e�ciently as a two dimensional

array. But considering that we store not only the actual demand but rather a number

of encapsulated objects (demand, headway distribution, optional �xed trajectory, next

generation time), the MultiKeyMap is more appropriate.

A.3.2.2 Route Search

This section describes the route search for a road user. According to the previous sec-

tion, there are three slightly di�erent cases how road users are generated in a MODIS

simulation:

� Single road users with in_time = 0, i.e., they are generated before the �rst time

step,

� Single road users with in_time > 0, i.e., they are generated during the simulation,

� Generated road users which are created by the tra�c generator during the simu-

lation.

At a �xed time step, both currently active road users (i.e., their in_time is less than or

equal to the current time and they have not reached their destination yet) and newly

generated road users are contained in ModisController.usersInScenario.

All current, past, and future road users (if already known) are stored in TrafficNet-

.users. A tra�c user is always added to the tra�c net by calling the method Traffic-

Net.addUser(), while its actual creation may vary depending on the three cases above

(i.e., the place where the constructor of the respective subclass of User is called).

Overview of the Route Search Implementation. Successfully adding a new road

user to the tra�c net with TrafficNet.addUser() also calls the method TrafficNet.-

defineUserStartOrientation(). As its name suggests, this method mainly calculates
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the body orientation of a user who has not moved yet. For this operation, a free-�ow

trajectory is necessary, i.e., a desired trajectory that a road user will follow if there are

no con�icts. The method checks if there is an optional pre-de�ned free-�ow trajectory

� otherwise (which is the usual case) it triggers the calculation which is implemented

in the class TrajectoryBuilder. This class is known to the tra�c net as its attribute

TrafficNet.trajectoryBuilder and is initialized during initialization of the tra�c net.

It is a key modeling innovation of MODIS that road users can navigate from their

current position towards their destination without pre-de�ned lanes. The computation

of a realistic and smooth free-�ow trajectory is separated into two major steps:

� First, a shortest path from the current position of a road user to their destination

is determined. The computation relies on building a so-called navigation graph

and performing a shortest path search on the graph.

� Second, the shortest path is transformed into a trajectory.

Both steps are discussed in the following paragraphs.

Building the Navigation Graph and Finding the Shortest Path. The compu-

tation of the shortest path from current position to destination is treated as a graph-

theoretic problem. For this a navigation graph13 is determined, as it is commonly used

in the �eld of pedestrian simulation (see, e.g., Höcker et al. (2010)). Given a graph-

based representation, suitable algorithms can be used to �nd a shortest path. More

precisely, the following steps are executed and exemplarily visualized in Figure A.12 for

the �DocumentationDemoScenario�.

� Static Navigation Graph. An initial graph is computed using only the geometry

of the tra�c scenario. It is built by adding edges from all vertices of the polygonally

shaped regions to all respectively reachable14 vertices. The result is called the static

navigation graph; it is constant over time and only depends on the tra�c mode.

Thus, it is only calculated once in the beginning of a simulation. Examples are

shown in Figure A.12a for pedestrians (which cannot enter the road on the left

side) and in Figure A.12b for motorists (which cannot enter the sidewalk).

� Dynamic Navigation Graph. For a �xed road user, the current position and

the destination are added as two additional vertices to the static navigation graph.

Again, edges are added for all reachable vertices. The result is called the dynamic

navigation graph for the road user under consideration, which changes over time

13The concept originates from the �visibility graph� developed in the �eld of robotics (see De Berg et al.
(2000)) for navigating through an environment with polygonally shaped obstacles. Here, �visibility�
is interpreted as reachibility, whereas visibility is more generally discussed in terms of a perception
model in Section A.3.3.3.

14A point is reachable from a given point if the direct connection does not intersect with any obstacle.
It is clear that reachability is a symmetric relation, and this is also true for the corresponding graph.
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as it depends on the current position. In Figure A.12c this is illustrated for a

motorist: The current position is colored red, the destination is green, and newly

added edges are highlighted in yellow.

� Shortest Path. Based on the dynamic navigation graph, a search for the shortest

path from the current position to the destination is performed using the classical

A* algorithm (see Hart, Nilsson & Raphael (1968)). The result is a directed path

W de�ned as a tuple of vertices, say

W = (w1, . . . ,wi, . . . ,wn) , (A.3.1)

which links the current position w1 to the destination wn via n− 1 edges.

(a) Static navigation graph
for pedestrians.

(b) Static navigation graph
for motorists.

(c) Dynamic navigation
graph for a motorist.

Figure A.12: Example for routing through polygonally shaped obstacles using a naviga-
tion graph.

Computing a Clothoid Trajectory. The path W does yet not resemble realistic

behavior for two reasons: First, it lies on the boundary of tra�c regions. Since the path

is intended to model the movement of the center of a road user, movement along W

would imply contact with obstacles. Second, it is not smooth but makes sharp turns15.

Moreover, it is not yet a trajectory, i.e., not time-dependent.

In the following, let xdes
i (t) denote the desired trajectory of road user i. The modeling

assumption is that a road user will follow their desired trajectory in the absence of

con�icts with other road users. To obtain xdes
i (t) from the previously calculated path

W , the following steps are executed:

� General Clothoid Computation. Smooth curves commonly used in tra�c en-

gineering are clothoids (see, e.g., Meek & Walton (2004) and references therein).

15Empirical observations (see Pascucci (2020)) indicate that road users prefer smoother trajectories
regardless of the tra�c type.
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These have di�erent desirable properties from an engineering point of view and are

parametrized by their arc length.

MODIS replaces each edge of the pathW by a single clothoid segment and connects

the individual segments while maintaining C1 smoothness. For this purpose, the

algorithm proposed by Bertolazzi & Frego (2015) is implemented. It numerically

computes a discretized clothoid and requires start point, end point, and tangent

slopes at these points. The algorithm is sequentially evaluated for each path seg-

ment. More details can be found in Timmermann (2022).

� Position Adjustment. The trajectory still needs to be moved away from the

boundary. For this purpose, all nodes are moved away from the obstacle edge

by half their body width plus an individual obstacle distance orthogonal to the

tangent. Now the clothoid sections can be determined and assembled to form the

complete trajectory, as previsoyly described.

The described procedure yields a parametrized curve in x-y-coordinates. Clothoids

have the essential feature that they are parameterized by their arc length s. By asserting

a time relation s = s(t), a (one-dimensional) motion along the curve is obtained, which

can contain arbitrary accelerations (see also Section A.3.3.2 for more details on the

acceleration). This �nally yields the time-dependent trajectory xdes
i (t).

Preference Rates. An empirical observation at multimodal intersections is that cy-

clists use the sidewalk in some situations, while they most often stay on the road. To

model such partial use of a tra�c region, MODIS provides the concept of preference

rates: Edges in less preferred regions are formally penalized when calculating the short-

est path. The resulting �shortest path� is de�ected from these regions. The concept is

implemented as follows:

� Each tra�c region of a scenario is assigned a preference rate between 0.0 and 1.0

for each allowed user mode. If no preference rate is speci�ed, the default value 1.0

is used. Note that a value of 0.0 is equivalent to the tra�c region not being allowed

for that user mode.

� Each edge of the navigation graph is assigned the lowest preference rate of all tra�c

areas that the edge traverses.

� When computing the shortest path, edge lengths are arti�cially increased by di-

viding the actual edge length by the preference rate (e.g., a preference rate of 0.5

corresponds to a doubling of the length).

Listing A.7 shows a modi�ed excerpt of the method initTrafficNet() introduced

in Listing A.5 to de�ne the tra�c net of the demo scenario. Here, the tra�c region

sidewalk is assigned a preference rate of 1.0 for pedestrians and 0.5 for cyclists.



164 Microscopic Tra�c Simulations with the MODIS Framework

Listing A.7: A tra�c region using preference rates.

1 ...

2 TrafficRegion sidewalk = new TrafficRegion(sidewalkPoly);

3 sidewalk.allowUserMode(UserMode.Pedestrian);

4 sidewalk.allowUserMode(UserMode.Cyclist, 0.5);

5 sidewalk.material = SurfaceMaterial.pavement;

6 sidewalk.function = Function.FOOTPATH;

7 sidewalk.name = "Sidewalk";

8 ...

The result of this adjustment can be illustrated in a small example. Figure A.13a

shows the navigation graph for cyclists for the DocumentationDemoScenario. The edges

highlighted in orange are a�ected by the preference rate speci�ed in line 4 of Listing

A.7. Figure A.13b shows: a right-turning cyclist would cross the gray sidewalk if all

preference rates for the entire scenario were set to 1.0 (or any constant value). If the

preference rates for the sidewalk are set to 0.5, the new �shortest path� is to stay on the

road, as shown in Figure A.13c.

(a) Navigation graph for cy-
clists.

(b) All preference rates 1.0. (c) Preference rates of orange
edges set to 0.5.

Figure A.13: Comparison of navigation graph and shortest path with and without pref-
erence rates.

Lanes. As brie�y mentioned earlier, the MODIS framework also provides the option

to specify lanes. This is mainly motivated by two factors:

� Compatibility. File formats such as OpenDrive, which can be used to import

a scenario into MODIS, rely on lanes to describe the geometry of a scenario. An

important feature of lanes is that they usually limit the direction of movement for

the underlying tra�c area. This cannot be modeled if only undirected tra�c areas

are used without separate consideration of lanes.

� Behavior. Some of the observed behavior patterns are closely related to the fact

that road users are used to driving lanes. One example is the tendency to move
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to the right side of a tra�c area. Although it would theoretically be possible to

incorporate such behavior into other parts of the model, i.e., in the case of the

right-turn tendency, into the free-�ow model, a lane model is the more intuitive

choice.

The central goal for the design of the MODIS lane model was a full integration into the

existing navigation graph. This has the advantage that subsequent parts of the model,

such as decision or reaction, are not forced to di�erentiate between situations with or

without lanes (whereas such a di�erentiation is still possible if needed). To ful�l this

requirement, lanes are simply added to the navigation graph as directed edges (so far,

all considered edges in the graph were undirected). The nodes and edges describing a

lane have to be speci�ed in the scenario description.

In a similar fashion to the generation of the static navigation graph around obstacles

(as described above or in more detail in Pascucci et al. (2015) or Timmermann (2022)),

nodes of the lanes are automatically connected to the closest vertices of the surround-

ing polygonal boundaries or the closest other lane nodes. This way, it is ensured that

undirected lanes do not cross a lane which would defy their purpose.

The following example demonstrates how to add lanes to the speci�cation of Documen-

tationDemoScenario and brie�y shows the impact using a simple situation. We consider

a car starting at the upper right corner with the intention to turn left. The navigation

graph for motorists without lanes was already shown in Figure A.12b. Using this nav-

igation graph, the route search algorithm will choose the shortest possible path, thus

cutting the inner curve (see Figure A.14a).

(a) Free-�ow trajectory with-
out lanes.

(b) Navigation graph with
lanes.

(c) Free-�ow trajectory with
lanes.

Figure A.14: Comparison of navigation graph and resulting free-�ow trajectories with
and without lanes. Lane edges painted in dark blue, lane nodes in light blue,
undirected edges in aqua, free-�ow trajectory in green, and the underlying
shortest path in purple.

For this example, lane edges are added in two places. The example demonstrates the

two methods to add lane edges. Both methods require a Lanes object, which is later

added to the TrafficRegion. The �rst option, as shown in lines 7�8 of Listing A.8, is
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to add a single directed edge speci�ed by two LanePoints. The resulting lane edge is

visible in the left part of Figure A.14b. The second option (lines 16�20) is to add a list

of coordinates describing continuous edges16.

Listing A.8: Extending DocumentationDemoScenario.initTra�cNet().

1 ...

2 // Define traffic regions

3 TrafficRegion roadStraight = new TrafficRegion(roadStraightPoly);

4 ...

5

6 Lanes lanesRoadStraight = new Lanes(roadStraight);

7 lanesRoadStraight.addDirectedEdge(new LanePoint2D(1.6, 8.0),

8 new LanePoint2D(1.2, 3.0));

9 roadStraight.addLanesForMode(UserMode.Motorist, lanesRoadStraight);

10 ...

11

12 TrafficRegion roadRightTurn = new TrafficRegion(roadRightTurnPoly);

13 ...

14

15 Lanes lanes = new Lanes(roadRightTurn);

16 ArrayList<Point2D> directedLane = new ArrayList<>();

17 directedLane.add(new Point2D(11.0,13.5));

18 directedLane.add(new Point2D(8.5,13.5));

19 directedLane.add(new Point2D(5.5,12.5));

20 lanes.addDirectedLane(directedLane);

21 roadRightTurn.addLanesForMode(UserMode.Motorist, lanes);

22

23 // Add traffic regions to traffic net

24 this.net.addRegion(roadStraight);

25 ...

26 }

A.3.3 One Simulation Time Step

A sequence of many di�erent calculations is executed for each time step. This is con-

trolled by the method runStep() of ModisController and its content is shown in Listing

A.9.

Listing A.9: ModisController.runStep().

16Note that the demonstrated modi�ed navigation graph is not suitable for practical purposes. A car
intending to turn right would not �nd a path without specifying an additional lane for that relation.
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1 protected void runStep() {

2

3 // remove all forces from the previous time step

4 for (User u : usersInScenario) {

5 u.clearForces();

6 }

7

8 // Update orientation of the traffic users according to the

9 // direction of movement within the last time step (moving the

10 // users has only an effect on the users position but not their

11 // orientation)

12 this.orientate();

13

14 // Compute all the driving forces for the users, which do not

15 // depend on conflicts, etc.

16 this.computeDrivingForces();

17

18 // update the perception of the users

19 this.updatePerceivedUsers();

20

21 // Risk assesment, if enabled

22 this.calculateRisk();

23

24 // MODIS extensions to the classical social force model:

25 // Classify the situation for each user active user

26 // The classification of the situation includes two steps:

27 // 1. detect conflicts

28 // 2. classify conflicts

29 this.detectConflicts();

30

31 // Evaluate detected conflicts in respect to traffic rules

32 this.checkTrafficRules();

33

34 // Classify the current situation

35 this.classifySituation();

36 this.adaptUserStatusToClassification();

37

38 // determine the behavior (like aggressive, defensive,

39 // do-nothing) for each user in a conflict situation

40 this.decide();
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41

42 // calculates the influence of traffic lights

43 this.handleTrafficLights();

44

45 // React on conflicts based on the situation classification and

46 // the determined behavior. The reaction implies additional

47 // forces for the conflicting users or the recalculation of the

48 // trajectory

49 this.react();

50

51 // adapt the desired speed of the motor vehicles according to

52 // the properties of the traffic region

53 this.setDesiredSpeed();

54

55 // move the users according to the determined forces

56 // in other words: solve the equations by time integration

57 // scheme

58 this.move();

59

60 // check, whether collisions occurred after moving the users

61 this.checkForCollisions();

62

63 // generate new users according to:

64 // - the traffic generator for periodically generated users

65 // - single users whose in_time is below current time step

66 // for the first time

67 // activate the generated users and add them to the simulation

68 this.enterUsersIntoScenario();

69

70 // actually, the evaluate method is used for some postprocessing

71 // - record the walked trajectory (stored for each user)

72 // - record the history in field stat (ModisStatistics)

73 // - update stops for public transportation systems, and do some

74 // settings for passengers

75 this.evaluate();

76

77 // automatic rerouting (not as an reaction, but as an correction)

78 this.automaticRerouting();

79

80 // update current simulation time
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81 super.stat.t += super.stat.dt;

82 super.stat.nt++;

83 }

Most of the methods called in ModisController.runStep() iterate over all road users

currently in the system. This means that parallelization can be easily achieved in each

of these methods. In many of the methods, a generic interface is used. The following

subsections explain the most important of the methods called here and, where applicable,

the interfaces used. A more abstract representation of the simulation logic in a simulation

time step is shown in Figure A.15.

A.3.3.1 Orientation

In the x-y-plane, the body orientation of a road user is the current tangent to the curve de-

�ned by the desired trajectory. At the beginning of a time step, ModisController.orien-

tate() computes the road user's body orientation according to the movement from the

previous time step. Edge cases without previous movement are also handled. The cor-

rect body orientation is important for several direction-dependent operations later in the

time step, especially when determining the �eld of view for the perception model.

A.3.3.2 Driving Forces

Recall that the MODIS framework extends the dynamics of the Social Force Model: The

overall approach is maintained that the movement of road users is governed by an impulse

(or driving term) as well as repellent forces from other road users and obstacles. This

general idea manifests in the interface DynamicsModel, which speci�es three methods

for calculating the three forces. ModisController.computeDrivingForces() calls the

method for computing the driving term for each road user in the system. Note that

the implementation of DynamicsModel originates from the work of Höcker (2010) and

is called SFMHoecker. While the di�erent reaction mechanisms are presented in Section

A.3.3.6, the following paragraph describes the driving term.

Implementation of the Driving Term. In the absence of other con�icts, the driving

term is responsible for any motion. It is a two-dimensional force that makes a road user

move towards their destination while accelerating to a desired velocity along the path.

Common formulations of the Social Force Model include a driving term fSFM
i (t) that

points from the current position of the road user i towards their destination.

A core paradim of MODIS consists in splitting the driving term fSFM
i (t) into a tan-

gential f ‖i (t) and a radial part f ⊥i (t), i.e.,

fSFM
i (t) = f

‖
i (t) + f ⊥i (t).

With this approach, the tangential part is exclusively responsible for regulating the
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User enters Scenario

Route Search

Free-Flow Trajectory xdes
i (t)

Start Time Step

Perception

Observed Points

Trajectory Extrapolation

Predicted Trajectory xpre
i,j (t)

Con�ict Detection

Con�ict detected?

Con�ict Classi�cation

Con�ict Classi�cation

Decision

Con�ict Solving Strategy

Reaction

Reaction Mechanism Movement

Figure A.15: Flow chart for one simulation time step.
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absolute value of the velocity and makes the vehicle accelerate to a desired speed v0
i ,

while the radial part controls that the vehicle moves along the desired path from the

desired trajectory xdes
i (t).

� Tangential Term. The calculation depends on the situation and the respective

tra�c mode. For example, depending on the situation, the tangential component

for motor vehicles can be calculated by a car-following model or by decelerating

towards a braking a point (see also Section A.3.3.6).

� Radial Term. The radial component ensures compliance with the desired tra-

jectory xdes
i (t). It acts as a centripetal force that is perpendicular to the current

direction of motion, pointing towards the center of the osculating circle of the

curve. Its absolute value depends on the absolute value of the velocity |vi(t)| and
the curvature κi(t) of the trajectory (for a clothoid, the curvature at each point of

the curve is known). More precisely, assuming unit mass, it holds

|f ⊥i (t)| = |vi(t)|2κi(t).

The radial force f ⊥i (t) has a second modeling role in MODIS, as it can be limited.

The consequence is that road users cannot follow arbitrarily tight curve radii. The

particular lower limit depends on the respective tra�c mode (e.g., it exists for cars

but not for pedestrians). Furthermore, the (predicted) radial force of a planned

trajectory can be taken into account when determining an evasive trajectory (see

also Section A.3.3.6).

A.3.3.3 Perception

Perception refers to the road user's ability to detect other road users within an area

around the current position (the currently perceived area). It is implemented in Modis-

Controller.updatePerceivedUsers() and uses the interface PerceptionModel. This

partly di�ers from SFM dynamics where another user is perceived if they have some

form of in�uence (see, e.g., Yang et al. (2014) for more details).

Perceived Area. In MODIS, the area that is perceived by a road user i is modeled as

a circle segment which depends on the current position of the road user and their body

orientation. More precisely, the circle segment is characterized by its center located in

the point of view ppi of the road user17, the perception radius rp, and the �eld of view

angle φp (centered around the body orientation). Note that, for simplicity, road users are

fully perceived if they are only partially located within the perceived area. This general

perception model is extended by introducing a visual height of objects and road users.

17The exact location of the point of view relative to the road user's body dimensions depends on the
tra�c mode and its implementation.
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Figure A.16: Illustration of the perception model.

Illustration. The concept is illustrated in Figure A.16 where the perceived area is

highlighted in blue. Note that parts of the perceived area may be obscured by obstacles.

In the example shown, road user V1 is perceived by i, while V2 is obscured and thus not

perceived by i.

However, if visual height is taken into account (e.g., V2 is higher than the obstacle),

V2 may be visible. The implementation of such a modeling of occluded perception

considering static and dynamic obstacles is discussed by Meier (2019).

A.3.3.4 Con�ict Detection and Situation Classi�cation

In the MODIS framework, con�ict detection and situation classi�cation is based on

predicting road users' movements within the perceived area. This is implemented in the

method ModisController.detectConflicts(), which uses the interface ConflictAlgo-

rithm. The class LoopConflictDetection is used for prediction: It is an implementation

of ConflictAlgorithm that uses Lagrange polynomials to extrapolate trajectories.

Movement Prediction. Another core ingredient of MODIS is the prediction of other

vehicles' trajectories: If another road user j is within the perceived area of road user

i, i tries to anticipate their behavior by observing j. Discrete-time observed positions

pj(tk) are extrapolated spatially and temporally to predict the evolution of j's trajectory.

This prediction, however, is not meant to be as accurate as possible. It is intended to

represent the perception of humans who, in reality, also need time to detect changes in

direction or speed. It can be regarded as a feature of MODIS' prediction model that

some situations also lead to unrecognized or falsely detected con�icts.

Lagrange Polynomials. In geometric modeling, a variety of methods is available for

the extrapolation of a trajectory from discrete support points. MODIS uses Lagrange

polynomials for this purpose18.

18Basic material on Lagrange polynomials can be found in the literature, e.g., Hoschek & Lasser (1992),
Farin (1994). Their speci�c application in MODIS is also presented in Timmermann (2022, Section
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Based on the Lagrange polynomials for spatio-temporal extrapolation of motions, the

time-dependent predicted trajectory xpre
i,j (t) for the road user j (as predicted by i) is

given by

xpre
i,j (t) =

n∑

k=0

pj(tk)L
n
k(t), (A.3.2)

where pj(tk) is the observed position of x
pre
i,j (t) at time tk and Lnk(t) is the k-th Lagrange

polynomial of degree n19.

Data Set Reduction. The number of observation points is typically larger than n+1

which are required for the Lagrange extrapolation. To reduce the data set, the Ramer-

Douglas-Peucker algorithm (RDP) (see Ramer (1972)) is implemented. This algorithm

originates from the �elds of computer graphics and cartography and is used to simplify

polygonal curves while preserving their rough shape.

The RDP algorithm requires a tolerance criterion ε > 0 as its sole input parameter. It

connects all observed points to form a polygon curve and eliminates those which do not

exceed a distance of ε from the new polygon curve if removed from the data set. More

details can be found in Timmermann (2022).

If after the reduction by the RDP algorithm a larger number of points is available than

the maximum curve degree n allows, only the most recent n + 1 points are considered

and the remaining points are discarded for the extrapolation. From these the anticipated

trajectory xpre
i,j (t) is calculated according to (A.3.2).

Con�ict Detection. Based on the predicted trajectories, the road user i detects po-

tential con�icts with other perceived road users. For this purpose, the time interval

[tn; tn + tchor] is considered, where tn is the last observation time (which usually corre-

sponds to the current simulation time t, unless the other road user is hidden at time

t, but was previously perceived) and tchor is the temporal horizon for con�ict detection.

In the above time interval, if the minimum distance between the desired trajectory of i

and the predicted trajectories of the other road users falls below a certain threshold, a

con�ict is detected.

Situation Classi�cation. As a next step, the current situation is classi�ed so that

each active user has both a situation classi�cation (stored in User.situation_Classi-

fication) and a user status (User.userStatus):

� User status is a value from the enum UserStatus. Possible values are listed and

4.2.2.).
19Note that higher degree Lagrangian polynomials tend to oscillate undesirably (see, e.g., Farin (1994)),

so the degree n must be small. Experiments have shown that a degree of n = 3 yields plausible
extrapolated trajectories for points observed each 0.5 s.



174 Microscopic Tra�c Simulations with the MODIS Framework

explained in Table A.220.

� Situation classi�cation is a value from the enum SituationClassification. Pos-

sible values are listed and explained in Table A.3.

User Status Description

FREE_FLOW User has not detected a con�ict with any other road user
and follows their desired trajectory.

SOLVING User has detected a con�ict with at least one other road user
and is actively solving it.

WAITING User purposely has a velocity of 0. Can imply SOLVING, but
not necessarily (e.g., when waiting at tra�c light).

NON_FREE_FLOW User has detected a con�ict with at least one other road user,
but is currently not actively solving it.

COLLISION Distance to another road user is 0 or less.
INACTIVE User with t_0 less than the current time (see Section

A.3.2.1).

Table A.2: Overview of possible values for user status.

Number of
Con�icts

Time to
Collision

Situation Classi-
�cation

Description

1 > tSR General: Mi_Mj,
e.g., PED_PED,
CYC_GROUP, . . .

Con�ict with exactly one other road
user

1 < nconf ≤ nmax General: Mi_Mjs,
e.g., PED_PEDs,
CYC_CARs, . . .

Con�ict with multiple road users of
the same tra�c mode

General: Mi_MULT,
e.g., PED_MULT,
CAR_MULT . . . ,

Con�ict with multiple road users of
multiple tra�c modes

> nmax CROWDED Situation involving too many road
users for sensible anticipatory be-
havior

irrelevant ≤ tSR SHORT_RANGE Ad hoc situation
0 - NO_CONF No con�ict
> 0 > 0 e.g., OTHER_LANE,

FOLLOWING

Situations in which a deliberate un-
dercutting of the safety distance can
be permitted, e.g., in the presence of
lanes. Determination based on fur-
ther criteria required.

Table A.3: Overview of situation classi�cations. Classi�cations printed in typewriter

font.

A.3.3.5 Decision

The modular structure of MODIS enables decision-making based on any criteria. The

decision level has the task of determining the strategy for the subsequent reaction in a

con�ict situation. A distinction is made between o�ensive, defensive, and (initially) no

20The status NON_FREE_FLOW is of technical nature: This may be the case if the time to con�ict is large
or if con�ict detection does not return a con�ict status due to a past reaction, but it is not guaranteed
that the con�ict will not occur again. In the latter case, the status must be explicitly terminated.
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reaction. At this stage, no directly visible change in behavior takes place. The decision

is implemented in the method ModisController.decide().

Pascucci et al. (2018) examine empirical data to determine parameters that drive

the choice of a strategy. Based thereon, a stochastic decision model is implemented

in MODIS for con�ict situations between pedestrians and motor vehicles. Speci�cally,

the signi�cant parameters are the predicted minimum distance to the con�icting road

user, the associated remaining time until the minimum distance, the predicted temporal

distance of arrival at the intersection of the trajectories, and the acceleration of the

pedestrian at the time of decision. Based on these four parameters, a logistic regression

model is formulated to determine individual probabilities for all strategies common to

each con�ict type21.

A.3.3.6 Reaction

MODIS speci�es the interface ReactionAlgorithm to implement reactions for con�ict

situations. This interface consists of only one method, namely ReactionAlgorithm.-

reactOnSituation(User user). As the name indicates, this method is intended to

compute a reaction appropriate to the current situation for a given road user. From a

general perspective, ModisController.react() iterates over all active users in the sys-

tem and for every user in a state of con�ict, ReactionAlgorithm.reactOnSituation()

is called.

Currently there are multiple implementations of this interface. The active one is

de�ned in ModisConfiguration, which in the default setting is the implementation

DecisionBasedReaction. Note that for some situations there are calls in between

di�erent implementations. The following implementations of ReactionAlgorithm are

available:

� DecisionBasedReaction: This implementation currently serves as the entry point

for reactions. It maps the decision taken in the decision step (see Section A.3.3.5)

to the corresponding reaction mechanism.

� MultiLayerReaction: Contains implementations of reaction mechanisms that solve

con�icts by modifying the desired trajectory.

� ForceBasedReaction: Implements all reaction mechanisms which involve addi-

tional forces.

� SFMBasedReaction: Here, the logic from the original SFM is implemented. It is

active when the long range reaction has not solved the con�ict or a con�ict is

detected too late (these are also referred to as ad hoc situations).

21Note that Pascucci et al. (2018) denote the three possible strategies Aggressive, Prudent, and No
Reaction. Moreover, they �nd that all three strategies are observed in PED_CAR con�icts, whereas
only defensive or no reactions occur in CAR_PED con�icts.
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� TrafficRuleBasedReaction: This can be understood as an intermediate layer:

In scenarios where tra�c rules are to be observed, it is checked whether right of

way applies in a given situation and then maps to the reaction mechanism that

implements appropriate behavior.

� SFMOnlyReaction: This ensures that only the classic SFM is used, resulting in

roughly unmodi�ed SFM (except for movement along trajectories). This imple-

mentation is not active in the default con�guration; it is intended for test or com-

parison purposes only.

Note that all long range reaction mechanisms that model anticipatory driving are

implemented either in MultiLayerReaction (reaction mechanisms based on trajectory

re-routing) or ForceBasedReaction (reaction mechanisms based on forces). In the fol-

lowing, we provide more details on these.

Reaction Mechanisms Based On Trajectory Re-Routing. MultiLayerReaction

contains reaction mechanisms that deliberately reroute the current desired trajectory in

order to solve a con�ict situation directly. In can be regarded as a one shot mecha-

nism that determines a new trajectory which has no con�ict with the other road users'

predicted trajectories.

This reaction mechanism requires predicted trajectories of con�icting road users. Based

thereon, a �xed point in a safe distance is determined. This point is additionally inserted

into the desired path W (see (A.3.1)); as before a desired trajectory is calculated from

this path (see A.3.2.2 for details). Note that, from a modeling perspective, no additional

reaction force is applied, but rather the driving term is modi�ed (see Section A.3.3.1)22.

This general idea of determining such a �xed point is implemented in two ways: The

trajectory can be adjusted spatially and temporally by re-routing through a safe point,

or only temporally by adding a waiting point. The following paragraphs highlight the

ideas, more details (in particular on the involved parametrizations) can be found in

Timmermann (2022).

� Re-Routing the Desired Trajectory Through a Safe Point. The cal-

culation of possible evasion points, as implemented for various user modes in

MultiLayerReaction, di�ers depending on the relative body angle of the con-

�icting users. For lateral con�icts, evasion points can be determined directly on

the predicted trajectory xpre
i,j (t). This is not possible for frontal and rear con�icts,

as this would not always guarantee su�cient distance. The di�erence is exempli�ed

in Figure A.17.

� Lateral Con�icts. Two evasion points are calculated based on the predicted

trajectory of the con�icting user and the con�ict point. Essentially, these are
22To avoid a collision caused by an incorrectly estimated �xed point, a successive re-evaluation of the

reaction is possible, but unlike force-based reactions, it is not mandatory.
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Figure A.17: Calculation of possible evasion points. Rearwards con�ict analogous to
frontal con�ict.

found by going forward or backward (for a speci�ed time23) on the predicted

trajectory.

� Frontal Con�icts. The above approach does not always solve frontal or rear-

wards con�icts. An alternative is implemented as shown schematically in

Figure A.17b for a frontal con�ict: Evasion points are simply calculated by

adding (or subtracting) a safe distance to (or from) the predicted con�ict

point, perpendicular to the direction of motion.

� Choosing an Evasion Point. The methods above require a road user to choose

between two possible evasion points (except in cases where the choice is further

constrained by the environment). Inspired from empirical observations of

cyclist behavior, MODIS takes the maximal centripetal acceleration required

to follow a possible evasion path as the decision criterion.

Speci�cally, MODIS assumes an individual maximum comfortable centripetal

acceleration for each user24. The following strategy uses this value to �nd

acceptable evasion trajectories and is already implemented in several Multi-

LayerReaction.reactOnCyc...()-methods:

* Calculate trajectories trough all evasion points.

* Calculate required maximum centripetal acceleration under the assump-

tion of free-�ow for each evasion trajectory candidate (this also means

that acceleration to the desired speed must be considered if the current

speed is lower).

* Select the evasion point associated with the lowest required centripetal

acceleration, if it does not exceed the maximum comfortable centripetal

acceleration.

23Such a parameterization as temporal distances entails a velocity dependence of the evasion distances.
This corresponds to the empirical observations, according to which in case of crossing trajectories,
road users tend to prefer evasion distances which grow with the predicted velocity of the con�icting
user.

24The current default values have been calibrated using sparse data and may be improved in the future.
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* If all required centripetal accelerations exceed the maximum comfortable

centripetal acceleration, calculate the deceleration required for maintain-

ing a comfortable centripetal acceleration and choose the evasion trajec-

tory with the least required deceleration.

� Adding a Waiting Point. While moving along the same path, a trajectory can

also be changed by a targeted braking maneuver. Here, the goal is to add a waiting

point, so that the con�icting road user may pass the con�ict point safely. This is

implemented in MultiLayerReaction.calculateSmoothDeceleration().

The waiting point, denoted by xstop in the following, can either be given by the

environment (e.g., road markings or change of surfaces) or estimated based on the

predicted trajectory xpre
i,j (t) and the safety distance dsi,j . An example of the waiting

point estimation is shown in Figure A.18.

si(s)

xpre
i,j (t)

j

i

dsi,j

dsi,j

xstop

dstop

xpassed

Figure A.18: Estimating a waiting point based on trajectory prediction.

In this example, the waiting point is determined by �rst estimating the crossing

point between the trajectories. Then, the body dimensions as well as the desired

safety distance dsi,j are projected back along the trajectory of i.

In the implementation of the targeted braking maneuver, a constant deceleration

is assumed. For the choice of this deceleration, two cases need to be distinguished:

(i) The predicted time until j passes is small enough that i only needs to decel-

erate, but not come to a complete stop. For this case, the required braking

acceleration is determined so that the desired distance can be maintained.

(ii) The predicted time until j passes is so long that i must decelerate to a com-

plete stop and, if necessary, wait for j to pass. For this case, the required

braking acceleration for a complete stop at the point xstop is determined.

The determined braking acceleration for the targeted braking maneuver is applied

by projecting it onto the tangential part of the driving term (see Section A.3.3.2).

The above case distinction is implemented by �rst calculating the constant braking



Microscopic Tra�c Simulations with the MODIS Framework 179

acceleration astop required to come to a complete stop from the current velocity vi
exactly at xstop. The corresponding required time span is computed and compared

to the predicted time needed for the con�icting road user to pass the con�ict

point. More details on the computation of the involved accelerations can be found

in Berkhahn et al. (2022).

Reaction Mechanisms Based On Forces. Originating from the SFM, vehicles move

through a given space due to forces. Next to the driving term (see Section A.3.3.1) which

makes a road user move along a desired trajectory, additional forces can be added to

perform evasive maneuvers. These are mathematically added to the driving term and can

be regarded as long range reaction forces that represent anticipatory driving (opposed

to short range reactions in, e.g., car-following models).

In ForceBasedReaction, four di�erent long range reaction forces are currently imple-

mented. Note that these forces are mostly suited to speci�c tra�c situations (mostly

pedestrians), i.e., not well suited for a general approach. While a long range reaction

force is active, the parallel component of the driving term is inactive. Otherwise, the

two approaches could cancel each other out, leading to a possible acceleration back to

the desired velocity. The four forces are:

� Safe Zone Force. This is a defensive reaction mechanism that is applied when

the following conditions are met:

� The tra�c user under consideration is a pedestrian who is in con�ict with a

less vulnerable tra�c mode (e.g., cyclist or car).

� The user is currently in a part of the tra�c area where the con�icting user

is not allowed to be (e.g., a sidewalk). This area is considered the user's safe

zone.

� The desired trajectory will lead the user out of the safe zone through a mixed

zone, where the impending con�ict is expected.

� The user decides to react defensively.

Empirical observations show that in such cases users tend to stay in the safe zone

until the con�ict is resolved, but still try to move as far as possible towards their

destination.

Therefore, the Safe Zone Force gradually de�ects the road user from the border

between safe and mixed zone. This leads to a movement parallel to this border

until the con�ict is solved. Depending on the location of the destination, waiting

at the border before entering the mixed zone can also occur.

� Defensive Long Range Reaction Force. This force can be understood as a

generalization of the Safe Zone Force. Instead of the border of a safe tra�c area,

a certain safe distance is kept from the predicted trajectory of the con�icting user.
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Thus, the restrictions regarding a speci�c zone as well as the combinations of tra�c

modes do not apply to the Defensive Long Range Reaction Force.

� O�ensive Long Range Reaction Force. This force also uses the predicted

trajectory of the con�icting tra�c user. Instead of moving parallel to it and letting

the other tra�c user pass, it is directed towards the predicted trajectory so that

the area around the con�ict point is left before the con�icting user approaches25.

� Trajectory-Based Evasion Force. This force models the behavior in con�ict

situations between pedestrians. It is often characterized by a simultaneous gradual

evasion by the involved road users. The simultaneous reaction leads to constantly

changing predictions; the force models a de�ection away from the vicinity of the

predicted con�ict point. With some restrictions, the trajectory-based evasion force

can also be applied to cyclists.

A more detailed description of the formulation of these forces and their interpretation

can be found in Timmermann (2022).

A.3.3.7 Moving the Road Users

The actual movement of a tra�c user is implemented in the method ModisController.-

move() which iterates over all tra�c users and determines the position and velocity at

the next time step in exactly one of the following ways:

� If an external trajectory is supplied (see also Section A.2.1.3), position and velocity

are determined from it.

� If the user is involved in a collision, it does not move, i.e., velocity and acceleration

are set to 0 so that the users remains at the same position.

� If none of the above applies, the movement is obtained via numerical integration

of the resulting acceleration.

The numerical integration is speci�ed in the interface NumIntegrationAlgorithm which

contains one method, namely NumIntegrationAlgorithm.move(user: User, dt: dou-

ble). This method updates position and velocity of a road user for the next time step.

By default, MODIS uses the two-step Adams�Bashforth method, a standard multistep

method for approximating the initial value ODE problem. Two-step in this context

means that the next position is calculated from the current position and velocity and that

of the previous time step. For this purpose, AdamsBashforth2OIntegration implements

the interface NumIntegrationAlgorithm; other numerical schemes can be implemented

in a similar way.

25It is only possible to solve a con�ict situation using this mechanism if there is enough time to cross
the predicted trajectory. Therefore, the decision model needs to take this into account.
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A.3.3.8 Evaluation and End of Time Step

The end of a time step is split into several methods: ModisController.checkForCol-

lisions(), ModisController.enterUsersIntoScenario(), ModisController.evalu-

ate() and ModisController.automaticRerouting(). These methods perform the fol-

lowing tasks:

Checking for Collisions. Caused by misperception, wrong decisions due to misjudge-

ment of the situation, or other reasons, the previous call of the move()-method can result

in collisions. A collision is de�ned as a situation where the distance between two road

users is equal to or less than 0. If that occurs, the following is executed:

� Collided road users are stopped immediately by setting their speed and acceleration

to zero.

� They are added to the controller's CollisionManager.

� The CollisionManager speci�es a time after which the collided users are removed

from the tra�c system. This time can be deterministic or random.

Add Scheduled Users to the Scenario. This method actually serves as a prepa-

ration for the next time step. ModisController.enterUsersIntoScenario() is called

to check if new road users want to enter the scenario. This can result from one of the

following two cases:

� There is at least one single road user in ModisController.usersNotInScenario()

whose in_time is smaller than the current time.

� The tra�c generator, i.e., the call of ModisController.tg.generateTraffic(cur-

rentTime) returns a non-empty set of road users.

Both types of road users are then added to ModisController.usersInScenario and

considered in the next time step.

Evaluating Arrival at Destinations. ModisController.evaluate() iterates over

all simulated road users, mainly checking if they reached their destination with the

previous movement.

Although not discussed in this chapter, the framework provides the option that road

users have more than one destination. This sequence of destinations is encapsulated in

an object described by the Trip class, as introduced by Diekmann & Schiermeyer (2018).

Originally motivated to model transportation of road users by other road users (such as

buses or trams), the trip concept was designed in a more general way: It allows the

representation of road users who take a break at a certain point and then continue the

trip to another destination.



182 Microscopic Tra�c Simulations with the MODIS Framework

Following this concept, each user's trip has at least one element and a user has a current

destination (i.e., the current trip element's destination) at any given time. Given this

context, the main purpose of ModisController.evaluate() can now be more clearly

de�ned as choosing the appropriate action upon arrival of a road user at their (interme-

diate) destination.

A road user arriving at their trip's last destination is immediately removed from the

system. This includes removal from ModisController.usersInScenario as well as from

all other road user's lists of perceived users, in order to avoid wrong detection of con�icts

with users that have already left the system. Behaviors for other types of destination,

such as stopping the road user's movement for resting or calculating a new trajectory

to enter another mode of transportation, are described in more detail in Diekmann &

Schiermeyer (2018).

Apart from road users that arrived at their last speci�ed destination, the CollisionMa-

nager is queried for collided users whose removal time is reached. These are subsequently

also removed from ModisController.usersInScenario.

Re-routing the Desired Trajectory. Caused by force-based reactions or numerical

inaccuracy during the move()-method (i.e., the numerical solving of the ODE), a road

user can leave their desired trajectory over the course of several simulation time steps.

As explained in Section A.3.3.2, the direction of the tangent at the closest point of the

desired trajectory majorly determines the movement. A small deviation from the desired

trajectory does not notably a�ect the simulation results and is therefore tolerated (up to

a certain threshold). As such, ModisController.automaticRerouting() iterates over

all simulated road users and checks the current distance to the desired trajectory. If

the distance exceeds the given threshold value26, a trajectory recalculation is triggered.

The rerouting algorithm follows the same principle as described in Section A.3.2.2; in

contrast to the initial route search, it uses only the remaining nodes of the path as well

as eventually calculated evasion points.

A.4 Exercise: Implementing a Custom Reaction

In this exercise, we will learn how to implement a custom response. For demonstration

purposes, we will use a simple behavior that is neither necessarily realistic nor guaranteed

to resolve a con�ict. The intended behavior is that any road user who detects a con�ict

will slow down with a certain probability. Since each user decides this independently, a

collision may occur if both users decide not to wait (it is also possible that both stop).

To implement this custom reaction, two main steps are required:

26The threshold value is set in ModisParameter.AUTOMATIC_REROUTING_DISTANCE_THRESHOLD. Depend-
ing on various factors such as the scenario or the tra�c modes involved, a sensible threshold value
was observed in the range between 0.5 and 1.5m.
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(i) Implement the Decision. When making a decision, each user randomly de-

cides whether to resolve the con�ict by slowing down (decision �defensive�) or not

(decision �no reaction�).

(ii) Implement the Reaction. The sole purpose of the reaction is to check whether

a user has decided to react defensively in the event of a con�ict. If this is the case,

a �xed negative acceleration is applied until a full stop is reached.

Finally, we need to activate our new decision and reaction implementations to be used

by the simulation.

A.4.1 Decision

We start by creating a new class that extends the abstract class DecisionAlgorithm:

Listing A.10: New decision class.

1 package modis.model.situation.decision;

2

3 import modis.control.ModisController;

4 import modis.model.traffic.User;

5

6 public class RandomWaitDecision extends DecisionAlgorithm {

7

8 double waitProbability = 0.5;

9

10 public RandomWaitDecision(ModisController controller) {

11 super(controller);

12 }

13

14 @Override

15 public void decideOnSituation(User user) { }

16 }

In addition to the necessary implementations given by the abstract parent class, we

introduce a double value to be used as the probability that a user will slow down.

Technically, this code is already compileable and can be used for simulation. However,

the simulated road users just do not show a reaction yet, because no decision is made. To

achieve this, we need to �ll the method decideOnSituation() with meaningful content:

Listing A.11: Extending decideOnSituation().

1 public void decideOnSituation(User user) {

2 if (user.situation_Classification == Classification.NO_CONF) {

3 return;
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4 }

5 ConflictBehaviourType behaviour = sampleRandomBehaviour();

6 user.decisionHistory.add(new Decision(behaviour, controller.stat.t,

7 user.conflictingUsersThisTimestep.size()));

8 }

9

10 private ConflictBehaviourType sampleRandomBehaviour() {

11 double r = Math.random();

12

13 if (r < waitProbability) {

14 return ConflictBehaviourType.Defensive;

15 }

16 return ConflictBehaviourType.None;

17 }

For clarity, we write the sampling of a random number in a separate method called

sampleRandomBehaviour(). Here, a uniform random number is sampled �rst. We com-

pare it with the reaction probability and return either ConflictBehaviourType.Defen-

sive or ConflictBehaviourType.None.

In our implementation of decideOnSituation(), we �rst make a check if the user is

actually in a state of con�ict. If this is not the case, we end the method without any

decision. Otherwise, we sample a decision by calling sampleRandomBehaviour(). To

make the decision available for the subsequent reaction, it needs to be encapsulated in

a Decision object, which is added to the road user's decision history. A decision object

needs three parameters: The actual ConflictBehaviourType, which we already chose,

the current time, which we can get from the ModisController, and the number of other

road users currently in con�ict with the current user.

This logic now works as a somewhat sensible input for implementing a reaction. Still,

we can make one simple improvement. The way decideOnSituation() is implemented

in Listing A.11, a user in a state of con�ict makes a new decision in each time step, which

means that the behaviour can change. To avoid this, we make the simple assumption

that once a decision has been taken, it does not change anymore, thus there is no need

to make a new decision once the user's decision history is non-empty:

Listing A.12: Improvement of decideOnSituation().

1 public void decideOnSituation(User user) {

2 if (user.situation_Classification == Classification.NO_CONF) {

3 return;

4 }

5 if (!user.decisionHistory.isEmpty()) {

6 return;
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7 }

8 ...

9 }

The full implementation of RandomWaitDecision.java is printed in Appendix A.5.4.

A.4.2 Reaction

Our custom reaction starts with a new class implementing the interface Reaction-

Algorithm:

Listing A.13: Implementing the interface ReactionAlgorithm.

1 package modis.model.situation.reaction;

2

3 import modis.control.ModisController;

4 import modis.model.traffic.User;

5

6 public class RandomWaitReaction implements ReactionAlgorithm {

7

8 double b = 1;

9 ModisController controller;

10

11 public RandomWaitReaction(ModisController controller) {

12 this.controller = controller;

13 }

14

15 @Override

16 public void reactOnSituation(User user) { }

17 }

Similarly to the decision, this is almost only the bare minimum required to make the

class compileable. Furthermore, we added a parameter b to model the deceleration a

user will perform. The implementation as it stands will not do anything yet, so let us

start by extending the reactOnSituation() method:

Listing A.14: Extending the reactOnSituation() method.

1 public void reactOnSituation(User user) {

2 if (user.situation_Classification == Classification.NO_CONF) {

3 return;

4 }

5 if (!user.decisionHistory.isEmpty() &&

6 user.decisionHistory.last().behaviour

7 == ConflictBehaviourType.Defensive) {
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8 // Here we will call the actual deceleration:

9 decelerate(user);

10 user.userStatus = UserStatus.SOLVING;

11 }

12 }

What is missing is the actual deceleration. We implement it in a separate method

decelerate(), which is called by reactOnSituation:

Listing A.15: New method decelerate().

1 private void decelerate(User user) {

2 User.Force reactionForce =

3 new User.Force(-b * user.e_b.x(), -b * user.e_b.y(),

4 ForceType.REACTION);

5 Reaction reaction = new Reaction(controller.stat.t,

6 Reaction.ReactionType.DECELERATION, reactionForce);

7 user.react(user.conflictingUsersThisTimestep.first().u_j, reaction);

8 }

First, we de�ne a reaction force which is the projection of the parameter b against the

body orientation of the road user. Then, we create a reaction object where we specify

the current time, the type of reaction and submit our reaction force.

The full implementation of RandomWaitReaction.java is printed in Appendix A.5.4.

A.4.3 Activate the Newly Implemented Behavior

The settings for all modularly designed algorithms of the framework can be found in the

ModisConfiguration class. To use our newly implemented classes as the standard deci-

sion and reaction algorithms, we have to change two lines in ModisConfiguration.re-

set(), where the initialization of the respective algorithms takes place:

Listing A.16: Activating our new algorithms in ModisCon�guration.reset().

1 public class ModisConfiguration {

2 ...

3 public void reset() {

4 ...

5 decisionAlgorithm = new RandomWaitDecision(controller);

6 reactionAlgorithm = new RandomWaitReaction(controller);

7 ...

8 }

9 }

Keep in mind that with this change all con�ict situations for all user modes are handled

in the same way. A more realistic approach would be to de�ne one implementation
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each for both decision and reaction as an entry point which then branches to di�erent

implementations to be able to handle di�erent types of con�ict. In the existing framework

this is performed in StatisticDecisionAlgorithm and MultiLayerReaction.

A.4.4 Where to Go from Here?

The new decision and reaction can be tested by creating a simple situation, e.g., two

crossing pedestrians. If one simulates the situation several times, it will become clear:

Even for seemingly simple situations like two crossing pedestrians, comparatively com-

plex reaction mechanisms are required to model a reasonably realistic behavior.

A.5 Appendix: Code Examples

A.5.1 Simulation Properties File

Listing A.17: Example simulation properties xml �le.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <properties schemaVersion="1.4">

3 <infrastructureID>Pockelsstrasse-Demo-Szenario</infrastructureID>

4 <seed>1671345436</seed>

5 <timeStep>0.1</timeStep>

6 <odLocations>

7 <odLocation id="0">

8 <polyline>

9 <point>

10 <x>28.285</x>

11 <y>26.78</y>

12 </point>

13 </polyline>

14 </odLocation>

15 </odLocations>

16 <users>

17 <user id="0" mode="Pedestrian">

18 <position>

19 <x>13.115</x>

20 <y>46.301</y>

21 </position>

22 <v_0>

23 <x>0.0</x>

24 <y>0.0</y>

25 </v_0>
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26 <v_max>

27 <value>1.34</value>

28 </v_max>

29 <perception_radius>30.0</perception_radius>

30 <phi_s>200.0</phi_s>

31 <in_time>0.0</in_time>

32 <dest_id>0</dest_id>

33 </user>

34 </users>

35 </properties>

A.5.2 Monte Carlo Properties File

Listing A.18: Example Monte Carlo properties xml �le.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <simulationRun>

3 <n_sim>10</n_sim>

4 <t_sim>600</t_sim>

5 <mean_removal_time>300</mean_removal_time>

6 <trafficGenerator>

7 <odRelation>

8 <source>0</source>

9 <dest>1</dest>

10 <demand>200</demand>

11 </odRelation>

12 </trafficGenerator>

13 <safetyDistance>5</safetyDistance>

14 <IDM>

15 <s0>2.0</s0>

16 <T>1.5</T>

17 <delta>4</delta>

18 <a_max>2.0</a_max>

19 <b_max>3.5</b_max>

20 <b_comf>1.67</b_comf>

21 </IDM>

22 <perception>

23 <distance>

24 <sigma>0.1</sigma>

25 <alpha>1.0</alpha>

26 </distance>

27 <own_velocity>
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28 <sigma>0.1</sigma>

29 <alpha>1.0</alpha>

30 </own_velocity>

31 </perception>

32 <simulationProperties>Unidirectional_2_km.xml</simulationProperties>

33 <outputDir>SimulationResults</outputDir>

34 </simulationRun>

A.5.3 Example ModisScenario

Listing A.19: DocumentationDemoScenario.java.

1 package demo;

2

3 import math.geom2d.Point2D;

4 import math.geom2d.polygon.SimplePolygon2D;

5 import modis.control.ModisScenario;

6 import modis.model.traffic.TrafficRegion;

7 import modis.model.traffic.UserMode;

8 import modis.model.traffic.infrastructure.Function;

9 import modis.model.traffic.infrastructure.SurfaceMaterial;

10

11 public class DocumentationDemoScenario extends ModisScenario {

12

13 @Override

14 public void initTrafficNet() {

15

16 // Define the polygonal areas of the Scenario

17 SimplePolygon2D roadStraightPoly = new SimplePolygon2D();

18 roadStraightPoly.addVertex(new Point2D(0, 0));

19 roadStraightPoly.addVertex(new Point2D(0, 15));

20 roadStraightPoly.addVertex(new Point2D(5, 15));

21 roadStraightPoly.addVertex(new Point2D(5, 0));

22

23 SimplePolygon2D sidewalkPoly = new SimplePolygon2D();

24 sidewalkPoly.addVertex(new Point2D(5, 0));

25 sidewalkPoly.addVertex(new Point2D(5, 5));

26 sidewalkPoly.addVertex(new Point2D(10, 10));

27 sidewalkPoly.addVertex(new Point2D(15, 10));

28 sidewalkPoly.addVertex(new Point2D(15, 0));

29

30 SimplePolygon2D roadRightTurnPoly = new SimplePolygon2D();
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31 roadRightTurnPoly.addVertex(new Point2D(5, 15));

32 roadRightTurnPoly.addVertex(new Point2D(15, 15));

33 roadRightTurnPoly.addVertex(new Point2D(15, 10));

34 roadRightTurnPoly.addVertex(new Point2D(10, 10));

35 roadRightTurnPoly.addVertex(new Point2D(5, 5));

36

37 // Define traffic regions

38 TrafficRegion roadStraight = new TrafficRegion(roadStraightPoly);

39 roadStraight.allowUserMode(UserMode.Motorist, UserMode.Cyclist);

40 roadStraight.material = SurfaceMaterial.light_asphalt;

41 roadStraight.function = Function.DRIVINGLANE;

42 roadStraight.name = "Straight Road Segment";

43

44 TrafficRegion sidewalk = new TrafficRegion(sidewalkPoly);

45 sidewalk.allowUserMode(UserMode.Pedestrian);

46 sidewalk.allowUserMode(UserMode.Cyclist, 0.5);

47 sidewalk.material = SurfaceMaterial.pavement;

48 sidewalk.function = Function.FOOTPATH;

49 sidewalk.name = "Sidewalk";

50

51 TrafficRegion roadRightTurn = new TrafficRegion(roadRightTurnPoly);

52 roadRightTurn.allowUserMode(UserMode.Motorist, UserMode.Cyclist,

53 UserMode.Pedestrian);

54 roadRightTurn.material = SurfaceMaterial.light_asphalt;

55 roadRightTurn.function = Function.DRIVINGLANE;

56 roadRightTurn.name = "Right Turn Road Segment";

57

58 // Add traffic regions to traffic net

59 this.net.addRegion(roadStraight);

60 this.net.addRegion(sidewalk);

61 this.net.addRegion(roadRightTurn);

62 }

63 }

A.5.4 Classes for Section A.4

Listing A.20: RandomWaitDecision.java.

1 package modis.model.situation.decision;

2

3 import modis.control.ModisController;

4 import modis.model.situation.Classification;
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5 import modis.model.situation.reaction.ConflictBehaviourType;

6 import modis.model.traffic.User;

7

8 public class RandomWaitDecision extends DecisionAlgorithm {

9

10 double waitProbability = 0.5;

11

12 public RandomWaitDecision(ModisController controller) {

13 super(controller);

14 }

15

16 @Override

17 public void decideOnSituation(User user) {

18 if (user.situation_Classification == Classification.NO_CONF) {

19 return;

20 }

21 if (!user.decisionHistory.isEmpty()) {

22 return;

23 }

24 ConflictBehaviourType behaviour = sampleRandomBehaviour();

25 user.decisionHistory.add(new Decision(behaviour,

26 controller.stat.t,

27 user.conflictingUsersThisTimestep.size()));

28 }

29

30 private ConflictBehaviourType sampleRandomBehaviour() {

31 double r = Math.random();

32

33 if (r < waitProbability) {

34 return ConflictBehaviourType.Defensive;

35 }

36 return ConflictBehaviourType.None;

37 }

38 }

Listing A.21: RandomWaitReaction.java.

1 package modis.model.situation.reaction;

2

3 import modis.control.ModisController;

4 import modis.model.dynamics.ForceType;
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5 import modis.model.situation.Classification;

6 import modis.model.traffic.User;

7 import modis.model.traffic.UserStatus;

8

9 public class RandomWaitReaction implements ReactionAlgorithm {

10

11 double b = 1;

12 ModisController controller;

13

14 public RandomWaitReaction(ModisController controller) {

15 this.controller = controller;

16 }

17

18 @Override

19 public void reactOnSituation(User user) {

20 if (user.situation_Classification == Classification.NO_CONF) {

21 return;

22 }

23 if (!user.decisionHistory.isEmpty()

24 && user.decisionHistory.last().behaviour

25 == ConflictBehaviourType.Defensive) {

26 decelerate(user);

27 user.userStatus = UserStatus.SOLVING;

28 }

29 }

30

31 private void decelerate(User user) {

32 User.Force reactionForce = new User.Force(-b * user.e_b.x(),

33 -b * user.e_b.y(), ForceType.REACTION);

34 Reaction reaction = new Reaction(controller.stat.t,

35 Reaction.ReactionType.DECELERATION, reactionForce);

36 user.react(user.conflictingUsersThisTimestep.first().u_j, reaction);

37 }

38 }
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We provide detailed tables that contain selected statistical functionals of the total loss

in our di�erent case studies. We evaluate

(i) Expectation. E(L),

(ii) Variance. Var(L) = E(L2)− E(L)2,

(iii) Skewness. ςL =
E[(L−E(L))3]
(Var(L))3/2 ,

(iv) Value-at-Risk. VaRp(L) = inf{x ∈ R : P (L ≤ x) ≥ p}, p = 0.9, 0.95, 0.99,

(v) Expected Shortfall. ESp(L) = 1
1−p

∫ 1
p VaRq(L) dq, p = 0.9, 0.95, 0.99.

These statistical functionals are presented for both unnormalized and normalized values

of L. In total, we provide 18 tables, as shown in the list of tables below: The �rst 9

tables contain the statistical functionals for unnormalized total losses while the second

9 tables contain the results for normalized total losses.

Remarks on the Normalization. Recall that we normalize total losses in order to

compare losses among �eet sizes ρΦ = 0.1, 0.5, 0.9. More precisely, we normalize L by

100 expected insured vehicles as follows:

� In the underlying SUMO scneario, the route �les specify a number of vehicles for

each �ow belonging to the �eet Φ.

� For each tra�c scenario k, we denote the sum of these values over all �ows by nk.

We interpret this as the total number of insured vehicles in tra�c scenario k. In

our case studies, nk takes two di�erent values corresponding to the good and bad

scenarios:

nk =




ng, k = 1, . . . , 50,

nb, k = 51, . . . , 100.

� We denote the total number of insured vehicles by nΦ. It is given by nΦ =∑K
k=1 µ

knk. Note that this number is random as µ is random.

� We evaluate the normalized total loss per 100 expected insured vehicles. According

to our speci�c choice of µ, it is given by

L
E(nΦ)

100

= 100 · L
∑K

k=1 n
kE(µk)

=
200

ng + nb
· L.
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Table B.1: Expectation of the total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 546.7 544.7 544.2 547.0 544.2 546.5 545.5 546.7 546.2 543.4 547.2 542.5
ξ1b 527.0 525.9 523.0 529.3 524.7 522.1 527.0 527.4 523.0 523.2 529.5 525.7
ξ2a 1381.6 1376.5 1374.0 1384.3 1369.3 1367.1 1376.9 1377.7 1376.7 1376.1 1379.5 1364.3
ξ2b 1399.7 1389.0 1380.1 1401.2 1387.2 1389.0 1395.5 1399.6 1392.0 1387.6 1394.9 1381.1
ξ3a 2023.2 2009.8 2028.8 2027.8 2012.6 2019.9 2022.0 2026.4 2022.8 2003.2 2019.8 2002.1
ξ3b 2168.9 2156.3 2148.7 2161.5 2144.3 2150.8 2163.1 2163.5 2158.5 2150.0 2164.1 2149.8

ρΦ = 0.5 :
ξ1a 2173.0 2169.6 2174.0 2172.5 2170.7 2172.0 2174.9 2175.4 2176.2 2170.8 2165.0 2169.4
ξ1b 2309.2 2312.7 2317.5 2310.9 2309.4 2311.8 2310.0 2314.6 2315.4 2309.9 2312.8 2308.5
ξ2a 5712.1 5731.1 5753.4 5706.9 5719.8 5708.2 5715.9 5719.9 5707.2 5727.0 5705.6 5728.6
ξ2b 7235.7 7258.7 7267.2 7260.1 7250.1 7281.1 7259.9 7262.6 7278.0 7246.7 7249.5 7243.4
ξ3a 10020.9 10043.5 10034.8 10034.3 10012.5 10034.7 10037.9 10045.6 10028.9 10040.4 10040.6 10047.3
ξ3b 13264.6 13275.8 13234.9 13271.4 13260.9 13277.3 13265.9 13272.4 13236.1 13251.3 13245.3 13241.8

ρΦ = 0.9 :
ξ1a 3125.0 3133.0 3123.5 3130.7 3131.0 3119.0 3124.1 3128.5 3121.5 3128.1 3134.5 3133.0
ξ1b 3772.7 3773.9 3768.3 3770.2 3778.0 3765.6 3778.6 3772.9 3770.4 3763.3 3773.1 3771.2
ξ2a 10054.8 10066.1 10034.4 10069.6 10080.3 10060.3 10068.0 10065.4 10059.5 10054.0 10072.5 10104.8
ξ2b 12538.0 12557.2 12527.5 12557.4 12545.2 12516.0 12554.5 12542.0 12552.6 12535.5 12555.9 12552.5
ξ3a 20601.5 20620.3 20511.0 20585.1 20600.1 20587.4 20609.0 20571.2 20549.9 20562.7 20602.3 20603.8
ξ3b 28596.4 28625.0 28470.8 28605.5 28633.4 28629.9 28595.0 28587.0 28595.0 28577.9 28647.2 28642.7

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 52.3 52.2 53.3 52.5 52.1 54.4 51.8 52.7 52.2 52.5 53.2 53.0
ξ1b 52.9 52.7 52.3 52.9 52.0 52.8 52.6 52.3 52.6 52.4 52.0 54.1
ξ2a 304.5 306.1 295.6 305.5 307.4 304.8 302.6 308.5 306.4 304.4 305.3 303.6
ξ2b 325.5 328.6 331.2 322.7 329.7 324.6 327.2 325.4 327.8 327.3 325.1 322.0
ξ3a 1003.9 1004.6 1006.5 1000.6 1010.8 1000.9 1003.4 993.5 1022.1 1006.5 1009.0 1008.5
ξ3b 1208.6 1207.7 1202.9 1215.7 1207.0 1212.8 1206.1 1209.5 1196.5 1208.0 1211.4 1222.5

ρΦ = 0.5 :
ξ1a 199.1 199.5 199.9 199.7 201.4 201.2 199.7 198.2 197.9 199.4 198.8 200.0
ξ1b 228.6 228.0 229.6 229.5 229.7 226.7 228.3 227.7 229.3 227.2 228.5 230.2
ξ2a 1577.8 1571.5 1578.4 1581.7 1576.2 1582.7 1579.1 1582.9 1583.0 1579.4 1579.2 1579.8
ξ2b 1928.8 1912.8 1914.6 1923.6 1917.7 1911.4 1914.0 1917.7 1937.8 1913.3 1922.2 1911.7
ξ3a 6946.2 6974.9 6913.7 6928.7 6937.4 6948.2 6945.0 6913.8 6942.0 6927.8 6943.6 6952.9
ξ3b 9311.7 9349.5 9349.8 9329.4 9359.3 9343.5 9340.0 9330.0 9359.0 9334.5 9326.2 9308.5

ρΦ = 0.9 :
ξ1a 335.7 335.2 335.6 335.0 335.1 333.7 334.7 334.7 334.3 337.0 336.5 334.9
ξ1b 381.3 383.4 383.5 381.6 380.3 383.4 381.2 382.8 380.9 383.4 382.4 382.2
ξ2a 2032.5 2020.2 2034.2 2030.7 2029.4 2040.2 2026.1 2022.3 2027.8 2025.6 2031.2 2035.6
ξ2b 2562.1 2553.8 2550.5 2559.7 2556.1 2553.7 2562.5 2556.9 2568.5 2556.3 2567.8 2558.7
ξ3a 12801.2 12825.5 12775.7 12795.2 12843.3 12815.3 12811.7 12808.1 12797.0 12818.1 12792.4 12772.1
ξ3b 15767.8 15782.4 15757.3 15747.8 15789.4 15787.4 15766.4 15759.1 15736.7 15769.6 15744.5 15806.1

The expectation of the total loss is approximated using 10, 000 independent samples of L.
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Table B.2: Variance of the total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 18893.7 27665.8 63330.2 18797.9 28026.1 65488.9 18277.8 28087.5 63245.1 19071.7 28092.0 62943.3
ξ1b 18087.2 26745.3 60657.5 18440.3 26108.7 61767.7 17887.3 26811.1 60802.6 17589.5 27311.8 61022.4
ξ2a 173375.0 258237.7 600842.9 173092.1 258920.4 598414.0 172120.9 262482.2 613084.4 173021.5 265451.8 582242.0
ξ2b 177214.8 265275.6 619897.7 178629.2 271430.9 631212.7 176634.1 272308.4 613676.7 174434.4 261582.3 590262.8
ξ3a 485013.5 694041.4 1621207.6 499592.9 727156.0 1579947.2 495801.3 724757.7 1672718.2 495659.6 710318.7 1536261.7
ξ3b 490118.8 722394.1 1688625.0 491584.1 734333.9 1711028.6 488696.3 721297.3 1687128.3 488968.6 752454.6 1606874.7

ρΦ = 0.5 :
ξ1a 121040.6 157007.0 323289.6 120936.5 166813.1 330798.2 122103.1 161366.7 326131.8 121952.2 160241.5 307114.2
ξ1b 181320.5 230611.6 464392.6 179740.3 236318.9 433770.2 181861.1 233756.7 466338.5 181687.0 239151.9 475013.2
ξ2a 960580.4 1331588.1 2810898.4 976795.7 1347996.6 2838794.5 953983.0 1324593.2 2730096.3 975379.6 1367343.2 2723201.3
ξ2b 1476836.9 1960914.4 3775938.1 1483347.2 1965754.2 3854527.9 1486437.1 1935028.3 3828259.5 1476619.6 1924502.1 3735207.0
ξ3a 2993260.8 4217438.8 8673871.0 3068922.2 4221409.4 8880079.8 3014765.5 4205157.8 8801550.9 3067141.8 4212840.4 8536435.4
ξ3b 4676662.8 6224116.1 12156646.2 4809676.1 6329363.3 12781771.6 4762692.2 6219709.2 12509905.8 4676895.4 6141764.0 12152976.1

ρΦ = 0.9 :
ξ1a 230663.3 292653.8 557213.5 230110.7 299753.8 550714.7 223713.1 296432.7 556156.1 225082.5 298376.0 550281.9
ξ1b 420227.2 514161.8 886441.8 419661.1 529744.0 890496.6 422378.1 506903.9 866223.8 410689.9 518008.1 838534.9
ξ2a 3617972.2 4254283.7 6785282.6 3627251.6 4245970.8 6861536.3 3575807.1 4150777.2 6806228.4 3548344.3 4209067.1 6990333.1
ξ2b 5148307.6 6076761.5 9320685.1 5301991.9 6039432.8 9419485.9 5157667.3 5835207.0 9384488.3 5055167.2 6010148.3 9398184.7
ξ3a 13071136.0 15680586.9 24022504.1 13409575.9 15713162.4 25030090.4 13116476.7 15264724.3 25281776.3 12989610.2 15290800.5 25353912.1
ξ3b 24501429.2 28291913.8 41813984.7 24611290.5 28767366.0 42224310.3 24362225.8 27467893.6 41963940.9 24379873.1 28203672.3 42459073.8

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 1438.0 2257.3 6100.2 1467.8 2237.1 6720.3 1440.0 2313.5 5776.6 1471.4 2425.6 5994.4
ξ1b 1463.3 2378.6 5994.7 1455.2 2321.9 5858.0 1505.6 2300.6 5844.3 1413.0 2318.5 6845.5
ξ2a 30953.2 49464.1 121528.1 31352.3 48965.0 109378.1 30342.7 49461.0 127032.7 30907.4 49753.9 111897.9
ξ2b 33419.3 53075.3 143017.0 32834.7 55200.1 116193.0 34025.5 54202.3 135611.7 32757.6 54546.8 121344.0
ξ3a 182937.0 295334.3 722181.9 184042.2 295803.4 738829.0 184663.6 288892.8 754295.9 184744.1 304452.4 796616.7
ξ3b 222882.0 353001.2 886386.5 220849.6 360422.9 869560.6 218409.1 361988.8 862637.6 224628.2 344226.6 977182.7

ρΦ = 0.5 :
ξ1a 5313.9 8478.7 21793.0 5388.0 8619.9 24533.1 5398.9 8642.4 21592.3 5472.4 8465.0 22170.3
ξ1b 6306.7 9851.5 24822.5 6414.5 10070.0 22808.0 6176.6 10229.3 24183.2 6242.0 9831.1 25914.1
ξ2a 160179.5 247943.9 626190.6 162067.5 247069.8 614713.4 159388.6 250341.3 621806.1 159415.6 248641.8 620170.1
ξ2b 193822.7 309370.7 772896.4 196901.0 307477.8 776261.6 189283.6 304666.2 777809.5 196095.0 319014.4 742031.7
ξ3a 1212501.9 1988777.5 4900976.8 1218271.7 1967587.9 4929170.8 1214816.6 1973115.9 4820241.3 1212656.8 1951271.1 5212245.7
ξ3b 2193293.6 3252845.0 7162873.4 2244429.9 3255329.8 7542890.4 2213441.4 3230865.7 7360691.8 2272519.9 3139292.2 7205238.8

ρΦ = 0.9 :
ξ1a 9418.1 14251.7 34904.2 8856.3 14557.9 32370.7 8959.2 14462.4 35612.6 9189.2 14733.7 35395.1
ξ1b 10433.6 17198.0 41040.9 10625.6 16511.0 41640.4 10743.4 16890.3 41181.5 10870.6 17197.3 39666.6
ξ2a 213730.9 326337.6 793409.8 210433.2 326920.7 848075.4 209536.2 325582.3 798698.7 213523.4 324714.3 804142.7
ξ2b 246957.3 400989.1 989549.0 249269.2 399286.6 948864.4 249621.3 409990.9 984075.1 250842.2 410979.1 1030749.7
ξ3a 2892886.1 4312952.8 9670130.8 2866821.7 4265176.9 9459010.8 2895553.5 4295589.2 9710683.1 2956058.6 4316705.3 9543766.6
ξ3b 3320897.8 5093373.4 11733718.4 3380575.1 5108875.3 11667850.1 3205683.4 5100258.4 12004775.6 3294870.1 5014524.6 12241070.1

The variance of the total loss is approximated using 10, 000 independent samples of L.
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Table B.3: Skewness of the total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 0.306 0.533 0.869 0.320 0.679 1.904 0.327 0.454 0.858 0.386 0.536 1.728
ξ1b 0.292 0.468 0.868 0.357 0.666 1.764 0.330 0.468 0.818 0.366 0.563 1.756
ξ2a 0.409 0.609 1.095 0.451 0.733 2.822 0.403 0.573 1.109 0.451 0.785 2.221
ξ2b 0.431 0.639 1.114 0.435 0.886 2.495 0.359 0.598 1.073 0.448 0.650 1.987
ξ3a 0.451 0.640 1.234 0.503 0.803 2.269 0.430 0.687 1.297 0.497 0.773 2.171
ξ3b 0.463 0.584 1.142 0.453 0.865 2.763 0.399 0.607 1.142 0.461 0.785 2.084

ρΦ = 0.5 :
ξ1a 0.192 0.254 0.492 0.130 0.323 1.454 0.200 0.222 0.502 0.164 0.384 0.891
ξ1b 0.330 0.458 1.120 0.326 0.576 1.658 0.350 0.532 1.032 0.341 0.679 3.431
ξ2a 0.266 0.338 0.563 0.216 0.385 1.318 0.219 0.306 0.550 0.221 0.406 1.246
ξ2b 0.208 0.323 0.515 0.196 0.290 0.942 0.209 0.257 0.484 0.184 0.307 0.919
ξ3a 0.211 0.285 0.566 0.237 0.358 1.206 0.182 0.314 0.609 0.229 0.358 1.146
ξ3b 0.194 0.264 0.496 0.187 0.323 1.166 0.235 0.242 0.532 0.193 0.263 0.972

ρΦ = 0.9 :
ξ1a 0.265 0.380 0.795 0.261 0.402 1.359 0.257 0.397 0.746 0.292 0.436 1.418
ξ1b 0.249 0.386 0.836 0.218 0.392 2.090 0.234 0.351 0.687 0.237 0.393 1.154
ξ2a 0.143 0.209 0.391 0.145 0.212 0.755 0.150 0.230 0.382 0.125 0.195 0.979
ξ2b 0.155 0.195 0.386 0.132 0.200 0.650 0.123 0.177 0.394 0.125 0.209 0.724
ξ3a 0.142 0.194 0.370 0.119 0.231 0.652 0.125 0.191 0.384 0.147 0.209 0.791
ξ3b 0.104 0.163 0.335 0.104 0.170 0.541 0.102 0.140 0.292 0.113 0.171 0.483

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 0.893 1.482 2.832 0.934 1.875 7.599 0.948 1.516 2.779 0.938 1.916 7.127
ξ1b 0.916 1.463 2.841 0.931 2.016 5.193 0.970 1.385 2.789 0.908 1.875 6.440
ξ2a 0.770 1.255 2.486 0.768 1.372 3.274 0.747 1.182 2.367 0.805 1.647 3.572
ξ2b 0.778 1.070 2.370 0.739 1.503 3.182 0.717 1.181 2.276 0.753 1.600 3.484
ξ3a 0.560 0.941 1.727 0.646 1.216 6.279 0.565 0.927 1.663 0.612 1.291 7.033
ξ3b 0.602 0.848 1.639 0.550 1.169 2.945 0.501 0.857 1.578 0.591 1.013 5.332

ρΦ = 0.5 :
ξ1a 0.502 0.733 1.364 0.510 0.931 5.395 0.488 0.761 1.502 0.508 0.975 2.945
ξ1b 0.412 0.676 1.274 0.476 0.913 2.348 0.410 0.674 1.249 0.469 0.936 3.525
ξ2a 0.333 0.561 0.993 0.377 0.660 2.152 0.299 0.522 1.045 0.417 0.711 2.155
ξ2b 0.333 0.489 0.891 0.343 0.620 2.241 0.292 0.466 0.934 0.305 0.631 1.921
ξ3a 0.209 0.362 0.663 0.222 0.507 1.711 0.199 0.429 0.664 0.188 0.446 2.234
ξ3b 0.170 0.291 0.548 0.182 0.324 1.787 0.222 0.343 0.626 0.194 0.354 1.358

ρΦ = 0.9 :
ξ1a 0.375 0.595 0.986 0.380 0.702 1.992 0.340 0.588 1.078 0.388 0.716 2.678
ξ1b 0.386 0.562 0.975 0.393 0.689 2.316 0.374 0.556 1.006 0.359 0.751 2.101
ξ2a 0.298 0.440 0.813 0.319 0.626 2.733 0.274 0.509 0.918 0.306 0.627 2.219
ξ2b 0.251 0.420 0.759 0.270 0.517 1.567 0.260 0.363 0.743 0.315 0.585 2.460
ξ3a 0.203 0.310 0.502 0.194 0.325 1.069 0.161 0.266 0.469 0.239 0.359 1.044
ξ3b 0.145 0.235 0.437 0.138 0.316 1.084 0.096 0.218 0.440 0.129 0.280 1.006

The skewness of the total loss is approximated using 10, 000 independent samples of L.
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Table B.4: Value-at-Risk at level p = 0.9 of the total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 726.8 766.2 882.9 727.7 763.1 861.4 725.3 772.8 887.0 723.0 771.9 851.7
ξ1b 707.7 743.7 848.1 709.3 737.7 829.6 706.0 743.0 857.3 699.0 748.5 827.4
ξ2a 1933.3 2052.4 2413.8 1937.5 2041.5 2288.0 1926.0 2058.1 2429.1 1928.5 2065.1 2267.1
ξ2b 1958.5 2072.9 2437.3 1964.7 2070.4 2317.7 1958.2 2099.0 2451.4 1934.8 2083.1 2314.8
ξ3a 2952.1 3134.7 3703.4 2987.1 3151.4 3531.9 2970.2 3154.5 3774.6 2949.0 3137.8 3483.6
ξ3b 3112.3 3283.0 3887.7 3097.2 3288.6 3659.2 3096.9 3317.0 3921.2 3070.4 3328.9 3674.9

ρΦ = 0.5 :
ξ1a 2639.3 2686.3 2929.1 2632.9 2708.7 2895.6 2637.8 2714.0 2927.2 2635.1 2687.8 2886.9
ξ1b 2889.2 2953.6 3169.3 2880.1 2944.2 3121.2 2888.1 2957.7 3188.6 2891.1 2952.3 3114.5
ξ2a 7028.2 7253.9 7995.6 7033.8 7242.1 7807.5 7029.6 7254.4 7909.1 7051.0 7260.4 7853.7
ξ2b 8878.5 9109.5 9838.1 8901.2 9130.7 9830.7 8910.9 9109.8 9876.5 8890.4 9091.0 9780.9
ξ3a 12338.0 12765.5 13936.0 12345.0 12762.5 13804.0 12337.5 12802.0 13882.5 12382.5 12750.5 13753.0
ξ3b 16184.0 16600.0 17849.0 16194.5 16581.0 17812.0 16181.5 16578.0 17881.0 16130.5 16525.0 17747.0

ρΦ = 0.9 :
ξ1a 3766.3 3847.8 4095.0 3777.0 3843.9 4045.0 3759.6 3856.4 4095.4 3762.1 3866.1 4065.3
ξ1b 4643.1 4744.1 4968.7 4633.4 4743.4 4900.4 4641.6 4735.9 5007.1 4622.5 4740.3 4905.8
ξ2a 12584.5 12848.5 13568.0 12590.5 12830.0 13436.5 12552.5 12775.0 13579.5 12541.5 12822.0 13505.5
ξ2b 15531.0 15888.0 16692.0 15583.5 15805.0 16638.5 15568.0 15769.5 16635.5 15505.0 15797.5 16529.5
ξ3a 25402.0 25952.0 27072.5 25422.0 25873.5 27115.0 25397.5 25802.5 27306.5 25371.0 25876.5 27061.0
ξ3b 35096.5 35639.0 37232.0 35087.5 35789.5 37168.5 35042.0 35566.0 37240.0 35099.5 35698.5 37191.5

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 103.7 115.1 147.7 105.1 113.8 125.9 102.1 116.3 145.2 105.6 116.1 124.6
ξ1b 105.0 119.7 147.2 104.8 113.7 124.5 105.2 118.3 144.5 103.0 114.6 125.3
ξ2a 541.5 608.5 730.7 542.4 606.4 657.7 537.3 606.1 765.5 541.3 592.2 656.2
ξ2b 569.6 644.4 809.9 568.4 631.2 686.1 577.3 633.0 808.1 573.4 634.3 691.4
ξ3a 1576.8 1734.2 2138.4 1571.1 1715.8 1917.8 1582.2 1726.8 2173.7 1582.0 1725.8 1899.4
ξ3b 1826.7 2013.5 2439.2 1835.4 2000.0 2240.9 1832.4 2007.2 2436.1 1841.4 1984.4 2258.1

ρΦ = 0.5 :
ξ1a 295.1 322.5 396.1 295.2 324.0 360.6 297.5 321.2 392.9 296.8 319.7 365.7
ξ1b 334.8 361.3 438.3 336.4 363.2 405.9 332.5 363.2 437.0 331.8 358.9 409.1
ξ2a 2111.9 2219.1 2634.2 2112.9 2242.4 2526.6 2101.2 2244.4 2623.3 2098.1 2226.8 2509.3
ξ2b 2512.1 2640.6 3081.1 2515.9 2653.5 2972.0 2484.1 2638.4 3128.9 2497.4 2669.7 2968.7
ξ3a 8385.3 8836.3 9837.0 8360.5 8773.8 9648.6 8382.1 8764.2 9810.4 8361.8 8757.2 9736.3
ξ3b 11227.5 11706.0 12932.0 11281.5 11695.0 12703.0 11290.5 11670.0 12979.0 11312.5 11630.0 12613.0

ρΦ = 0.9 :
ξ1a 465.9 493.1 593.0 459.5 494.5 549.9 457.4 493.9 588.5 463.1 499.8 555.4
ξ1b 516.2 557.2 661.0 517.7 549.2 621.4 517.8 555.6 654.1 523.6 554.4 624.3
ξ2a 2645.5 2778.7 3241.0 2629.0 2781.6 3113.7 2623.5 2779.6 3242.5 2632.3 2784.2 3112.9
ξ2b 3206.6 3388.2 3904.8 3213.4 3387.9 3760.7 3216.9 3408.2 3889.2 3209.2 3400.6 3760.1
ξ3a 15023.5 15581.0 16960.0 15046.0 15562.5 16712.0 15090.0 15568.0 16927.0 15121.0 15542.5 16791.0
ξ3b 18160.0 18762.0 20237.0 18102.0 18736.0 20122.0 18088.5 18705.5 20215.0 18106.5 18662.5 20252.5

The Value-at-Risk at level p = 0.9 of the total loss is approximated using 10, 000 independent samples of L.
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Table B.5: Expected Shortfall at level p = 0.9 of the total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 801.9 866.5 1055.4 803.7 871.6 1096.5 797.8 868.0 1058.7 805.2 875.7 1079.0
ξ1b 778.2 840.5 1025.3 786.6 844.8 1058.5 777.6 842.5 1022.9 773.4 853.6 1054.4
ξ2a 2175.9 2378.3 2998.7 2184.2 2384.9 3029.9 2163.1 2372.4 3029.2 2170.4 2418.7 3010.3
ξ2b 2205.7 2400.3 3026.6 2213.2 2441.4 3095.9 2186.3 2429.5 3030.8 2188.0 2411.8 3062.6
ξ3a 3356.2 3661.7 4733.3 3395.1 3726.8 4760.5 3367.4 3718.1 4821.5 3361.2 3716.6 4715.2
ξ3b 3513.6 3819.4 4899.6 3513.2 3879.1 4976.4 3494.5 3840.0 4904.8 3485.0 3924.3 4907.7

ρΦ = 0.5 :
ξ1a 2799.2 2888.9 3270.3 2785.5 2935.4 3319.3 2799.9 2906.4 3278.1 2791.8 2899.6 3280.8
ξ1b 3087.8 3225.4 3702.7 3090.7 3249.3 3646.8 3100.8 3248.5 3705.4 3098.0 3259.8 3668.1
ξ2a 7510.7 7881.5 9017.4 7499.5 7906.8 9128.0 7490.1 7866.2 8908.5 7530.2 7925.5 9048.0
ξ2b 9413.0 9842.3 11013.9 9434.8 9832.0 11238.5 9449.8 9817.9 11033.4 9422.1 9819.5 11135.3
ξ3a 13182.2 13850.3 15809.1 13228.0 13870.7 16164.8 13168.1 13888.1 15843.7 13243.7 13869.9 16010.4
ξ3b 17154.5 17851.0 19962.8 17194.5 17938.8 20513.8 17219.5 17833.8 20094.8 17124.6 17832.9 20268.2

ρΦ = 0.9 :
ξ1a 3993.4 4143.9 4599.1 3996.1 4155.3 4613.5 3975.6 4152.8 4595.2 3989.6 4171.8 4612.8
ξ1b 4912.4 5106.7 5633.6 4898.1 5119.9 5614.8 4915.7 5085.0 5590.8 4884.6 5102.2 5595.5
ξ2a 13210.3 13668.8 14950.9 13273.1 13698.8 15088.9 13245.1 13701.9 14949.2 13177.9 13682.6 15224.2
ξ2b 16347.2 16845.4 18250.6 16353.2 16839.6 18467.3 16314.3 16711.2 18310.7 16260.2 16831.1 18364.0
ξ3a 26696.6 27567.5 29709.6 26704.5 27646.9 30247.4 26664.9 27421.2 30053.0 26627.2 27437.3 30369.4
ξ3b 36557.6 37674.3 40459.2 36582.8 37775.4 40933.9 36529.7 37550.3 40509.2 36598.9 37750.6 40952.3

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 130.6 156.5 241.4 131.8 156.6 228.5 130.3 158.3 234.4 132.1 163.7 220.1
ξ1b 131.5 160.8 239.2 131.0 158.5 220.7 133.3 158.4 235.4 130.1 160.0 230.1
ξ2a 658.2 782.7 1109.9 662.3 788.1 1063.8 652.1 785.0 1135.4 661.0 791.9 1066.1
ξ2b 692.2 815.4 1214.7 687.5 834.8 1100.9 695.5 820.5 1180.9 690.6 830.1 1110.8
ξ3a 1838.5 2128.6 2906.0 1846.6 2164.8 2827.8 1847.1 2098.3 2995.7 1859.1 2182.8 2885.5
ξ3b 2139.4 2420.7 3305.6 2126.6 2455.3 3272.6 2107.2 2437.5 3259.1 2137.0 2419.6 3328.8

ρΦ = 0.5 :
ξ1a 339.7 383.8 523.7 342.2 390.8 527.5 340.6 386.0 520.0 342.7 388.3 528.1
ξ1b 379.3 424.8 567.2 384.5 435.2 560.5 378.3 428.6 565.6 379.4 432.1 577.9
ξ2a 2331.7 2538.8 3233.3 2342.4 2557.5 3280.3 2324.1 2555.6 3233.9 2336.6 2565.0 3267.6
ξ2b 2753.2 2979.5 3705.3 2756.6 3011.0 3791.3 2730.9 2976.9 3753.3 2738.7 3030.6 3741.5
ξ3a 8967.6 9655.6 11313.2 8955.7 9653.9 11593.3 8958.3 9595.8 11302.3 8922.0 9616.2 11665.8
ξ3b 11979.9 12682.9 14571.5 12049.5 12751.3 14897.9 12063.2 12699.1 14705.5 12071.2 12689.7 14794.7

ρΦ = 0.9 :
ξ1a 519.2 568.8 726.0 513.6 575.8 724.3 511.8 569.1 731.6 518.6 578.1 737.0
ξ1b 574.4 640.2 806.4 576.4 634.2 821.1 576.8 636.2 805.5 579.1 645.1 813.9
ξ2a 2897.3 3111.9 3856.7 2888.5 3159.2 3974.0 2875.6 3129.3 3868.2 2889.7 3156.2 3931.6
ξ2b 3477.8 3761.0 4556.0 3481.6 3775.2 4613.1 3494.4 3763.1 4572.9 3489.5 3812.7 4679.3
ξ3a 15904.3 16738.7 18784.8 15905.5 16719.6 19046.2 15883.1 16660.3 18772.6 15990.8 16718.3 19092.6
ξ3b 19082.9 19943.9 22286.1 19081.7 19990.4 22609.8 18973.6 19903.4 22353.6 19040.1 19888.6 22843.3

The Expected Shortfall at level p = 0.9 of the total loss is approximated using 10, 000 independent samples of L.
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Table B.6: Value-at-Risk at level p = 0.95 of the total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 781.9 840.4 1007.2 787.2 838.1 1012.7 779.0 844.5 1019.1 787.2 850.7 997.9
ξ1b 760.3 818.7 982.2 769.6 814.9 978.3 760.0 820.8 978.6 757.8 823.5 977.2
ξ2a 2119.8 2292.5 2840.8 2124.7 2275.7 2773.4 2097.7 2273.9 2865.1 2107.4 2305.6 2735.3
ξ2b 2143.4 2317.1 2834.7 2152.1 2340.0 2803.0 2127.7 2344.1 2849.9 2118.2 2337.5 2805.7
ξ3a 3251.4 3529.7 4454.2 3309.8 3561.7 4312.2 3262.0 3560.0 4545.6 3260.0 3560.8 4310.9
ξ3b 3416.7 3691.4 4645.1 3414.2 3695.1 4506.5 3418.6 3704.2 4610.5 3374.7 3775.3 4425.9

ρΦ = 0.5 :
ξ1a 2763.8 2834.9 3194.6 2752.6 2887.8 3166.0 2759.9 2857.7 3180.4 2757.9 2836.4 3154.5
ξ1b 3035.9 3156.2 3517.7 3038.5 3165.7 3442.4 3063.8 3164.7 3533.1 3051.4 3165.4 3449.1
ξ2a 7392.6 7719.9 8776.3 7392.8 7746.9 8611.8 7388.3 7723.1 8614.5 7427.2 7746.2 8626.5
ξ2b 9288.1 9640.5 10722.0 9310.3 9654.7 10796.5 9298.9 9675.0 10743.0 9307.5 9662.4 10692.0
ξ3a 13018.0 13556.5 15357.5 13035.5 13626.0 15409.5 12969.0 13618.0 15313.5 13044.5 13588.0 15245.5
ξ3b 16932.0 17548.0 19415.5 16980.5 17664.0 19639.0 16992.0 17557.5 19533.5 16878.5 17556.5 19507.5

ρΦ = 0.9 :
ξ1a 3938.9 4059.4 4430.8 3939.9 4069.6 4396.3 3921.6 4085.6 4449.4 3931.8 4094.0 4414.9
ξ1b 4853.6 5023.9 5449.5 4833.3 5012.8 5355.8 4847.5 5015.1 5410.6 4819.0 5009.6 5345.6
ξ2a 13059.5 13482.0 14591.5 13115.0 13535.0 14544.5 13117.5 13480.5 14580.5 13015.0 13508.5 14641.5
ξ2b 16158.5 16606.0 17873.5 16176.0 16587.0 17866.0 16176.0 16490.0 17951.0 16087.5 16617.5 17774.5
ξ3a 26393.5 27251.0 29085.5 26415.0 27246.5 29354.5 26378.5 27064.0 29458.0 26324.5 27095.0 29377.5
ξ3b 36241.5 37249.0 39731.0 36210.5 37290.5 39735.0 36181.0 37099.5 39811.0 36260.0 37316.0 39890.0

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 123.5 144.5 210.9 124.6 141.3 183.1 123.4 146.4 206.3 125.3 148.4 177.3
ξ1b 125.3 148.6 207.6 122.9 141.9 176.0 125.4 148.0 206.1 123.4 145.3 181.7
ξ2a 626.3 730.9 989.5 634.1 733.8 917.8 618.9 730.9 1026.8 634.2 726.4 915.9
ξ2b 659.5 772.7 1094.8 658.2 763.1 942.9 663.5 765.0 1054.2 654.6 772.0 932.8
ξ3a 1771.6 2023.4 2654.7 1774.0 2043.9 2470.4 1780.2 2005.3 2778.8 1797.8 2043.5 2482.9
ξ3b 2055.6 2300.0 3053.1 2040.2 2313.3 2804.2 2028.8 2307.4 2999.2 2048.2 2287.4 2877.1

ρΦ = 0.5 :
ξ1a 330.2 366.6 488.5 331.5 371.9 454.9 329.6 371.2 480.8 331.4 367.1 458.4
ξ1b 367.0 407.5 530.5 372.1 414.7 499.3 367.6 409.2 529.9 368.2 410.5 512.1
ξ2a 2275.9 2471.3 3070.5 2288.4 2468.1 2996.2 2272.2 2477.4 3079.6 2270.2 2462.6 2942.6
ξ2b 2697.7 2888.7 3504.4 2694.5 2911.8 3479.6 2668.7 2896.3 3584.6 2674.3 2923.4 3477.9
ξ3a 8830.5 9463.1 10967.5 8813.8 9408.5 10854.0 8816.8 9377.5 10928.5 8760.9 9407.1 10932.5
ξ3b 11796.5 12442.5 14155.5 11889.0 12499.0 13985.0 11885.0 12411.5 14236.0 11885.0 12410.0 13992.5

ρΦ = 0.9 :
ξ1a 505.9 548.1 688.2 502.5 555.6 660.3 499.1 548.4 691.4 506.7 555.9 669.6
ξ1b 558.4 620.2 765.3 560.2 610.1 741.1 562.4 613.7 765.2 562.5 620.3 749.9
ξ2a 2844.1 3025.4 3710.1 2827.3 3054.6 3667.1 2818.9 3042.3 3679.9 2830.7 3055.9 3601.2
ξ2b 3405.7 3671.3 4362.8 3413.2 3647.9 4343.6 3428.1 3674.9 4407.2 3418.0 3696.7 4324.0
ξ3a 15668.5 16400.5 18286.0 15692.5 16435.0 18314.5 15650.0 16380.0 18291.5 15752.5 16465.0 18365.0
ξ3b 18857.0 19640.0 21779.5 18820.5 19659.0 21783.5 18761.0 19613.0 21761.5 18853.0 19563.0 22036.5

The Value-at-Risk at level p = 0.95 of the total loss is approximated using 10, 000 independent samples of L.
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Table B.7: Expected Shortfall at level p = 0.95 of the total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 851.6 934.7 1173.4 853.3 946.7 1262.1 845.7 931.5 1173.7 857.9 942.1 1242.0
ξ1b 823.8 904.7 1144.5 835.0 916.0 1225.7 825.6 908.2 1133.5 821.0 922.4 1217.5
ξ2a 2334.9 2594.2 3397.3 2344.5 2621.6 3559.6 2324.0 2589.8 3423.6 2332.3 2659.3 3547.2
ξ2b 2366.7 2621.6 3437.6 2373.5 2696.0 3666.3 2339.4 2635.8 3425.6 2351.4 2626.8 3594.9
ξ3a 3624.5 4006.8 5433.9 3665.2 4113.6 5655.5 3629.3 4097.5 5512.1 3636.9 4106.9 5601.3
ξ3b 3777.9 4174.4 5577.8 3771.7 4291.1 5927.3 3752.1 4192.3 5583.6 3760.2 4323.6 5803.9

ρΦ = 0.5 :
ξ1a 2898.7 3028.8 3498.3 2882.5 3077.2 3623.9 2904.3 3033.9 3516.1 2893.6 3043.4 3551.6
ξ1b 3221.0 3416.3 4089.0 3233.5 3453.1 4030.9 3228.6 3441.0 4062.3 3234.1 3467.5 4065.1
ξ2a 7826.8 8298.1 9708.8 7807.1 8337.4 10085.9 7789.9 8265.3 9599.9 7836.9 8362.8 9903.0
ξ2b 9753.9 10322.3 11837.3 9778.9 10302.2 12208.7 9802.7 10280.7 11823.4 9755.0 10290.7 12088.7
ξ3a 13710.3 14549.6 17042.7 13795.0 14599.6 17823.1 13735.7 14569.3 17153.8 13799.1 14636.8 17600.7
ξ3b 17749.3 18688.9 21363.1 17828.7 18822.3 22410.6 17893.6 18635.4 21554.1 17764.5 18606.5 21964.2

ρΦ = 0.9 :
ξ1a 4139.5 4334.8 4961.1 4140.0 4361.4 5018.8 4113.6 4347.7 4944.2 4139.6 4377.7 5009.2
ξ1b 5085.8 5346.1 6103.3 5072.1 5372.5 6131.3 5104.2 5306.3 5999.9 5059.2 5341.5 6085.4
ξ2a 13625.6 14201.9 15854.1 13753.8 14239.0 16235.7 13679.3 14260.6 15856.6 13592.9 14208.9 16426.1
ξ2b 16787.7 17434.1 19231.3 16881.1 17471.0 19755.7 16864.2 17349.0 19389.1 16715.3 17492.8 19648.7
ξ3a 27476.8 28605.6 31399.4 27584.1 28785.6 32373.0 27480.0 28547.4 31907.6 27436.2 28465.3 32590.9
ξ3b 37482.8 39014.9 42578.5 37593.0 39062.6 43572.6 37505.9 38740.3 42632.3 37560.9 39069.8 43480.5

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 148.3 184.8 306.5 149.8 186.9 306.3 149.5 186.4 296.0 149.4 196.9 293.8
ξ1b 149.3 189.2 302.9 149.0 190.4 294.6 152.0 184.6 299.0 148.2 191.9 311.7
ξ2a 736.2 901.3 1374.9 741.1 911.8 1363.7 731.3 904.5 1394.5 739.1 929.9 1363.7
ξ2b 774.1 930.9 1495.2 765.0 976.7 1410.5 774.1 948.6 1440.7 771.7 966.6 1422.6
ξ3a 2013.8 2399.6 3446.4 2027.5 2469.6 3510.9 2023.9 2350.4 3541.5 2040.0 2496.7 3620.6
ξ3b 2345.2 2693.1 3902.0 2330.7 2768.9 4055.8 2293.3 2735.5 3828.9 2334.5 2723.7 4141.1

ρΦ = 0.5 :
ξ1a 368.9 424.7 609.5 373.6 437.1 652.1 369.4 429.0 607.5 372.4 436.4 651.4
ξ1b 408.7 467.9 655.6 416.6 484.0 672.8 408.5 472.1 653.4 410.1 481.0 700.5
ξ2a 2468.9 2748.0 3628.9 2491.4 2772.5 3838.4 2465.7 2763.6 3642.2 2497.0 2795.4 3828.2
ξ2b 2909.2 3204.1 4134.0 2916.2 3244.9 4384.6 2880.8 3204.5 4180.7 2899.7 3277.2 4284.5
ξ3a 9343.9 10179.6 12284.4 9346.8 10237.9 13004.8 9326.5 10148.6 12281.8 9304.3 10202.9 13054.7
ξ3b 12470.7 13334.5 15670.3 12563.5 13421.6 16473.4 12562.4 13369.5 15857.4 12563.6 13378.6 16355.4

ρΦ = 0.9 :
ξ1a 554.5 620.2 816.2 548.8 630.5 849.1 547.2 619.8 830.3 556.6 631.9 871.7
ξ1b 613.5 694.9 903.0 615.3 691.5 969.5 615.3 689.6 906.8 616.9 707.2 945.7
ξ2a 3059.7 3339.0 4261.7 3060.4 3408.5 4597.3 3040.1 3353.0 4287.3 3067.7 3402.9 4533.1
ξ2b 3659.9 4002.8 5011.7 3657.2 4036.6 5229.1 3668.1 3994.5 5024.5 3675.0 4092.1 5359.3
ξ3a 16481.6 17442.7 20001.9 16439.2 17472.6 20696.7 16424.2 17384.3 20015.2 16532.0 17528.5 20681.3
ξ3b 19647.2 20706.5 23616.4 19686.9 20829.7 24327.4 19540.9 20700.7 23730.6 19638.1 20736.9 24616.0

The Expected Shortfall at level p = 0.95 of the total loss is approximated using 10, 000 independent samples of L.
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Table B.8: Value-at-Risk at level p = 0.99 of the total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 896.9 993.6 1276.6 898.9 1011.2 1411.3 886.1 977.0 1268.0 898.6 1000.2 1361.8
ξ1b 865.4 964.3 1243.6 877.0 978.3 1369.8 872.9 960.5 1221.0 861.4 989.1 1338.5
ξ2a 2483.1 2785.0 3686.9 2480.7 2833.6 4035.2 2479.2 2796.8 3755.3 2454.1 2886.9 3928.3
ξ2b 2502.4 2795.9 3782.1 2527.6 2892.2 4124.7 2472.4 2811.9 3794.3 2481.4 2822.8 4037.1
ξ3a 3891.8 4298.1 5973.5 3862.8 4465.4 6474.9 3854.3 4423.5 6184.8 3858.0 4523.4 6162.8
ξ3b 4002.2 4481.0 6078.6 4012.8 4705.7 6641.1 3961.6 4464.7 6227.3 3976.1 4671.3 6630.1

ρΦ = 0.5 :
ξ1a 2983.6 3131.1 3669.1 2970.4 3185.2 3863.3 2995.2 3139.9 3693.8 2978.8 3165.8 3791.1
ξ1b 3349.2 3566.6 4412.6 3353.6 3613.6 4262.1 3321.5 3600.9 4357.7 3348.4 3623.4 4227.9
ξ2a 8123.4 8697.1 10350.5 8062.2 8689.8 10804.0 8020.9 8653.8 10244.0 8080.7 8718.1 10599.0
ξ2b 10039.5 10750.5 12515.5 10080.5 10716.0 12941.5 10128.5 10630.5 12436.0 10036.5 10621.0 12809.0
ξ3a 14135.5 15131.5 18185.0 14277.5 15237.0 18926.0 14166.5 15121.0 18225.0 14340.0 15289.5 18866.5
ξ3b 18232.5 19448.5 22665.5 18393.0 19544.5 24125.0 18438.0 19333.0 22882.5 18341.5 19306.5 23424.0

ρΦ = 0.9 :
ξ1a 4260.4 4513.9 5301.9 4264.1 4538.0 5334.1 4225.9 4521.6 5218.5 4273.4 4561.3 5270.7
ξ1b 5214.1 5546.6 6478.4 5239.3 5570.9 6477.9 5244.6 5483.3 6321.1 5202.1 5531.9 6546.0
ξ2a 13995.5 14677.0 16738.5 14017.0 14587.0 17082.5 14041.0 14698.0 16579.5 13956.0 14607.5 17239.5
ξ2b 17127.0 17903.0 20093.0 17271.0 17958.5 20898.0 17082.0 17817.5 20230.0 17110.5 18015.5 20562.5
ξ3a 28147.0 29476.0 32885.5 28145.5 29813.5 34001.0 28184.0 29512.5 33622.0 28210.0 29224.0 34144.5
ξ3b 38280.5 40071.0 44148.5 38580.0 40146.5 45749.0 38445.5 39832.0 44320.5 38388.5 40163.5 45604.0

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 164.7 210.3 362.5 166.9 213.3 374.9 165.3 213.6 353.1 165.4 222.0 350.3
ξ1b 162.8 215.6 368.3 162.8 219.5 354.2 170.3 210.9 352.9 162.5 219.4 360.9
ξ2a 809.0 999.2 1578.1 798.9 1012.0 1633.8 806.4 1012.0 1614.9 798.6 1046.0 1609.6
ξ2b 853.9 1032.2 1732.3 824.7 1094.7 1695.8 846.4 1068.5 1645.8 839.1 1079.1 1698.4
ξ3a 2160.9 2632.2 3980.2 2152.6 2681.7 3944.5 2181.3 2549.9 4028.3 2194.5 2754.2 4270.2
ξ3b 2528.6 2935.9 4423.7 2522.4 3079.8 4732.6 2455.9 3016.1 4325.9 2499.2 2972.0 4680.1

ρΦ = 0.5 :
ξ1a 392.4 465.3 691.5 399.3 475.6 731.0 394.1 468.0 698.5 400.7 486.4 763.7
ξ1b 432.8 505.9 731.0 444.1 534.3 765.1 431.6 508.3 728.0 438.3 519.2 766.9
ξ2a 2587.3 2891.3 3999.6 2608.8 2943.8 4228.6 2591.8 2945.6 4027.3 2645.9 2976.1 4331.8
ξ2b 3050.5 3416.1 4543.4 3048.4 3436.7 4781.1 3021.5 3379.9 4549.7 3042.7 3491.1 4740.8
ξ3a 9704.1 10611.5 13158.0 9698.8 10755.5 13988.0 9638.0 10633.0 13285.5 9626.8 10727.0 14134.0
ξ3b 12911.5 13951.0 16611.0 12950.5 13999.0 17784.0 12959.5 14000.0 16881.0 13007.0 14023.5 17559.5

ρΦ = 0.9 :
ξ1a 587.6 668.5 895.8 579.0 675.1 956.9 581.6 658.2 915.9 585.4 671.7 952.1
ξ1b 642.5 741.8 983.3 644.6 735.1 1094.2 650.5 737.8 995.0 651.0 762.9 1065.0
ξ2a 3192.7 3530.3 4616.1 3207.8 3630.6 4960.2 3183.9 3525.8 4671.0 3196.6 3646.0 5106.1
ξ2b 3806.4 4207.4 5450.8 3804.6 4281.5 5688.8 3812.2 4193.3 5422.1 3816.1 4332.2 5851.1
ξ3a 16938.0 18022.0 21093.5 16977.5 18117.5 21646.0 16903.0 17944.5 20990.0 16987.5 18148.0 21973.0
ξ3b 20123.5 21342.5 24736.5 20158.0 21620.5 25502.5 20014.5 21395.5 24993.5 20158.0 21397.0 25959.0

The Value-at-Risk at level p = 0.99 of the total loss is approximated using 10, 000 independent samples of L.
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Table B.9: Expected Shortfall at level p = 0.99 of the total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 951.2 1084.1 1447.0 948.7 1127.3 1695.8 950.2 1059.9 1431.3 961.0 1078.2 1681.4
ξ1b 915.9 1029.1 1413.4 928.7 1073.8 1659.5 920.4 1030.0 1374.7 918.9 1061.8 1648.4
ξ2a 2654.9 3043.7 4297.2 2659.1 3128.0 5105.2 2650.5 3043.8 4364.6 2671.8 3207.2 5066.1
ξ2b 2690.2 3103.9 4374.9 2698.3 3279.9 5353.4 2634.5 3090.6 4317.8 2693.4 3076.5 5001.7
ξ3a 4187.5 4718.1 7110.1 4189.4 5017.0 8175.1 4131.5 4897.9 7083.8 4185.3 4955.8 7996.0
ξ3b 4320.5 4866.9 7106.5 4324.5 5241.7 8614.3 4240.5 4894.3 7133.4 4357.5 5160.8 8317.0

ρΦ = 0.5 :
ξ1a 3099.0 3309.4 3962.0 3070.2 3355.4 4425.6 3118.7 3296.9 4004.0 3096.6 3369.9 4227.4
ξ1b 3505.7 3784.2 5074.4 3499.1 3904.6 5198.2 3487.4 3862.7 4992.3 3500.1 3993.5 5341.9
ξ2a 8467.3 9158.7 11195.0 8377.4 9250.9 12681.4 8371.6 9053.2 11079.4 8452.7 9212.8 12179.8
ξ2b 10421.0 11373.9 13474.1 10463.1 11298.2 14700.9 10463.5 11156.4 13432.2 10380.7 11198.0 14485.0
ξ3a 14715.7 15947.6 19567.0 14843.1 16065.1 22068.2 14785.1 16096.1 20006.3 14838.7 16230.3 21487.1
ξ3b 18891.3 20313.7 24232.7 19009.5 20538.2 27354.1 19170.6 20231.2 24565.4 19007.9 20150.4 26141.2

ρΦ = 0.9 :
ξ1a 4421.5 4801.0 5886.6 4429.2 4820.3 6140.0 4389.9 4744.2 5773.8 4436.8 4802.4 6131.0
ξ1b 5407.3 5833.0 7237.2 5420.8 5952.7 7674.0 5429.9 5757.1 7002.7 5401.7 5878.8 7461.1
ξ2a 14427.3 15187.1 17553.2 14482.0 15437.3 19414.9 14476.1 15392.7 17721.5 14548.2 15239.8 19825.8
ξ2b 17695.8 18550.5 21340.6 17778.1 18745.3 22878.3 17786.8 18480.9 21560.8 17579.8 18823.2 23142.6
ξ3a 29304.2 30507.8 35084.0 28981.6 31022.9 37720.2 29094.8 30447.0 35160.0 29003.0 30561.7 37920.1
ξ3b 39359.9 41395.3 46366.1 39618.1 41544.5 49882.2 39376.1 41024.1 46500.0 39576.5 41421.5 49062.2

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 185.2 249.7 461.4 188.1 260.3 568.9 187.8 255.0 453.6 187.6 279.5 529.1
ξ1b 186.0 251.5 463.2 189.4 273.8 535.9 192.8 243.8 462.5 184.2 271.5 585.1
ξ2a 906.6 1182.9 2021.8 908.6 1205.0 2183.3 893.1 1159.3 2036.2 906.1 1287.1 2234.7
ξ2b 963.7 1182.3 2168.0 934.0 1332.0 2249.6 941.1 1230.0 2088.1 937.5 1282.9 2358.6
ξ3a 2359.6 2954.8 4766.4 2422.3 3172.1 5564.7 2371.6 2903.7 4751.4 2397.0 3263.5 5842.4
ξ3b 2770.6 3326.5 5297.6 2753.4 3547.2 6336.0 2673.2 3344.7 5124.3 2767.3 3409.4 6663.7

ρΦ = 0.5 :
ξ1a 428.9 513.6 794.9 432.7 542.2 1069.6 431.4 514.0 815.0 437.0 544.7 1012.9
ξ1b 469.3 558.6 843.1 480.6 595.6 1004.6 467.4 564.5 830.1 474.7 592.4 1071.8
ξ2a 2755.9 3188.6 4490.2 2809.0 3234.4 5424.2 2757.9 3186.1 4545.0 2845.4 3314.1 5490.5
ξ2b 3254.6 3696.7 5110.7 3239.9 3756.0 6132.3 3195.5 3677.9 5153.4 3229.7 3852.8 5744.2
ξ3a 10075.0 11204.4 14320.5 10130.4 11480.0 16782.5 10063.9 11319.4 14315.2 10129.2 11383.8 17251.5
ξ3b 13461.6 14719.7 17974.1 13510.3 14659.9 21196.4 13576.5 14764.1 18235.5 13562.2 14738.9 20600.3

ρΦ = 0.9 :
ξ1a 630.7 730.5 1010.7 620.8 742.1 1178.7 623.7 728.3 1045.5 628.2 755.0 1266.3
ξ1b 692.8 808.0 1122.2 697.0 819.4 1397.8 695.5 801.4 1120.5 697.2 842.6 1310.3
ξ2a 3361.5 3787.5 5101.3 3412.6 3952.0 6459.9 3367.0 3806.7 5227.1 3399.7 3954.7 6271.1
ξ2b 4017.8 4502.6 5993.1 4026.6 4604.9 6854.6 3989.4 4468.5 5904.9 4059.2 4717.9 7290.5
ξ3a 17650.5 18979.3 22686.9 17523.6 18915.1 24851.9 17471.2 18754.6 22552.3 17703.0 18991.9 24740.3
ξ3b 20759.0 22314.3 26371.2 20985.2 22672.7 28992.9 20625.9 22257.1 26754.0 20848.5 22388.8 29549.3

The Expected Shortfall at level p = 0.99 of the total loss is approximated using 10, 000 independent samples of L.
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Table B.10: Expectation of the normalized total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 140.7 140.2 140.1 140.8 140.1 140.7 140.4 140.7 140.6 139.9 140.8 139.7
ξ1b 135.7 135.4 134.6 136.2 135.1 134.4 135.6 135.8 134.6 134.7 136.3 135.3
ξ2a 355.6 354.3 353.7 356.3 352.5 351.9 354.4 354.6 354.4 354.2 355.1 351.2
ξ2b 360.3 357.5 355.2 360.7 357.1 357.5 359.2 360.2 358.3 357.2 359.0 355.5
ξ3a 520.8 517.3 522.2 522.0 518.0 519.9 520.5 521.6 520.7 515.6 519.9 515.3
ξ3b 558.3 555.0 553.1 556.4 551.9 553.6 556.8 556.9 555.6 553.4 557.0 553.4

ρΦ = 0.5 :
ξ1a 128.8 128.6 128.8 128.7 128.6 128.7 128.9 128.9 129.0 128.6 128.3 128.6
ξ1b 136.8 137.0 137.3 136.9 136.9 137.0 136.9 137.2 137.2 136.9 137.1 136.8
ξ2a 338.5 339.6 340.9 338.2 339.0 338.3 338.7 339.0 338.2 339.4 338.1 339.5
ξ2b 428.8 430.1 430.7 430.2 429.6 431.5 430.2 430.4 431.3 429.4 429.6 429.2
ξ3a 593.8 595.2 594.7 594.6 593.3 594.7 594.8 595.3 594.3 595.0 595.0 595.4
ξ3b 786.0 786.7 784.3 786.5 785.8 786.8 786.1 786.5 784.4 785.3 784.9 784.7

ρΦ = 0.9 :
ξ1a 103.4 103.7 103.3 103.6 103.6 103.2 103.4 103.5 103.3 103.5 103.7 103.7
ξ1b 124.8 124.9 124.7 124.7 125.0 124.6 125.0 124.8 124.7 124.5 124.8 124.8
ξ2a 332.7 333.0 332.0 333.2 333.5 332.8 333.1 333.0 332.8 332.6 333.3 334.3
ξ2b 414.8 415.5 414.5 415.5 415.1 414.1 415.4 415.0 415.3 414.7 415.4 415.3
ξ3a 681.6 682.2 678.6 681.1 681.6 681.1 681.9 680.6 679.9 680.3 681.6 681.7
ξ3b 946.1 947.1 942.0 946.4 947.3 947.2 946.1 945.8 946.1 945.5 947.8 947.7

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 13.5 13.4 13.7 13.5 13.4 14.0 13.3 13.6 13.4 13.5 13.7 13.6
ξ1b 13.6 13.6 13.5 13.6 13.4 13.6 13.5 13.5 13.5 13.5 13.4 13.9
ξ2a 78.4 78.8 76.1 78.6 79.1 78.4 77.9 79.4 78.9 78.4 78.6 78.1
ξ2b 83.8 84.6 85.3 83.1 84.9 83.6 84.2 83.8 84.4 84.2 83.7 82.9
ξ3a 258.4 258.6 259.1 257.6 260.2 257.6 258.3 255.7 263.1 259.1 259.7 259.6
ξ3b 311.1 310.9 309.6 312.9 310.7 312.2 310.5 311.3 308.0 310.9 311.8 314.7

ρΦ = 0.5 :
ξ1a 11.8 11.8 11.8 11.8 11.9 11.9 11.8 11.7 11.7 11.8 11.8 11.9
ξ1b 13.5 13.5 13.6 13.6 13.6 13.4 13.5 13.5 13.6 13.5 13.5 13.6
ξ2a 93.5 93.1 93.5 93.7 93.4 93.8 93.6 93.8 93.8 93.6 93.6 93.6
ξ2b 114.3 113.4 113.5 114.0 113.6 113.3 113.4 113.6 114.8 113.4 113.9 113.3
ξ3a 411.6 413.3 409.7 410.6 411.1 411.7 411.6 409.7 411.4 410.5 411.5 412.0
ξ3b 551.8 554.0 554.1 552.9 554.6 553.7 553.5 552.9 554.6 553.2 552.7 551.6

ρΦ = 0.9 :
ξ1a 11.1 11.1 11.1 11.1 11.1 11.0 11.1 11.1 11.1 11.2 11.1 11.1
ξ1b 12.6 12.7 12.7 12.6 12.6 12.7 12.6 12.7 12.6 12.7 12.7 12.6
ξ2a 67.2 66.8 67.3 67.2 67.1 67.5 67.0 66.9 67.1 67.0 67.2 67.3
ξ2b 84.8 84.5 84.4 84.7 84.6 84.5 84.8 84.6 85.0 84.6 85.0 84.7
ξ3a 423.5 424.3 422.7 423.3 424.9 424.0 423.9 423.8 423.4 424.1 423.2 422.6
ξ3b 521.7 522.2 521.3 521.0 522.4 522.3 521.6 521.4 520.7 521.7 520.9 522.9

The expectation of the normalized total loss is approximated using 10, 000 independent samples of L. Total losses are normalized by 100 expected insured
vehicles.
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Table B.11: Variance of the normalized total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 1251.8 1833.0 4195.9 1245.5 1856.9 4339.0 1211.0 1860.9 4190.3 1263.6 1861.2 4170.3
ξ1b 1198.4 1772.0 4018.9 1221.8 1729.8 4092.4 1185.1 1776.4 4028.5 1165.4 1809.5 4043.0
ξ2a 11486.9 17109.5 39808.8 11468.2 17154.7 39647.9 11403.9 17390.7 40619.8 11463.5 17587.5 38576.4
ξ2b 11741.3 17575.8 41071.3 11835.1 17983.6 41820.9 11702.9 18041.8 40659.1 11557.1 17331.1 39107.8
ξ3a 32134.5 45983.6 107412.9 33100.5 48177.6 104679.2 32849.3 48018.7 110825.8 32839.9 47062.1 101784.9
ξ3b 32472.8 47862.1 111879.7 32569.9 48653.2 113364.0 32378.5 47789.5 111780.5 32396.6 49853.8 106463.3

ρΦ = 0.5 :
ξ1a 425.1 551.4 1135.3 424.7 585.8 1161.7 428.8 566.7 1145.3 428.3 562.7 1078.5
ξ1b 636.7 809.8 1630.8 631.2 829.9 1523.3 638.6 820.9 1637.6 638.0 839.8 1668.1
ξ2a 3373.2 4676.1 9870.9 3430.2 4733.7 9968.9 3350.1 4651.5 9587.2 3425.2 4801.6 9563.0
ξ2b 5186.1 6886.1 13259.8 5209.0 6903.1 13535.8 5219.9 6795.2 13443.5 5185.4 6758.2 13116.8
ξ3a 10511.3 14810.2 30459.7 10777.0 14824.2 31183.8 10586.8 14767.1 30908.1 10770.8 14794.1 29977.1
ξ3b 16422.8 21857.0 42690.0 16889.9 22226.6 44885.2 16725.0 21841.5 43930.5 16423.7 21567.8 42677.1

ρΦ = 0.9 :
ξ1a 252.5 320.3 609.9 251.9 328.1 602.8 244.9 324.5 608.8 246.4 326.6 602.4
ξ1b 460.0 562.8 970.3 459.4 579.9 974.8 462.3 554.9 948.2 449.6 567.0 917.9
ξ2a 3960.3 4656.9 7427.4 3970.5 4647.8 7510.8 3914.2 4543.6 7450.3 3884.1 4607.4 7651.8
ξ2b 5635.5 6651.8 10202.7 5803.7 6610.9 10310.9 5645.7 6387.4 10272.5 5533.5 6578.9 10287.5
ξ3a 14308.1 17164.4 26295.8 14678.5 17200.1 27398.7 14357.7 16709.2 27674.2 14218.8 16737.8 27753.2
ξ3b 26820.0 30969.2 45770.8 26940.3 31489.6 46220.0 26667.6 30067.2 45935.0 26686.9 30872.6 46477.0

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 95.3 149.6 404.2 97.2 148.2 445.3 95.4 153.3 382.7 97.5 160.7 397.2
ξ1b 96.9 157.6 397.2 96.4 153.8 388.1 99.8 152.4 387.2 93.6 153.6 453.5
ξ2a 2050.8 3277.2 8051.8 2077.2 3244.2 7246.8 2010.4 3277.0 8416.5 2047.8 3296.4 7413.8
ξ2b 2214.2 3516.5 9475.6 2175.5 3657.3 7698.4 2254.4 3591.2 8984.9 2170.4 3614.0 8039.6
ξ3a 12120.5 19567.3 47848.1 12193.7 19598.4 48951.0 12234.9 19140.6 49975.8 12240.2 20171.5 52779.8
ξ3b 14767.0 23388.1 58727.4 14632.4 23879.8 57612.6 14470.7 23983.5 57154.0 14882.7 22806.7 64743.1

ρΦ = 0.5 :
ξ1a 18.7 29.8 76.5 18.9 30.3 86.2 19.0 30.3 75.8 19.2 29.7 77.9
ξ1b 22.1 34.6 87.2 22.5 35.4 80.1 21.7 35.9 84.9 21.9 34.5 91.0
ξ2a 562.5 870.7 2199.0 569.1 867.6 2158.7 559.7 879.1 2183.6 559.8 873.1 2177.8
ξ2b 680.6 1086.4 2714.1 691.4 1079.8 2726.0 664.7 1069.9 2731.4 688.6 1120.3 2605.8
ξ3a 4257.9 6983.9 17210.6 4278.2 6909.5 17309.6 4266.0 6928.9 16927.0 4258.4 6852.2 18303.6
ξ3b 7702.1 11422.9 25153.6 7881.7 11431.6 26488.1 7772.9 11345.7 25848.2 7980.3 11024.1 25302.3

ρΦ = 0.9 :
ξ1a 10.3 15.6 38.2 9.7 15.9 35.4 9.8 15.8 39.0 10.1 16.1 38.7
ξ1b 11.4 18.8 44.9 11.6 18.1 45.6 11.8 18.5 45.1 11.9 18.8 43.4
ξ2a 234.0 357.2 868.5 230.3 357.9 928.3 229.4 356.4 874.3 233.7 355.4 880.2
ξ2b 270.3 438.9 1083.2 272.9 437.1 1038.7 273.2 448.8 1077.2 274.6 449.9 1128.3
ξ3a 3166.6 4721.1 10585.2 3138.1 4668.8 10354.1 3169.6 4702.1 10629.6 3235.8 4725.2 10446.9
ξ3b 3635.2 5575.4 12844.1 3700.5 5592.3 12772.0 3509.0 5582.9 13140.8 3606.7 5489.0 13399.4

The variance of the normalized total loss is approximated using 10, 000 independent samples of L. Total losses are normalized by 100 expected insured vehicles.
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Table B.12: Skewness of the normalized total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 0.306 0.533 0.869 0.320 0.679 1.904 0.327 0.454 0.858 0.386 0.536 1.728
ξ1b 0.292 0.468 0.868 0.357 0.666 1.764 0.330 0.468 0.818 0.366 0.563 1.756
ξ2a 0.409 0.609 1.095 0.451 0.733 2.822 0.403 0.573 1.109 0.451 0.785 2.221
ξ2b 0.431 0.639 1.114 0.435 0.886 2.495 0.359 0.598 1.073 0.448 0.650 1.987
ξ3a 0.451 0.640 1.234 0.503 0.803 2.269 0.430 0.687 1.297 0.497 0.773 2.171
ξ3b 0.463 0.584 1.142 0.453 0.865 2.763 0.399 0.607 1.142 0.461 0.785 2.084

ρΦ = 0.5 :
ξ1a 0.192 0.254 0.492 0.130 0.323 1.454 0.200 0.222 0.502 0.164 0.384 0.891
ξ1b 0.330 0.458 1.120 0.326 0.576 1.658 0.350 0.532 1.032 0.341 0.679 3.431
ξ2a 0.266 0.338 0.563 0.216 0.385 1.318 0.219 0.306 0.550 0.221 0.406 1.246
ξ2b 0.208 0.323 0.515 0.196 0.290 0.942 0.209 0.257 0.484 0.184 0.307 0.919
ξ3a 0.211 0.285 0.566 0.237 0.358 1.206 0.182 0.314 0.609 0.229 0.358 1.146
ξ3b 0.194 0.264 0.496 0.187 0.323 1.166 0.235 0.242 0.532 0.193 0.263 0.972

ρΦ = 0.9 :
ξ1a 0.265 0.380 0.795 0.261 0.402 1.359 0.257 0.397 0.746 0.292 0.436 1.418
ξ1b 0.249 0.386 0.836 0.218 0.392 2.090 0.234 0.351 0.687 0.237 0.393 1.154
ξ2a 0.143 0.209 0.391 0.145 0.212 0.755 0.150 0.230 0.382 0.125 0.195 0.979
ξ2b 0.155 0.195 0.386 0.132 0.200 0.650 0.123 0.177 0.394 0.125 0.209 0.724
ξ3a 0.142 0.194 0.370 0.119 0.231 0.652 0.125 0.191 0.384 0.147 0.209 0.791
ξ3b 0.104 0.163 0.335 0.104 0.170 0.541 0.102 0.140 0.292 0.113 0.171 0.483

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 0.893 1.482 2.832 0.934 1.875 7.599 0.948 1.516 2.779 0.938 1.916 7.127
ξ1b 0.916 1.463 2.841 0.931 2.016 5.193 0.970 1.385 2.789 0.908 1.875 6.440
ξ2a 0.770 1.255 2.486 0.768 1.372 3.274 0.747 1.182 2.367 0.805 1.647 3.572
ξ2b 0.778 1.070 2.370 0.739 1.503 3.182 0.717 1.181 2.276 0.753 1.600 3.484
ξ3a 0.560 0.941 1.727 0.646 1.216 6.279 0.565 0.927 1.663 0.612 1.291 7.033
ξ3b 0.602 0.848 1.639 0.550 1.169 2.945 0.501 0.857 1.578 0.591 1.013 5.332

ρΦ = 0.5 :
ξ1a 0.502 0.733 1.364 0.510 0.931 5.395 0.488 0.761 1.502 0.508 0.975 2.945
ξ1b 0.412 0.676 1.274 0.476 0.913 2.348 0.410 0.674 1.249 0.469 0.936 3.525
ξ2a 0.333 0.561 0.993 0.377 0.660 2.152 0.299 0.522 1.045 0.417 0.711 2.155
ξ2b 0.333 0.489 0.891 0.343 0.620 2.241 0.292 0.466 0.934 0.305 0.631 1.921
ξ3a 0.209 0.362 0.663 0.222 0.507 1.711 0.199 0.429 0.664 0.188 0.446 2.234
ξ3b 0.170 0.291 0.548 0.182 0.324 1.787 0.222 0.343 0.626 0.194 0.354 1.358

ρΦ = 0.9 :
ξ1a 0.375 0.595 0.986 0.380 0.702 1.992 0.340 0.588 1.078 0.388 0.716 2.678
ξ1b 0.386 0.562 0.975 0.393 0.689 2.316 0.374 0.556 1.006 0.359 0.751 2.101
ξ2a 0.298 0.440 0.813 0.319 0.626 2.733 0.274 0.509 0.918 0.306 0.627 2.219
ξ2b 0.251 0.420 0.759 0.270 0.517 1.567 0.260 0.363 0.743 0.315 0.585 2.460
ξ3a 0.203 0.310 0.502 0.194 0.325 1.069 0.161 0.266 0.469 0.239 0.359 1.044
ξ3b 0.145 0.235 0.437 0.138 0.316 1.084 0.096 0.218 0.440 0.129 0.280 1.006

The skewness of the normalized total loss is approximated using 10, 000 independent samples of L. Total losses are normalized by 100 expected insured
vehicles.



206 Companion to Chapter 4

Table B.13: Value-at-Risk at level p = 0.9 of the normalized total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 187.1 197.2 227.2 187.3 196.4 221.7 186.7 198.9 228.3 186.1 198.7 219.2
ξ1b 182.2 191.4 218.3 182.6 189.9 213.5 181.7 191.3 220.7 179.9 192.7 213.0
ξ2a 497.6 528.3 621.3 498.7 525.5 588.9 495.7 529.8 625.2 496.4 531.6 583.6
ξ2b 504.1 533.6 627.4 505.7 532.9 596.6 504.1 540.3 631.0 498.0 536.2 595.8
ξ3a 759.9 806.9 953.3 768.9 811.2 909.1 764.5 812.0 971.6 759.1 807.7 896.7
ξ3b 801.1 845.0 1000.7 797.2 846.5 941.9 797.2 853.8 1009.3 790.3 856.9 945.9

ρΦ = 0.5 :
ξ1a 156.4 159.2 173.6 156.0 160.5 171.6 156.3 160.8 173.5 156.2 159.3 171.1
ξ1b 171.2 175.0 187.8 170.7 174.5 185.0 171.1 175.3 189.0 171.3 175.0 184.6
ξ2a 416.5 429.9 473.8 416.8 429.2 462.7 416.6 429.9 468.7 417.8 430.2 465.4
ξ2b 526.1 539.8 583.0 527.5 541.1 582.6 528.1 539.8 585.3 526.8 538.7 579.6
ξ3a 731.1 756.5 825.8 731.6 756.3 818.0 731.1 758.6 822.7 733.8 755.6 815.0
ξ3b 959.1 983.7 1057.7 959.7 982.6 1055.5 958.9 982.4 1059.6 955.9 979.3 1051.7

ρΦ = 0.9 :
ξ1a 124.6 127.3 135.5 125.0 127.2 133.8 124.4 127.6 135.5 124.5 127.9 134.5
ξ1b 153.6 157.0 164.4 153.3 156.9 162.1 153.6 156.7 165.7 152.9 156.8 162.3
ξ2a 416.4 425.1 448.9 416.6 424.5 444.5 415.3 422.7 449.3 414.9 424.2 446.8
ξ2b 513.8 525.7 552.3 515.6 522.9 550.5 515.1 521.7 550.4 513.0 522.7 546.9
ξ3a 840.4 858.6 895.7 841.1 856.0 897.1 840.3 853.7 903.4 839.4 856.1 895.3
ξ3b 1161.2 1179.1 1231.8 1160.9 1184.1 1229.7 1159.4 1176.7 1232.1 1161.3 1181.1 1230.5

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 26.7 29.6 38.0 27.1 29.3 32.4 26.3 29.9 37.4 27.2 29.9 32.1
ξ1b 27.0 30.8 37.9 27.0 29.3 32.1 27.1 30.5 37.2 26.5 29.5 32.3
ξ2a 139.4 156.6 188.1 139.6 156.1 169.3 138.3 156.0 197.0 139.3 152.4 168.9
ξ2b 146.6 165.9 208.5 146.3 162.5 176.6 148.6 162.9 208.0 147.6 163.3 178.0
ξ3a 405.9 446.4 550.4 404.4 441.7 493.6 407.2 444.5 559.5 407.2 444.2 488.9
ξ3b 470.2 518.3 627.8 472.4 514.8 576.8 471.7 516.7 627.0 474.0 510.8 581.2

ρΦ = 0.5 :
ξ1a 17.5 19.1 23.5 17.5 19.2 21.4 17.6 19.0 23.3 17.6 18.9 21.7
ξ1b 19.8 21.4 26.0 19.9 21.5 24.1 19.7 21.5 25.9 19.7 21.3 24.2
ξ2a 125.1 131.5 156.1 125.2 132.9 149.7 124.5 133.0 155.5 124.3 132.0 148.7
ξ2b 148.9 156.5 182.6 149.1 157.2 176.1 147.2 156.4 185.4 148.0 158.2 175.9
ξ3a 496.9 523.6 582.9 495.4 519.9 571.8 496.7 519.4 581.4 495.5 518.9 577.0
ξ3b 665.3 693.7 766.3 668.5 693.0 752.8 669.1 691.6 769.1 670.4 689.2 747.4

ρΦ = 0.9 :
ξ1a 15.4 16.3 19.6 15.2 16.4 18.2 15.1 16.3 19.5 15.3 16.5 18.4
ξ1b 17.1 18.4 21.9 17.1 18.2 20.6 17.1 18.4 21.6 17.3 18.3 20.7
ξ2a 87.5 91.9 107.2 87.0 92.0 103.0 86.8 92.0 107.3 87.1 92.1 103.0
ξ2b 106.1 112.1 129.2 106.3 112.1 124.4 106.4 112.8 128.7 106.2 112.5 124.4
ξ3a 497.1 515.5 561.1 497.8 514.9 552.9 499.3 515.1 560.0 500.3 514.2 555.5
ξ3b 600.8 620.7 669.5 598.9 619.9 665.7 598.5 618.9 668.8 599.1 617.5 670.1

The Value-at-Risk at level p = 0.9 of the normalized total loss is approximated using 10, 000 independent samples of L. Total losses are normalized by 100
expected insured vehicles.



Companion to Chapter 4 207

Table B.14: Expected Shortfall at level p = 0.9 of the normalized total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 206.4 223.0 271.7 206.9 224.4 282.2 205.3 223.4 272.5 207.3 225.4 277.7
ξ1b 200.3 216.3 263.9 202.5 217.4 272.4 200.1 216.9 263.3 199.1 219.7 271.4
ξ2a 560.1 612.2 771.9 562.2 613.9 779.9 556.8 610.7 779.7 558.7 622.6 774.8
ξ2b 567.7 617.8 779.1 569.7 628.4 796.9 562.8 625.4 780.1 563.2 620.8 788.3
ξ3a 863.9 942.5 1218.4 873.9 959.3 1225.4 866.8 957.0 1241.1 865.2 956.7 1213.7
ξ3b 904.4 983.1 1261.2 904.3 998.5 1280.9 899.5 988.4 1262.5 897.0 1010.1 1263.2

ρΦ = 0.5 :
ξ1a 165.9 171.2 193.8 165.1 173.9 196.7 165.9 172.2 194.3 165.4 171.8 194.4
ξ1b 183.0 191.1 219.4 183.2 192.5 216.1 183.8 192.5 219.6 183.6 193.2 217.4
ξ2a 445.1 467.1 534.4 444.4 468.6 540.9 443.9 466.1 527.9 446.2 469.7 536.2
ξ2b 557.8 583.2 652.7 559.1 582.6 666.0 560.0 581.8 653.8 558.3 581.9 659.9
ξ3a 781.2 820.8 936.8 783.9 822.0 957.9 780.3 823.0 938.9 784.8 821.9 948.8
ξ3b 1016.6 1057.8 1183.0 1018.9 1063.0 1215.6 1020.4 1056.8 1190.8 1014.8 1056.8 1201.1

ρΦ = 0.9 :
ξ1a 132.1 137.1 152.2 132.2 137.5 152.6 131.5 137.4 152.0 132.0 138.0 152.6
ξ1b 162.5 169.0 186.4 162.1 169.4 185.8 162.6 168.2 185.0 161.6 168.8 185.1
ξ2a 437.1 452.2 494.7 439.1 453.2 499.2 438.2 453.3 494.6 436.0 452.7 503.7
ξ2b 540.9 557.3 603.8 541.0 557.1 611.0 539.8 552.9 605.8 538.0 556.9 607.6
ξ3a 883.3 912.1 982.9 883.5 914.7 1000.7 882.2 907.2 994.3 881.0 907.8 1004.8
ξ3b 1209.5 1246.5 1338.6 1210.4 1249.8 1354.3 1208.6 1242.4 1340.3 1210.9 1249.0 1354.9

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 33.6 40.3 62.1 33.9 40.3 58.8 33.5 40.7 60.3 34.0 42.1 56.6
ξ1b 33.9 41.4 61.6 33.7 40.8 56.8 34.3 40.8 60.6 33.5 41.2 59.2
ξ2a 169.4 201.5 285.7 170.5 202.9 273.8 167.8 202.1 292.2 170.1 203.8 274.4
ξ2b 178.2 209.9 312.7 177.0 214.9 283.4 179.0 211.2 304.0 177.8 213.7 285.9
ξ3a 473.2 547.9 748.0 475.3 557.2 727.9 475.5 540.1 771.1 478.5 561.9 742.7
ξ3b 550.7 623.1 850.9 547.4 632.0 842.4 542.4 627.4 838.9 550.1 622.8 856.8

ρΦ = 0.5 :
ξ1a 20.1 22.7 31.0 20.3 23.2 31.3 20.2 22.9 30.8 20.3 23.0 31.3
ξ1b 22.5 25.2 33.6 22.8 25.8 33.2 22.4 25.4 33.5 22.5 25.6 34.2
ξ2a 138.2 150.4 191.6 138.8 151.6 194.4 137.7 151.4 191.6 138.5 152.0 193.6
ξ2b 163.2 176.6 219.6 163.4 178.4 224.7 161.8 176.4 222.4 162.3 179.6 221.7
ξ3a 531.4 572.2 670.4 530.7 572.1 687.0 530.9 568.6 669.8 528.7 569.9 691.3
ξ3b 709.9 751.6 863.5 714.0 755.6 882.8 714.9 752.5 871.4 715.3 752.0 876.7

ρΦ = 0.9 :
ξ1a 17.2 18.8 24.0 17.0 19.1 24.0 16.9 18.8 24.2 17.2 19.1 24.4
ξ1b 19.0 21.2 26.7 19.1 21.0 27.2 19.1 21.0 26.6 19.2 21.3 26.9
ξ2a 95.9 103.0 127.6 95.6 104.5 131.5 95.1 103.5 128.0 95.6 104.4 130.1
ξ2b 115.1 124.4 150.7 115.2 124.9 152.6 115.6 124.5 151.3 115.5 126.1 154.8
ξ3a 526.2 553.8 621.5 526.2 553.2 630.1 525.5 551.2 621.1 529.1 553.1 631.7
ξ3b 631.4 659.8 737.3 631.3 661.4 748.1 627.7 658.5 739.6 629.9 658.0 755.8

The Expected Shortfall at level p = 0.9 of the normalized total loss is approximated using 10, 000 independent samples of L. Total losses are normalized by
100 expected insured vehicles.
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Table B.15: Value-at-Risk at level p = 0.95 of the normalized total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 201.2 216.3 259.3 202.6 215.7 260.7 200.5 217.4 262.3 202.6 219.0 256.9
ξ1b 195.7 210.7 252.8 198.1 209.7 251.8 195.6 211.3 251.9 195.1 212.0 251.5
ξ2a 545.6 590.1 731.2 546.9 585.8 713.9 539.9 585.3 737.5 542.5 593.4 704.1
ξ2b 551.7 596.4 729.6 554.0 602.3 721.5 547.7 603.4 733.6 545.2 601.7 722.2
ξ3a 836.9 908.5 1146.5 852.0 916.8 1110.0 839.6 916.3 1170.1 839.1 916.5 1109.6
ξ3b 879.5 950.2 1195.6 878.8 951.1 1160.0 880.0 953.5 1186.7 868.6 971.8 1139.2

ρΦ = 0.5 :
ξ1a 163.8 168.0 189.3 163.1 171.1 187.6 163.5 169.3 188.5 163.4 168.1 186.9
ξ1b 179.9 187.0 208.5 180.1 187.6 204.0 181.6 187.5 209.4 180.8 187.6 204.4
ξ2a 438.1 457.5 520.1 438.1 459.1 510.3 437.8 457.7 510.5 440.1 459.0 511.2
ξ2b 550.4 571.3 635.4 551.7 572.1 639.8 551.0 573.3 636.6 551.6 572.6 633.6
ξ3a 771.4 803.3 910.1 772.5 807.5 913.2 768.5 807.0 907.5 773.0 805.2 903.4
ξ3b 1003.4 1039.9 1150.5 1006.3 1046.8 1163.8 1006.9 1040.4 1157.5 1000.2 1040.4 1156.0

ρΦ = 0.9 :
ξ1a 130.3 134.3 146.6 130.4 134.6 145.5 129.7 135.2 147.2 130.1 135.5 146.1
ξ1b 160.6 166.2 180.3 159.9 165.8 177.2 160.4 165.9 179.0 159.4 165.7 176.9
ξ2a 432.1 446.1 482.8 433.9 447.8 481.2 434.0 446.0 482.4 430.6 446.9 484.4
ξ2b 534.6 549.4 591.3 535.2 548.8 591.1 535.2 545.6 593.9 532.3 549.8 588.1
ξ3a 873.2 901.6 962.3 873.9 901.5 971.2 872.7 895.4 974.6 871.0 896.4 972.0
ξ3b 1199.1 1232.4 1314.5 1198.0 1233.8 1314.6 1197.1 1227.4 1317.2 1199.7 1234.6 1319.8

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 31.8 37.2 54.3 32.1 36.4 47.1 31.8 37.7 53.1 32.2 38.2 45.6
ξ1b 32.2 38.3 53.4 31.6 36.5 45.3 32.3 38.1 53.0 31.8 37.4 46.8
ξ2a 161.2 188.1 254.7 163.2 188.9 236.2 159.3 188.1 264.3 163.2 187.0 235.8
ξ2b 169.7 198.9 281.8 169.4 196.4 242.7 170.8 196.9 271.4 168.5 198.7 240.1
ξ3a 456.0 520.8 683.3 456.6 526.1 635.9 458.2 516.2 715.3 462.8 526.0 639.1
ξ3b 529.1 592.0 785.9 525.1 595.4 721.8 522.2 593.9 772.0 527.2 588.8 740.6

ρΦ = 0.5 :
ξ1a 19.6 21.7 28.9 19.6 22.0 27.0 19.5 22.0 28.5 19.6 21.8 27.2
ξ1b 21.7 24.2 31.4 22.1 24.6 29.6 21.8 24.3 31.4 21.8 24.3 30.3
ξ2a 134.9 146.5 182.0 135.6 146.3 177.6 134.7 146.8 182.5 134.5 145.9 174.4
ξ2b 159.9 171.2 207.7 159.7 172.6 206.2 158.1 171.6 212.4 158.5 173.2 206.1
ξ3a 523.3 560.8 649.9 522.3 557.5 643.2 522.5 555.7 647.6 519.2 557.5 647.9
ξ3b 699.1 737.3 838.8 704.5 740.7 828.7 704.3 735.5 843.6 704.3 735.4 829.2

ρΦ = 0.9 :
ξ1a 16.7 18.1 22.8 16.6 18.4 21.8 16.5 18.1 22.9 16.8 18.4 22.2
ξ1b 18.5 20.5 25.3 18.5 20.2 24.5 18.6 20.3 25.3 18.6 20.5 24.8
ξ2a 94.1 100.1 122.8 93.5 101.1 121.3 93.3 100.7 121.8 93.7 101.1 119.1
ξ2b 112.7 121.5 144.3 112.9 120.7 143.7 113.4 121.6 145.8 113.1 122.3 143.1
ξ3a 518.4 542.6 605.0 519.2 543.8 605.9 517.8 541.9 605.2 521.2 544.7 607.6
ξ3b 623.9 649.8 720.6 622.7 650.4 720.7 620.7 648.9 720.0 623.8 647.2 729.1

The Value-at-Risk at level p = 0.95 of the normalized total loss is approximated using 10, 000 independent samples of L. Total losses are normalized by 100
expected insured vehicles.
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Table B.16: Expected Shortfall at level p = 0.95 of the normalized total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 219.2 240.6 302.0 219.6 243.7 324.9 217.7 239.8 302.1 220.8 242.5 319.7
ξ1b 212.0 232.9 294.6 214.9 235.8 315.5 212.5 233.8 291.8 211.3 237.4 313.4
ξ2a 601.0 667.7 874.5 603.5 674.8 916.2 598.2 666.6 881.2 600.3 684.5 913.0
ξ2b 609.2 674.8 884.8 610.9 693.9 943.7 602.2 678.5 881.8 605.2 676.1 925.3
ξ3a 932.9 1031.4 1398.7 943.4 1058.8 1455.7 934.2 1054.7 1418.8 936.1 1057.1 1441.8
ξ3b 972.4 1074.5 1435.7 970.8 1104.5 1525.7 965.8 1079.1 1437.2 967.9 1112.9 1493.9

ρΦ = 0.5 :
ξ1a 171.8 179.5 207.3 170.8 182.4 214.7 172.1 179.8 208.4 171.5 180.3 210.5
ξ1b 190.9 202.4 242.3 191.6 204.6 238.9 191.3 203.9 240.7 191.7 205.5 240.9
ξ2a 463.8 491.7 575.3 462.6 494.1 597.7 461.6 489.8 568.9 464.4 495.6 586.8
ξ2b 578.0 611.7 701.5 579.5 610.5 723.5 580.9 609.2 700.6 578.1 609.8 716.4
ξ3a 812.5 862.2 1009.9 817.5 865.2 1056.2 814.0 863.4 1016.5 817.7 867.4 1043.0
ξ3b 1051.8 1107.5 1266.0 1056.5 1115.4 1328.0 1060.4 1104.3 1277.3 1052.7 1102.6 1301.6

ρΦ = 0.9 :
ξ1a 137.0 143.4 164.1 137.0 144.3 166.0 136.1 143.8 163.6 137.0 144.8 165.7
ξ1b 168.3 176.9 201.9 167.8 177.7 202.9 168.9 175.6 198.5 167.4 176.7 201.3
ξ2a 450.8 469.9 524.5 455.0 471.1 537.2 452.6 471.8 524.6 449.7 470.1 543.5
ξ2b 555.4 576.8 636.3 558.5 578.0 653.6 558.0 574.0 641.5 553.0 578.8 650.1
ξ3a 909.1 946.4 1038.9 912.6 952.4 1071.1 909.2 944.5 1055.7 907.7 941.8 1078.3
ξ3b 1240.1 1290.8 1408.7 1243.8 1292.4 1441.6 1240.9 1281.7 1410.5 1242.7 1292.6 1438.6

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 38.2 47.6 78.9 38.6 48.1 78.8 38.5 48.0 76.2 38.4 50.7 75.6
ξ1b 38.4 48.7 78.0 38.4 49.0 75.8 39.1 47.5 77.0 38.1 49.4 80.2
ξ2a 189.5 232.0 353.9 190.8 234.7 351.0 188.2 232.8 359.0 190.2 239.4 351.0
ξ2b 199.3 239.6 384.9 196.9 251.4 363.1 199.2 244.2 370.8 198.6 248.8 366.2
ξ3a 518.4 617.7 887.1 521.9 635.7 903.7 521.0 605.0 911.6 525.1 642.7 932.0
ξ3b 603.7 693.2 1004.4 599.9 712.7 1044.0 590.3 704.1 985.6 600.9 701.1 1065.9

ρΦ = 0.5 :
ξ1a 21.9 25.2 36.1 22.1 25.9 38.6 21.9 25.4 36.0 22.1 25.9 38.6
ξ1b 24.2 27.7 38.8 24.7 28.7 39.9 24.2 28.0 38.7 24.3 28.5 41.5
ξ2a 146.3 162.8 215.0 147.6 164.3 227.5 146.1 163.8 215.8 148.0 165.7 226.9
ξ2b 172.4 189.9 245.0 172.8 192.3 259.8 170.7 189.9 247.7 171.8 194.2 253.9
ξ3a 553.7 603.2 728.0 553.9 606.7 770.7 552.7 601.4 727.8 551.4 604.6 773.6
ξ3b 739.0 790.2 928.6 744.5 795.4 976.2 744.4 792.3 939.7 744.5 792.8 969.2

ρΦ = 0.9 :
ξ1a 18.3 20.5 27.0 18.2 20.9 28.1 18.1 20.5 27.5 18.4 20.9 28.8
ξ1b 20.3 23.0 29.9 20.4 22.9 32.1 20.4 22.8 30.0 20.4 23.4 31.3
ξ2a 101.2 110.5 141.0 101.3 112.8 152.1 100.6 110.9 141.8 101.5 112.6 150.0
ξ2b 121.1 132.4 165.8 121.0 133.6 173.0 121.4 132.2 166.2 121.6 135.4 177.3
ξ3a 545.3 577.1 661.8 543.9 578.1 684.8 543.4 575.2 662.2 547.0 579.9 684.2
ξ3b 650.0 685.1 781.4 651.3 689.2 804.9 646.5 684.9 785.1 649.7 686.1 814.4

The Expected Shortfall at level p = 0.95 of the normalized total loss is approximated using 10, 000 independent samples of L. Total losses are normalized by
100 expected insured vehicles.
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Table B.17: Value-at-Risk at level p = 0.99 of the normalized total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 230.9 255.8 328.6 231.4 260.3 363.3 228.1 251.5 326.4 231.3 257.4 350.5
ξ1b 222.8 248.2 320.1 225.7 251.8 352.6 224.7 247.2 314.3 221.7 254.6 344.5
ξ2a 639.2 716.9 949.0 638.5 729.4 1038.6 638.1 719.9 966.6 631.7 743.1 1011.2
ξ2b 644.1 719.7 973.5 650.6 744.5 1061.7 636.4 723.8 976.7 638.7 726.6 1039.2
ξ3a 1001.8 1106.3 1537.6 994.3 1149.4 1666.7 992.1 1138.6 1592.0 993.1 1164.3 1586.3
ξ3b 1030.2 1153.4 1564.6 1032.9 1211.2 1709.4 1019.7 1149.2 1602.9 1023.4 1202.4 1706.6

ρΦ = 0.5 :
ξ1a 176.8 185.5 217.4 176.0 188.7 228.9 177.5 186.1 218.9 176.5 187.6 224.7
ξ1b 198.5 211.4 261.5 198.7 214.1 252.6 196.8 213.4 258.2 198.4 214.7 250.5
ξ2a 481.4 515.4 613.4 477.8 515.0 640.2 475.3 512.8 607.1 478.9 516.6 628.1
ξ2b 594.9 637.1 741.7 597.4 635.0 766.9 600.2 630.0 736.9 594.8 629.4 759.1
ξ3a 837.7 896.7 1077.6 846.1 902.9 1121.5 839.5 896.1 1080.0 849.8 906.0 1118.0
ξ3b 1080.4 1152.5 1343.1 1090.0 1158.2 1429.6 1092.6 1145.7 1356.0 1086.9 1144.1 1388.1

ρΦ = 0.9 :
ξ1a 141.0 149.3 175.4 141.1 150.1 176.5 139.8 149.6 172.7 141.4 150.9 174.4
ξ1b 172.5 183.5 214.3 173.3 184.3 214.3 173.5 181.4 209.1 172.1 183.0 216.6
ξ2a 463.0 485.6 553.8 463.8 482.6 565.2 464.5 486.3 548.5 461.7 483.3 570.4
ξ2b 566.7 592.3 664.8 571.4 594.2 691.4 565.2 589.5 669.3 566.1 596.0 680.3
ξ3a 931.2 975.2 1088.0 931.2 986.4 1124.9 932.5 976.4 1112.4 933.3 966.9 1129.7
ξ3b 1266.5 1325.8 1460.7 1276.4 1328.3 1513.6 1272.0 1317.8 1466.4 1270.1 1328.8 1508.8

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 42.4 54.1 93.3 43.0 54.9 96.5 42.6 55.0 90.9 42.6 57.1 90.2
ξ1b 41.9 55.5 94.8 41.9 56.5 91.2 43.8 54.3 90.8 41.8 56.5 92.9
ξ2a 208.2 257.2 406.2 205.6 260.5 420.6 207.6 260.5 415.7 205.6 269.2 414.3
ξ2b 219.8 265.7 445.9 212.3 281.8 436.5 217.9 275.0 423.6 216.0 277.8 437.2
ξ3a 556.2 677.5 1024.5 554.1 690.3 1015.3 561.5 656.4 1036.9 564.9 708.9 1099.2
ξ3b 650.9 755.7 1138.7 649.3 792.7 1218.2 632.2 776.4 1113.5 643.3 765.0 1204.7

ρΦ = 0.5 :
ξ1a 23.3 27.6 41.0 23.7 28.2 43.3 23.4 27.7 41.4 23.7 28.8 45.3
ξ1b 25.6 30.0 43.3 26.3 31.7 45.3 25.6 30.1 43.1 26.0 30.8 45.4
ξ2a 153.3 171.3 237.0 154.6 174.4 250.6 153.6 174.6 238.7 156.8 176.4 256.7
ξ2b 180.8 202.4 269.2 180.6 203.7 283.3 179.1 200.3 269.6 180.3 206.9 280.9
ξ3a 575.1 628.8 779.7 574.7 637.4 828.9 571.1 630.1 787.3 570.5 635.7 837.6
ξ3b 765.1 826.7 984.4 767.4 829.6 1053.9 768.0 829.6 1000.4 770.8 831.0 1040.6

ρΦ = 0.9 :
ξ1a 19.4 22.1 29.6 19.2 22.3 31.7 19.2 21.8 30.3 19.4 22.2 31.5
ξ1b 21.3 24.5 32.5 21.3 24.3 36.2 21.5 24.4 32.9 21.5 25.2 35.2
ξ2a 105.6 116.8 152.7 106.1 120.1 164.1 105.3 116.7 154.5 105.8 120.6 168.9
ξ2b 125.9 139.2 180.3 125.9 141.7 188.2 126.1 138.7 179.4 126.3 143.3 193.6
ξ3a 560.4 596.3 697.9 561.7 599.4 716.2 559.2 593.7 694.5 562.0 600.4 727.0
ξ3b 665.8 706.1 818.4 666.9 715.3 843.8 662.2 707.9 826.9 666.9 707.9 858.9

The Value-at-Risk at level p = 0.99 of the normalized total loss is approximated using 10, 000 independent samples of L. Total losses are normalized by 100
expected insured vehicles.
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Table B.18: Expected Shortfall at level p = 0.99 of the normalized total loss.

Binomial Model Poisson Model

Gamma Log-Normal Gamma Log-Normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0

Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 244.8 279.0 372.4 244.2 290.2 436.5 244.6 272.8 368.4 247.4 277.5 432.8
ξ1b 235.8 264.9 363.8 239.0 276.4 427.1 236.9 265.1 353.9 236.5 273.3 424.3
ξ2a 683.4 783.4 1106.1 684.5 805.2 1314.1 682.2 783.5 1123.5 687.7 825.5 1304.0
ξ2b 692.5 798.9 1126.1 694.5 844.3 1378.0 678.1 795.5 1111.4 693.3 791.9 1287.4
ξ3a 1077.9 1214.4 1830.1 1078.4 1291.4 2104.3 1063.4 1260.7 1823.4 1077.3 1275.6 2058.2
ξ3b 1112.1 1252.7 1829.2 1113.1 1349.2 2217.3 1091.5 1259.8 1836.1 1121.6 1328.4 2140.8

ρΦ = 0.5 :
ξ1a 183.6 196.1 234.8 181.9 198.8 262.3 184.8 195.4 237.3 183.5 199.7 250.5
ξ1b 207.7 224.3 300.7 207.4 231.4 308.0 206.7 228.9 295.8 207.4 236.7 316.6
ξ2a 501.8 542.7 663.4 496.4 548.2 751.5 496.1 536.5 656.6 500.9 545.9 721.8
ξ2b 617.5 674.0 798.5 620.0 669.5 871.2 620.1 661.1 796.0 615.2 663.6 858.4
ξ3a 872.0 945.0 1159.5 879.6 952.0 1307.7 876.2 953.8 1185.6 879.3 961.8 1273.3
ξ3b 1119.5 1203.8 1436.0 1126.5 1217.1 1621.0 1136.0 1198.9 1455.7 1126.4 1194.1 1549.1

ρΦ = 0.9 :
ξ1a 146.3 158.8 194.8 146.5 159.5 203.1 145.2 157.0 191.0 146.8 158.9 202.8
ξ1b 178.9 193.0 239.4 179.3 196.9 253.9 179.6 190.5 231.7 178.7 194.5 246.9
ξ2a 477.3 502.5 580.8 479.1 510.7 642.3 478.9 509.3 586.3 481.3 504.2 655.9
ξ2b 585.5 613.7 706.1 588.2 620.2 756.9 588.5 611.4 713.3 581.6 622.8 765.7
ξ3a 969.5 1009.4 1160.8 958.9 1026.4 1248.0 962.6 1007.3 1163.3 959.6 1011.1 1254.6
ξ3b 1302.2 1369.6 1534.0 1310.8 1374.5 1650.4 1302.8 1357.3 1538.5 1309.4 1370.4 1623.2

Non-Uniform Accident Occurrence
ρΦ = 0.1 :

ξ1a 47.7 64.3 118.8 48.4 67.0 146.4 48.3 65.6 116.8 48.3 72.0 136.2
ξ1b 47.9 64.7 119.2 48.7 70.5 137.9 49.6 62.8 119.1 47.4 69.9 150.6
ξ2a 233.4 304.5 520.4 233.9 310.2 562.0 229.9 298.4 524.1 233.2 331.3 575.2
ξ2b 248.1 304.3 558.1 240.4 342.9 579.1 242.2 316.6 537.5 241.3 330.2 607.1
ξ3a 607.4 760.6 1226.9 623.5 816.5 1432.4 610.4 747.4 1223.0 617.0 840.0 1503.8
ξ3b 713.1 856.2 1363.6 708.7 913.1 1630.9 688.1 860.9 1319.0 712.3 877.6 1715.2

ρΦ = 0.5 :
ξ1a 25.4 30.4 47.1 25.6 32.1 63.4 25.6 30.5 48.3 25.9 32.3 60.0
ξ1b 27.8 33.1 50.0 28.5 35.3 59.5 27.7 33.5 49.2 28.1 35.1 63.5
ξ2a 163.3 189.0 266.1 166.5 191.7 321.4 163.4 188.8 269.3 168.6 196.4 325.4
ξ2b 192.9 219.1 302.9 192.0 222.6 363.4 189.4 218.0 305.4 191.4 228.3 340.4
ξ3a 597.0 664.0 848.6 600.3 680.3 994.5 596.4 670.8 848.3 600.3 674.6 1022.3
ξ3b 797.7 872.3 1065.1 800.6 868.7 1256.1 804.5 874.9 1080.6 803.7 873.4 1220.8

ρΦ = 0.9 :
ξ1a 20.9 24.2 33.4 20.5 24.6 39.0 20.6 24.1 34.6 20.8 25.0 41.9
ξ1b 22.9 26.7 37.1 23.1 27.1 46.2 23.0 26.5 37.1 23.1 27.9 43.4
ξ2a 111.2 125.3 168.8 112.9 130.8 213.7 111.4 125.9 172.9 112.5 130.8 207.5
ξ2b 132.9 149.0 198.3 133.2 152.4 226.8 132.0 147.8 195.4 134.3 156.1 241.2
ξ3a 584.0 627.9 750.6 579.8 625.8 822.2 578.0 620.5 746.1 585.7 628.3 818.5
ξ3b 686.8 738.3 872.5 694.3 750.1 959.2 682.4 736.4 885.2 689.8 740.7 977.6

The Expected Shortfall at level p = 0.99 of the normalized total loss is approximated using 10, 000 independent samples of L. Total losses are normalized by
100 expected insured vehicles.
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