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We analyze the integrability of the N -extended supersymmetric Calogero–Moser model. We explicitly 
construct the Lax pair {L, A} for this system, which properly reproduces all equations of motion. After 
adding a supersymmetric oscillator potential we reduce the latter to solving U̇ = A U for the time 
evolution operator U (t). The bosonic variables, however, evolve independently of U on closed trajectories, 
as is required for superintegrability. To visualize the structure of the conserved currents we derive the 
complete set of Liouville charges up to the fifth power in the momenta, for the N=2 supersymmetric 
model. The additional, non-involutive, conserved charges needed for a maximal superintegrability of this 
model are also found.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The original rational Calogero model of n interacting identical particles on a line [1] is given by the classical Hamiltonian

H = 1

2

n∑
i=1

p2
i + 1

2

∑
i �= j

g2(
xi−x j

)2
. (1.1)

This model receives much attention in different branches of physics such as high-energy and condensed-matter physics. From a mathe-
matical point of view, the Calogero–Moser model, as well as its variants with special potential terms, belongs to an important class of 
integrable and even superintegrable systems (see, e.g., [2]).

Unsurprisingly, the Calogero–Moser model has often been the subject of “supersymmetrization”, beginning with the N= 2 supersym-
metric model of Freedman and Mende [3]. However, all attempts to construct N= 4 supersymmetric extensions, despite the announced 
importance of such models [4], were unsuccessful due to a barrier encountered in [5,6]. To surmount this barrier new supersymmet-
ric Calogero-like models have been proposed in [7–10]. Finally, a supersymmetric Calogero–Moser system with arbitrary N -extended 
supersymmetry has been constructed [11,12].

The main feature of the latter models is an increased number of fermionic coordinates, namely Nn2 rather than the Nn to be expected. 
It is therefore questionable whether they inherit the (super)integrability of the bosonic Calogero–Moser model. To settle this issue we must 
first determine how many conserved currents are required for Liouville or super-integrability in a supersymmetric model with nbos+nfer
degrees of freedom. Recall that, in the standard Lax description with a pair {L, A} of matrices subject to L̇ = [A, L], the Liouville charges 
appear as the trace of powers of the L operator. In the supersymmetric extension, the Lax pair still produces all (bosonic and fermionic) 
equations of motion and nbos Liouville currents as before, but it is unclear how additional nfer conserved charges may arise and whether 
they should be commuting or anticommuting in nature. Of course, the problem extends to any additional (non-involutive) conserved 
charges, as required for superintegrability.

In this paper we analyze the integrability of the N -extended supersymmetric Calogero–Moser model. For convenience we add a 
confining supersymmetric oscillator potential. We explicitly construct the Lax pair for this system and demonstrate that it yields all 
(bosonic as well as fermionic) equations of motion. Employing the Olshanetsky–Perelomov approach [2] together with an observation by 
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Wojciechowski [13] we solve the bosonic equations of motion. Their periodic trajectories prove the maximal superintegrability of this 
sector.

As a definition of (super)integrability for a supersymmetric system with nbos+nfer degrees of freedom we adopt the formulation of 
Desrosiers, Lapointe and Mathieu [14,15]1:

• integrability means the existence of nbos+nfer Grassmannian-even conserved currents in involution,
• maximal superintegrability means the existence of 2(nbos+nfer)−1 Grassmannian-even conserved currents.

To visualize the structure of the conserved currents we construct all Liouville charges up to level 5 for the N= 2 Calogero–Moser model. 
This provides explicit expressions for a complete and functionally independent set in systems with nbos ≤ 5. We advocate a general 
procedure and hypothesize that it generates all Liouville currents for an arbitrary number of particles in that model. We also construct the 
additional set of conserved currents required for maximal superintegrability of the considered N= 2 Calogero–Moser model.

2. Hamiltonian description

In the Hamiltonian approach the construction of the n-particle rational Calogero–Moser model with N -extended supersymmetry [11,
12] is based on the following set of components:

• n bosonic coordinates xi and corresponding momenta pi, i = 1, . . . , n,
• N n2 fermions ξa

i j, ̄ξi j b , a,b = 1,2, . . .N /2.

The non-vanishing Poisson brackets have the standard form

{
xi, p j

} = δi j ,
{
ξa

i j, ξ̄km b
} = −iδa

bδimδ jk . (2.1)

It is convenient to collect the bosonic coordinates in a diagonal matrix X with components

Xij = δi j x j . (2.2)

Basic to our construction are the fermionic bilinear objects

�i j =
N /2∑
a=1

n∑
k=1

(
ξa

ik ξ̄kj a + ξ̄ik aξ
a
kj

)
and �̃i j =

N /2∑
a=1

n∑
k=1

(
ξa

ik ξ̄kj a − ξ̄ik aξ
a
kj

)
. (2.3)

It is easily to check that they form an s(u(n) ⊕ u(n)) algebra2

{
�i j,�km

} = {
�̃i j, �̃km

} = i
(
δim�kj − δkj�im

)
and

{
�i j, �̃km

} = i
(
δim�̃kj − δkj�̃im

)
. (2.4)

The N -extended supersymmetric A1 ⊕ An−1 rational Calogero model (with a harmonic confining potential) is described by super-
charges [12]

Qa =
n∑

i=1

(
pi + iωxi

)
ξa

ii − i
n∑

i �= j

(
g + � j j − �i j

)
ξa

ji

xi − x j
, Qa =

n∑
i=1

(
pi − iωxi

)
ξ̄ii a + i

n∑
i �= j

(
g + �ii − � ji

)
ξ̄i j a

xi − x j
, (2.5)

and a Hamiltonian

H = 1

2

n∑
i=1

p2
i + 1

2

n∑
i �= j

(
g + � j j − �i j

)(
g + �ii − � ji

)
(
xi − x j

)2
− 2

N
ω

N /2∑
a=1

n∑
i, j=1

ξa
i j ξ̄ ji a + ω2

2

n∑
i=1

x2
i , (2.6)

which form an su(N2 |1) super-algebra together with the R-symmetry generators

W a
b =

n∑
i, j=1

ξa
i j ξ̄ ji b − 2

N
δa

b

N /2∑
c=1

n∑
i, j=1

ξ c
i j ξ̄ ji c . (2.7)

The R-symmetry su
(N

2

)
algebra reads

{
W a

b ,W c
d

} = iδa
dW

c
b − iδc

bW
a

d , (2.8)

and the remaining commutation relations of the su
(N

2

∣∣1)
superalgebra are given by

1 For a different definition, see e.g. [16].
2 Note that by definition ∑i �ii = 0.
2
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{
Qa,Qb

} = −2i δa
b H+ 2iωW a

b ,
{
Qa,Qb} = {

Qa,Qb

} = 0 ,

{
H,Qa} = −iω

N−2

N
Qa ,

{
H,Qa

} = iω
N−2

N
Qa ,

{
W a

b ,Qc} = −iδc
b Q

a + i
2

N
δa

b Q
c ,

{
W a

b ,Qc

} = iδa
c Qb − i

2

N
δa

b Qc .

(2.9)

For N=4 and N= 8 this superalgebra coincides with the one given in [17]. One may expect that the system (2.5) and (2.6) coincides with 
the one considered in [18] upon two reductions: the first one considered in [19], and the second one performed in [12]. To verify this 
expectation two points have to be checked: a) invariance of the reduction of [19] under the su(N2 |1) superalgebra, and b) superconformal 
osp(N2 |1) invariance of the ω=0 system in [19].

In the limit ω → 0 this turns into the N -extended super-Poincaré algebra

{
Q a, Q b

} = −2i δa
b H and

{
Q a, Q b} = {

Q a, Q b
} = 0 (2.10)

for the unconfined charges

Q a = Qa
∣∣
ω=0 , Q a = Qa

∣∣
ω=0 and H =H

∣∣
ω=0 . (2.11)

3. Superintegrability

Based on the similarity of the Hamiltonian (2.11) and the Hamiltonian of the Euler–Calogero–Moser model [13] and trying to represent 
the supercharges as

Q a =
n∑

i, j=1

Li jξ
a
ji and Q a =

n∑
i, j=1

Li j ξ̄ ji a , (3.1)

one may guess the Lax operator L with components [20]

Li j = δi j p j − i
(
1 − δi j

) g + � j j − �i j

xi − x j
. (3.2)

It is indeed easily checked that

1
2 Tr L2 = H (3.3)

as it should be. For a Lax-type equation we need an associated matrix A. By a simple computation its components are found as

Aij = i δi j

n∑
k �=i

g + �kk − �ik

(xi − xk)
2

− i
(
1 − δi j

) g + � j j − �i j

(xi − x j)
2

. (3.4)

With this, the Lax–type equations of motion related to the Hamiltonian (2.6) read

d

dt
Li j = {

Li j,H
} = [

A, L
]

i j − ω2 Xij . (3.5)

The equations of motion for the coordinate matrices acquire the form

d

dt
Xij = {

Xij,H
} = [A, X]i j + Li j and (3.6)

d

dt
ξa

i j = {
ξa

i j,H
} = [

A, ξa]
i j − 2

iω

N
ξa

i j ,
d

dt
ξ̄i j a = {

ξ̄i j a,H
} = [

A, ξ̄a
]

i j + 2
iω

N
ξ̄a

i j . (3.7)

As a corollary, the composite objects �i j and �̃i j (2.3) satisfy the following equations,

d

dt
�i j ≡ {

�i j,H
} = [

A, �
]

i j and
d

dt
�̃i j ≡ {

�̃i j,H
} = [

A, �̃
]

i j . (3.8)

The equations of motion (3.5)–(3.7) are similar to those one in [13,21,22] and can be solved by the Olshanetsky–Perelomov method [2]. 
For this purpose we need an invertible time-dependent matrix U = (Uij) as the solution of the linear differential equation

d

dt
Uij = (

A U
)

i j with Uij
∣∣
t=0 = δi j . (3.9)

Using this matrix, one can pass to new tilded variables

L̃i j = (
U−1L U

)
i j , X̃i j = (

U−1 X U
)

i j , ξ̃a
i j = (

U−1ξa U
)

i j ,
˜̄ξi j a = (

U−1ξ̄a U
)

i j . (3.10)

In terms of these, the A contribution of the equations (3.5)–(3.7) is removed, hence

d
L̃ = −ω2 X̃ ,

d
X̃ = L̃ ⇒ d2

2
X̃ = −ω2 X̃ ,

d
ξ̃a

i j = −2i
ω

ξ̃a
i j ,

d ˜̄ξi j a = 2i
ω ˜̄ξi j a . (3.11)
dt dt dt dt N dt N
3
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The solutions to these equations are easily found as

L̃i j(t) = cos(ωt)Li j(0) − ω sin(ωt)Xij(0) , X̃i j(t) = cos(ωt)Xij(0) + ω−1 sin(ωt)Li j(0) ,

ξ̃a
i j(t) = exp(−2 iωt

N ) ξa
i j(0) and ˜̄ξi j a(t) = exp(2 iωt

N ) ξ̄i j a(0) .
(3.12)

The matrix U (t) then determines the time dependence of the original variables via

Li j(t) = cos(ωt)
(
U (t)L(0)U−1(t)

)
i j − ω sin(ωt)

(
U (t)X(0)U−1(t)

)
i j ,

Xij(t) = cos(ωt)
(
U (t)X(0)U−1(t)

)
i j + ω−1 sin(ωt)

(
U (t)L(0)U−1(t)

)
i j ,

ξa
i j(t) = exp(−2 iωt

N )
(
U (t)ξa(0)U−1(t)

)
i j and ξ̄i j a(t) = exp(2 iωt

N )
(
U (t)ξ̄a(0)U−1(t)

)
i j .

(3.13)

Of course, one still has to solve (3.9) to obtain the entire dynamics. However, for the time evolution of the bosonic coordinates xi
the U matrix is irrelevant because the eigenvalues of the matrix X are unchanged by the unitary transformation with U . Therefore, 
the motion xi(t) is periodic, and the bosonic trajectories are closed curves in phase space. Hence, the Hamiltonian (2.6) is completely 
degenerate with respect to its bosonic degrees of freedom, and so these provide 2n−1 functionally independent constants of motion. 
This property is preserved in the unconfining limit ω → 0, implying that the N –supersymmetric Calogero–Moser model is maximally 
superintegrable in its bosonic sector, just like the purely bosonic model is [13]. The situation is less clear for the conserved charges 
formed with the fermionic degrees of freedom. Therefore, we take a look at the explicit form of the integrals of motion.

4. Conserved currents

It is interesting to know the explicit form of the integrals of motion, especially in the present case where the number of the fermionic 
degrees of freedom is much larger that number of bosonic ones. Here, we will analyze the integrability of the simplest supersymmetric 
Calogero–Moser model with N= 2 supersymmetry.

From the equations of motion (3.5), (3.7), (3.8) it follows that any function F̂ with a polynomial dependence on the matrices L, ξa or 
ξ̄b obeys the equation

d

dt
F̂ = [

A, F̂
]

(4.1)

and, therefore, the trace of such a function is conserved:

d

dt
Tr F̂ (L, ξa, ξ̄b) = 0 . (4.2)

We note that the fermions ξa and ξ̄b have the non-standard conjugation properties [12]

(
ξa

i j

)† = g + � j j

g + �ii
ξ̄ ji a ⇒ (

�i j
)† = g + � j j

g + �ii
� ji ,

(
Li j

)† = g + � j j

g + �ii
L ji , etc. (4.3)

Thus, under the trace all factors of g+� j j
g+�ii

are canceled, and we have

(
Tr F̂ (L, ξa, ξ̄b)

)† = Tr F̂ (L, ξa, ξ̄b) . (4.4)

The whole system (3.5), (3.6), (3.7) has 2(n2+n) dynamical variables, i.e. (xi, pi) and (ξi j, ̄ξi j).3 Thus the system requires n2 +n function-
ally independent integrals of motion in the involution to be integrable. Some of these integrals may be recovered from a spectral-parameter 
Lax representation [13]

d

dt

(
L + μ�

) = [
A, L + μ�

]
. (4.5)

The trace-powers

Tr
(
L + μ�

)k
for k = 1, . . . ,n (4.6)

are spectral-parameter dependent integrals of (4.5). We expand them in powers of μ and obtain a set Cn of conserved charges for 
n particles.

The number cn of integrals (4.6) (the cardinality of Cn) is given recursively by

cn = cn−1 + (n+1) . (4.7)

Keeping in the mind that Tr (�) = 0 and, therefore, c1 = 1, we conclude that

cn = 1
2 n(n+1) + n − 1 . (4.8)

It is instructive to visualize the structure of these integrals for a small number of particles:

3 In this section we consider the case with N=2 supersymmetry and therefore omit the index ‘1’ in the fermions ξ1
i j and ξ̄i j 1.
4
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c1= 1 : C1 = {Tr (L)} ,

c2= 4 : C2 = C1 ∪
{

Tr (L2) , Tr (L�), Tr (�2)
}

,

c3= 8 : C3 = C2 ∪
{

Tr (L3) , Tr (L2�), Tr (L�2) , Tr (�3)
}

,

c4=13 : C4 = C3 ∪
{

Tr (L4) , Tr (L3�), Tr (2L2�2+L�L�), Tr (L�3) , Tr (�4)
}

,

c5=19 : C5 = C4 ∪
{

Tr (L5) , Tr (L4�), Tr (L3�2+L2�L�), Tr (L2�3+L�2L�), Tr (L�4), Tr (�5)
}

(4.9)

and so on. However, the number (4.8) of conserved currents is less that we need for the integrability, i.e. n2+n.
To construct more currents one may try to use a different spectral Lax representation,

d

dt

(
L + μ�̃

) = [
A, L + μ�̃

]
(4.10)

with �̃ defined in (2.3). However, the integrals in the expressions

Tr
(
L + μ�̃

)k
for k = 1, . . . ,n (4.11)

obtained from expanding in powers of μ do not commute with the currents (4.6). Thus, the remaining possibility for additional conserved 
currents of Liouville type resides in the expression

Tr
(
� + μ�̃

)k
for k = 1, . . . ,n . (4.12)

We have no rigorous proof, but we checked for a small number of particles that the currents in (4.12) perfectly commute with the currents 
in (4.6). Observing that the μ=0 currents in (4.12) already are contained in the currents (4.6), one evaluates the number of new currents 
in (4.12) to be

c̃n = 1
2 n(n + 1) . (4.13)

Thus, the total number of Liouville currents from (4.6) and (4.12) is n2+2n−1, while the system has n2+n degrees of freedom. Hence, 
there must exist n−1 constraints among the currents (4.12). One may check that these constraints read

2χk ≡ Tr
(
� + �̃

)k + Tr
(
� − �̃

)k = 0 for k = 1, . . . ,n . (4.14)

Until level 5 the currents look as follows,

χ1 = Tr (�) ,

χ2 = Tr (�2) + Tr (�̃2) ,

χ3 = Tr (�3) + 3 Tr (��̃2) ,

χ4 = Tr (�4) + 4 Tr (�2�̃2) + 2 Tr (��̃��̃) + Tr (�̃4) ,

χ5 = Tr (�5) + 5 Tr (�3�̃2) + 5 Tr (�2�̃��̃) + 5 Tr (��̃4) .

(4.15)

A set of ̃ck independent additional Liouville integrals up to this level is

c̃1= 1 : C̃1 = {
Tr (�̃)

}
,

c̃2= 2 : C̃2 = C̃1 ∪ {
Tr (��̃)

}
,

c̃3= 4 : C̃3 = C̃2 ∪ {
Tr (�̃3) , Tr (�̃�2)

}
,

c̃4= 7 : C̃4 = C̃3 ∪ {
Tr (�̃3�), Tr (2�̃2�2+�̃��̃�) , Tr (�̃�3)

}
,

c̃5=11 : C̃5 = C̃4 ∪ {
Tr (�̃5) , Tr (�̃3�2+�̃2��̃�) , Tr (�̃2�3+�̃�2�̃�) , Tr (�̃�4)

}
.

(4.16)

The construction of the non-involutive conserved currents needed for superintegrability of the N= 2 Calogero–Moser model proceeds 
in full analogy with the one discussed in [14,15,23] for the standard N= 2 supersymmetric Calogero–Moser model [3]. Our Liouville 
charges all arise from some matrix B = (Bi j) with an equation of motion

d

dt
Bi j = [

A,B
]

i j ⇒ d

dt
Tr (Bk) = 0 . (4.17)

One way to derive further conserved charges is to “dress” B with the matrix X , but

d

dt
Tr (XB) = Tr (LB) (4.18)

due to (3.6). However, the right-hand side cancels in the antisymmetric two-trace expression

B̃ = Tr
(

XB
)

Tr
(
L
) − Tr

(
LB

)
Tr

(
X
) ⇒ d

B̃ = 0 . (4.19)

dt

5
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Using the matrices (L + μ�)k from (4.6) in place of B one may construct 1
2 n(n+1)−1 new currents of the type (4.19) while, using the 

matrices (� +μ�̃)k from (4.12), we may produce 1
2 n(n+1) new currents. Thus, for the system with n(n+1) degrees of freedom we obtain 

in total 2n(n+1)−1 conserved currents. This is the correct count indeed rendering the N=2 supersymmetric Calogero–Moser model 
maximally superintegrable.

5. Conclusion

We have analyzed the integrability of the N -extended supersymmetric Calogero–Moser model. We explicitly constructed the Lax pair 
for this system and proved maximal superintegrability, at least for the bosonic sector. A procedure has been proposed for constructing 
sufficiently many functionally independent conserved currents, including but extending the Liouville charges. We have demonstrated this 
by explicit expressions up to level five.

One may try to repeat this analysis for the N -extended supersymmetric Euler–Calogero–Moser [24] and Calogero–Moser–Sutherland 
[25] models. The generalization of all models from An−1 to other Coxeter groups may also be investigated in view of possible integrability 
though this is less straightforward.
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