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1 Introduction and summary

The maximally supersymmetric supermembrane theory in spacetime dimension D = 11 [1, 2]
is a model ‘beyond’ string theory that also incorporates D = 11 supergravity [3], and is thus
a candidate theory for a non-perturbative formulation of superstring theory (besides there
are three more classically consistent supermembrane theories for target-space dimensions
D = 4, 5, 7 [2]). As shown long ago [4] the supermembrane in a flat (Minkowski) background
and in the light-cone gauge can be reformulated as a one-dimensional maximally supersym-
metric gauge theory of area-preserving diffeomorphisms (APDs). Building on earlier results
of [5–7] it has been shown that this model can be equivalently obtained as the N → ∞
limit of a maximally supersymmetric SU(N) matrix model [4]. Much later the very same
model was re-interpreted in terms of D0 particle quantum mechanics [8], and proposed
as a model of M theory in [9]. For reviews of supermembrane theory with many further
references, see e.g. [10–12].

The main unsolved problem of (super-)membrane theory is its quantization. Unlike
for string theory there exists no gauge which linearizes the equations of motion such
that the determination of quantum correlators can be effectively reduced to free field
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theory computations. Likewise, in view of the non-linearities a covariant path-integral
approach à la Polyakov appears hopeless for either the bosonic or the supersymmetric
membrane. A more realistically feasible approach is based on (target-space) light-cone
gauge quantization. Nevertheless, even with this preferred gauge choice the solution to
the problem of quantization has so far remained elusive not only because one has to deal
with a fully interacting theory on the world volume, but also because it is not obvious how
to set up a perturbative expansion for the quantized supermembrane. These difficulties
are mirrored by corresponding difficulties of the supersymmetric SU(N) matrix model for
N <∞, as a consequence of which key issues remain unresolved to this day. Apart from
questions regarding the existence and properties of the N → ∞ limit for the quantized
theory, there are two main issues. One concerns the target-space Lorentz invariance of the
quantized supermembrane (or the matrix model in the N → ∞ limit). For the classical
theory and for finite N , Lorentz invariance is in fact violated, but can be recovered in the
N →∞ limit [13, 14]. However, there has been almost no progress on the quantized theory,
which would first of all require a proper definition of the quantized Lorentz generators and
ensuring their quantum consistency, before actually checking the Lorentz algebra. Amongst
other things this involves the correct definition of the light-cone target-space coordinate X−

(which matrix theory by itself ‘does not know about’) as a quantum operator. Consequently,
it also remains an open question whether Dcrit = 11 is indeed the critical dimension for the
supermembrane, eliminating the other classically consistent theories (see however [15] for
some early results in this direction), unlike for the superstring where the well-known result
Dcrit = 10 can be established in more than one way.

A second key issue arises in connection with correlators and scattering amplitudes
for the putative massless supermembrane excitations corresponding to the graviton, the
gravitino and the 3-form field of D = 11 supergravity. In particular, there is no (super-
)membrane analog known of the Veneziano and Virasoro-Shapiro amplitudes, as this would
almost certainly involve higher order and non-perturbative contributions beyond the reach
of conventional string technology. Remarkably, there do exist classical candidate expressions
for vertex operators associated to these states [16], but like for the Lorentz generators, it has
not been possible so far to turn them into well-defined quantum objects. However, even if
one could compute n-point correlators in supermembrane theory with these vertex operators,
there remains the more conceptual question as to their possible physical interpretation,
and how such correlators would transcend the one-particle interpretation of first quantized
superstring theory and capture non-perturbative information.

In this paper we wish to tackle the quantization of the supermembrane from a new
and different perspective (for a complementary approach to quantizing supermembrane
theory, see [17] and references therein). A main ingredient here is the fact that the
supersymmetric APD gauge theory (alias the supersymmetric SU(∞) matrix model) is the
supermembrane. Our analysis leads us to the conclusion that the membrane tension T ,
made dimensionless, must be identified with the gauge coupling g of the APD gauge theory.
This insight allows us to set up a systematic expansion scheme in terms of a path-integral
formulation where the small (large) tension limit of the membrane theory corresponds to
the weak (strong) coupling limit of the APD gauge theory — a result to be contrasted
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with the somewhat murky state of affairs with the zero-tension limit of string theory. This
expansion is introduced by means of a Nicolai map [18, 19] (designated by Tg) which we first
construct for the finite-N theory up to and including quartic order O(g4).1 Our derivation
is based on a systematic procedure that relies on very recent progress in perturbatively
evaluating this map for supersymmetric Yang-Mills theories in higher dimensions, see
especially [20, 21]. This prescription in principle allows for the determination of the map to
any desired order. It then turns out that the pertinent formulæ all remain well-defined in
the limit N → ∞, via the straightforward replacement of SU(N) commutators by APD
brackets, see especially (3.36). An accompanying N -dependent divergence cancels only for
the supermembrane, indicating that the N →∞ limit does not exist for the bosonic matrix
model2 (‘non-renormalizability’ of the bosonic membrane). In arriving at this conclusion,
the map Tg plays a crucial role: as far as we are aware, there is no other approach that
addresses the issue of the N →∞ limit in such a direct manner. These are two main results
of this paper which should eventually permit setting up an approximation scheme also for
correlators and other quantities of physical interest. This might enable one to sidestep the
finite-N approximation altogether and to deal directly with the limiting theory for N =∞.

Finally, we demonstrate that the expansion of the Jacobian in powers of g has a non-zero
radius of convergence. This does not yet mean that the map itself has this property, but it
represents strong evidence that the perturbative expansion for Tg is indeed better behaved
than the usual quantum field theoretic perturbation expansions. Of course, employing this
map does not alter the standard perturbative expansion of quantum correlation functions.
However, it breaks it up into two stages: in the first step, the field arguments in the
correlator are replaced by the ones transformed with the inverse map T −1

g , which is given
in terms of a tree-graph expansion. In the second step, one performs a free-field correlator
of those tree graphs, which finally produces loop diagrams. Therefore, the perspective is
that the tree expansion of the first stage is better than asymptotic (even convergent), while
the divergent field-theoretic high-order perturbative behavior gets encoded in the free-field
correlators of the second stage (see [23] for a sample calculation along these lines for D = 4
maximal super-Yang-Mills theory). Let us also note the existence of a closed-form expression
for Tg in terms of a path-ordered integral, that has no analog in standard perturbative
quantum field theory [24]. In particular, this formula directly reproduces the polynomial
form of Tg in those cases where such a form is known to exist (such as for supersymmetric
quantum mechanics), so its further exploration might well reveal unknown special properties
of maximally supersymmetric matrix theory as well.

To be sure, there still remains a long way towards a full quantum treatment of the
supermembrane, both on the technical and on the conceptual side. Nevertheless, the present
results offer novel perspectives on this old problem and open several new avenues for future
research. A particularly intriguing one concerns the fact that the map Tg transforms the
interacting functional measure of the APD gauge theory to a free one which is ultralocal in
the membrane coordinates. Although this complicates setting up a sensible perturbative
expansion for small membrane tension, there is a remarkable analogy here with the small-

1In the temporal gauge and actually including O(g5) since odd orders vanish at least up to this point.
2Related difficulties with the N →∞ limit for the bosonic matrix model were already pointed out in [22].
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tension limit of M theory considered in [25], where it is the BKL limit which likewise leads
to an ultralocal theory via the causal decoupling of spatial points. The latter limit has
been shown to exhibit hints of the maximal-rank hyperbolic Kac-Moody algebra E10 as a
fundamental symmetry. It is a fascinating challenge to explore the possible links between
these a priori different versions of the small-tension limit, and thus to reconcile two very
different perspectives on M theory.

The structure of this paper is as follows. In section 2 we review basic results on the
light-cone gauge formulation of the supermembrane, mostly following the exposition in [4],
and set up the path integral in subsection 2.3. Section 3 explains the construction of the
Nicolai map both for the matrix theory and the APD gauge theory. This section contains
our main result, namely an explicit form of the map Tg in an expansion to quartic order in
the coupling g. The question of the behavior of the map in the complex g plane (and thus
the convergence properties of the expansion) is addressed in section 4. Finally an appendix
provides details of two consistency checks on the main result derived in this paper.

2 Supermembrane basics

In the section we closely follow [4] to which we refer for further details of the derivation. The
main difference is that we here keep the membrane tension T as an independent parameter,
in order to expose the link with weakly and strongly coupled Yang-Mills theory.

2.1 Supermembrane in the light-cone gauge with variable tension

Classically consistent supermembranes exist for target-space dimensions D = 4, 5, 7 and 11,
but in the remainder we will restrict attention mostly to the maximally supersymmetric
case, for which D = 11. The target superspace coordinates

{
Xµ, θ

}
≡
{
Xµ(ξi) , θ(ξi)

}
with

the range µ, ν, . . . = 0, 1, . . . , D − 1 = 10 are then functions of the membrane world-volume
coordinates

(ξi) ≡ (τ,σ) ≡ (τ, σr) where i, j, . . . = 0, 1, 2 and r, s, . . . = 1, 2 . (2.1)

θ(τ,σ) is a real 32-component Majorana spinor of SO(1,10) (we usually do not write out
spinor indices). The target-space vielbein is

Ei
µ = ∂iX

µ + θ̄ Γµ∂iθ . (2.2)

For D = 11, the real 32-by-32 Γ-matrices generate the SO(1,10) Clifford algebra, {Γµ,Γν} =
2ηµν . The world-volume metric is

gij ≡ EiµEjνηµν . (2.3)

For the light-cone gauge we split the target-space coordinates as

{Xµ} ≡ {X+, X−, Xa} with X± = 1√
2

(X10 ±X0) and {Xa} ≡ X (2.4)
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being the transverse components (a, b, . . . = 1, . . . , 9). We adopt the target-space light-cone
gauge

X+(τ,σ) = X+
0 + τ , Γ+θ(τ,σ) = 0 (2.5)

thus identifying the target-space light-cone coordinate X+ with the world-volume time
coordinate τ . With these gauge choices the induced metric on the three-dimensional world
volume is

grs ≡ ḡrs = ∂rX · ∂sX ,

g0r ≡ ur = ∂rX
− + ∂0X · ∂rX + θ̄ Γ−∂rθ ,

g00 = 2∂0X
− + (∂0X)2 + 2θ̄ Γ−∂0θ .

(2.6)

The metric determinant is
g ≡ det gij = −∆ ḡ (2.7)

with
ḡ ≡ det ḡrs and ∆ = −g00 + urḡrsus , ḡrsḡst = δrt . (2.8)

The supermembrane Lagrangian then becomes

L = T
(
−
√

ḡ ∆ + εrs∂rX
aθ̄ Γ−Γa∂sθ

)
, (2.9)

where we now include the membrane tension T as an independent parameter. In principle
the membrane tension is of dimension [mass]3, but we here find it convenient to render
all variables dimensionless by rescaling them with appropriate powers of some reference
mass scale (as was already implicitly assumed in (2.5)). This reference scale has no physical
meaning in and by itself, as a proper identification of the gravitational coupling (Newton
constant or Planck mass) and evaluating its relation to T will require the evaluation of a
graviton scattering amplitude, as is the case in string theory. However, for the doubly di-
mensionally reduced supermembrane [26] such a relation can indeed be established by noting
that TR10 = (α′)−1, where R10 is the radius of the compactified 11th dimension. Because
the latter is related to the string coupling by R10 = g

2/3
s [27] (see also [28]), we see that

T = g−2/3
s (α′)−1 . (2.10)

In this way the parameter T ties together the two key parameters of string theory, and
thus also with the APD gauge coupling via (2.23) below.

With these conventions the (dimensionless) canonical momenta are

P+ = T

√
ḡ
∆ ,

P = δL
δ∂0X = T

√
ḡ
∆
(
∂0X− urgrs∂sX

)
≡ P+(∂0X− urgrs∂sX

)
,

S = δL
δ∂0θ̄

= −T
√

ḡ
∆Γ−θ ≡ −P+Γ−θ .

(2.11)

The last formula implies a second-class constraint (entailing the replacement of Poisson
brackets by Dirac brackets). The formulæ (2.11) imply the first-class constraint

φr = P · ∂rX + P+∂rX
− + S̄∂rθ ≈ 0 , (2.12)
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which generates spatial diffeomorphisms on the membrane. This gauge freedom can be
exploited to set ur = 0 in (2.6), which in turn implies

∂rX
− = −∂0X · ∂rX− θ̄ Γ−∂rθ . (2.13)

To be able to solve this equation for X− we must impose the integrability constraint

φ ≡ εrs
(
∂r∂0X · ∂sX + ∂rθ̄ Γ−∂sθ

)
≈ 0 . (2.14)

This constraint generates APDs on the membrane: while general (spatial) diffeomorphisms
on the membrane are generated by vector fields δξr(σ), APDs are generated by divergence-
free vector fields obeying ∂r(

√
wδξr) = 0 (where the reference density

√
w(σ) coincides with

the one introduced in (2.16) below). The latter are locally of the form
√
wδξr = εrs∂sδξ with

a scalar parameter δξ(σ). On higher-genus membranes there are in addition topologically
non-trivial diffeomeophisms formally generated by harmonic vector fields [13], which we
will, however, disregard here.

With these gauge choices the (dimensionless) Hamiltonian density becomes (see also [29])

H(σ) ≡ −P−(σ) = P · ∂0X + P+∂0X
− + S̄∂0θ − L

= P2 + T 2ḡ
2P+ − Tεrs∂rXaθ̄ Γ−Γa∂sθ

(2.15)

whose bosonic part was already derived long ago in [5–7] (for T = 1). Here we see why we
must choose the membrane tension to be positive; flipping the sign of T will change the
sign of the kinetic part of the Hamiltonian by (2.11), hence result in an instability. This is,
of course, in accord with expectations.

Because P+(τ,σ) obeys the Hamiltonian equation of motion ∂τP
+(τ,σ) = 0 and

transforms as a density we can set [4]

P+(τ,σ) = P+
0

√
w(σ) (2.16)

where P+
0 > 0 is constant, and

√
w(σ)> 0 is a reference density normalized to

∫
d2σ

√
w(σ) =1

(with an associated reference metric wrs(σ) on the membrane, which is however only needed
when discussing target-space Lorentz invariance [13]). This leads to the (dimensionless)
mass operator

M2 = −2P+
0 P

−
0 −P2

0 =
∫

d2σ
(
[P2]′ + T 2ḡ− 2Tεrs∂rXaΘ̄ Γ−Γa∂sΘ

)
(2.17)

with P−0 =
∫

d2σ P−(σ) and rescaled fermionic variables3

Θ(σ) ≡
√
P+

0 θ(σ) . (2.18)

The prime in (2.17) indicates that zero modes have been removed from
∫

d2σP2(σ).

3Which obey the canonical (Dirac) brackets {Θ(σ) , Θ̄(σ′)}DB = (4
√
w(σ))−1Γ+δ

(2)(σ,σ′) [4].
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Because the zero modes Xa
0 and θ0 decouple from the Lagrangian (2.9), the eigenstates of

the mass operator take the form of a direct product of the massless D = 11 multiplet (44⊕84
bosonic and 128 fermionic states) with an eigenstate of the mass operator (2.17) [4]. For the
uncompactified supermembrane the spectrum of the latter is known to be continuous [30, 31]
(but becomes discrete after compactification with winding [32]). This fact can be interpreted
as evidence that the supermembrane does not admit a first-quantized formulation, but must
be regarded as a non-perturbative theory from the outset [11].

Finally we note that the fulfilment of the constraint (2.14) allows us to solve for the
target-space coordinate X−: we have

X−(τ,σ) = −
∫

d2σ′ Gr(σ,σ′)
(
∂0X · ∂rX(τ,σ′)− θ̄ Γ−∂rθ(τ,σ′)

)
(2.19)

with a suitable Green’s function obeying ∂rGr(σ,σ′) = δ(σ,σ′) [5, 13]. This formula is
needed for the target-space boost generators and for the verification of target-space Lorentz
invariance in the classical limit [13, 14]. It is worth pointing out that this information is
not available in the matrix model as such, where the Lorentz boost generators must either
be “guessed” or deduced from the supermembrane matrix-model correspondence, as in [13].

2.2 APD gauge theory and matrix model

With the above formula for the mass operator the supermembrane theory can be reformulated
as a one-dimensional supersymmetric gauge theory of area preserving diffeomorphisms [4].
This can be seen by exploiting the algebraic identity

ḡ = det
(
∂rX · ∂sX

)
=
{
Xa, Xb}{Xa, Xb} , (2.20)

where the APD bracket of any two functions A(σ) and B(σ) on the membrane is defined by{
A(σ) , B(σ)

}
:= 1√

w(σ)
εrs∂rA(σ)∂sB(σ) . (2.21)

This is indeed a Lie bracket (obeying antisymmetry and the Jacobi identity) [5–7].
Then (2.15) can be equivalently obtained from the supersymmetric Lagrangian4

1√
w
L = 1

2(DtX)2 + Θ̄ Γ−DtΘ−
1
4g

2{Xa, Xb}2 + g Θ̄ Γ−Γa{Xa,Θ} (2.22)

if we identify
T = 1

2 g . (2.23)

In view of our comments after (2.15) we must, however, restrict this identification to
positive values of T and g, even though there appear to be no obstructions to continuing
the APD gauge theory to negative couplings. Hence the small (large) tension limit of the
supermembrane corresponds to the weak (strong) coupling limit of the supersymmetric
APD gauge theory. The APD covariant derivative is given by

Dtf(t,σ) := ∂tf(t,σ) + g
{
ω(t,σ) , f(t,σ)

}
(2.24)

4While τ is the time coordinate on the membrane world-volume, we denote the Yang-Mills time coordinate
by t, but keep the erstwhile membrane coordinates σr as labels for the APD gauge group.
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with the APD gauge field ω(t,σ) which is here introduced ad hoc, as it is absent from the
supermembrane action. The Lagrangian (2.22) is nothing but the dimensional reduction
of maximally extended super-Yang-Mills theory [33] to one (time) dimension, with the
identifications ω ≡ A0 and Xa ≡ Aa, and g the usual Yang-Mills coupling, but now with
the infinite-dimensional APD gauge group. This works precisely in the dimensions where
pure supersymmetric Yang-Mills theories exist, namely D = 3, 4, 6, 10 [33], in agreement
with the admissible target-space dimensions 4,5,7 and 11 for supermembranes.

The group of (homotopically trivial) APDs on the membrane can be approximated by
the finite-dimensional unitary groups SU(N), such that the full group is recovered in the
limit N →∞ [5–7]. Replacing APDs by SU(N) gives the matrix model of M theory. For
this approximation one expands all functions on the membrane into a complete orthonormal
set of functions Y A(σ), ∫

d2σ
√
w(σ)Y A(σ)Y B(σ) = δAB , (2.25)

where we separate off the zero modes,

Xa(t,σ) = X(0)
a (t) +

∞∑
A=1

XA
a (t)Y A(σ) ,

ω(t,σ) = ω(0)(t) +
∞∑
A=1

ωA(t)Y A(σ) ,

Θ(t,σ) = Θ(0)(t) +
∞∑
A=1

ΘA(t)Y A(σ) .

(2.26)

The zero modes X(0)
a (t) and Θ(0)(t) decouple in (2.22), where X(0)

a (t) describes the center of
mass motion of the membrane as a whole. Likewise, the gauge zero mode ω(0)(t) drops out
in the Lagrangian (as it acts effectively like a U(1) gauge field, which cannot couple because
both X(0)

a and Θ(0) are real). The remaining non-zero modes describe the ‘internal’ degrees
of freedom of the supermembrane. The APD gauge group can thus be approximated by
SU(N), as is most easily and explicitly done for S2 [5–7] and T 2 [13, 34, 35], by cutting off
the mode expansions at N2−1 (ignoring topological modes) and replacing the APD-brackets
by SU(N) commutators. In fact, as shown in [36] the SU(N) approximation works for any
genus of the membrane. Consequently, we have

fABCAPD ≡
∫
d2σ

√
w(σ)Y A(σ)

{
Y B(σ), Y C(σ)

}
= lim

N→∞
fABC(N) (2.27)

with SU(N) structure constants fABC(N). Hence the expansion labels A,B, . . .= 1, . . . ,N2−1
are thus turned into Yang-Mills indices, while a,b, . . . are transverse (for membrane) and
space-like (for supersymmetric Yang-Mills) indices.

After these preparations, the matrix-model Lagrangian assumes the standard form5

L = 1
2(DtX

A
a )2 − i θAαDtθ

A
α −

1
4g

2(fABCXB
b X

C
c )2 − i

2 g f
ABCθAα γ

a
αβX

B
a θ

C
β , (2.28)

5For finite-dimensional gauge groups these supersymmetric matrix models were first obtained in [37–39].
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where we have now switched to SO(9) spinors θAα with 16 real components and where

Dtθ
a = ∂tθ

A + g fABCωBθC (2.29)

is the SU(N) covariant derivative. The real symmetric 16-by-16 matrices γa generate the
SO(9) Clifford algebra, {γa, γb} = 2δab. Variation w.r.t. ωA yields the constraint

fABC
(
XB
a DtX

C
a + θBα θ

C
α

)
≈ 0 (2.30)

which is equivalent to the canonical generator of SU(N) gauge transformations (after
performing this variation we can put ωA = 0 everywhere). The Lagrangian (2.28) is the
one that underlies the M theory conjecture of [9], see also [40–42].

Of course, the group of area-preserving diffeomeorphisms also depends on the topology of
the membrane. For topologically non-trivial membranes, the APDs continuously connected
to the identity constitute a normal subgroup APD0 within the group of all area-preserving
diffeomorphisms [13]. It is only the subgroup APD0 that can be approximated by SU(N)
(indeed for arbitrary genus of the membrane [36]), whereas diffeomorphisms in the quotient
APD/APD0 are beyond the reach of the SU(N) matrix approximation.6 The fact that one
can interpolate between membranes of different topology by means of thin tubes that cost
no energy (see e.g. [11] for an explanation of this point) then raises the question of how to ac-
commodate different topologies in a single unified APD formulation, and suggests adopting a
‘universal’ APD group encompassing membranes of all genera, perhaps along the lines of [43].

2.3 Setting up the path integral

Our goal is now to set up a path-integral formulation that should eventually permit the
computation of correlators of physically relevant quantities, and complement the canonical
quantization methods underlying many treatments of the matrix model. We shall thus be
interested in evaluating correlation functions of the type〈

O1 · · · On
〉
g

=
∫ ∏

DXa(t,σ)Dθα(t,σ)Dω(t,σ)DC(t,σ)DC̄(t,σ)×

×O1[X, θ] · · · On[X, θ] exp
(
i Stot

) (2.31)

where the precise form of the functionals Oi[X, θ] need not be specified at this point.
Because this is a gauge theory, the full action

Stot = S + S′ (2.32)

with S =
∫

dtL must comprise a gauge-fixing part S′ =
∫

dtL′. For higher-dimensional
Yang-Mills theories there are two preferred choices, namely the Lorenz gauge ∂µAµ = 0,
and the axial gauge nµAµ = 0 (which includes the light-cone gauge for null vectors nµ).
In the reduction to one time dimension the axial gauge is necessarily identical with the

6For fixed genus, the quotient APD/APD0 is nothing but the mapping class group of the membrane (we
are grateful to A. Kleinschmidt for a discussion on this point).
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temporal gauge. Consequently, we have two preferred choices for the gauge-fixing part,
namely

L′ = − 1
2ξ (∂tω)2 + C̄ ∂tDtC (Lorenz gauge) ,

L′ = − 1
2ξω

2 + C̄DtC (temporal gauge) .
(2.33)

A further peculiarity of one dimension is that the temporal gauge implies the Lorenz gauge

ω(t,σ) = 0 ⇒ ∂tω(t,σ) ≡ ω̇(t,σ) = 0 . (2.34)

C(t,σ) and C̄(t,σ) are the usual Faddeev-Popov ghosts [44, 45], and ξ is a real parameter
which will be eventually sent to zero to put the theory on the gauge hypersurface. After
trading the σ dependence for SU(N) indices, we are left with a quantum mechanical path in-
tegral describing finitely many degrees of freedom. Because of the supersymmetry there is no
need for a normalization factor in (2.31) (as can be easily checked for g = 0 with both gauge
choices). In passing we note that we can of course equivalently switch to a Euclidean formu-
lation by flipping the sign in the kinetic terms (Ẋa)2, ω̇2 and for the ghosts, and by replacing
the oscillatory exponent by exp(−Stot); the factor i is then absent in the spinor kinetic term.

An important part of our construction is that we consider the path integral in a form
where the fermions (and also the ghosts) are integrated out. For the temporal gauge
and for finite N the integration over θAα (t) results in the Matthews-Salam-Seiler (MSS)
determinant [46, 47]

∆MSS
[
ω=0,X

]
=
[
det

(
δABδαβ δ(t1−t2) + g KAB

αβ (t1, t2)
)]1/2

(2.35)

which is actually a Pfaffian because we are integrating over real fermions. The integral
kernel appearing in this expression is

KAB
αβ (t1, t2) := ε(t1−t2) fACBγaαβXC

a (t2) . (2.36)

This is a real operator which is however not symmetric because hermitian conjugation
also exchanges the arguments t1 and t2. Furthermore, we have taken out trivial factors
of det (∂t) (which anyway cancel in the supersymmetric path integral). The free fermion
propagator ε is just the Green’s function for ∂t,

ε(t− t′) =
[
∂−1
t

]
(t, t′) =

∫ dp
2π

ip
p2 − iεe−ip(t−t′) = Θ(t−t′)− 1

2 = −ε(t′−t) . (2.37)

This choice of integration constant implies ε(0) = 0 as well as∫
dtε(t−t′) = 0 . (2.38)

Our particular choice is important for the tests in the appendix which otherwise cannot be
satisfied (it is also consistent with the dimensional reduction of the usual Dirac propagator).
In section 4 we will study some properties of this determinant in more detail and prove
in particular that the expansion of log(∆MSS) in powers of g has a non-zero radius of
convergence with suitable technical assumptions on the behavior of XA

a (t). We also note
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that we have no positivity statement about ∆MSS (though the fermion determinant is
non-negative for complex fermions!). Similarly, the determinant cannot be shown to be an
even function of g because of the non-vanishing trace tr (γa1 · · · γa9) = 16 εa1···a9 .

For the infinite-dimensional APD gauge group we must be a little more careful: while
the kinetic term of (2.22) is local in σ, the interaction term is not because it contains
derivatives in σ. To take into account this non-locality we can formally replace the integral
kernel (2.36) by

KAPD
αβ (t1, t2 ; σ1,σ2) := ε(t1−t2) γaαβ

1√
w(σ1)

εrs
∂Xa(t2,σ1)

∂σr1
δ(σ1,σ2) ∂

∂σs2
(2.39)

and the identity operator by δαβδ(t1−t2) δ(σ1,σ2), with the proviso that folding with
this kernel now also contains an integral over σ. When expanding the logarithm of the
MSS determinant using log det = tr log, we encounter for each trace a divergent factor
δ(σ,σ). This factor corresponds to a factor of N arising in the matrix-model regularization
for each trace over the Yang-Mills indices (as in fACDfBCD = N δAB), which also diverges
in the limit N → ∞.7 Importantly, for the supersymmetric theory this divergence is
compensated by a corresponding factor from the Jacobian, as follows directly from (3.2).
This cancellation explains why our final result (3.36) is perfectly well-defined. At the same
time it indicates that the N →∞ limit does not exist for the purely bosonic matrix model,
thus giving meaning to the statement that the ‘bosonic membrane is non-renormalizable’.

2.4 Physical correlators

With the path integral formalism at hand we can now in principle proceed to calculate gauge-
variant and gauge-invariant correlators of suitable objects. But what are the physically
relevant operators O[X, θ] ? As in string theory, for the membrane the latter should
be associated to vertex operators describing the emission or absorption of certain one-
particle excitations from the membrane. As first shown in [16] there indeed exist the
classical analogs of supermembrane light-cone vertex operators exciting the massless states
of the supermembrane, which comprise the massless supermultiplet of maximal D = 11
supergravity [3]. The related expressions must satisfy various consistency constraints
(target-space and world-volume gauge invariance, linear and non-linear supersymmetry)
which are explained at length in [16], corresponding to (but more complicated than) the
ones known from type II superstring theory. In particular, in analogy with closed-string
vertex operators they are to be integrated over the membrane world volume. For instance,
for the transverse graviton components we have [16]

O[X, θ] =
∫

dt dσVh[X, θ] (2.40)

with

Vh[X,θ] =hab

[
DtX

aDtX
b−{Xa,Xc}{Xb,Xc}−iθ̄ γa{Xb,θ}

− 1
2DtX

a θ̄γbcθkc−
1
2{X

a,Xc} θ̄γbcdθkc+
1
2 θ̄γ

acθ θ̄γbdθkckd

]
e−ik·X+ik−t

(2.41)

7To get the proper APD structure constants in the N →∞ limit, one must adopt a suitable normalization
of the SU(N) generators, see e.g. appendix A of [13].
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where hab is the transverse graviton polarization tensor, and {ka} = k denotes the trans-
verse components of the target-space momentum. For the light-cone gauge target-space
momentum kµ one must furthermore assume k+ = 0 in order to avoid having to deal
with the light-cone coordinate X−(τ,σ) in the exponential (as is also customary in string
theory [48]). Remarkably, and unlike for superstring theory, there do not appear to exist
analogs of the string vertex operators for massive string states. This would be in accord
with the fact that the supermembrane is not a first quantizable (i.e. one-particle) theory [11]
and for finite N consistent with the D0-multiparticle interpretation of [9].

Because the light-cone vertex operators are given by complicated expressions, and
because the measure in (2.31) is not Gaussian, no sustained attempt has been made, as far
as we are aware, to evaluate their correlators. Neither has it been possible so far to set up
a perturbative expansion, as this will also require understanding the quantum corrections
(renormalizations) that are necessary for the vertex operators to remain well-defined in the
quantized interacting theory. Our line of attack will therefore be a different one, in that we
will reformulate the above path integral in terms of a Nicolai map. A main advantage of
such an approach is that the formulæ to be presented below remain perfectly well-defined in
the limit N →∞ and can thus be consistently implemented also in the APD path integral.
Consequently, it may be possible in this way to sidestep the detour via the finite-N matrix
model, and to directly tackle the N =∞ theory right away. Possible applications of this
technology to supermembrane vertices will, however, be left to future work.

3 The map to fourth order

The method that we propose here to tackle expressions like (2.31) is based on the Nicolai
map Tg [18, 19, 49–53], exploiting recent progress in determining this map to higher orders
in g [20, 21, 54, 55]. This map is a non-local and non-linear field transformation, which
maps the theory to a free theory in such a way that after integrating out the fermions
(gaugini and ghosts) the product of the resulting fermionic determinants equals the Jacobian
of the map Tg at least locally in field space. For operators Ok(tk) built from Xa (and ω)
alone, this enables us to re-express the expectation value (2.31) in the matrix theory as a
free-field correlator of transformed bosonic fields, viz.〈

O1(t1) · · · On(tn)
〉
g

=
〈
T −1
g (O1(t1)) · · · T −1

g (On(tn))
〉

0
(3.1)

where integrating out the gaugini and ghosts is trivial on the right-hand side because the
transformed operators are purely bosonic ones. We can therefore read this relation as one
in the integrated-out theory as well as in the original one including the fermions.8 A key
property of the map Tg is the equality of its functional Jacobian with the product of the
fermionic determinants obtained by integrating out all anticommuting variables, to wit,

det
(
δTgX
δX

)
= ∆MSS[ω,X]∆FP[ω,X] (3.2)

8An extension to include fermionic or ghost arguments in Ok is straightforward but renders them nonlocal
in the integrated-out theory.
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where ∆FP and ∆MSS are, respectively, the Faddeev-Popov determinant [44, 45] and the
MSS determinant (2.35) [46, 47]. We refer readers to [20, 21, 24, 54, 55] for recent progress
in constructing the map Tg for pure supersymmetric Yang-Mills theories in all relevant
dimensions. A crucial simplification follows from (2.34), since it allows us to largely ignore
the distinction between ‘on-shell’ and ‘off-shell’ R-prescriptions in [20, 21] that must be
taken into account in more than one dimension.

Computing quantum correlation functions via (3.1) may in particular shed new light
onto the combinatorial divergences appearing in higher orders of perturbation theory, due
to the separation of the computation into two stages. The first step amounts to writing
out the operators appearing on the right-hand side of (3.1) in powers of g, for which the
following section provides evidence of a convergent tree-graph expansion. The second step
consists of computing the free-boson correlators in (3.1), which connects the leaves of the
trees in all possible ways, giving rise to the known UV divergencies and graph combinatorics.
This approach thus amounts to a reorganization of the standard perturbative expansion: it
removes all bosonic tadpoles and fermion loops, effectively combining them into non-standard
(hybrid) loops which in higher dimensions have the supersymmetry-induced cancellation of
the leading UV divergence already built in [50–53]. Therefore, although integrating out the
fermions does produce a highly nonlocal, and thus seemingly more intricate, bosonic theory,
thanks to the hidden supersymmetry its correlation functions are not more complicated but
potentially simpler than those of the local formulation and offer new insights.

3.1 Construction by dimensional reduction

The goal of this section is the construction of Tg [19, 49–53] for the APD and SU(N)
supersymmetric matrix models (2.22) and (2.28). This can be done either by repeating the
construction procedure described in [49, 53] for this particular theory, or by dimensionally
reducing the map for ten-dimensional super Yang-Mills theory to one-dimensional matrix
mechanics. Let us first choose the second path.

Since we only have an on-shell formulation of supersymmetry in ten dimensions, we
cannot employ the general scheme [20, 21] for arbitrary gauge fixing but have to stick
to the Lorenz gauge, for which the map was presented on the gauge hypersurface in the
critical spacetime dimensions D = 3, 4, 6 and 10, to O(g3) in [55] and to O(g4) in [20].
In the dimensional reduction all quantities loose their coordinate dependence except for
a dependence on time t, and the D components of the gauge potential become (D−1)
dynamical matrices Xa(t) and one non-dynamical matrix ω(t). The Lorenz gauge reduces
to ∂tω ≡ ω̇ = 0, hence the matrix ω is a constant on the gauge hypersurface. It will turn
out that it is invariant under the map Tg.

Let us recall the salient facts of the construction, keeping D arbitrary and denoting
by r the dimension of the corresponding Majorana spinor representation. The map Tg is a
nonlinear and nonlocal field transformation

Tg :
(
Xa(t), ω

)
7→
(
X ′a(t), ω′

)
. (3.3)

It affords to express the quantum correlator 〈F 〉g of an arbitrary bosonic functional F at
gauge coupling g in terms of a free correlator (g=0) of the same functional, but with its
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arguments transformed by the inverse map,〈
F [X,ω]

〉
g

=
〈
F [T −1

g X, T −1
g ω]

〉
0
. (3.4)

An infinitesimal (in g) version reads

∂g
〈
F [X,ω]

〉
g

=
〈(
∂g +Rg[X,ω]

)
F [X,ω]

〉
g
, (3.5)

where the “coupling flow operator” Rg is a linear functional integro-differential operator
with a nonlinear and nonlocal dependence on X and ω. As the construction is perturbative
in the coupling g,9 we expand (note the index shift)

Rg[X,ω] =
∞∑
k=1

gk−1Rk[X,ω] = R1[X,ω]+gR2[X,ω]+g2R3[X,ω]+g3R4[X,ω]+. . . . (3.6)

Integrating the infinitesimal flow equation (3.5) yields T −1
g and finally

TgXa = Xa − gR1Xa −
1
2g

2(R2 − R2
1
)
Xa −

1
6g

3(2R3 − R1R2 − 2R2R1 + R3
1
)
Xa

− 1
24
(
6R4 − 2R1R3 − 3R2

2 + R2
1R2 − 6R3R1 + 2R1R2R1 + 3R2R2

1 − R4
1
)
Xa + . . .

(3.7)
in terms of the flow operator’s expansion coefficients. We have displayed the result to O(g4)
since we shall evaluate the map to this order, and we omitted the analogous formula for ω
because it reduces to Tgω = ω.

In order to avoid cluttering the equations with indices, we mostly suppress spinor and
color indices as well as time dependence and employ the DeWitt summation convention
(suppressing also time integrals) in the remainder of this section. We find it convenient to let
the flow operator act (by functional differentiation) to the left. It is then given by a variation
←−−−−

δ
δXA

a (t) followed by a string of matrices in color, spinor and coordinate space, such as

(Xa×)AB(t, t′) = fAMBXM
a (t)δ(t−t′) ⇒ (Xc×Xd)A(t) = fAMNXM

c (t)XN
d (t) (3.8)

and propagators G and S defined by[
DtG

]AB
αβ

(t, t′) = δABδαβδ(t−t′) ,
[
(Dt + g γaXa×)S

]AB
αβ

(t, t′) = δABδαβδ(t−t′) (3.9)

with Dt ≡ D0 = ∂t + g ω×. We note that ω× and Xa× are to be considered as matrices in
color space. The product of all these objects is to be executed in canonical fashion, where
we suppress obvious unit factors in the formulæ. Observe also that G is not the ghost
propagator whose defining equation contains another derivative ∂t. This is because in all
relevant expressions the ghost propagator appears with a derivative ∂t.

A careful dimensional reduction of the coupling flow operator eq. (1.19) of [55] then
yields10

←−
R = −1

r

←−−
δ

δXa
tr
[(
γa − gXa×G

)
S

(1
2γ

cdXc×Xd + γdω×Xd

)]
(3.10)

9There exists, however, a universal nonperturbative formula for the map, see [24].
10Note that we have split R = ∂g +R.
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where the explicit trace refers to the spinor space, and we have dropped a term proportional
to 1

g ω̇. Here, the first round bracket arises from a non-abelian projector [55] which in the
Lorenz gauge reads (µ = (t, a))

P ν
µ = δ ν

µ −Dµ(∂·D)−1∂ν
reduction−→ δ ν

µ −DµD
−1
t ∂−1

t ∂ν (3.11)

which obeys ∂µP ν
µ = 0 = P ν

µ Dν and yields

P ν
t = 0 , P b

a = δ b
a and P t

a = g Xa×D−1
t . (3.12)

This shows that R does not contain a variation δ
δω , cf. formula (1.19) in [55] (with µ = t).

The second round bracket is just the decomposition of 1
2Aρ×Aλ in the reduction.

3.2 Construction in the matrix model

Alternatively, we may take the first path and construct the map Tg directly for the matrix
model, following the strategy of [49, 53]. To this end, we implement the Lorenz gauge
constraint ω̇ = 0 by adding to the matrix model Lagrangian (2.28)11

L = 1
2(DtXa)2 − 1

4g
2(Xc×Xd)2 − i

2θ · (Dt + g X̂×)θ (3.13)

with X̂ := γaXa a “gauge-fixing term”

L′ = − 1
2ξ ω̇

2 + C̄ · ∂tDtC (3.14)

with a real parameter ξ and ghost matrices C and C̄. Taking the limit ξ → 0 puts the
theory on the gauge hypersurface.

We aim to directly derive a coupling flow operator R as in (3.5) for the matrix model,
which will govern the infinitesimal change in the coupling g for the quantum correlator of
an arbitrary bosonic matrix functional F [X,ω]. Keeping in mind the g-dependence of the
functional integral weight ei

∫
(L+L′), we compute (suppressing the subscript in 〈· · · 〉g)

∂g

〈
F

〉
=
〈
∂gF + F ∂g

∫
i(L+L′)

〉
=
〈
∂gF + F i

∫ [
DtXa · ω×Xa −

1
2g(Xc×Xd)2 − i

2 θ · (ω + X̂)×θ + C̄ · ∂t(ω×C)
]

=
〈
∂gF + F i

[
δα∆α + iq

∫
θ·(ω + X̂)×θ +

∫
C̄ · ∂t(ω×C)

]〉
(3.15)

where
∆α = −1

r

∫
dt (γdθ)α·ω×Xd + 1

2r

∫
dt (γcdθ)α·Xc×Xd . (3.16)

With the supersymmetry transformations

δαω = −i θα , δαXa = −i (θγa)α , δαθβ = −γdαβDtXd −
g

2γ
cd
αβXc×Xd (3.17)

11Here and below, the · denotes a contraction in color space, i.e. P ·Q := δABPAQB .
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one confirms that indeed

δα∆α =
∫

dt
[
DtXa · ω×Xa −

1
2g(Xc×Xd)2 − i D − 1

r
θ · (ω + X̂)×θ

]
. (3.18)

Therefore, δα∆α in (3.15) reproduces ∂g
∫
L but with a mismatch in the coefficient of the

Majorana term, which thus still appears there but with a coefficient

q = D − 1
r
− 1

2 = 1
r

for D = 3, 4, 6, 10 . (3.19)

It is noteworthy that for a temporal gauge this mismatch is absent,

A0 = 0 ⇒ ω = 0 and Dt = ∂t ⇒ δα
(
∆α|ω=0

)
= ∂g

∫
L , (3.20)

since effectively D → D−1 and the ghosts decouple.
Next, we employ the broken supersymmetric Ward identity 〈δαY 〉 = −i〈(δα

∫
L′)Y 〉

together with
δα

∫
L′ = −s δα∆gh for ∆gh =

∫
C̄ ω̇ (3.21)

and the Slavnov variations

s ω = DtC , sXa = g Xa×C , s θ = g θ×C , sC = −g2C×C , s C̄ = 1
ξ
ω̇ (3.22)

to rewrite

∂g

〈
F

〉
=
〈
∂gF + i ∆αδαF

〉
+
〈
F

[
∆α s δα∆gh − q

∫
θ·(ω + X̂)×θ + i

∫
C̄ · ∂t(ω×C)

]〉
=
〈
∂gF + i ∆αδαF −∆α(δα∆gh) s F

〉
+
〈
F

[(
s∆α

)(
δα∆gh

)
− q

∫
θ·(ω + X̂)×θ − i

∫
˙̄C · (ω×C)

]〉
, (3.23)

where in the last step we used the BRST Ward identity 〈s Y 〉 = 0.
For the flow equation (3.5) to hold, the last correlator has to vanish for any bosonic

functional F . Writing out

s∆α = 1
r

∫
(X̂×θ)α · Ċ and δα∆gh = −i

∫
˙̄C · θα (3.24)

and performing the functional integrations over the fermions and the ghosts, this requirement
becomes

0 !=− i
r

∫
(X̂αβ×θβ)·Ċ

∫
˙̄C ·θα−q

∫
(X̂αβ×θβ)·θα−q

∫
(ω×θα)·θα+i

∫
(ω×C)· ˙̄C , (3.25)

where the contractions stand for the fermionic and ghost propagators

θBβ (t) θAα (t′) = −SBAβα (t, t′) and CB(t) ˙̄CA(t′) = iGBA(t, t′) , (3.26)
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respectively (note the time derivative on C̄A). With ∂tG(t, t′)BA = ∂t′G
AB(t′, t) =: ∂GAB(t′, t)

the condition (3.25) reads

0 != −1
r

Tr
[
(X̂×S) ∂G

]
+ qTr

[
X̂×S

]
+ qTr

[
ω×S

]
− 1
r

Tr
[
ω×G

]
, (3.27)

where the trace here refers to spin, color and time altogether. Abbreviating the unit operator
by the symbol 1, and inserting the useful identities

∂G = 1− g ω×G and S = G− g G (X̂×S) , (3.28)

into the first and third term, respectively, we cancel the second and fourth terms (provided
q = 1

r ) and remain with

0 != 1
r
gTr

[
(X̂×S) (ω×G)

]
− q gTr

[
(ω×G) (X̂×S)

]
, (3.29)

which indeed holds in the critical dimensions.
We return to (3.23) and integrate out the fermions and ghosts to read off the flow

operator

Rg = i∆αδα −∆α(δα∆gh) s

= ∆α

∫
θα ·

δ

δω
+ ∆α

∫
(θγa)α ·

δ

δXa

− i∆α

∫
θα · ˙̄C

∫
DtC ·

δ

δω
− i∆α

∫
θα · ˙̄C

∫
(g Xa×C) · δ

δXa
.

(3.30)

Since DtG = 1, the two variations w.r.t. ω (first and third terms) cancel, and we are left with

Rg = ∆α

∫
θβ ·

[
(γa)βα 1 + g δβαG×Xa

]
· δ

δXa
. (3.31)

In the curly brackets we recognize the (dimensionally reduced) non-abelian projector (3.12).
Recalling ∆α from (3.16), inserting the fermion propagator (3.26) and reversing the mul-
tiplication order, one again arrives at the flow operator presented in (3.10).

3.3 The map to third and fourth order

For the perturbative power series we need the expansion of the propagators,

G = ε− g ε ω×ε+ g2ε ω×ε ω×ε− g3ε ω×ε ω×ε ω×ε± . . . ,
S = ε− g ε (ω + X̂)×ε+ g2ε (ω + X̂)×ε (ω + X̂)×ε∓ . . . ,

(3.32)

with the free fermion propagator (2.37). Because spin traces vanish for an odd product of
gamma matrices (for less than nine factors), the expansion coefficients Rk displayed here
carry only even/odd powers of ω for k being even/odd. This parity extends to the map Tg
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itself. Carrying out the spin traces, one gets

←−R1 = −
←−−
δ

δXa
ε ω×Xa ,

←−R2 =
←−−
δ

δXa
ε ω× ε ω×Xa +

←−−
δ

δXa
εXb× εXb×Xa ,

←−R3 = −
←−−
δ

δXa
ε ω× ε ω× ε ω×Xa −

←−−
δ

δXa
ε ω× εXb× εXb×Xa −

←−−
δ

δXa
εXb× ε ω× εXb×Xa

−
←−−
δ

δXa
εXa× εXb× ε ω×Xb +

←−−
δ

δXa
εXb× εXa× ε ω×Xb −

←−−
δ

δXa
εXb× εXb× ε ω×Xa

+
←−−
δ

δXa
Xa× ε εXb× ε ω×Xb , (3.33)

and so on. Inserting all these into (3.7), performing the functional derivatives and observing
various cancellations, we arrive at

TgXa = Xa + g ε ω×Xa −
1
2g

2εXb× εXb×Xa

+ 1
6g

3
[
2 εXb× ε ω× εXb×Xa + 2 εXa× εXb× ε ω×Xb − 2Xa× ε εXb× ε ω×Xb

− εXb× εXa× ε ω×Xb + εXb× εXb× ε ω×Xa + ε (εXb×Xa)× (ε ω×Xb)
]

+O(g4) . (3.34)

For the practitioner’s convenience we spell this out with our shorthand notation fully
expanded,

TgXA
a (t) =XA

a (t)+g fABC
∫

ds ε(t−s)ωBXC
a (s)

− 1
2g

2fABCfCDE
∫

dsdu ε(t−s)XB
b (s)ε(s−u)XD

b X
E
a (u)

+ 1
6g

3fABCfCDEfEMN
∫

dsdudv ε(t−s)XB
b (s)ε(s−u)

[
2ωD(u)ε(u−v)XM

b XN
a (v)−XD

a (u)ε(u−v)ωMXN
b (v)+XD

b (u)ε(u−v)ωMXN
a (v)

]
+ 1

3g
3fABCfCDEfEMN

∫
dsdudv ε(t−s)

[
XA
a (s)−XA

a (t)
]
ε(s−u)XD

b (u)ε(u−v)ωMXN
b (v)

+ 1
6g

3fABCfBDEfCMN
∫

dsdudv ε(t−s)
[
ε(s−u)XD

b X
E
a (u)

][
ε(s−v)ωMXN

b (v)
]

+O(g4) . (3.35)

As a check, beyond O(g) all terms linear inXA
a (and thus of maximal power in ωA) cancel out,

a feature that can be proven to hold in general. Also, in the temporal gauge ωA=0 the map
drastically simplifies and admits only even powers in g at least up to the order considered.
Moreover, to the order displayed here all terms share the “linear tree” topology of the flow
operator, except for the last term in O(g3), which is the first “branched tree”. We have
checked that this result is consistent with the final result of [20]. It is straightforward though
tedious to extend the above computation to higher orders. Equivalently, the O(g4) result
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can be read off by dimensionally reducing the result of [20], but we refrain here from spelling
out this formula with non-vanishing ω because it is rather lengthy and not very illuminating.

However, the result simplifies greatly in the temporal gauge ω=0. Furthermore, given
our transcription rule (2.27), it is straightforward to write it down right away with the
APD brackets (2.21). Suppressing the common argument σ, we arrive at

TgXa(t) = Xa(t)−
1
2g

2
∫

ds du ε(t−s) ε(s−u)
{
Xb(s) ,

{
Xb(u), Xa(u)

}}
+ 1

8g
4
∫

ds du dv dw ε(t−s) ε(s−u) ε(u−v) ε(v−w)
[

6
{
Xb(s) ,

{
Xc(u) ,

{
X[a(v) , {Xb(w), Xc](w)}

}}}
+ 2

{
Xb(s) ,

{
X[b(u) ,

{
X|c|(v) , {Xa](w), Xc(w)}

}}}

+ 2
{
Xa(s)−Xa(t) ,

{
Xb(u) ,

{
Xc(v) , {Xb(w), Xc(w)}

}}}]

+ 1
8g

4
∫

ds du dv dw ε(t−s) ε(s−u) ε(s−v) ε(v−w)×{{
Xa(u), Xb(u)

}
,
{
Xc(v) ,

{
Xb(w), Xc(w)

}}}
+O(g6) .

(3.36)

This expression is perfectly well-defined for well-behaved functions Xa(t,σ), whence the
N →∞ limit of (3.35) is equally well-defined. At higher orders we will encounter more nested
APD brackets, but the expansion stays well-defined to arbitrary order. It is noteworthy
that, while (3.35) contains both even and odd powers in g, the expansion (3.36) with the
temporal gauge ω = 0 contains only even powers in g. This can only change in higher orders
(starting with R7 in (3.6), to be completely precise) when we encounter γ-traces such as
tr (γa1 · · · γa9) = 16 εa1···a9 .

Finally, as an independent check, in the appendix we also demonstrate that the “free-
action condition”

1
2(∂tTgXa)2 != 1

2(DtXa)2 − 1
4g

2(Xb×Xc)2 + total derivative (3.37)

as well as the “determinant matching condition”12

Tr log
(
δTgX
δX

)
!= 1

2Tr log
(
Dt + gX̂×

)
+ Tr log ∂tDt −

D

2 Tr log ∂2
t (3.38)

for the Jacobian, Matthews-Salam-Seiler [46, 47] and Faddeev-Popov [44] determinants are
both fulfilled up to and including O(g3) by the maps (3.34) and (3.36), provided

D − 2 != r

2 , (3.39)

12For the temporal gauge the last two terms on the r.h.s. are replaced by
[
Tr logDt − D−1

2 Tr log ∂2
t

]
, but

the cancellations remain the same, of course.
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as happens to be the case for the critical dimensions D = 3, 4, 6 and 10. As already
mentioned, the determinants are more subtle in the APD gauge theory directly: like for the
APD integral kernel (2.39) we can in each APD bracket (2.21) separate the two σ arguments
by inserting δ-functions together with integrals over σ variables. When expanded, the
Jacobian of the map Tg then contains exactly the same divergent factor δ(σ,σ) that we
encountered in the expansion of ∆MSS and which can thus be dropped for the same reason.

The results of this section should be considered as a generalization of the polynomial map
that obtains in supersymmetric quantum mechanics (see e.g. [49]), where the perturbative
expansion terminates after the first step and gives rise to a closed expression (see also [56, 57]
for attempts to find polynomial maps in higher dimensions). Such a feature cannot be
expected for the APD gauge theory or matrix model. However, our expressions (3.35)
and (3.36) are almost as good, because they can be obtained from a universal formula for Tg
in terms of a path-ordered exponential [24]. This formula furnishes an algorithmic procedure
to work out the expansion of Tg systematically to any given order in g, a calculation that
can be automated and implemented on a computer. Again the result will be much simpler
with the temporal gauge ω = 0. On the technical side it is worth emphasizing that because
of (2.34) the differences between the axial and the Lorenz gauge choices almost disappear in
one dimension, together with the considerable complications accompanying gauge choices
different from the Lorenz gauge in higher dimensions.

Let us, however, alert readers to a technical obstacle that must be overcome before
a perturbative evaluation of correlators analogous to [23] can be set up. In the limit of
vanishing gauge coupling the measure in (2.31) becomes ultralocal in σ, with free propagators〈

Xa(t1,σ1)Xb(t2,σ2)
〉

0 = δabC(t1−t2) δ(σ1,σ2) (3.40)

where C(t) is the free scalar propagator in one time dimension. The reason is that, in the
Lagrangian (2.22), the spatial derivatives reside in the interaction term and are not part
of the free measure. Consequently, one would have to sum an infinite number of terms to
expose the full non-local structure of the theory. As we remarked in the introduction and
summary, this problem closely resembles the one of explaining the emergence of spatial
structure from the ultralocal BKL limit in quantum cosmology [25]. In both cases, the
‘small tension limit’ is analogous to the one in the theory of elastic media when neighboring
spatial points become decoupled. Let us finally note that via the map Tg the continuous
spectrum of the interacting theory is almost self-evident from that of the free theory.

4 The Jacobian has a non-zero radius of convergence

One main difference between the present approach and more conventional perturbative
expansions of the path integral is that the series expansion for Tg has better convergence
properties (here we are not referring to UV divergences, but to the non-summability of
what would be the renormalized perturbation expansion in higher dimensions). That the
convergence properties should be better was already anticipated in [49] but never actually
proven. Here we present further evidence for this conjecture by showing that with suitable
technical assumptions the Jacobian of the map admits a non-zero radius of convergence
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when expanded around g = 0 in the complex g plane. This we can do by exploiting the
equality (3.2) of the Jacobian with (the product of) the fermionic determinants. Since we
are actually only interested in the statement for the temporal gauge let us therefore set
ω = 0 for which ∆FP is trivial, and consider the MSS determinant (2.35). To this aim we
expand the logarithm of ∆MSS and make use of the triangle inequality,

∣∣∣ log det 1/2(1 + gK)
∣∣∣ = 1

2

∣∣∣ ∞∑
n=1

(−1)n−1

n
gn Tr Kn

∣∣∣ ≤ 1
2

∞∑
n=1

|g|n

n

∣∣Tr Kn
∣∣ , (4.1)

where the kernel K is defined in (2.36). Let us have a look at the individual terms: we have

TrKn =
∫

dt1 · · ·
∫

dtnε(t1−t2) · · · ε(tn−t1) tr
(
γa1 · · · γan

)
×

×tr
(
TA1 · · ·TAn

)
XA1
a1 (t1) · · ·XAn

an
(tn)

(4.2)

where TA are the SU(N) generators in the adjoint representation. We can now derive an
upper bound on the absolute value of this expression by using

∣∣ε(t)∣∣ ≤ 1
2 , together with∣∣ tr(γa1 · · · γan

)∣∣ ≤ r and
∣∣ tr(TA1 · · ·TAn

)∣∣ ≤ cn (4.3)

where c ≡ cN is an N -dependent positive constant. Furthermore introducing the L1-norm

∣∣∣∣X∣∣∣∣1 :=
∑
a,A

∫
dt
∣∣XA

a (t)
∣∣ (4.4)

we can majorize the individual terms to obtain

(4.1) ≤ r

2

∞∑
n=1

( c
2
)n |g|n

n

∣∣∣∣X∣∣∣∣n1 . (4.5)

This series converges for |g| < 2 c−1∣∣∣∣X∣∣∣∣−1
1 . Consequently if we constrain the functions

XA
a (t) to belong each to the Lebesgue space L1(R), the series always has an (X-dependent)

non-zero radius of convergence.
While the fact that the Jacobian has a non-zero radius of convergence as a function

of g does not imply that the map itself has this property, it strongly constrains the series
expansion for Tg, regardless of the precise form of the functions XA

a (t). The main reason
that makes the argument work is that, unlike for higher-dimensional Yang-Mills theories,
the supersymmetric matrix model has no UV divergences which would necessitate infinite
subtractions (as in [47]). With appropriate UV and IR regularizations the above statements
remain valid for supersymmetric Yang-Mills theories in higher dimensions, at least with the
axial gauge choice (for which, however, Tg is considerably more complicated than for the
Lorenz gauge [20, 21]). So in that case both regulators are necessary for the MSS determinant
to make sense in a more rigorous context.
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5 Outlook

We hope that the present investigations will open some new and so far unexplored avenues
for addressing several outstanding key problems of supermembrane and matrix theory.
Among the topics for future investigation we have already highlighted two of these, namely
the question of quantum target-space Lorentz invariance, and the problem of computing
physically relevant correlations functions. Here our approach provides a perturbative
expansion scheme of a type that has not been available in the literature so far. Finally we
note that our methods may also turn out to be applicable to matrix string theory [58, 59],
which corresponds to the reduction of maximally extended super-Yang-Mills theory to two
spacetime dimensions.
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A Tests

A.1 Free action test

Writing

TgXa = Xa + gT1Xa + g2T2Xa + g3T3Xa +O(g4) (A.1)

we read off from (3.34) the concrete expressions for Tk. The free-action condition (3.37)
then breaks up into

Ẋa · (T1Xa)·
!= Ẋa · (ω×Xa) ,

1
2(T1Xa)· · (T1Xa)· + Ẋa · (T2Xa)·

!= 1
2(ω×Xa)2 − 1

4(Xa×Xb)2 ,

(T1Xa)· · (T2Xa)· + Ẋa · (T3Xa)·
!= 0 ,

(A.2)

modulo total derivatives in t.
The first condition is fulfilled since (T1Xa)· = ω×Xa. This also matches the first terms

on either side of the second condition. Its remainder is also fulfilled because

Ẋa · (T2Xa)· = −1
2Ẋa ·

(
Xb× εXb×Xa

)
= −1

2
(
Ẋa×Xb

)
· ε
(
Xb×Xa

)
= −1

4
(
Xa×Xb

)· · ε (Xb×Xa
)

= −1
4
(
Xa×Xb

)2 + ∂t
(
. . .
)
.

(A.3)
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The third condition is more involved. The left-hand side reads (suppressing total derivatives)

− 1
2(ω×Xa)·Xb×ε(Xb×Xa)+ 1

6Ẋa ·(εXb×Xa)×(εω×Xb)

+ 1
3Ẋa ·

{
Xb×εω×ε(Xb×Xa)+Xa×εXb×ε(ω×Xb)−∂t

{
(Xa×εεXb×ε(ω×Xb)

}
− 1

2Xb×εXa×ε(ω×Xb)+ 1
2Xb×εXb×ε(ω×Xa)

}
=−1

2(ω×Xa)×Xb · ε(Xb×Xa)−
1
6Xa ·∂t

{
(εXb×Xa)×(εω×Xb)

}
+ 1

3Ẋa×
{
Xb · εω×ε(Xb×Xa)−Ẋa · εεXb×ε(ω×Xb)−Xb · εX[a×ε(ω×Xb])

}
=−1

2(ω×Xa)×Xb · ε(Xb×Xa)−
1
6Xa ·(Xb×Xa)×ε(ω×Xb)+ 1

6Xa ·(ω×Xb)×ε(Xb×Xa)

+ 1
6(Xa×Xb)· · εω×ε(Xb×Xa)−

1
6(Xa×Xb)· · εXa×ε(ω×Xb)

=−1
2(ω×Xa)×Xb · ε(Xb×Xa)−

1
6Xa×(Xb×Xa)· ε(ω×Xb)+ 1

6Xa×(ω×Xb)· ε(Xb×Xa)

− 1
6(Xa×Xb)·ω×ε(Xb×Xa)+ 1

6(Xa×Xb)·Xa×ε(ω×Xb)

=−1
6
{

3(ω×Xa)×Xb−Xa×(ω×Xb)+(Xa×Xb)×ω
}
· ε(Xb×Xa)

=−1
6
{

3(ω×X[a)×Xb]+(ω×X[b)×Xa]+(Xa×Xb)×ω
}
· ε(Xb×Xa)

=−1
6
{

(ω×Xa)×Xb+(Xb×ω)×Xa+(Xa×Xb)×ω
}
· ε(Xb×Xa) = 0 , (A.4)

where in the last line the Jacobi identity was applied. Several times we employed partial
integration and ∂t ε = 1 as well as A · (B×C) = (A×B) ·C and the complete antisymmetry
of the structure constants, A×B = −B×A. Furthermore, for the first equality we cancelled
part of the ∂t term with the term preceding it, for the second equality we dropped a term
∼ Ẋa×Ẋa = 0, for the fourth equality the second and fifth terms cancelled, and for the
fifth equality the index antisymmetry in the final factor Xb×Xa was used. We note that
the value D of the spacetime dimension played no role here.

A.2 Determinant matching test

Since the determinants match in the free theory, it suffices to bring their logarithms to a form

log det ∆(g) = log det ∆(0)+Tr log
(
1+M(g)

)
= const+TrM− 1

2TrM2 + 1
3TrM3 +O(g4)

(A.5)
since M(g) is of order g, and to compare the expressions in the orders g, g2 and g3 of the
perturbative expansion. The Tr symbol refers to a trace in position, color and spinor space,
while below we reserve the tr symbol for the trace in position and color space only, after
having explicitly performed the gamma traces.

For the Faddeev-Popov determinant we have

∆ = ∂tDt = ∂t(∂t + g ω×) ⇒ M = g ∂−1
t ω× = g ε ω× (A.6)
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which, since there are no spin degreees of freedom, leads to

tr log
(
1 +M(g)

)
= g tr

(
ω× ε

)
− 1

2g
2 tr

(
ω× ε ω× ε

)
+ 1

3g
3 tr

(
ω× ε ω× ε ω× ε

)
+O(g4) .

(A.7)
The Matthews-Salam-Seiler determinant produces

∆ = Dt + g X̂× = ∂t + g (ω + X̂)× ⇒ M = g ε (ω + X̂)× (A.8)

which, with a factor of 1
2 from the Majorana property, yields

1
2Tr log

(
1 +M(g)

)
= r

2g tr
(
ω× ε

)
− r

4g
2 tr

(
ω× ε ω× ε+Xa× εXa× ε

)
+ r

6g
3 tr

(
ω× ε ω× ε ω× ε+ 3Xa× εXa× ε ω× ε

)
+O(g4) ,

(A.9)

where only even powers of X̂ survived the spin trace, which produces a factor r for the
dimensionality of the spinor representation. Each of the trace terms can be represented
by a loop diagram, with bosonic propagators ε and external “legs” ω or Xa. Because
ε(t−t) = ε(0) = 0, single-leg loops vanish, and we only have to consider the orders g2 and g3

in the matching.
Finally, considering the Jacobian of Tg, we must in each tree of the expression (3.34)

“differentiate away” one “leaf”X in all possible ways. This results in an expression of the form

δTgXA
a (t)

δXB
b (t′)

= δABδabδ(t−t′) +
(
gM1 + g2M2 + g3M3 +O(g4)

)AB
ab

(t, t′) , (A.10)

which can be viewed as a string starting from the tree root and ending at the cut leaf
location, possibly with branches attached to it. Inserting this expansion into (A.5) we find

logdet
(
δTgX
δX

)
= const+gTrM1+g2

(
TrM2−

1
2TrM2

1

)
+g3

(
TrM3−TrM1M2+ 1

3TrM3
1

)
.

(A.11)
Under each trace we glue together the strings in the product and then short-circuit the total
string by identifying the end points and summing over the corresponding indices (including
integration over time). As a result we collect

TrM2 = −1
2(D−2) tr

(
Xa× εXa× ε

)
,

−1
2TrM2

1 = −1
2(D−1) tr

(
ω× ε ω× ε

) (A.12)

and, after several cancellations,

TrM3 =
(
D

2 −
2
3

)
tr
(
Xa× εXa× ε ω× ε

)
+ 1

3 tr (εXa× ε)× ε ω×Xa

− 1
3 tr

(
ε εXa×

)
× ε ω×Xa −

1
3 tr

(
Xa× εXa×ω× ε ε

)
=
(
D

2 −1
)

tr
(
Xa× εXa× ε ω× ε

)
+ 1

3 tr (εXa× ε)× ε ω×Xa ,

−TrM1M2 =
(
D

2 −1
)

tr
(
Xa× εXa× ε ω× ε

)
,

1
3TrM3

1 = 1
3(D−1) tr

(
ω× ε ω× ε ω× ε

)
.

(A.13)
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In the four contributions to TrM3, the fourth term is of the same form as the first one
because ω being constant can be moved past ε. The other two contributions are loops with
a branch attached. The third term vanishes because the trace is proportional to ∂−2

t (0)
which gets regularized to zero. Finally, the second term is of the form

f(t′, t′′)
∫

dtε(t−t′) ε(t′−t) ε(t−t′′) = −1
4 f(t′, t′′)

∫
dtε(t−t′′) = 0 . (A.14)

Collecting all remaining contributions, we end up with two 2-leg loops at O(g2) and
two 3-leg loops at O(g3):

expression FP MSS Jac
g2 tr

(
ω× ε ω× ε

)
−1

2 − r
4

1
2(1−D)

g2 tr
(
Xa× εXa× ε

)
0 − r

4
1
2(2−D)

g3 tr
(
ω× ε ω× ε ω× ε

) 1
3

r
6

1
3(D−1)

g3 tr
(
Xa× εXa× ε ω× ε

)
0 3 r

6 D−2

Here, “FP”, “MSS” and “Jac” denote the weight of the individual expressions contributing
to the logarithm of the Faddeev-Popov, Matthews-Salam-Seiler and Jacobian determinant,
respectively. Fortunately, the sum of the FP and MSS columns agrees with the Jac column
provided that again D−2 = r

2 , singling out the critical dimensions once more. This provides
a nontrivial check on the expression (3.35) of the Nicolai map, which formally is guaranteed
to work out by the construction scheme. Finally, we remark that the matching also works
in the temporal gauge, since the Faddeev-Popov determinant becomes trivial but the first
and third expression in the table vanish for ω = 0 anyway.
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