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Abstract

In this paper we investigate the spectrum of OSp(n|2m) quantum spin chains with free boundary con-
ditions. We compute the surface free energy of these models which, similar to other properties in the 
thermodynamic limit including the effective central charge of the underlying conformal field theory, de-
pends on n −2m only. For several models in the regime n −2m < 2 we have studied the finite-size properties 
including the subleading logarithmic corrections to scaling. As in the case of periodic boundary conditions 
we find the existence of a tower of states with the same conformal dimension as the identity operator. As 
expected the amplitudes of the corresponding logarithmic corrections differ from those found previously for 
the models with periodic boundary conditions. We point out however the existence of simple relations con-
necting such amplitudes for free and periodic boundaries. Based on our findings we formulate a conjecture 
on the long distance behaviour of the bulk and surface watermelon correlators.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In recent years there has been some interest in the study of the critical properties of inte-
grable one-dimensional quantum spin chains based on supergroup symmetries because of their 
mathematical and physical implications. For instance, the staggered sl(2|1) superspin chain with 
spins alternating between the fundamental and dual representations may be of relevance for the 
description of properties of fermions in the presence of random potentials [1,2]. Yet another ex-
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ample are the spin chains invariant by the fundamental vector representation of the OSp(n|2m)

superalgebra which can be related to an intersecting loop model on the square lattice with fugac-
ity z = n − 2m [3]. This loop model describes the motion of particles through randomly fixed 
scatterers in such way that path intersections are allowed. For n − 2m < 2 the crossing of the 
loops appears to become a relevant perturbation and model properties have been argued to be 
those of the Goldstone phase of the O(z) sigma model [4]. The spectrum of these superspin 
chains for large number of sites L present some distinguished features when compared to that of 
spin chains based on ordinary Lie groups. For example, it was observed that several of the scaled 
gaps appear to produce the same conformal weight implying a macroscopic degeneracy of the re-
spective state in the thermodynamic limit [3,5]. In the finite-size spectrum these degeneracies are 
lifted by subleading logarithmic corrections. In ordinary conformal field theories with a discrete 
spectrum of conformal weights such corrections result from the presence of a marginally irrel-
evant perturbation [6]. Here the logarithmic corrections lead to continua of conformal weights 
which may be related to the presence of non-compact degrees of freedom in the associated con-
formal field theories [7], similar as in the staggered sl(2|1) superspin chain [2,8]. At this point 
we remark that such scenario has also been found in other families of staggered vertex models 
[9–12] and quantum deformations of superspin chains [13–16].

We further motivate this work by mentioning some of our earlier findings concerning the 
eigenspectrum behaviour of OSp(n|2m) superspin chains with periodic boundary conditions 
[5,17]: in these models there exist towers of low energy excitations over the ground state which 
for large system sizes leads to the same effective central charge ceff. If we denote the energies of 
such set of states by Ek(L) we have found that the behaviour for L → ∞ is

Ek(L) = Le∞ + 2πvF

L

(
−ceff

12
+ β(k)

logL

)
, k = 0,1,2, · · · , k∞ (1.1)

where the integer k∞ is limited by system size L, e∞ refers to the ground state energy per site 
in the thermodynamic limit and vF denotes the velocity of the low-lying excitations. We next 
observe that in the regime n − 2m < 2 certain correlation functions of the related loop model can 
be rewritten in terms of the subleading logarithmic amplitudes β(k). These ‘watermelon correla-
tors’ measure the probability of k distinct loop segments connecting two arbitrary lattice points 
x and y which for large distances r = |x − y| which has been argued to decrease logarithmically 
with r [18,19]. As we have pointed out in Ref. [5] this behaviour of bulk correlation functions 
can be re-written in terms of the finite-size logarithmic amplitudes as follows

G
(b)
k (r) ∼ 1/ ln(r)2(β(k)−β(k0)) (1.2)

for a suitable choice of the k0 state.
The purpose of the present paper is to investigate the effect of boundary conditions on the 

spectrum of conformal weights of the OSp(n|2m) superspin chains. Generally, knowing the 
properties of a critical system under various boundary conditions is a prerequisite for the identi-
fication of the full operator content of a given universality class [20,21]. Moreover, recent studies 
of the staggered six-vertex model have revealed that open boundary conditions may change its 
low energy properties significantly [22–24]. Here we shall present evidence that the tower of low 
energy states over the identity operator present in the OSp(n|2m) models with periodic bound-
ary conditions continues to exist in the presence of free boundary conditions. As we shall argue 
these states have the following finite-size structure as L → ∞:

Ek(L) = Le∞ + f∞ + πvF

(
−ceff + α(k)

)
, k = 0,1,2, · · · , k∞ (1.3)
L 24 logL
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where f∞ is the surface energy resulting from the free boundary conditions. The leading finite-
size term in (1.3) is in accordance with the predictions for conformally invariant theories with 
free boundary conditions [25]. Even for conventional conformal theories, however, the sublead-
ing corrections are expected to depend on the boundary terms [6,26]. Indeed, we find that the 
amplitudes α(k) and β(k) differ. For n − 2m < 2 we present evidences that they appear to obey 
the rather simple relation,

α(k) − α(k0) = 2(β(k) − β(k0)) , n − 2m < 2 (1.4)

for the similar choice of the state k0 for both free and periodic boundary conditions.
It is now tempting to use the above relationship among logarithmic amplitudes and the asymp-

totic behaviour of correlators to infer about the behaviour of surface watermelon correlators for 
large distances. Recall here that free boundary conditions play the role of Dirichlet boundary 
conditions in which the order parameters entering the correlators are expected to vanish on the 
boundary. Let us denote the surface watermelon correlator by G(s)

k (ρ) where ρ is the distance 
between to points x and y parallel the half-plane boundary. Considering that the asymptotic 
behaviour of such correlators should be governed instead by the surfaces amplitudes α(k) one 
obtains,

G
(s)
k (ρ) ∼ 1/ ln(ρ)4(β(k)−β(k0)) (1.5)

and hence a faster logarithmic surface decay as compared with the bulk behaviour by a factor 
two. Note that this dependence on ρ is very different from that of polymers, i.e. loops without 
intersections [27].

2. The open OSp(n|2m) spin chain properties

In this section we describe the thermodynamic limit properties of spin chains based on the 
vector representation of the OSp(n|2m) superalgebra with free boundary conditions. The model 
Hamiltonian can be represented in terms of generators of a braid-monoid algebra which under-
pins a square lattice loop model admitting intersections between the polygon configurations [3]. 
The Hamiltonian of the spin chain in an one-dimensional lattice of size L is given by

H = ε

L−1∑
i=1

[
Pi,i+1 + 2

2 − z
Ei,i+1

]
, (2.1)

where we chose ε to select the anti-ferromagnetic regime of the model, i.e. ε = −1 (+1) for n −
2m < 2 (> 2). Note that Eq. (2.1) describes the superspin chain with free boundary conditions. 
The fugacity z of the related intersecting loop model is realized in the spin chain as the difference 
between the number of the bosonic and fermionic degrees of freedom z = n − 2m.

The braid Pi,i+1 turns out to the graded permutation operator whose expression is,

Pi,i+1 =
n+2m∑
α,β=1

(−1)pαpβ eαβ ⊗ eβα (2.2)

where pα are the Grassmann parities for the n bosonic (pα = 0) and the 2m fermionic (pα = 1) 
degrees of freedom. The matrices eαβ have only one non-vanishing element with value 1 at row 
α and column β . The operator Ei,i+1 is a generator of the Temperley-Lieb algebra weighted by 
the fugacity z. It can be represented by the expression,
3
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Ei,i+1 =
n+2m∑

α,β,γ,δ=1

AαβA−1
γ δ eαγ ⊗ eβδ (2.3)

where the non-zero matrix elements Aαβ are ±1 such that their matrix positions depend on the 
grading ordering of the basis. For explicit matrix representations of the Temperley-Lieb generator 
see for instance [28].

Before proceeding we remark that the quantum integrability of the Hamiltonian (2.1) can 
be established within the double row transfer matrix framework devised by Sklyanin for the 
Heisenberg chain [29]. In this method the Hamiltonian boundary terms depend on the certain 
one-body scattering matrices on the half-line. In the specific case of free boundary conditions 
considered in this paper these reflecting matrices are trivial being proportional to the identity 
operators. For the details about the technical points concerning this construction for the open 
OSp(n|2m) spin chain see for instance [30,31].

We have studied the eigenspectrum properties of open OSp(n|2m) spin chain (2.1) for some 
values of the numbers n of bosonic and 2m of fermionic degrees of freedom. Our numerical 
results for small lattice sizes suggest we have the following sequence of spectral inclusions,

Spec[OSp(n|2m)] ⊂ Spec[OSp(n + 2|2(m + 1))] ⊂ Spec[OSp(n + 4|2(m + 2))] ⊂ . . .

(2.4)

similar to what happens for periodic conditions [5,7]. As a consequence the basic properties of 
the Hamiltonian (2.1) are expected to depend solely on the fugacity z = n − 2m in the thermo-
dynamic limit. In addition to that it is known that the low-lying excitations of the OSp(n|2m)

with periodic boundary conditions are gapless [3,5]. This feature is not expected to depend on 
the boundary conditions. As a consequence of that the ground state energy of the Hamiltonian 
(2.1) should scale with the lattice size L as [25],

E0(L) � Le∞ + f∞ − πvF ceff

24L
, (2.5)

where ceff is the effective central charge of the respective conformal field theory. This invariant 
is expected to be the same as the one underlying the model with periodic boundary conditions 
[3,5]

ceff =
{

z/2 for z ≥ 2

z − 1 for z < 2
. (2.6)

The parameters e∞ and vF denote the bulk ground state energy and the Fermi velocity of the 
elementary excitations. Again, these bulk quantities are expected not to depend of the boundary 
conditions, hence their values are known to be [3,5] given by

e∞ = − 2

|2 − z|
[
ψ

(
1

2
+ 1

|2 − z|
)

− ψ

(
1

|2 − z|
)

+ 2 ln(2)

]
+ 1 , (2.7)

where ψ(x) is the Euler psi function, and the speed of sound is vF = 2π/|2 − z|.
By way of contrast the surface energy f∞ depends on the boundary conditions which are 

imposed on the spin chain. Using the root density method [32] we compute this quantity for the 
OSp(1|2m), OSp(2|2m) and various O(n) models in Appendix A. Together with our numerical 
results for the OSp(3|2) model this leads us to conjecture the expression of the surface energy 
for the generic OSp(n|2m) superspin chain with free boundary conditions to be
4
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Table 1
The bulk and surface energies, the Fermi velocity as well as the effective central 
charge for some values of the fugacity.

z e∞ f∞ vF ceff

−2 −π
2 − ln(2) + 1 π

4 (1 + 2
√

2) − ln(2)
2 − 1 π

2 −3

−1 − 4π
√

3
9 + 1 π + 2π

3
√

3
− 2√

3
ln(2 + √

3) − 1 2π
3 −2

0 −4 ln(2)+1 π − 1 π −1
1 −3 3 2π 0
2 −2 ln(2) π

2 − ln(2) π 1
3 −3 2π − 5 2π 3

2
4 −4 ln(2) + 1 π − 2 ln(2) − 1 π 2

5 − 4
√

3
9 π + 1 2π√

3
− π

3 + 2√
3

ln(2 + √
3) − 1 2π

3
5
2

f∞ = − 1

2 − z

[
ψ

(
1 + 1

2(2 − z)

)
− ψ

(
1

2
+ 1

2(2 − z)

)
− ψ

(
3

4
+ 1

2(2 − z)

)

+ψ

(
1

4
+ 1

2(2 − z)

)
+ 2 ln(2) − π

]
+ 1, for z < 2

(2.8)

and

f∞ = − 1

z − 2

[
ψ

(
1 + 1

2(z − 2)

)
− ψ

(
1

2
+ 1

2(z − 2)

)
+ ψ

(
3

4
+ 1

2(z − 2)

)

−ψ

(
1

4
+ 1

2(z − 2)

)
+ 2 ln(2) − π

]
+ 1, for z > 2

(2.9)

Note the difference in signs of the last two Euler psi functions between the regimes z < 2 and 
z > 2: among the non-universal quantities describing the thermodynamics of the models the bulk 
energy and Fermi velocity of the OSp(2|2(m − 1)) and O(2m) spin chains coincide while their 
surface energies differ. The same is true for the effective central charge (2.6) characteristic for 
the universal critical behaviour described by the underlying conformal field theory.

The model with z = 2 has to be dealt with separately since the Hamiltonian (2.1) becomes 
dominated by the Temperley-Lieb operator. The simplest realization of this model is that with 
n = 2 and m = 0 which corresponds to the isotropic spin-1/2 Heisenberg model,

H = 1

2

L−1∑
i=1

[
σx

i σ x
i+1 + σ

y
i σ

y
i+1 + σz

i σ z
i+1 − Ii,i+1

]
(2.10)

where σx
i , σy

i , σz
i are Pauli matrices acting on the i-th lattice site and Ii,i+1 is the 4 × 4 identity 

matrix. It turns out that the bulk and the surface energies of this model may be obtained by 
considering the limit z → 2 in Eqs. (2.7) and (2.8). The coefficients proportional to O(1/ε) in 
the expansion around z = 2(1 − ε) turn out to be the respective values for e∞ and f∞ associated 
to the Heisenberg chain (2.10) [33,34]. The Fermi velocity of massless excitations in this model 
is vF = π .

In Table 1 we present the parameters data characterizing the thermodynamic limit of some 
of the OSp(n|2m) models including the ones whose critical properties we are going to analyze 
further below.
5
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3. Finite-size spectrum

We now turn to the analysis of the finite-size spectrum for the spin chains with fugacity z < 2
exhibited in Table 1. The leading terms appearing in the finite-size scaling of low energy levels 
with quantum numbers Q = {q1, q2, . . . } of a critical model in 1 + 1 dimensions are given by 
conformal invariance [25,35,36]: for periodic boundary conditions they are given as

EQ(L) � Le∞ + 2πvF

L

(
−ceff

12
+ XQ + . . .

)
, (3.1)

while one has

EQ(L) � Le∞ + f∞ + πvF

L

(
−ceff

24
+ XQ + . . .

)
, (3.2)

in models with open boundary conditions. Here ceff is the effective central charge characterizing 
the universality class of the critical point and XQ are the (surface) critical dimensions describing 
the decay of correlations in the bulk and along the boundary, respectively.

For the OSp(n|2m) spin chains the effective central charges are given by (2.6) [3,5,17]. There-
fore, the conformal weights (and possible subleading corrections to scaling) appearing in the 
models with free boundaries can be extracted from (3.2) by extrapolation of

Xeff,Q(L) = L

πvF

(
EQ − Le∞ − f∞

) ≡ −ceff

24
+ XQ(L) . (3.3)

Based on the perturbative RG analysis the model flows to weak coupling and our previous work 
on the periodic chains we expect logarithmic corrections to scaling, i.e.

XQ(L) � XQ + α(Q)

logL
+ . . . , (3.4)

with integer conformal weights XQ. In the following we are particularly interested in the ampli-
tudes α(Q) for the tower of levels over the identity operator with XQ = 0 and their relation to 
the corresponding ones found for the periodic spin chain [5].

3.1. z = −2: the OSp(2|4) superspin chain

The superalgebra OSp(2|4) has rank 3, hence the spectrum of this model is obtained by means 
of an algebraic Bethe ansatz involving three levels of nesting. Choosing the grading ffbbff the 
corresponding types of Bethe roots λ(1)

j and λ(±)
j are solutions to the Bethe equations

[
f1/2

(
λ

(1)
j

)]2L =
L−n1∏
k �=j

f1

(
λ

(1)
j − λ

(1)
k

)
f1

(
λ

(1)
j + λ

(1)
k

)
×

×
∏
σ=±

⎛
⎝L/2−nσ∏

k=1

f−1/2

(
λ

(1)
j − λ

(σ)
k

)
f−1/2

(
λ

(1)
j + λ

(σ)
k

)⎞
⎠ , j = 1, . . . ,L − n1 ,

L−n1∏
k=1

f1/2

(
λ

(±)
j − λ

(1)
k

)
f1/2

(
λ

(±)
j + λ

(1)
k

)
=

L/2−n∓∏
k=1

f1

(
λ

(±)
j − λ

(∓)
k

)
f1

(
λ

(±)
j + λ

(∓)
k

)
,

j = 1, . . . ,
1

2
L − n±

(3.5)
6



H. Frahm and M.J. Martins Nuclear Physics B 980 (2022) 115799
Fig. 1. Corrections to the effective scaling dimensions Xeff = 1
8 + n with n = 0 (in black) and 1, 2 (in grey) for some 

of the low-lying states of the OSp(2|4) chain. Data for even (odd) length are presented by filled (open) symbols, data 
shown in red correspond to a descendent state. Dashed lines are extrapolations to L → ∞.

where we have defined

fs(x) = x + is

x − is
. (3.6)

The eigenvalues of the conserved U(1) charges from the Cartan subalgebra are determined by 
the numbers of Bethe roots. The energy of a state parameterized by a solution of (3.5) is

E = L − 1 −
L−n1∑
j=1

a1/2

(
λ

(1)
j

)
, (3.7)

with as(x) = i∂x lnfs(x) = 2s/(x2 + s2). In the thermodynamic limit, L → ∞, the root config-
urations corresponding to the ground state and many low energy excitations are found to consist 
of reals with finite n1, n±. The ground state of even length chains is realized in the sector with 
n1 = n± = 1. Solving the Bethe equations numerically and extrapolating the finite size energies 
assuming a rational dependence of the effective scaling dimension on 1/ logL we find

X
(2|4)
eff,0 (L) � 1

8
− 7

16

1

logL
(3.8)

corresponding to an effective central charge ceff = −3, as expected from Eq. (2.6).
The lowest excitations appear in the sectors n1 = 1, n± = 1 ± k/2 with |k| = 1, 2, 3, · · · ∼ L

mod 2. They, too, are parameterized by real solutions to the Bethe equations (3.5). The leading 
finite size scaling of these states coincides with that of the ground state, see Fig. 1. The subleading 
logarithmic corrections to scaling, however, vanish with amplitudes depending on |k| as

α(2|4)(k) = 1

4
k2 − 7

16
. (3.9)

Note that these can be related to the corresponding amplitudes observed in spectrum of the peri-
odic OSp(2|4) model, β(2|4)(k) = (k2 − 1)/8 [5], by

α(2|4)(k) = 2β(2|4)(k) − 3
. (3.10)
16

7
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Similar groups of excitations corresponding to primaries with scaling dimension X = 1 (2) 
appear in the sectors with n1 = 2 and n± = (3 ± k)/2 for |k| = 0, 1, 2, · · · ∼ (L + 1) mod 2
(n± = (2 ± k/2) for |k| = 0, 1, 2, · · · ∼ L mod 2).

In addition we have identified the root configuration for an excitation of the even length 
superspin chain in the sector n1 = n± = 1: apart from the real roots it contains a pair of 
complex conjugate roots λ(1)

c± � λ0 ± i/2 with λ0 ∈ R+ on the first level and imaginary roots 
λ

(+)
c = −λ

(−)
c � i/2 (or −i/2) on the second and third level. Extrapolation of the finite size data 

gives scaling dimensions X = 1, see Fig. 1, indicating that this is a descendent of the ground 
state.

3.2. z = −1: the OSp(1|2) and OSP(3|4) superspin chains

a. OSp(1|2). Solutions of the Bethe equations

[
f1/2

(
λj

)]2L =
L−2n∏
k �=j

f1
(
λj − λk

)
f1

(
λj + λk

)
f−1/2

(
λj − λk

)
f−1/2

(
λj + λk

)
,

j = 1, . . . ,L − 2n ,

(3.11)

parameterize highest weight states for (4n +1)-dimensional OSp(1|2)-multiplets with superspin 
J = n where 2n is a non-negative integer. The energy of this state is

E = (L − 1) −
L−n∑
j=1

a1/2
(
λj

)
. (3.12)

The lowest levels in each sector with given superspin J > 0 are given in terms of positive 
roots of the Bethe equations (3.11). Among these is the ground state of the OSp(1|2) chain with 
both even and odd length in the J = 1/2 triplet sector. From the extrapolation of the finite size 
energies of this state we reproduce the known central charge ceff = −2 for this model. Up to 
subleading corrections to scaling this state is degenerate with the OSp(1|2) J = 0 singlet with a 
root configuration consisting of L − 2 positive rapidities and a two-string of complex conjugate 
ones, λc± � λ0 ± i/2 with λ0 ∈ R+. Complemented with results from the finite size analysis of 
the ground states in the sectors J > 1/2, we find the conformal weights corresponding to the 
lowest states with superspin J to be

X
(1|2)
J (L) � J (2J − 1) + α(1|2)(J )

logL
, J = 0,

1

2
,1,

3

2
, . . . .. (3.13)

We have identified the lowest excitation in the J = 1/2 and 1 sectors: the triplet excitation 
has a root configuration similar to the J = 0 ground state described above and corresponds to an 
operator with conformal weight X = 1. The excitation on top of the lowest J = 1 state is given 
in terms of real roots with a particle-hole pair at the Fermi point giving X = 2.

The subleading corrections to scaling of some of these states have been studied in Ref. [7]. 
For the lowest states with superspin J > 0 they are

α(1|2)(J ) = −2

3
J (J + 1) + 5

24
, J = 1

2
,1,

3

2
, . . . . (3.14)

b. OSp(3|4). According to (2.4) the energies of the OSP(1|2) superspin chain also appear in 
the spectrum of the OSp(3|4) model. Eigenstates of the latter are parameterized by roots λ(k)

j , 
k = 1, 2, 3, solving the Bethe equations (in grading bffbff b)
8
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[
f1/2

(
λ

(1)
j

)]2L =
N2∏
k=1

f1/2

(
λ

(1)
j − λ

(2)
k

)
f1/2

(
λ

(1)
j + λ

(2)
k

)
, j = 1 . . .N1 ,

N1∏
k=1

f1/2

(
λ

(2)
j − λ

(1)
k

)
f1/2

(
λ

(2)
j + λ

(1)
k

) N3∏
k=1

f1/2

(
λ

(2)
j − λ

(3)
k

)
f1/2

(
λ

(2)
j + λ

(3)
k

)

=
N2∏
k �=j

f1

(
λ

(2)
j − λ

(2)
k

)
f1

(
λ

(2)
j + λ

(2)
k

)
, j = 1 . . .N2 ,

N2∏
k=1

f1/2

(
λ

(3)
j − λ

(2)
k

)
f1/2

(
λ

(3)
j + λ

(2)
k

)

=
N3∏
k �=j

f1

(
λ

(3)
j − λ

(3)
k

)
f1

(
λ

(3)
j + λ

(3)
k

)
f−1/2

(
λ

(3)
j − λ

(3)
k

)
f−1/2

(
λ

(3)
j + λ

(3)
k

)
,

j = 1 . . .N3 .

(3.15)

The energy of a state corresponding to a root configuration of (3.15) is

E = −(L − 1) +
L−n∑
j=1

a1/2
(
λj

)
. (3.16)

The root densities for the ground state and low energy excitations of the OSp(3|4) superspin 
chain are Ni/L → 1 in the thermodynamic limit. As in Ref. [5] we label the charge sectors of 
this model by quantum numbers (n1, n2, n3) = (N1 − N2 + 1, N2 − N3 + 1, L − N1 − 2). For 
the low energy states most Bethe roots are arranged in complex conjugate pairs as

λ
(1)
± � λ(1) ± 5i

4
, λ

(2)
± � λ(2) ± 3i

4
, λ

(3)
± � λ(3) ± i

4
, λa ∈R+ . (3.17)

The states with lowest energies states are parameterized by configurations with Na = (L −
k −2)/2 of these strings, i.e. found in the sectors (n1, n2, n3) = (1, 1, k) with k = 0, 1, 2, · · · ∼ L

mod 2. Among them the energies of the k = 0, 1 levels coincide with those of the J = 1/2
ground state and the lowest J = 0 state of the OSp(1|2) chain. In the thermodynamic limit all of 
these states are degenerate giving conformal weights limL→∞ X

(3|4)

(1,1,k)(L) = 0, see Fig. 2. From 
our numerical finite size data we find that this degeneracy is lifted for finite L by subleading 
corrections to scaling depending on k as

X
(3|4)

(1,1,k)(L) � α(3|4)(k)

logL
, α(3|4)(k) = 1

3
k(k + 1) − 7

24
, k = 0,1,2, . . . . (3.18)

Note that α(3|4)(k = 0) = α(1|2)(J = 1
2 ). Comparing these amplitudes to those for the model with 

periodic boundary conditions [5] we find

α(3|4)(k) = 2β(3|4)(k) − 1

8
. (3.19)

A group of energies extrapolating to X(3|4) = 1 is found in the sectors (n1, n2, n3) = (2, 1, k)

with k = 0, 1, 2, · · · ∼ L + 1 mod 2. Here one of the N1 = L − 2 − k roots on the first level of 
9
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Fig. 2. Corrections to the effective scaling dimensions Xeff = 1
12 + n for the lowest states of the OSp(3|4) superspin 

chain. The inset shows the lowest levels of the OSp(1|2) model. See Fig. 1 for the meaning of symbols and colours.

(3.15) is real. The energy of the k = 0 level coincides with the lowest J = 1 level of the OSp(1|2)

chain. The next group of excitations with X(3|4) = 2 is observed in the sectors (n1, n2, n3) =
(2, 2, k), k = 0, 1, 2, · · · ∼ L mod 2. A summary of the finite size spectrum of the OSp(1|2)

and OSp(3|4) is shown in Fig. 2.

3.3. z = 0: the OSp(2|2) superspin chain

Eigenstates of the OSp(2|2) model are parameterized by two types of Bethe roots λ(±)
j . They 

are solutions to the Bethe equations (grading fbbf )

[
f1/2

(
λ

(+)
j

)]2L =
N−∏
k=1

f1

(
λ

(+)
j − λ

(−)
k

)
f1

(
λ

(+)
j + λ

(−)
k

)
, j = 1 . . .N+ ,

[
f1/2

(
λ

(−)
j

)]2L =
N+∏
k=1

f1

(
λ

(−)
j − λ

(+)
k

)
f1

(
λ

(−)
j + λ

(+)
k

)
, j = 1 . . .N− .

(3.20)

Each solution to these equations parameterizes an eigenstate of the superspin chain with energy

E = (L − 1) −
N+∑
j=1

a1/2

(
λ

(+)
j

)
−

N−∑
j=1

a1/2

(
λ

(−)
j

)
. (3.21)

The root configurations for the ground state and low energy excitations of the model consist 
of real roots λ(±)

j > 0 with densities N±/L → 1/2 in the thermodynamic limit. Using quantum 
numbers (n1, n2) = (L −N+ −N−, N+ −N−) for the U(1) charges we find that the ground state 
of the model is realized in the (n1, n2) = (1, 0) sector of the superspin chain with odd length. The 
effective central charge of the model is known to be ceff = −1. In the thermodynamic limit this 
state degenerates with the lowest levels in the sectors (n1, n2) = (1, k) for k = 1, 2, 3, · · · ∼ L +1
mod 2, all of them giving a conformal weight X(1|2)

(1,k) = 0. For finite L the degeneracy is lifted by 
logarithmic corrections to scaling
10
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Fig. 3. Corrections to the effective scaling dimensions Xeff = 1
24 + n for the lowest states of the OSp(2|2) chain. See 

Fig. 1 for the meaning of symbols and colours.

X
((2|2)

(1,k)
(L) � α(2|2)(k)

logL
, α(2|2)(k) = 1

2
k2 − 5

16
. (3.22)

This expression can be related to that for the periodic OSp(2|2) chain [5] as follows

α(2|2)(k) = 2β(2|2)(k) − 1

16
. (3.23)

A similar tower of excitations giving conformal weight X(2|2) = 1 up to logarithmic correc-
tions exists in the sectors (n1, n2) = (2, k) for k = 0, 1, 2, · · · ∼ L mod 2. The finite size scaling 
behaviour of the states we have analyzed is presented in Fig. 3.

3.4. z = 1: the OSp(3|2) superspin chain

The OSp(3|2) model is solved by means of a nested algebraic Bethe ansatz involving two 
types of Bethe roots. To study the finite size spectrum we make use of the Bethe equations in 
two different gradings1: in the grading f bbbf the Bethe equations for the model with open 
boundaries read

[
f1/2

(
λ

(1)
j

)]2L =
L−n1−n2∏

k=1

f1/2

(
λ

(1)
j − λ

(2)
k

)
f1/2

(
λ

(1)
j + λ

(2)
k

)
, j = 1, · · · ,L − n1,

L−n1∏
k=1

f1/2

(
λ

(2)
j − λ

(1)
k

)
f1/2

(
λ

(2)
j + λ

(1)
k

)
=

=
L−n1−n2∏

k �=j

f1/2

(
λ

(2)
j − λ

(2)
k

)
f1/2

(
λ

(2)
j + λ

(2)
k

)
, j = 1, · · · ,L − n1 − n2 .

1 We use the same notation λ(k)
j

, k = 1, 2, for the Bethe roots in both gradings. The specific root configurations dis-
cussed here need to be interpreted in the context of the underlying grading.
11
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(3.24)

The corresponding energy is given in terms of the Bethe roots from the first level as

Ef bbbf = (L − 1) −
L−n1∑
j=1

a1/2

(
λ

(1)
j

)
. (3.25)

Choosing the grading bf bf b the spectrum of the open superspin chain is parameterized by 
solutions to the Bethe equations:

[
f1/2

(
λ

(1)
j

)]2L =
L−n′

1−n′
2∏

k=1

f1/2

(
λ

(1)
j − λ

(2)
k

)
f1/2

(
λ

(1)
j + λ

(2)
k

)
, j = 1, · · · ,L − n′

2,

L−n′
2∏

k=1

f1/2

(
λ

(2)
j − λ

(1)
k

)
f1/2

(
λ

(2)
j + λ

(1)
k

)
=

=
L−n′

1−n′
2∏

k �=j

f−1/2

(
λ

(2)
j − λ

(2)
k

)
f−1/2

(
λ

(2)
j + λ

(2)
k

)
f1

(
λ

(2)
j − λ

(2)
k

)
f1

(
λ

(2)
j + λ

(2)
k

)
,

j = 1, · · · ,L − n′
1 − n′

2 ,

(3.26)

and the corresponding energy eigenvalue is

Ebf bf b = −L + 1 +
L−n′

2∑
j=1

a1/2

(
λ

(1)
j

)
. (3.27)

Solutions to the Bethe equations (3.24) and (3.26) parameterize eigenstates in the charge sec-
tors (n1, n2) and (n′

1, n
′
2) = (n1 − 1, n2 + 1), respectively. These are different highest weight 

states of OSp(3|2) in the irreducible representations (p; q) appearing in the tensor product 
(0; 12 )⊗L of local spins [17,37]. In terms of the number of Bethe roots the quantum numbers 
p and q are given as

p = n1 − 1 , q = (n2 + 1)/2 . (3.28)

Exact diagonalization of the OSp(3|2) Hamiltonian shows that the ground state is a (p; q) =
(0; 0) singlet ((0; 12 ) quintet) for L even (odd). Its energy is E0 = Le∞ + f∞ ≡ −3(L − 1)

without any finite size corrections – similar to the model with periodic boundary conditions 
– giving the effective central charge ceff = 0. The f bbbf Bethe root configuration for L odd 
contains (L − 1)/2 pairs of complex conjugate rapidities λ(a)

j± � λ
(a)
j ± i/4 with positive λ(a)

j on 
each level a = 1, 2. The root configuration for even L contains degenerate roots.

As for the models considered above the finite size spectrum of the OSp(3|2) superspin 
chain can be grouped into sets extrapolating to the same integer conformal weight in the ther-
modynamic limit. Specifically, the lowest states in the sectors (0; q) with 2q = 0, 1, 2, . . . (or 
(n1, n2) = (1, k) with integer k) become degenerate with the ground state, see Fig. 4. At large 
but finite L this degeneracy is lifted by logarithmic corrections to scaling

X
(3|2)

(0;q)
(L) � α(3|2)(q)

, α(3|2)(q) = 2q(2q − 1) . (3.29)

logL

12
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Fig. 4. Corrections to the effective scaling dimensions Xeff = n for the lowest excitations of the OSp(3|2) chain in the 
sectors (0; q) and (1; q) (the ground state in the sectors (0; 0), (0; 12 ) with Xeff ≡ 0 independent of L is not shown). See 
Fig. 1 for the meaning of symbols and colours.

We note that the amplitudes α(3|2) are twice of those found for the periodic OSp(3|2) chain [17], 
i.e. α(3|2)(q) = 2β(3|2)(q).

Finite size data for the lowest states in the sectors (p; q) = (1; q), q = 1
2 , 1, 32 , and some 

descendents states are also shown in Fig. 4.

4. Discussion

In this paper we have investigated the finite-size properties of the spectrum of the OSp(n|2m)

superchain chain with free boundary conditions. We perform this analysis by solving numerically 
the corresponding Bethe equations for large systems sizes. This study made it possible to identify 
the corresponding operator content and to extract the amplitudes associated to the subleading 
corrections to the asymptotic behaviour.

For z = n −2m < 2 we find that the surface exponents are built out of a set of integer numbers. 
Similar as in the case of periodic boundary conditions this was to be expected based on the 
perturbative RG analysis of the model. The surface exponents turn out to be exactly the same 
as the bulk exponents which is a peculiarity of the underlying universality class. The spectra 
contain an abundance of states with null conformal dimension whose degeneracy is lifted by 
subleading logarithmic corrections. We find that the amplitudes of such corrections are different 
for periodic and free boundary conditions. From our numerical analysis we conjecture a simple 
relation among these amplitudes to be

α(k) = 2β(k) + z − 1

16
, z < 2 , (4.1)

where α(k) and β(k) correspond to the amplitudes associated to free and periodic boundaries, 
respectively.

We now can use this result to infer about the asymptotic behaviour of the surface watermelon 
correlators associated to the respective loop model. The above relation tells us that we can use 
the same reference state k0 associated to the smallest non-negative amplitudes for both free and 
13
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periodic boundaries. Proceeding in analogy as has already been explained for periodic boundary 
[5] we conjecture that the surface correlators should behave as

G
(s)
k (ρ) ∼ 1/ ln(ρ)2γ (k) , γ (k) = k(k + z − 2)

2 − z
, (4.2)

where ρ denotes the distance among two points close to the boundary.
We conclude by recalling some existing results on the finite-size properties in the regime z ≥ 2

for free boundary conditions. For the O(2) (spin-1/2 Heisenberg) model of even length it has 
been argued that all conformal dimensions are given by the identity conformal tower [38,39]. 
The logarithmic corrections to scaling for this model have been computed in [26]. In particular 
the gap between the ground state and the lowest (triplet) excitation is given by

E
O(2)
1 (L) − E

O(2)
0 (L) � πvF

L
(1 − 1/ ln(L)) , (4.3)

corresponding to conformal weight X = 1 where the amplitude of the logarithmic correction to 
scaling is determined by the quadratic Casimir of the underlying algebra. The spectrum of the 
O(4) chain can be composed from the eigenenergies of two decoupled Heisenberg chains [28]. 
This can be used to infer the corresponding behaviour, in particular (note that the Fermi velocities 
of the O(2) and the O(4) model coincide, see Table 1)

E
O(4)
1 (L) − E

O(4)
0 (L) � πvF

L
(1 − 1/ ln(L)) . (4.4)

Based on our previous work on the OSp(5|2) superspin chain with periodic boundary condi-
tions [5] we expect towers of levels with the same conformal weight to be present in the regime 
z = n − 2m ≥ 2 but m > 0. We hope to investigate how these degeneracies are lifted by sublead-
ing corrections to scaling in a forthcoming paper.
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Appendix A. The surface energy

To employ Eq. (1.3) for the analysis of the finite size spectrum of the open OSp(n|2m) su-
perspin chains with free boundary conditions the corresponding surface energy is needed as an 
input. As a consequence of the spectral inclusion (2.4) it is sufficient to consider the cases based 
on the superalgebras OSp(1|2m), OSp(2|2m) and OSp(3|2) for the regime z = n − 2m < 2
considered in the main text. Here the last of these is special due to the singular Bethe root con-
figuration for the ground state, see Section 3.4. Based on our numerical results for OSp(3|2)

superspin chains of finite length, however, we conclude that the surface energy for this model is 
14
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f∞ = 3. The O(L0) contribution to the ground state energy for the other two series of models 
can be computed using the root density method [32,34]. We start our discussion below by pre-
senting the main steps of this approach for the OSp(2|2) superspin chain which, as discussed in 
Section 3.3, is solved by a nested Bethe ansatz with real roots for the low energy states. Using 
similar arguments we then apply this method to derive the surface energies for the spin chains 
based on OSp(2|2m), OSp(1|2m).

For sake of completeness we also compute the surface energies for the spin chains in the 
regime z > 2 (the case z = 2 can be represented by the isotropic spin-1/2 Heisenberg magnet 
(2.10) as discussed in the main text). For the models based on the ordinary Lie algebras O(2n)

the root density approach can be applied as before. In the case of the O(2n +1) spin chains it has 
to be modified slightly due to the presence of complex roots in the ground state configuration. 
For the O(3) and O(5) model we will show at the end of this Appendix, that this can be dealt 
with using the so-called string hypothesis.

The results obtained in this appendix are summarized in Eqs. (2.8) and (2.9).

A.1. OSp(2|2) in the grading f bbf

We start by taking the logarithm of the Bethe ansatz equations (3.20) associated to the 
OSp(2|2) model for configurations of real roots λ(±)

j . As a result we find

2Lφ1/2

(
λ

(+)
j

)
= 2πQ(+)

j +
N−∑
k=1

[
φ1

(
λ

(+)
j − λ

(−)
k

)
+φ1

(
λ

(+)
j + λ

(−)
k

)]
, j = 1, . . . ,N+ ,

2Lφ1/2

(
λ

(−)
j

)
= 2πQ(−)

j +
N+∑
k=1

[
φ1

(
λ

(−)
j − λ

(+)
k

)
+φ1

(
λ

(−)
j + λ

(+)
k

)]
, j = 1, . . . ,N− ,

(A1)

where φs(x) ≡ 2 arctan(x/s) and the numbers Q(±)
j are positive integers characterizing the pos-

sible branches of the logarithm.
From the above Bethe equations the so-called counting functions [32]

z
(+)
L (λ) = φ1/2(λ)

π
− 1

2πL

N−∑
k=1

[
φ1

(
λ − λ

(−)
k

)
+ φ1

(
λ + λ

(−)
k

)]
,

z
(−)
L (λ) = φ1/2(λ)

π
− 1

2πL

N+∑
k=1

[
φ1

(
λ − λ

(+)
k

)
+ φ1

(
λ + λ

(+)
k

)]
,

(A2)

take values z(±)
L

(
λ

(±)
j

)
= Q(±)

j /L for j = 1, . . . , N±. For the lowest states of the towers consid-

ered in Sect. 3.3 we have N+ = N− � L/2 with uniformly spaced quantum numbers Q(±)
j = j . 

Hence densities of the Bethe roots λ(±)
j in these states can be derived from the counting functions 

as

ρ
(±)
L (λ) = d

dλ
z
(±)
L (λ) = a1/2(λ)

π
+ 1

2πL
a1(λ) − 1

2πL

N∓∑
a1

(
λ − λ

(∓)
k

)
(A3)
k=−N∓
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where we have symmetrized the sums by extending the sets of roots to {λ(±)
j } ∪ {0} ∪ {λ(±)

−j ≡
−λ

(±)
j }. Note that these relations are similar to those obtained for periodic boundary conditions 

except for the presence of the additional boundary terms a1(λ)/(2πL). We anticipate that these 
terms are responsible to provide the surface contribution to the ground state energy.

For L � 1 the extended set of Bethe roots for the ground state tends to a continuous distri-
bution on the entire real axis with densities ρ(±)

0 (λ) and the sums in (A3) can be replaced by 
integrals

ρ
(+)
0 (λ) � a1/2(λ)

π
+ 1

2πL
a1(λ) − 1

2π

+∞∫
−∞

dμa1 (λ − μ)ρ
(−)
0 (μ) ,

ρ
(−)
0 (λ) � a1/2(λ)

π
+ 1

2πL
a1(λ) − 1

2π

+∞∫
−∞

dμa1 (λ − μ)ρ
(+)
0 (μ) .

(A4)

These integral equations can be solved order by order in powers of L−1 by elementary Fourier 
techniques resulting in ρ(±)(ω) = σ0(ω) + τ0(ω)/L with

σ0(ω) = 1

cosh(ω/2)
, τ0(ω) = exp(−|ω|)

1 + exp(−|ω|) . (A5)

Similarly, we rewrite the ground state energy (3.21) as

E0/L � 1 − 1

2

∞∫
−∞

a1/2(λ)
(
ρ

(+)
0 (λ) + ρ

(−)
0 (λ)

)
+ 1

L

(−1 + a1/2(0)
)

. (A6)

Using (A5) we reproduce the known result ε∞ = 1 −4 ln 2 for the bulk energy density and obtain

f∞ = −1 + a1/2(0) − 2

∞∫
0

dλa1/2(λ)τ0(λ) = 3 −
∞∫

−∞
dω e−|ω|/2τ0(ω) = π − 1 (A7)

for the surface energy of the OSp(2|2) spin chain as shown in Table 1.

A.2. OSp(2|2m) on the grading f . . . f bbf . . . f

For this model the ground state and the low-lying excitations are described in terms real roots 
in the f . . . f bbf . . . f basis ordering. The Bethe equations are given by
16
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δ�,1(2L)φ1/2

(
λ

(�)
j

)
=2πQ(�)

j +
N�∑
k=1
k �=j

[
φ1

(
λ

(�)
j − λ

(�)
k

)
+ φ1

(
λ

(�)
j + λ

(�)
k

)]

−
∑

α=�±1

Nα∑
k=1

[
φ1/2

(
λ

(�)
j − λ

(α)
k

)
+ φ1/2

(
λ

(�)
j + λ

(α)
k

)]
,

� = 1, . . . ,m − 2 ,

δm,2(2L)φ1/2

(
λ

(m−1)
j

)
=2πQ(m−1)

j +
Nm−1∑
k=1
k �=j

[
φ1

(
λ

(m−1)
j − λ

(m−1)
k

)

+ φ1

(
λ

(m−1)
j + λ

(m−1)
k

)]

−
∑

α=m−2,±

Nα∑
k=1

[
φ1/2

(
λ

(m−1)
j − λ

(α)
k

)
+ φ1/2

(
λ

(m−1)
j + λ

(α)
k

)]
,

δm,1(2L)φ1/2

(
λ

(�)
j

)
=2πQ(±)

j +
N∓∑
k=1

[
φ1

(
λ

(�)
j − λ

(∓)
k

)
+ φ1

(
λ

(�)
j + λ

(∓)
k

)]

−
Nm−1∑
k=1

[
φ1/2

(
λ

(�)
j − λ

(m−1)
k

)
+ φ1/2

(
λ

(�)
j + λ

(m−1)
k

)]
,

� = ± ,

(A8)

and the corresponding energy is

E = L − 1 −
∑
j

a1/2(λ
(1)
j ) . (A9)

The ground state is parameterized by N1 = · · · = Nm−1 = L and N± = L/2 roots distributed 
on the positive real axis in the thermodynamic limit. Hence, by proceeding as for the OSp(2|2)

model above we obtain the L−1 boundary contributions τ (�)
0 (λ), � = 1, . . . , m − 1, ± to the 

densities. The energy (A9) of the OSp(2|2m) superspin chain is given in terms of the first level 
roots, � = 1. The Fourier representation of their boundary density is

τ
(1)
0 (ω) = −2e−(m−1)|ω|/4 sinh(m|ω|/4) cosh(ω/4)

cosh(mω/2)
. (A10)

From (A9) the resulting surface energy is given in terms of τ (1)
0 as

f∞ = −1 + 1

2
a1/2(0) −

∞∫
0

dλa1/2(λ)τ
(1)
0 (λ) = 1 −

∞∫
0

dω e−|ω|/2τ
(1)
0 (ω) (A11)

After some manipulations with the help of the identity

+∞∫
exp(−μx)

cosh(x)
dx = 1

2

(
ψ(μ/2 + 1/2) − ψ(μ/2)

)
, (A12)
0
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we can rewrite the surface free energy of the OSp(2|2m) superspin chain in terms of the Euler 
ψ function as presented in the main text (2.8) with z = 2 − 2m.

A.3. OSp(1|2m) on the grading f . . . f bf . . . f

In the f . . . f bf . . . f grading the ground state and the low-lying excitations of this model are 
described in terms of positive rapidities satisfying the Bethe equations

δ�,1(2L)φ1/2

(
λ

(�)
j

)
=2πQ(�)

j +
N�∑
k=1
k �=j

[
φ1

(
λ

(�)
j − λ

(�)
k

)
+ φ1

(
λ

(�)
j + λ

(�)
k

)]

−
∑

α=�±1

Nα∑
k=1

[
φ1/2

(
λ

(�)
j − λ

(α)
k

)
+ φ1/2

(
λ

(�)
j + λ

(α)
k

)]
,

� = 1, . . . ,m − 1 ,

δm,1(2L)φ1/2

(
λ

(m)
j

)
=2πQ(m)

j +
Nm∑
k=1
k �=j

[
φ1

(
λ

(m)
j − λ

(m)
k

)
+ φ1

(
λ

(m)
j + λ

(m)
k

)]

−
Nm∑
k=1
k �=j

[
φ1/2

(
λ

(m)
j − λ

(m)
k

)
+ φ1/2

(
λ

(m)
j + λ

(m)
k

)]

−
Nm−1∑
k=1

[
φ1/2

(
λ

(m)
j − λ

(m−1)
k

)
+ φ1/2

(
λ

(m)
j + λ

(m−1)
k

)]
.

(A13)

The energy associated to a solution is given again by (A9). In the thermodynamic limit we can 
introduce densities to describe the root configuration. Solving the corresponding integral equa-
tions as above the Fourier expression for the boundary contribution τ (1)

0 to the density of first 
level roots is found to be

τ
(1)
0 (ω) = −2e−(2m−1)|ω|/8 sinh((2m + 1)|ω|/8) cosh(ω/4)

cosh((2m + 1)ω/4)
. (A14)

The surface energy of the OSp(1|2m) superspin chain can be computed from (A11) which, using 
(A12), can be brought into the form (2.8) with z = 1 − 2m.

A.4. O(2n)

As has been discussed in the main text the thermodynamical properties including the surface 
energy of the O(2) model are known from the studies of the isotropic spin s = 1/2 Heisenberg 
model (2.10). Similarly, the spectrum of the O(4) spin chain can be derived by composing the 
eigenenergies of two decoupled Heisenberg spin chains [28]. From this identification we obtain 
that the surface free energy of the O(4) spin chain is

f O(4)∞ = 2f O(2)∞ − 1 = π − 2 ln(2) − 1 . (A15)

From now on we shall concentrate our analysis for the models with n ≥ 3. The corresponding 
Bethe equations are given by
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δ�,1(2L)φ1/2

(
λ

(�)
j

)
=2πQ(�)

j +
Nl∑
k=1
k �=j

[
φ1

(
λ

(�)
j − λ

(�)
k

)
+ φ1

(
λ

(�)
j + λ

(�)
k

)]

−
∑

α=l±1

Nα∑
k=1

[
φ1/2

(
λ

(�)
j − λ

(α)
k

)
+ φ1/2

(
λ

(�)
j + λ

(α)
k

)]
,

� = 1, . . . , n − 3 ,

δn,3(2L)φ1/2

(
λ

(n−2)
j

)
=2πQ(n−2)

j +
Nl∑
k=1
k �=j

[
φ1

(
λ

(n−2)
j − λ

(n−2)
k

)
+ φ1

(
λ

(n−2)
j + λ

(n−2)
k

)]

−
∑

α=n−3,±

Nα∑
k=1

[
φ1/2

(
λ

(n−2)
j − λ

(α)
k

)
+ φ1/2

(
λ

(n−2)
j + λ

(α)
k

)]
,

δn,2(2L)φ1/2

(
λ

(�)
j

)
=2πQ(±)

j +
N±∑
k=1
k �=j

[
φ1

(
λ

(�)
j − λ

(�)
k

)
+ φ1

(
λ

(�)
j + λ

(�)
k

)]

−
Nn−2∑
k=1

[
φ1/2

(
λ

(�)
j − λ

(n−2)
k

)
+ φ1/2

(
λ

(�)
j + λ

(n−2)
k

)]
, � = ± .

(A16)

The energy of the corresponding eigenstate of the O(2n) model is given again in terms of the 
first level roots by the expression (A9). The ground state and low lying excitations are parame-
terized by real roots λ(�)

j > 0 with total densities n� = N�/L = 1 and n± = N±/L = 1/2 in the 
thermodynamic limit. Proceeding as for the models discussed in the previous sections we obtain 
the Fourier expression for the boundary contribution τ (1)

0 to the density of roots λ(1)
j :

τ
(1)
0 (ω) = −e−(n−2)|ω|/4 sinh(n|ω|/4) − cosh((n − 2)ω/4)

cosh((n − 1)ω/2)
. (A17)

Using this expression in (A11) we find that the surface energy of the O(2n) spin chain is given 
by (2.9) with z = 2n.

A.5. O(3)

The Bethe equations for the integrable O(3) spin chain (or, equivalently, the spin S = 1
Takhtajan-Babujian model [40,41]) read

[
f1/2(λj )

]2L =
L−n∏
k �=j

f1/2(λj − λk)f1/2(λj + λk) , j = 1, . . . ,L − n . (A18)

The corresponding energy eigenvalue is given as

E = L − 1 −
L−n∑

a1/2(λj ) . (A19)

j

19



H. Frahm and M.J. Martins Nuclear Physics B 980 (2022) 115799
The ground state of the model for even L is parametrized by a solution of (A18) in the sector n =
0 containing L/2 two-strings xj,± � ξj ± i/4, ξj > 0. Neglecting corrections to the imaginary 
parts the Bethe equations can be rewritten in terms of the coordinates of the string centres. Taking 
the logarithm we obtain

2L
(
φ3/4(ξj ) + φ1/4(ξj )

) = 2πQj − φ1/2(ξj )

−
L/2∑
k=1

[
2
(
φ1/2(ξj − ξk) + φ1/2(ξj + ξk)

) + φ1(ξj − ξk) + φ1(ξj + ξk)
] (A20)

with quantum numbers Qj = 1, 2, . . . , L/2. Similarly, the energy (A19) becomes

E0 = L − 1 −
L/2∑
j=1

(
a1/4(ξj ) + a3/4(ξj )

)
. (A21)

Proceeding as in Appendix A.1 we obtain an integral equation for the density of strings in the 
ground state for L � 1

ρ0(ξ) � 1

π

(
a3/4(ξ) + a1/4(ξ)

) + 1

2πL

(
3a1/2(ξ) + a1(ξ)

)

− 1

2π

∞∫
−∞

dξ ′ [
2a1/2(ξ − ξ ′) + a1(ξ − ξ ′)

]
ρ0(ξ

′) .

(A22)

Solving this integral equation by Fourier methods we obtain

τ0(ω) = 3 + exp(−|ω|/2)

4 cosh2(ω/4))
(A23)

for the O(L−1) contribution to the density. Hence we have

f∞ = −1 + 1

2

(
a1/4(0) + a3/4(0)

) −
∞∫

0

dξ
(
a1/4(ξ) + a3/4(ξ)

)
τ0(ξ)

= 13

3
−

∞∫
0

dω
(

e−|ω|/4 + e−3|ω|/4
)

τ0(ω) = 2π − 5 ,

(A24)

which coincides with (2.9) for z = 3 (the same result has recently been obtained using a slightly 
different method in [42]).

A.6. O(5)

The Bethe equations for the O(5) model read
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[
f1/2(λ

(1)
j )

]2L =
L−n1∏
k �=j

f1(λ
(1)
j − λ

(1)
k )f1(λ

(1)
j + λ

(1)
k )

×
L−n1−n2∏

k=1

f−1(λ
(1)
j − λ

(2)
k )f−1(λ

(1)
j + λ

(2)
k ) ,

j = 1, . . . ,L − n1 ,

L−n1−n2∏
k �=j

f1/2(λ
(2)
j − λ

(2)
k )f1/2(λ

(2)
j + λ

(2)
k ) =

L−n1∏
k=1

f1/2(λ
(2)
j − λ

(1)
k )f1/2(λ

(2)
j + λ

(1)
k ) ,

j = 1, . . . ,L − n1 − n2 .

(A25)

The ground state for even length spin chains is in the sector (n1, n2) = (0, 0) with λ(1)
j ∈R+ and 

λ
(2)
j arranged in 2-strings λ(2)

j � ξj ± i/4, ξj > 0. The corresponding energy is again given by 
(A9). Following the same steps as for the O(3) model above we obtain Bethe equations for the 
string coordinates from (A25)

2Lφ1/2(λ
(1)
j ) = 2πQj − φ1/2(λ

(1)
j ) +

L∑
k=1

(
φ1(λ

(1)
j − λ

(1)
k ) + φ1(λ

(1)
j + λ

(1)
k )

)

−
L/2∑
k=1

[
φ3/4(λ

(1)
j − ξk) + φ3/4(λ

(1)
j + ξk) + φ1/4(λ

(1)
j − ξk) + φ1/4(λ

(1)
j + ξk)

]
,

j = 1, . . . ,L ,

L∑
k=1

[
φ3/4(ξj − λ

(1)
k ) + φ3/4(ξj + λ

(1)
k ) + φ1/4(ξj − λ

(1)
k ) + φ1/4(ξj + λ

(1)
k )

]

= 2πQj − φ1/2(ξj ) +
L/2∑
k=1

[
φ1(ξj − ξk) + φ1(ξj + ξk)

+ 2
(
φ1/2(ξj − ξk) + φ1/2(ξj + ξk)

)]
,

j = 1, . . . ,L/2 .

(A26)

For L � 1 the ground state densities ρ0(λ) of real roots from the first level Bethe equations and 
ρ0(ξ) of two-strings from the second one are given in terms of the integral equations

ρ0(λ) = 1

π
a1/2(λ) + 1

2πL

(
a1(λ) − a3/4(λ) + a1/2(λ) − a1/4(λ)

)

− 1

2π

∞∫
−∞

dλ′ a1(λ − λ′)ρ(λ′) + 1

2π

∞∫
−∞

dξ ′ [
a3/4(λ − ξ ′) + a1/4(λ − ξ ′)

]
ρ0(ξ) ,

ρ0(ξ) = 1 (
a1(ξ) − a3/4(ξ) + 3a1/2(ξ) − a1/4(ξ)

)
(A27)
2πL
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+ 1

2π

∞∫
−∞

dλ′ [
a3/4(ξ − λ′) + a1/4(ξ − λ′)

]
ρ0(λ

′)

− 1

2π

∞∫
−∞

dξ ′ [
2a1/2(ξ − ξ ′) + a1(ξ − ξ ′)

]
ρ0(ξ

′) .

Solving these equations the boundary contribution to the density ρ0 of first level roots is found 
to be

τ0(ω) = −e−|ω|/8 sinh(5|ω|/8) − cosh(ω/8)

cosh(3ω/4)
. (A28)

Using this expression in (A11) yields the resulting surface energy of the O(5) spin chain (and 
the OSp(n|2m) superspin chains with n − 2m = 5)

f∞ = −1 + 2
√

3

9
π + π

3
+ 1

3

(
ψ

(
5

12

)
− ψ

(
11

12

))
(A29)

in agreement with Eq. (2.9) for z = 5.
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