PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: August 21, 2022
ACCEPTED: September 22, 2022
PUBLISHED: October 4, 2022

4D supersymmetric gauge theories of spacetime
translations

Friedemann Brandt

Institut fiir Theoretische Physik, Leibniz Universitit Hannover,
Appelstrafie 2, 830167 Hannover, Germany

E-mail: fbrandt@arcor.de

ABSTRACT: The paper addresses the question whether in four spacetime dimensions, be-
sides standard supergravity theories, field theories exist whose symmetries include local
spacetime translations and supersymmetries generated by transformations whose commu-
tators contain infinitesimal local spacetime translations. Several new supersymmetric free
field theories are found which may provide theories of that type. It is outlined how these
free field theories may be extended to globally supersymmetric theories with the desired
properties. One class of such theories is constructed explicitly. These theories are similar
to globally supersymmetric Yang-Mills theories in flat spacetime but have supersymmetries
generated by transformations whose commutators generate infinitesimal general coordinate
transformations with field dependent gauge parameters.

KEYWORDS: Space-Time Symmetries, Supersymmetric Gauge Theory

ARX1v EPRINT: 2208.02773

OPEN AccCESS, © The Authors.

Article funded by SCOAP?, https://doi.org/10.1007/JHEP10(2022)021


mailto:fbrandt@arcor.de
https://arxiv.org/abs/2208.02773
https://doi.org/10.1007/JHEP10(2022)021

Contents
1 Introduction 1

2 Non-supersymmetric “teleparallel” gauge theories of spacetime transla-

tions 2
3 Supersymmetric free field theories 7
4 Supersymmetric actions for interacting fields 14
4.1 Lagrangians for “teleparallel” theories 14
4.2 Lagrangians with further supersymmetry multiplets 18
4.3 Lagrangians for b; =1 21
5 Conclusion 23
A Conventions 23
B Derivation of equations (3.9) and (3.10) 24
C Derivation of Lagrangians 26

1 Introduction

According to its title, the present paper concerns supersymmetric gauge theories of space-
time translations in four spacetime dimensions. We define such theories as field theories
whose Lagrangians are invariant, up to total divergences, at least under local spacetime
translations and global supersymmetry transformations. Local spacetime translations of a
field ¢ are generated by infinitesimal transformations 6¢ = v#0,¢ + ... where the v* are
gauge parameters, i.e. the v* are arbitrary functions v*(z) of the spacetime coordinates
x# (the ellipses denote possible additional terms which generally depend on the particular
field ¢). The infinitesimal global supersymmetry transformations are required to have a
standard commutator algebra involving infinitesimal spacetime translations (with generally
field dependent gauge parameters).

Of course, supersymmetric gauge theories of spacetime translations are well-known:
these are standard supergravity theories [1, 2], cf. [3] for a review, where the local space-
time translations are general coordinate transformations and the supersymmetries are local
(= gauge) symmetries. The present paper addresses the question whether there are su-
persymmetric gauge theories of spacetime translations which are different from standard
supergravity theories.



Concretely we seek globally supersymmetric extensions of actions of theories which
sometimes are called “teleparallel” theories (henceforth this term will be used for these
theories — just to name them). The Lagrangians of these theories contain linear combina-
tions of terms which are quadratic in the components of a torsion constructed out of the
spacetime derivatives of a tetrad field.

Section 2 briefly reviews these “teleparallel” theories as consistent deformations [4, 5] of
free field theories. In particular it is pointed out that and how standard general coordinate
transformations arise as local spacetime translations by consistently deforming these free
theories.

In section 3 supersymmetric extensions of the free field theories underlying the “telepar-
allel” theories given in section 2 are derived. Somewhat astonishingly, it turns out that
there are many new (previously unknown) supersymmetric free field theories of this sort,
with partly rather unusual supersymmetry transformations.

Section 4 outlines how supersymmetric free field theories derived in section 3 may
be extended to supersymmetric theories with interacting fields which are supersymmetric
extensions of “teleparallel” theories as in section 2, and of generalizations of such theo-
ries with couplings to other supersymmetry multiplets (super Yang-Mills multiplets, scalar
multiplets) and/or higher powers in the torsion and/or terms with more derivatives. Fur-
thermore one class of such theories is worked out explicitly.

Section 5 briefly summarizes results derived in the paper.

Conventions used in the paper are given in appendix A. In addition we use a parameter
z € {1,—1,i,—i} which allows one to adapt the results to various conventions used in
the literature concerning complex conjugation and signs in the commutator algebra of
infinitesimal supersymmetry transformations. Using z, our convention concerning complex
conjugation is

Xy =2X8VIx vy, ze{1,-1,i,—i} (1.1)

where XY denotes the complex conjugate of the product XY of any two objects X and
Y, such as fields, operators or differential forms, X and Y denote the complex conjugates
of these objects, and | X| and |Y| denote the Grafimann grading of X and Y, respectively,
with | X, Y| € {0,1} (the Gramann grading of a “bosonic” object is 0, the Grafimann
grading of a “fermionic” object is 1). Owing to these conventions, z occurs in various
equations throughout the paper.

Appendix B summarizes the derivation of results on the supersymmetry transforma-
tions used in section 3.

Appendix C outlines the derivation of results on the construction of supersymmetric
actions used in section 4.

2 Non-supersymmetric “teleparallel” gauge theories of spacetime trans-
lations

In this section it is shown how, along the lines of [6], non-supersymmetric gauge theories of
spacetime translations can be constructed as consistent deformations of free field theories



for a set of abelian gauge fields A,,” with Lorentz vector indices 1, v in flat four-dimensional
spacetime and the abelian gauge transformations

SVAY = 8,0” (2.1)

where the v¥ are gauge parameters depending arbitrarily on the spacetime coordinates.
Our starting point is a free field theory with the Lagrangian

LY = a1 FlypF"™P + agF PP + a3F, " FM ) + a4 P FyypFor™ (2.2)
where a1, ..., a4 are (so far arbitrary) real coefficients, F),,” are the components of gauge

invariant field strengths
F.'=0,A—-0,A," (2.3)

and Lorentz vector indices are lowered and raised by means of the Minkowski metric 7, =
diag(1,—1,—1,—1) and its inverse. It can be shown that, up to total divergences, (2.2)
is in four spacetime dimensions the most general free field Lagrangian for the fields A,"”
which is quadratic in derivatives of these fields and invariant up to total divergences under
the gauge transformations (2.1) and standard global Poincaré transformations.

For later purpose I remark that (2.2) also can be written as

L1(30<3se = allF#VPFMVp + G’IQH,LLHN + CLSG;LGM + CLZLG“HM (24)
where
12 1 MV po v / 1 / /
oY = G Fopoy Gu=Fu", a3 =a— 502, G = —4day, ay = —4ay (2.5)
There are particular values of the coefficients ay,...,as which deserve special attention.

These values can be obtained from the equations of motion arising from L](Bogse by its Euler-

Lagrange derivatives w.r.t. A,”. To see this it is useful to decompose A,,, into its symmetric
and antisymmetric parts according to

Aw=Hu,+Bu,, H,=H,, B,=-B, (2.6)
The Euler-Lagrange derivatives of Lg]gse w.r.t. H,, and By, are

(5L(O)
——Bose _ 2(@2 — 2a1)8p8pH‘“’ + 2(2&1 —as — ag)Bpa(”H”)p
0H,,

+ 2a3(0"0"H," + 0" 0,0, H** — 0" 0,0° Hy?)

— 2(2&1 — a9 + a3)8p6(“B”)p + 2a4ep”(“8y)6pBM (2.7)
sLO
ﬁ:ﬁe = 2(2a; — ag + a3)0,0PH' + 2a,4e"P7 070, H,,

— 2(2a1 + a2)8,0° B" — 2(2a1 + 3ag — a3)d,0" B
+ 2a4 (PTG 4 P77, By, (2.8)



One observes that the equations of motion for H,, and B, decouple if and only if 2a; —
as + a3 and a4 vanish:

az=as —2a1, ags =0 & a3 = —2a}, a} =0: (2.9)

51O
= o Bese = 9a5(0,0° HM — 20,0 HV)P + 910" H P + 1" 0,0, H — " 9,0° H,") (2.10)
ny

(0)
%Lgm = —2(2a1 + a2)(8,0° B" + 20,0 B"P) = —6(2a; + a)9,0 B! (2.11)
nv

The Euler-Lagrange derivatives (2.10) are proportional to the left hand sides of the
linearized vacuum Einstein equations in flat background. The Euler-Lagrange deriva-
tives (2.11) are proportional to the left hand sides of the standard Maxwell type free field

equations for an antisymmetric gauge field B,,,,. The cases (2.9) are special because in these
cases the free theory has two independent gauge symmetries, namely 51(,0) H,, = 9,v,) and

61(1? )B;w = Jj,w,) with unrelated gauge parameters v, and w;, whereas for generic values of

ai,...,aq the gauge transformations of H,,, and B,,, in the free theory are 61(,0)HW = 0y )

and 51(,0) By, = 0, v,) with the same gauge parameters v,,.

The cases (2.9) are even more special when as = —2a; or ag = 2a;. In the first
7,0

case the Euler-Lagrange derivatives of L/ .

divergence Lg)gse does not depend on B, and thus effectively B, drops out of the free

w.r.t. By, vanish identically, i.e. up to a total

theory.! In this case the free theory is equivalent to linearized Einstein gravity in flat
(0)

background. In the second case the Euler-Lagrange derivatives of Ly,

w.r.t. Hy,, vanish
identically, i.e. H,, drops out of the free theory. In that case the free theory is just a free
theory for an antisymmetric gauge field B, with Maxwell type Lagrangian proportional

t0 FyupFH° with Fp,, = 30), B

vp)»
SLY)
as = —2ay1, azg = —4a1, ay =0 & a)h =4ad), a3 = —2a}, a}, =0: % =0 (2.12)
uv
sL©
a2:2a1,a3:a4:0<:>a’lzagzaﬁl:():%zO (2.13)
uv

So far the gauge fields A, are not related to spacetime translations. In order to relate them
to spacetime translations we use Noether couplings of these gauge fields to the Noether
currents corresponding via Noether’s first theorem [7] to the global symmetries of the
free field theory under “improved” spacetime translations. The generator of the improved
spacetime translation in the uth spacetime direction is denoted by A, and acts on the
gauge fields according to

AJAS =FLr (2.14)

A, A, is the sum of a standard infinitesimal global spacetime translation of A,” in the
pth spacetime direction generated by 9,4,” and a gauge transformation (2.1) with field

!This can be formulated as a gauge invariance of the free theory under arbitrary shifts of B, which
corresponds to the invariance of the Lagrangian (2.25) under local Lorentz transformations for coefficients
as in (2.12).



dependent gauge parameters —A,”. As both the standard global spacetime translations
and the gauge transformations (2.1) are symmetries of the free field theory, this also holds
for the improved spacetime translations generated by (2.14). The advantage of using the
improved spacetime translations in place of the usual spacetime translations here is that
the corresponding Noether currents are invariant under the gauge transformations (2.1).
The components v of the Noether current corresponding to the global symmetry of the
free theory generated by A, are the components 7),” of the “improved” (gauge invariant)
energy-momentum tensor

oW
thz — (5VL(O) — (A AC Bose
f 1~Bose ( HEEp )8(8VA,;°')

= OULY) .~ Fup’ (401 F7P + dag F, VP 4 443G 88 + 2046”5, G — 8ag H 7))

Bose

1
=9, Kal — 2a2> For FP7 + das H,H + a3G,G*

1
—4 <a1 - 2a2) Fupo F7 + 205 (Fpg”?°" Hy — AH, H")

+ 2a3(F,)" GP — GuGY) + a4(F g€ Gy — AF,,,V HP) (2.15)

The Noether couplings of the gauge fields A,” to the improved energy-momentum tensor
(0)

Bose that provide a first order deforma-

add interaction terms to the free field Lagrangian L

tion ngse of this Lagrangian which is

0

Bose — AV“TNV (2~16)
(0)

Bose

This deformation of the free field Lagrangian L
)

is accompanied by a corresponding

deformation 85" of the gauge transformations (2.1) which is

51(,1)14#” =vPA,A)Y =V F,,” (2.17)
As T,% is invariant under the gauge transformations (2.1), one has

S(l)L(O)

v Bose

+50Ld ~o (2.18)

Bose

and 51(,1)
provide a consistent first order deformation of the free theory, i.e. deformations Lo 4

Bose
ng 356 and 51(]0) + g&()l) of the free field Lagrangian and gauge transformations with (constant

where ~ denotes equality up to a total divergence. According to (2.18), LW

Bose

but otherwise arbitrary) real deformation parameter g such that the deformed Lagrangian
is invariant under the deformed gauge transformations, up to a total divergence and up
to terms that are quadratic in g. The relation of the deformed gauge transformations to
general coordinate transformations is obtained by writing (2.17) as follows:

S’L(II)ANV = 0P (0p A" — 0uA,") = VPO, ALY + (00°) Ap” + Op(—v"A,") (2.19)

Eq. (2.19) shows that Sf,l)AM” is the sum of a standard infinitesimal general coordinate
transformation with parameters v* which ignores the second (upper) index of A,”, and



a gauge transformation (2.1) with gauge parameters —v”A,”. The latter portion, i.e.
Ou(—vPA,"), can be removed from Sgl)Au” because it does not contribute to Sgl)Lg)gse
in (2.18) as nggse is invariant under the gauge transformation (2.1) (for arbitrary v’s).

: (1 v o_ v
Hence, in place of 0y ' A, = v’ F,,” one may use

SSVALY = 0Pd,A,Y + (9,0°)A,Y (2.20)
without amending Ll(s’lgse’ i.e. one has
SV L + 6V LE), =0 (2.21)

Now, 51(]1)14“” has the form of an infinitesimal general coordinate transformation of A,”

which ignores the upper index v. However, (51(,0) + géq()l) )A,"” additionally contains the por-

tion 51(,0) A,Y = 0yv”. This suggests to introduce a field with components d,,+gA,” because

the deformed gauge transformation (51(,0) + 951(,1) of this field precisely has the form of a stan-
dard infinitesimal general coordinate transformation (with parameters gv*) which ignores
the upper index v. ¢, + gA,” thus transforms under the deformed gauge transformations
precisely like a tetrad field under infinitesimal general coordinate transformations.

It is now obvious how one can extend the first order deformation of the free field
theory to all orders. Namely, switching to standard notation, one can introduce a tetrad
field e,* whose lower index is treated as a covariant world index of general coordinate
transformations and whose upper index is treated as a contravariant Lorentz vector index

(with generally globally realized Lorentz transformations). Then the torsion
T,," = 0ue," — Ove,” (2.22)

is an antisymmetric tensor under general coordinate transformations with respect to its
world indices p,v. Assuming (or imposing) that the tetrad is invertible everywhere one
introduces also the inverse tetrad e*, which fulfills

etaet =00, eae,t = oy, (2.23)

Now one can convert the world indices of 7),,* in the standard way into Lorentz vector
indices according to
Ty = e'pe”c(0pe,® — 0pe,”) (2.24)

By construction Tp.* transforms scalarly under general coordinate transformations. Hence
the Lagrangian

Liose = (a1 Tupe T + agTupc TP + a3Top T + age™ T 3. Tg.°)
= e(a} Tope T + dyH H® 4 a3G,G* + ayH,G?), (2.25)

where e = det(e,®) denotes the determinant of the tetrad, Lorentz vector indices are
lowered and raised by the Minkowski metric 7, and its inverse, H* = %eadeTbcd and
G, = Ty, is a scalar density (with weight one) under general coordinate transformations
and thus fulfills

5vLBose = gau(v#LBose) (226)



where 0, is an infinitesimal general coordinate transformation with parameters gv*,
dpen” = gv¥oye,” + g(0,0")e (2.27)

Using e, = 0, + gA,", an expansion of Lpose in powers of g reproduces at zeroth order in
g the free field Lagrangian (2.2) and at first order in g the first order deformation (2.16)
of that Lagrangian. Furthermore, (2.27) provides (2.1) and (2.20) via e,* = &}, + gA,".
Hence (2.25) and (2.27) complete the first order deformations (2.16) and (2.20) of the free
field Lagrangian (2.2) and gauge transformations (2.1) to all orders in g via e,* = &, +9gA,*.
Of course, the expansion of Lpese in g yields infinitely many terms owing to the presence
of the inverse tetrad in Lpgse. As is well-known, possibly first observed by Lanczos (cf.
section 5.1 of [8]), the Lagrangian (2.25) is for ap = —2a1, ag = —4ay, ag = 0 (the so-
called “teleparallel equivalent of general relativity”) proportional to the Einstein-Hilbert

Lagrangian for the metric g, = euaeybnab, up to a total divergence.?

3 Supersymmetric free field theories

In order to construct supersymmetric theories of gauged spacetime translations, we first
seek supersymmetric extensions of free field theories with a Lagrangian (2.2) in flat space-
time. To this end we introduce fermionic spinor-vector fields A,” which are to become the
superpartner fields of the gauge fields A,”. The index o of A\,” is a spinor index with two
values (a = 1,2, cf. appendix A), the index v is a contravariant Lorentz vector index (in
flat spacetime). A\, is a complex-valued field (i.e. a field with a real part and an imaginary
part) which is invariant under the gauge transformations (2.1),

50N =0 (3.1)

v

The complex conjugate of A\ is denoted by A\g” (& = 1,2).

We denote the generators of global supersymmetry transformations in flat spacetime
by D, and Dg where Dy is the complex conjugate of Dy, and make the following Ansitze
for the supersymmetry transformations D, of A,,, P p and 5\‘5‘#:

DoAu = (bla“;\y + bga,}\u + bgnuyapjxp + b4ew,pga’)5\”)a
DN, = 2[62(b5sGy + b H,,) + 00’ (07GY 4 bs HY) + bgo"? 0P F. ]
DoAY, =0

where the coefficients by, ..., bg in general are complex numbers, i.e.

The Ansétze (3.2) through (3.4) are motivated by the requirements that the supersymmetry
transformations D, of A, B n and & x do not explicitly depend on spacetime coordinates
and commute with the gauge transformations (2.1).

2A corresponding “teleparallel equivalent of supergravity” is given in section 1.5 of [3].



For the supersymmetric free field Lagrangrian we make the following Ansatz:

0 0
Lé?l)sy = L%Bo)se + L%e)rmi (35)
Lis = HasN'a" 0,2, + as(Wo 9\, + N0, 9, 1)
+iaz(\“o” Oy — Mo, 0 N) + iage"P7 N ,0,0p A0 | (3.6)
with Lg)gse as in (2.2) and real coefficients as, ..., ag. L](??rmi is the most general free field

Lagrangian for A%, and S\é‘M that is invariant under standard Poincaré transformations,
linear in the derivatives of these fields and real, up to total divergences.

We impose that the anticommutators of the D, and Dy fulfill the standard supersym-
metry algebra, i.e.

{Das Da} ~ =220"440u, {Da, Dg} ~0, {Da, Dg}~0 (3.7)

where ~ denotes equality up to gauge transformations (2.1) (with field dependent parame-
ters) and up to terms that vanish on-shell in the free field theory, i.e. up to terms containing
the Euler-Lagrange derivatives of Lé?}sy w.r.t. A, AgY or S\du. Eq. (3.5) implies that the
Euler-Lagrange derivatives of ng)sy w.r.t. A,” are of second order in the derivatives of Au”.
Hence, the Ansitze (3.2) through (3.4) imply that the anticommutators {D, , D4 }A,, do
not contain the Euler-Lagrange derivatives of Lé?)sy w.r.t. A,” when we require that these
anticommutators do not contain gauge transformations or on-shell vanishing terms that
explicitly depend on spacetime coordinates.> With this requirement, (3.7) imposes on A

for generic values of ay,...,ay4, i.e. for values which exclude the special cases (2.9):*
{Da, Da} Ay = —220° 060, A0 + 04 Xvas (3.8)
where X,,4 are some field dependent gauge parameters of a gauge transformation (2.1).

In appendix B it is shown that (3.8) and the Ansétze (3.2) through (3.4) imply that with
no loss of generality one may assume bg = —1 and then obtains

Xvaa = QZApquad (39)

3This requirement appears to be natural but it is not completely innocent as there are supersymmet-
ric free field theories where the commutator algebra of the infinitesimal supersymmetry transformations
contains infinitesimal gauge transformations and on-shell vanishing terms which depend on spacetime coor-
dinates explicitly even though the supersymmetry transformations themselves do not depend on spacetime
coordinates explicitly, cf. [9, 10] for examples.

“In the cases (2.9) one has {Ds, Da}Huw = —220°0a0pHuw + 0, Xvyaa and {Da, Da}Bu =
—220% 06.0pBuv + B[MYy]ad where X,,aa and Y,as can be different. In the very special case (2.12), which
provides linearized standard supergravity, {Dq , Dd}BW does not impose any condition at all because
then By, effectively drops out of the free field theory, cf. remarks following (2.11). For these reasons, the
coefficients b; which occur in linearized standard supergravity need not and actually do not fulfill all of
the equations in appendix B. This is the reason why, for instance, the coefficients in (3.10) do not provide
linearized standard supergravity.



Furthermore in appendix B it is shown that the choice y; = y3 = 0 provides the following
coeflicients which will be used in the further investigations:

3
by € R\{4}, Y5, Y6, Y7, ys € R,
by =1 —by, by = by —1, by = i(1—b1),

1-— bl . . 2(b1 - 1)
3 4b, +1ys, be = 1Ys, 07 3 4b,

(1—b1)ys = <1 - ;bl> yr, (1=01)(2+ys) = (1 - Zbl) Ys (3.10)

The values of ys,ys,y7,ys in (3.10) are so far only restricted by the last two equations

b5 + iy7> bS = iy87 b9 = _17

in (3.10) — hence, for any particular value of by, at most two of the coefficients ys, 6, y7, ys
are independent. Furthermore the value b; = 3/4 must be excluded in the cases y; = 0 (cf.
derivation of (B.29) in appendix B).

Of course, in addition to (3.8), the algebra (3.7) is required to be satisfied on A, and
Aa”. However, on \,” and A", the anticommutators of the supersymmetry transformations
can (and do) involve the Euler-Lagrange derivatives of Lé?l)sy w.r.t. these fields. Therefore
it appears to be more efficient to first determine Lagrangians Lé?)sy which are invariant,
up to a total divergence, under the supersymmetry transformations with coeflicients ful-
filling (3.10). The algebra (3.7) then “automatically” will also hold on A\,” and A\s”.

Now, as Lsgsy is real up to a total divergence, it is invariant up to a total divergence
under Dy whenever it is invariant up to a total divergence under D,. Hence, it is sufficient
to consider Dang)sy. Using (3.2) through (3.4), one obtains

DaLg?l)sy ~ [cla,}\uf)pF”(“") + CQO'HS\‘U'ayGV + 630”5\“8,,HM + 040”5\“8MHV
+ C50V5\M81,G“ -+ CGUVS\MG#GV + EMWMUU;\#(Cﬂapr + Cgal,Gp)]a (3.11)
with (for arbitrary coefficients b;)

c1 = 22((15 + ag)bg - 4a'1(b1 + bQ)
Cy = —Z2

1
(ag +ia7)bs + (2a5 — a8> b7 + agbg} — 4allb3 — 2a3(by + ba + 3b3)
(/1 i
c3 = —2° (2a6 + 5@7 + a8> bsg + asbg + 2ia8b9} + 8allb4 — 2a/2b4 + ajyby

1
Cc4 = 22 |:<2a5 + 2a¢6 — ia7> bg — ((LG - ia7)b6 + 2(1&6 + a7)b9] — 8&’1[)4 + 2a'2b4 + ai;bl

ST/l i 11 ,
s = —2Z §a6—|—§a7—|—a8 b7y 4+ asbs — §a5+§a8+a6+1a7 b

+ 2a’1 (b2 — bl) — aﬁlb4 + 2a3bs
1 1 1
ceg = 22 {(2(15 + 2a¢6 — ia7) by — (aﬁ — ia7)b5 — <2a5 - §a8 + 2a6> bgj|
+ 2a’1 (bl — bg) + aﬁlb4 + 2&3()1

1
cy = 22 |:2(ia5 —iag + a7 — iag)bg + iagbg — (a5 — ag)b9:|

+ 4a’ (by — bg) + ab(ba — by) + alyby



1
cg = 27 5(1&5 —iag + a7 — iag)b7 + iagbs + (iag — a7)by

1
+ 4a’164 + iaﬁl(bg — bl) + 2agby (3.12)
All the coefficients ¢y, . .., cg must vanish in the generic cases. We shall now sum up what
this imposes in the cases of coefficients by, ..., bg given in (3.10). In these cases, obviously

c1 = 0 is a real equation and provides (3.13):

2
a’l = _Z(a54+a8) (3.13)

¢7 — icg = 0 turns out to be a real equation too which, using (3.13), provides (3.14):

1
a'2 = —22(a5 + ag) (ys + 2yg) (3.14)

cs — ics = 0 also turns out to be a real equation which, using (3.13), provides (3.15):

1
o, = —2:2(as + ag) <y5 + 2y7> (3.15)

¢s + ¢ = 0 is a complex equation which provides (3.16) by its real part and (3.17) by its
imaginary part:

22 2(1 —by)as + ag + (1 — 2b;)ag 3
= —— —y7 — 3.16
as 5 { 1 3 +ar (2117 y5)] ( )
ar 1 3
54 05 <2y7 ys) + ag <2y7 y5) agyr =0 (3.17)

c7 +icg = 0 is a complex equation which, using (3.13), (3.14) and (3.15), provides (3.18)
by its real part and (3.19) by its imaginary part:

2a5[(1 = b1)(2 — ys) + (201 — 1)ye] + 2as[2(br — 1)ye + b1(ys — 2)] +agys =0  (3.18)

arys = 4(1 — b1)(as + ag) <y5 + ;y7> (3.19)

¢z = 0 is a complex equation which, using (3.13) and (3.16), provides (3.20) by its real part
and (3.21) by its imaginary part:

—2(1 — b1)2a5 + (2b1 — 1)@6 + 2b1(1 — bl)ag =0 (320)
(1 - b)as (1 )

_ —( Za- = = 21

ays + 3 505 —as ) yr =0 (3.21)

¢34 c4 = 0 is a complex equation which, using (3.13), (3.14) and (3.15), provides (3.22) by
its real part and (3.23) by its imaginary part:

3 1
ar <2y8 — Y6 — 2) —2(as + ag) <y5 + 2y7> =0 (3.22)
1 3
as | 5Ys — Yo | + a6 ( 5¥s — Y6 — 2) +ag(2—ys) =0 (3.23)

~10 -



Finally, cg +ics = 0 is a complex equation which, using (3.15), provides (3.24) by its real
part. Using (3.13) and (3.16), the imaginary part of cg 4 ics = 0 gives again (3.20).

2(3by — 2)ay

T 3 + 2a5[(201 — 1)ys + (b1 — D)y7| + asyr + 2as[2(by — 1)ys + biyz] =0 (3.24)

We note that for by # 1 we have %yg —yg—2 = %yg/(l —b1) by the last equation in (3.10)
which then implies that (3.19) and (3.22) are equivalent. For b; = 1 one has ys = 0 by
the last equation in (3.10) and thus (3.19) becomes trivial in the case by = 1. Hence,
actually (3.19) does not provide any extra condition in either case and can be ignored.

Notice that (3.17) through (3.24) have been written such that they only involve the

coefficients as,...,ag in L(F?rmi but not those in Lg)gse. Hence, (3.17) through (3.24) are
equations for as, . .., ag and by, ys, . . . , ys which must be fulfilled in order that Lé?)sy is invari-

ant, up to a total divergence, under the supersymmetry transformations (3.2) through (3.4)

with coefficients b; as in (3.10). Eq. (3.13) through (3.16) then provide the coefficients a7,
(0)

Bose: Without imposing further conditions. In other words, in order to obtain

(0)

a supersymmetric free field theory with a Lagrangian Lsgsy and supersymmetry transfor-

ah, as, aly in L

mations (3.2) through (3.4) with coefficients b; as in (3.10), it is necessary and sufficient
that equations (3.17) through (3.24) (where one can ignore (3.19)) and additionally the
last two equations in (3.10) are fulfilled.

We shall now provide various supersymmetric free field theories arising from these
equations by giving the respective coefficients a},...,as in the Lagrangian Lé?)sy and
b1,...,bg in the supersymmetry transformations (3.2) through (3.4). Firstly we provide
the free field theories for the cases by = 1 because for by = 1 both the supersymme-
try transformations (3.2) through (3.4) (with coefficients b; as in (3.10)) and the equa-
tions (3.17) through (3.24) are particularly simple, and the last two equations in (3.10)
impose y; = ys = 0. One obtains:

as, Ys, Ye S Rv

by =1, bp =b3 =04 =0, b5 =1ys, bg = iys, by = bg =0, bg = —1,

/ 1, / 1, I 9 1

ay = _§Z as(2 4+ yg), ay = _52 asye(2 + ys), as = 52 as | —ys + §y6 ,

/ 2 1

ay = —z°as5ys(2 +ys), ag =0, ar = —asys, ag = -asYe (3.25)

2

Secondly we provide the free field theories for the cases by = 2/3 which are also special for
various reasons (in these cases the last two equations in (3.10) imply y5 = 0 and ys = —2;
furthermore in these cases there is a formulation of the free field theories with a commutator
algebra of infinitesimal supersymmetry transformations and spacetime translations which

- 11 -



closes off-shell, up to gauge transformations, see below). In these cases one obtains:®

as,ag,yr € R, as # 2as,

2 1 1 i
1 37 2 37 3 37 4 37 5 » U6 1, 07 + y7,

di(as + ag) , 1, , 222(a5 + ag)(bag — 4as)
® 7 3(2as —as)’ y a1 =37 (st ag), a 3(2as — as)

1 3
a3 = —52’2 5ag — 4as + Z(?ag — a;,)y% , ay = —22((15 + asg)yr,

2 1
ag = 5 (as — 2as), a7 = 5(2as — as)yr (3.26)

Thirdly we provide the free field theories for the cases yg = 0 with b; different from 1 and
2/3:

23
by e R\q1, -, - R
1€ \{ 5354}5 08,3/76 y

1-— b1 1(2 - 361)y7

bo=1—-b1, bg=b1—1, by =i(1—-01), b5 =
2 1, by =01 —1, by =i(1 —b1), b5 5= ab T 201 —by)

, b =0,

2(b = 1) . 4i(by — 1)
br= 2 gy, by = o) by =1
7 3 — 4b1 + Y7, 08 3b1 —9 y U9 5
ay, = _ﬂ a — 22%ag
' 4(1*b1)’ 2_3b1*2’
az = —22ag 1 (3b1 — 2)(4b1 — 3)y? o = 22(4by — 3)asyr
2(4b1 — 3) 8(1—b1)3 ’ 1—0)2
bas (3b1 — 2)(4by — B)asyr
N =0 a7 = 3.7
as (1—b1)’ Qg P a7 2(1_b1)2 ( )

Eq. (3.25) through (3.27) show that there are supersymmetric extensions of various free

field theories with a Lagrangian LY

Bose 85 in (2.2), where of course supersymmetry relates
](303%. Furthermore, we remark that (3.25) through (3.27)
do not exhaust such free field theories because there are other free field theories with
coefficients ai,...,ag and by,..., by different from those in (3.25), (3.26), (3.27) which
fulfill equations (3.10) and (3.17) through (3.24) (we leave it to interested readers to work

out such free field theories).

the coefficients aq,...,aq of L

We end the discussion of supersymmetric free field theories by addressing the issue of
auxiliary fields which might be used to close the commutator algebra of the infinitesimal
supersymmetry transformations and spacetime translations off-shell, up to gauge transfor-
mations. According to the standard counting of degrees of freedom, the free field theory
with Lagrangian ng)sy has, in the generic cases, 12 bosonic and 16 fermionic degrees of free-
dom off-shell. Hence one needs at least four additional bosonic degrees of freedom to close
the commutator algebra of the infinitesimal supersymmetry transformations and spacetime
translations off-shell, up to gauge transformations. This suggests to introduce an auxiliary

5The case a5 = 2ag is excluded in (3.26) because by = 2/3 and as = 2ag imply that all coefficients
ai,...,as must vanish.
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real vector field B, and the following Ansatz for modified supersymmetry transformations
D}, in presence of By:

Dl Ay =DyA,, = (blaujxu + bgayj\u + bgT]qup;\p + b4em,p00p5\”)a (3.28)
DI, = 2[08 (b5G 4+ b H,, +b10B) + 0 e (b7 G 4+-bg HY +b11 BY) +bgo"? P F, ] (3.29)
DL A%, =DA%, =0 (3.30)

where b1y and by; are complex coefficients,

bio = 10 + iy10, b11 = x11 + iy11, 10,211, Y10,Y11 € R (3.31)

Now, as the algebra (3.7) was already realized off-shell on A, the B,,-dependent terms
arising from (3.29) must not contribute in {D},, D4} A,,. Up to a factor z these terms
turn out to be

1 _
Byojaa (blblo + 552511 + ib4511>

1 _
+ B,ovaa (b2b1o + 551511 - 1541911)

(b1 + b2)b11]

- 3 1
+ 0w Bpo’ aa [53 (510 - 2b11> ~3

_ 1 i
+ €upe B 07 aa [64 <—b10 + 2b11> + %(bl — b2)b11:| + c.c. (3.32)

It is straightforward to verify that all terms in (3.32) vanish for coefficients b; as in (3.10)
if and only if

3
z1o =211 =0, (1 =b1)yio = <1 - 2b1> Y11 (3.33)

Eq. (3.33) thus are necessary conditions for the commutator algebra of infinitesimal space-
time translations and supersymmetry transformations with D/, as in (3.28) through (3.30)
to close off-shell, up to gauge transformations (2.1), with coefficients b; as in (3.10). In the
case by = 1 one has y;; = 0 and obtains that the commutator algebra of the infinitesimal
supersymmetry transformations and spacetime translations closes off-shell, up to gauge
transformations (2.1), for the following transformations D7 :

bi=1: D A, = (c,\)a (3.34)
DI, = 2(i62 B, — 0" " F, ) (3.35)
DAY, =0 (3.36)
DLB, = —i(0"0\u)a (3.37)

where, in order to simplify the supersymmetry transformations, we have redefined the
auxiliary field according to

A

B, =ysG, +ysHyu + y10By (3.38)
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In the cases by # 1 we write the transformations D/, in (3.28) through (3.30), for coefficients
b; as in (3.10), as follows:

bi#1: DA, = bl(o*u;\l,)a +(1- bl)(al,j\u — nm,a”j\p + iew,pgapjxo)a (3.39)
1 -0 . . 2—3b1 4
DI, = 2|68 ( —2iH, +i——"~B )
oNn 2[6(’“ 3—4b1G“ ' “+12(1—b1) p
1— R
+ Oa® (—2 by 4 iB”) - avpaﬁpw} (3.40)
3 — by
DA%, =0 (3.41)

where we have redefined the auxiliary field according to

A

By = y:G, +ysH, + yu By (3.42)
Furthermore we make the following Ansatz for D/, B,,:
by #1: DLB, =i(b1ao” 9\ + b130,0, N + b140” 0 N0) e + b15€upo (07X ) (3.43)
where _b12, ...,b1s are complex coefficients. ImposingA now that D/ and Dg fulfill
{Dq, D} = —220"040, and {Dy,, D} =0 on X7, and By, one gets

bl = g, b12 = 2, b13 = —2, b14 = 615 =0 (3.44)
3 3

We conclude that, for coefficients b; as in (3.10), by = 1 and b; = 2/3 are the only values
of by for which the commutator algebra of infinitesimal supersymmetry transformations and
spacetime translations can be closed off-shell, up to gauge transformations, by means of
an auxiliary vector field as in (3.28) through (3.30). Of course, this does not exclude
that for other values of by there might be a different set of auxiliary fields which can be
used to close the commutator algebra of infinitesimal supersymmetry transformations and

spacetime translations off-shell, up to gauge transformations.

4 Supersymmetric actions for interacting fields

4.1 Lagrangians for “teleparallel” theories

We now discuss the construction of globally supersymmetric extensions of actions with
Lagrangians (2.25) and generalizations thereof (containing higher powers of the torsion
and/or terms with more derivatives). We denote the generators of the global supersymme-
try transformations by D, and Dg and define covariant derivatives D, according to

D, = e!'q0, (4.1)
We shall now assume that D, and D, are realized such that on the tetrad one has

{Do, Da}en® = =220"06Tou®s  {Da, Dple,” = {Da, Dyte,® =0 (4.2)
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with o# o4 = €40%q, and T),,* as in (2.22), and on all fields which transform scalarly under
general coordinate transformations (A\,%, A and auxiliary fields transforming scalarly
under general coordinate transformations) one has

{Daa 250'4} = _ZZUaadDaa {Daa D,B} = {Z_)d ) ﬁﬁ} =0 (4'3)

Hence, we assume that (4.2) and (4.3) hold off-shell, and thus that the commutator algebra
of the infinitesimal supersymmetry transformations and general coordinate transformations
can be closed off-shell by means of one or more auxiliary fields. It need not be assumed
that the auxiliary fields are the components of a vector field even though this of course is
the case we have in mind.

Egs. (4.2) and (4.3) imply that the commutator of two infinitesimal supersymmetry
transformations is an infinitesimal general coordinate transformation, on all fields. Indeed,
introducing an anticommuting constant spinor with components €¢* and the complex conju-
gated spinor with components £ as parameters of the infinitesimal global supersymmetry
transformations according to

Y = (9D, + E9Dy), (4.4)

one obtains, on all fields, that the commutator of two such supersymmetry transforma-
tions with parameters £, &%, and €, £, respectively, is an infinitesimal general coordinate
transformation d, with parameters v* = 223(g101&s — go0t&1):

(605 6] = 5, ¥ = 25%(e1045, — 3075 (45)

Now, (4.1) through (4.3) imply that on all fields which transform scalarly under general
coordinate transformations and are constructible out of the fields e,%, A\.°, e and their
derivatives (such as Ty¢, A%, Aa® and covariant derivatives thereof) and the one or more
auxiliary fields (such as B® and covariant derivatives thereof), one has

[Da, D} = —Tap“De (4.6)

where the indices A, B, C run over Lorentz vector indices a and spinor indices «, ¢, and
[Da,Dp} denotes the commutator [D4, D] if A or B is a Lorentz vector index and the
anticommutator {Dy4 , Dp} if both A and B are spinor indices:

[Da,Dp} = DaDp — (H)MPIDpDA, o] =0, || =]d| =1 (4.7)
Using [0y, Do ] = [0, Ds] =0, (4.1) through (4.3) imply

a a a b b b
Tos" = Taa" = 220% 44, Toaw = —Toa = euapaeu )

Tc'mb = _Tadb = e“a@deuba T’ = euaebem/C (4'8)
The Bianchi identities following from (4.6) are

E ()ANCHD AT + TapETrcP) =0 (4.9)
ABC
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where E Xape = Xape + Xpoa + Xcap denotes the cyclic sum. The Bianchi identi-

ties (4.9) for the torsions in (4.8) actually are implied by (4.2), i.e. these Bianchi identities
hold whenever equations (4.2) hold, as can be checked readily.
Now we assign “mass dimensions”, denoted by [ ], to the various fields and operators
according to
eu] = 0, [Ma®] = [Dal = 1/2, [0,] = 1 (4.10)

Assuming (or imposing) that the supersymmetry transformations only contain parameters
with vanishing mass dimension and taking into account the Lorentz indices, Dye,* must
be linear in A\4®. Hence, in order to construct supersymmetric extensions of actions with
Lagrangians (2.25) corresponding to supersymmetric free field theories with coefficients b;
as in (3.10), we now shall consider

Daey = 010, A + (1 = b1)a A, + (b — 1)e, oAy +i(1 — b)e " opAea (4.11)

In addition we shall need DoAa®. In order to derive it, we decompose 4% into a spin-1 /2
part y and a spin-3/2 part 1) according to

3 T 1 - - -
Magp = Aa"Tapp = 5€apX8 T Yapsr  Yags = Yoap (4.12)
which implies
— (o) T _ a N o — 1 . 175.,8_ ‘ 113
Xa = (0"Aa)as Vaga = 0 a(@Agjer Ada = =5 (X0a)a + 500" Vs (4.13)

Egs. (3.4), (4.10) and the Bianchi identity (4.9) with indices ABC'D = afScd suggest that
Da/_\d“_ is bilinear in A. Therefore we make the following general Ansitze for Duxp and
Dy tp®P 8:

Daxs = €ap(dixx + dogpt)) (4.14)
Doﬂzjdﬁﬂ = d3€aﬁqz)d'8,yX’y + d47!;dﬁ(aX5) + d5’&"y(da'€zﬂ)’yﬂ (415)

with xx = X*Xa, V) = &dgai)dﬁ.a, and (in general complex) coefficients dy,...,ds. Us-
ing (4.8) with Dye,® as in (4.11), and (4.14) and (4.15) in the Bianchi identity (4.9) with
indices ABCD = afcd yields

34 1 34

d d
i 0 ® 3

d =
! 2(4by — 3)’ 2

, dy =0, ds = —1 (4.16)

We note that (4.14) through (4.16) also imply {D, , Ds} s = 0, as well as

1 - . 3—4by -
Da(XX) = = Xa®¥, Da(Ph) = L Xathth (4.17)
3 —4b; 2
Furthermore we note that
XX = RN — NG N, G = _gxav NG\ (4.18)
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In appendix C it is shown that, under the above assumptions, Lagrangians which are
invariant, up to total divergences, under infinitesimal general coordinate transformations
and supersymmetry transformations (4.4) can be constructed by means of operators P and
P defined according to

1 _

P =D? 4+ 2(4by — 3)xD + 5 (4b1 = 3)%xx + Y (4.19)
_ _ _ 1

P = —22 |D? +2(4b; — 3)xD + 5(4b1 — 3)2xx + W} (4.20)

with D? = D*Dq, XD = x*Da, D? = DaD*, XD = xaD*, XX = XaX", ¥ = P athap®,
and yy and 17 as above. We note that

1 _— 1 — 1\ - _
5(451 —3)xx + Yy = —5[(451 —3)7 + 3]\ — 16(by — 1) (bl - 2) g’ (4.21)

The operator P and the field polynomial %(461 — 3)%2xx + ¢ fulfill the following
equations:

(Do + (401 = 3)xalP =0, [P+ (401 = 3)xa] (5401~ 3Pxx+39) =0 (422)

where the first equation in (4.22) is an operator identity. Accordingly P and %(41)1 —
3)2xx + ¥ fulfill

_ _ _ 1
(D + (401 — 3)%alP =0, [Da + (4hy = 3)%a] (540 —3Pxx+vw) =0 (423)
In appendix C it is shown that, under the above assumptions, the “density formula”
ePh(T) + c.c. (4.24)

provides a function of the fields and their derivatives which is invariant, up to total di-
vergences, under general coordinate transformations and supersymmetry transformations
generated by (4.4) for any function h(T) of the tensors 7" given in (C.12) (with ¢ as
in (C.3) where B® may be replaced by other auxiliary fields, if any) which fulfills

[Da + (4b1 — 3)xalh(T) = 0 (4.25)

I remark that (4b; — 3)xoh(7) in (4.25) originates from the presence of the torsion T’
in (4.6), as the analysis in appendix C shows.

Using the mass dimensions given in (4.10) one infers that the supersymmetric exten-
sions of actions with Lagrangians (2.25) arise from functions h(7) which are quadratic
in the A* and \*. Furthermore these functions must be Lorentz invariant. According
to (3.3) (with bg = —1) one always has Do\*® = —20%,8T}.% + ... This implies that the
supersymmetric extensions of actions with Lagrangians (2.25) arise from Lorentz invariant
functions h(7) which are quadratic in the A*, and thus that any such function is a linear
combination (with complex coefficients) of xx and 1. Eq. (4.17) implies that the only
linear combinations of yx and 1) which fulfill (4.25) are a(3(4b1 —3)%xx + Up) where a is
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an arbitrary complex number. This implies that (in the generic cases) the supersymmetric
extensions of actions with Lagrangians (2.25) arise from

_ 1 __
aeP 5(41)1 —3)2xx+U| +ce., aeC (4.26)

Now, in general (4.26) provides two contributions to the Lagrangian which are separately
invariant, up to total divergences, under general coordinate transformations and super-
symmetry transformations and are proportional to the real and the imaginary part of
eP [%(4171 —3)2xx + Y], respectively. In other words, any Lagrangian (4.26) involves at
most two arbitrary real coefficients. Furthermore it can and does happen, as in the case
by = 1 (cf. section 4.3), that the Lagrangian (4.26), up to a total divergence, actually
involves only one arbitrary real coefficient, namely when the real or the imaginary part
of eP [4(4by — 3)%xx + 91| is a total divergence. Then that coefficient is just an overall
factor of the Lagrangian, i.e. the Lagrangian essentially is unique. Notice that this also
implies that at most two of the coefficients a1,...,a4 in the Lagrangian can be indepen-
dent. This shows that supersymmetric “teleparallel” theories are much more constrained
than non-supersymmetric ones.

I remark that the analysis in appendix C analogously can be conducted for the su-
persymmetric free theories of section 3 (assuming that the commutator algebra of the
supersymmetry transformations and spacetime translations can be closed off-shell, up to
gauge transformations, by means of auxiliary fields). In place of (4.24) and (4.25) one
then obtains —z2D?h(T) where h(T) is any function of F},,”, A%, A\%*, B* (or other aux-
iliary fields) and derivatives thereof which fulfills Doh(T) = 0. According to (3.4) one has
Do\ = 0 which implies that xx and ) fulfill Dy (xx) = 0 and D, (1)) = 0. The analog
of (4.26) in the supersymmetric free field theories thus reads —z2D?(axx + b)) + c.c.
where a and b are arbitrary complex coefficients.® This shows that and explains why
supersymmetric “teleparallel” theories are more constrained than the corresponding super-
symmetric free field theories: the reason is the condition (4.25) in combination with the
nonlinear terms in the supersymmetry transformations of the fields.

Lagrangians of supersymmetric actions more general than (4.26) arise from

ePPf(T) + c.c. (4.27)

where f(7) is any function of the tensors 7" (notice that h(7) = Pf(T) fulfills (4.25)
for any f(7) due to the first equation in (4.22)). A constant contribution to f provides
again (4.26). Non-constant contributions to f provide supersymmetric actions containing
higher powers of the torsion T, and/or terms with more than two derivatives.

4.2 Lagrangians with further supersymmetry multiplets

We now discuss the construction of supersymmetric actions involving further supersymme-
try multiplets. We first introduce super Yang-Mills multiplets whose fields are Yang-Mills

5This implies that a Lagrangian of a supersymmetric free theory corresponding to (2.2) may have up to
four arbitrary real coefficients, just as (2.2). However there may be a linear combination of D?(xx) and
D? (¥¢) which is a total divergence which then reduces the number of arbitrary real coefficients to at most
three.
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gauge fields A,f, gauginos A\’ (and their complex conjugates /_\di) and real scalar auxil-
iary fields D’ where i enumerates generators §; of a reductive Lie algebra. We proceed
analogously to section 4.1: we extend the covariant derivatives (4.1) according to

D, = o (0 — AL'0;), (4.28)
impose
Do, = (0,0, (4.29)
and shall assume that the supersymmetry transformations D, and Dy on Aui fulfill the
algebra
{Do, Da}A,' = —220"0aFy's, {Da, Ds}Au' = {Da, Dy}A,' =0 (4.30)

where F, Wi are the components of the Yang-Mills field strengths:
Fu'=0,A"—0,A, + fi'AJ AN (4.31)
where fijk are the structure constants of the Lie algebra of the ¢;,
[6i, 6] = fij"on (4.32)

Furthermore we assume that the supersymmetry transformations D, and Dy are realized
off-shell such that, in place of (4.6), one has, on the fields (C.35) (where B* may be replaced
with other auxiliary fields transforming scalarly under general coordinate transformations,
if any) and their covariant derivatives,

[Da, Dp} = —Fap's;i — Tap“ Do (4.33)
with nonvanishing field strengths
Foi' = —Foo' = (0aM\)a, Faa' = —Foa' = (N0g)a, Fap' = e'ae”pF)' (4.34)
Eq. (4.33) gives the additional Bianchi identities

¥ ()N DyFpe’ + Tap®Fpe') =0 (4.35)
ABC

In place of (4.5) one now gets
susy  gsusy ] __ YM i_ 0.3 M= = i
[027%, 055 | =6y, + 6,7, w' = —22°(c10"'és — e20t'E1) A, (4.36)

where J, denotes an infinitesimal general coordinate transformation with parameters v#
as in (4.5), and 6,"™ denotes an infinitesimal Yang-Mills gauge transformation with gauge
parameters w' which reads on Aui, A\o! and D?, respectively:

OIMALT = 9wt + firlwP A SEMA = filwPA, SIMDY = £ wk DI (4.37)
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Now, in order to construct, along the lines of the section 4.1, supersymmetric actions
containing the fields of the super Yang-Mills multiplets we need DyAq’. We make the
following Ansatz:

'Daj\di = dﬁj\da(o—a;\i)a + d7(0a5\a)a5\ai (4.38)

Using (4.34), (4.38), and (4.8) with Dye,® as in (4.11) in the Bianchi identity (4.35) with
indices ABC = afc yields
de = —1, dv = 2(1 — by) (4.39)

We note that (4.29), (4.38) and (4.39) imply {Da, Dg}A," =0, i.e. (4.38) with dg and dy
as in (4.39) is consistent with (4.30).
Now it is straightforward to verify that

[Da, + (4b1 — 3)Xa](diA'N) =0 (4.40)

where d;; are constant components of a symmetric invariant tensor of the Lie algebra of
the 51', ie.
Vi, g ko fri"dmg + frj" dim =0 (4.41)

According to (4.40) and (4.41), h = di; NV fulfills both (4.25) and (C.41), and thus (4.24)
provides a contribution to the Lagrangian of a supersymmetric action given by

beP (di A\'N) + c.c. (4.42)

where b is an arbitrary complex number. Hence, in general (4.42) provides two contributions
to the Lagrangian which are separately invariant, up to total divergences, under general
coordinate transformations and supersymmetry transformations and are proportional to
the real and the imaginary part of eP (diniSJ ), respectively.

Using the Bianchi identity (4.35) with indices ABC = afic, one infers that (4.42)
provides terms quadratic in the Yang-Mills field strengths F; uvi7 for one obtains

Da)\’gi = —ZO'aba’BFabi + ... y @QVZ = Z&ab’ngabi + ... y (443)

Contributions to a supersymmetric action containing higher powers of the Yang-Mills field
strengths, terms with more than two spacetime derivatives, and/or terms containing both
the torsion 7},,* and the Yang-Mills field strengths arise from (4.27).

Next we shall discuss the inclusion of scalar supersymmetry multiplets whose lowest
component fields are complex scalar fields ¢™ which transform under Yang-Mills gauge

transformations according to
oM™ = —w' T, " (4.44)

where T;",, are the entries of matrices T; representing the ¢; according to [T}, Tj] = fijka.
We denote the higher component fields of scalar supersymmetry multiplets by 7, and F™
where n™ are complex spinor fields and F™ are complex scalar auxiliary fields.

For the supersymmetry transformations D, of ¢, 1, and F™ we use, as usual,

D™ = 10", Dang™ = €gaF™, Do F™ =0 (4.45)
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Let us now discuss the transformations D, of the complex conjugated fields whose
components are denoted by ¢™, 4™ and F™. Usually (in standard supergravity) one im-
poses the antichirality condition D,@™ = 0. This can be done here too. However, imposing
D™ = 0 for all scalar multiplets does not allow the construction of a superpotential for
the scalar multiplets. Namely a superpotential would arise from (4.24) for a function h(p)
of the undifferentiated fields ¢. Now, this function must fulfill (4.25) which is not the
usual antichirality condition D,h(@) = 0 but the condition D,h(p) = (3 — 4b1)xah ()
which cannot be fulfilled nontrivially when all k™ are zero (recall that by # 3/4). This
suggests to relax the antichirality condition D,¢™ = 0 and use instead of it the following
D, -transformations:

Da@™ = Xak™@™ (no sum over m) (4.46)

where £ are numbers which coincide for the component fields of any particular scalar su-
persymmetry multiplet (whose component fields transform under Yang-Mills gauge trans-
formations according to some irreducible representation {7;} of the Lie algebra of the ¢;)
but may differ for different such multiplets. One now easily derives Do7g™ and Dy F™
by imposing and using the algebra (4.33). The result is not spelled out here. Then (4.24)
through (4.27) can be used to construct contributions to supersymmetric actions containing
the fields of the scalar multiplets and their derivatives.

4.3 Lagrangians for by =1

In this section we present the nonlinear extensions of the supersymmetric free field the-
ories provided in section 3 for by = 1. The nonlinear extensions of the supersymmetry
transformations given in (3.34) through (3.37) turn out to be

bi=1: Dae, = (0,04 (4.47)
D NH = 2(168B* — 07, P T, ) (4.48)
DA =0 (4.49)
Do B* = —i0Y 460y A" 4+ XY 8,0" 0g (4.50)

It is important that the index p of A?#, X% and B* in (4.48) through (4.50) is a contravari-
ant (i.e. upper) world index. The corresponding transformations of these fields with a co-
variant (i.e. lower) index u are more complicated, as are the transformations with a Lorentz
vector index in place of a contravariant world index. These transformations are obtained
from (4.47) through (4.50) as usual, using Do \’, = Da(guw ) with g = e,% Nap,
Do N = D, (e,2\#) ete. The resultant transformations of A%, A4 and BY are

DN = 2(i08 B — 0%, P The®) — NP (0p0%) (4.51)
DA = X% (g0, (4.52)
Do B = —i(0"DpA?) + iThe (07X + B (0p1Y)a (4.53)

Eq. (4.47) through (4.50) (and the complex conjugates of these transformations) imply that
on all fields e,®, N o B the commutator of two infinitesimal supersymmetry trans-
formations (4.4) fulfills (4.5) off-shell, with J, a standard infinitesimal general coordinate
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transformation which acts, e.g., on e, and ME according to
Speu® = 07 8ye," + (0,07)e, S A = v 9N — (9,0 )NV (4.54)

Accordingly the D, and Dy fulfill the algebra (4.3) off-shell on Ty;°, MNa )éa  Ba
and covariant derivatives thereof which was used in the derivation of the Lagrangians
presented in (4.24) through (4.27), cf. appendix C. Eq. (4.26) thus gives a Lagrangian of
a supersymmetric action in the case by = 1. In this case (4.21) and its complex conjugate
and (4.20) give:

1 __ _
br=1: (4b - 3)%2xx + Y = =22\ (4.55)
%(41)1 —3)2%X + V1 = —2X\° (4.56)
P = —2%(D* 4+ 2X"0,D — 2X,\) (4.57)

Using (4.51) through (4.53) (and the complex conjugates of these transformations) one ob-
tains that the imaginary part of eP(A\,A?) is a total divergence (one gets 1eP(AA%) —c.c. =
—iee®lT e Tog® + . .. = Ou(—2iee?? e, Tps® + ... )). The real part of eP(A\\?) is

1 _ _ _
- 5226(1)2 +2)%04D — 22,0 (M A0) + c.c.
= (2T T — 425 NG " DyAg — 425X 0P DyAy — 4B, B + ..) (4.58)

where the ellipses denote terms which are at least trilinear in the T,,¢, A%, \%@ and B°.
I stress that the analysis of appendix C implies that (4.58), up to a total divergence and
an overall factor, is the unique counterpart of a Lagrangian (2.25) in a supersymmetric
theory in the case by = 1, i.e. a theory with Lagrangian (2.25) has a supersymmetric
extension with b, = 1 only for a), = ag = afy = 0.

Finally we provide for the case by = 1 the supersymmetry transformations (4.4) of
the component fields of super Yang-Mills multiplets which fulfill (4.36) off-shell. These are
generated by the following transformations D, and the corresponding complex conjugated

transformations Dg:
bi=1: DA, = (0,\)a
Do = 2(i05D" — 6"  Fie’) = X (0 X4
Do = 2% (g, 1),
Do D' = —i(0" Dy + iFpet (0°X) 0 + BP(apAY),4
Eq. (4.42) provides a contribution to the Lagrangian of supersymmetric actions involv-
ing the component fields of super Yang-Mills multiplets. As the imaginary part of 675(/_\(15\&),
the imaginary part of eﬁ(dijj\i/_\j) is a total divergence. The real part of eﬁ(dijj\i/_\j ) is
1 _ _ —
— 5,22@(2)2 +20%,D — 20, A?) (dij A N) + c.c.
= ed;j(2F ' F — 43\'6"DyN — 423\ 0" DyN — 4D'DI 4 .. ) (4.63)
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Concerning the construction of supersymmetric actions with Lagrangians containing
terms with the component fields of scalar multiplets, higher powers of the torsion and/or
Yang-Mills field strengths, and/or terms with more than two derivatives we refer to sec-
tions 4.1 and 4.2.

5 Conclusion

This paper shows that supergravity theories are not the only supersymmetric gauge theo-
ries of spacetime translations. Rather, in four spacetime dimensions there is at least one
other class of theories, presented in section 4.3, which is new (previously unknown) and
similar to globally supersymmetric Yang-Mills theories in flat spacetime. In these theo-
ries, the supersymmetries are global symmetries generated by infinitesimal supersymmetry
transformations whose commutators contain infinitesimal general coordinate transforma-
tions with field dependent gauge parameters, analogously to the presence of infinitesimal
Yang-Mills gauge transformations in the commutators of infinitesimal global supersymme-
try transformations in supersymmetric Yang-Mills theories in flat spacetime.

The present paper leaves open whether the theories presented in section 4.3 are the
only supersymmetric gauge theories of spacetime translations besides supergravity theories
in four spacetime dimensions. If they were the only such theories, this would drastically
constrain supersymmetric versions of “teleparallel” theories with Lagrangians (2.25) be-
cause in these theories one has ab, = a3 = a), = 0. However, according to the results
presented in sections 3, 4.1 and 4.2, there might be more theories of this sort (theories with
b1 # 1). It should be noted however that any such theory which fulfills the prerequisites of
the present paper also would relate the coefficients a1, ..., a4 in the Lagrangian (2.25) such
that these coefficients are not all independent, cf. the discussions in sections 3 and 4.1.

A Conventions
Minkowski metric, e-symbols:

nab:diag(la_la_:l?_l)? a,b e {0717273}
6abcd _ E[abcd]’ 0123 — 1

Gaﬁ — _Eﬁa’ o, B € {1’2}’ 6(5&,5) — —E’Bd, Oé,,B e {1’2}, 12 — Ei? -1

60”6%3 = 5@, eo-,-yew = 55

Matrices 0% with entries 0,4 (c: row index, &: column index):

S e R e e AT S
01 10 i 0 0-1

Matrices 0% with entries g®®¢:
_ada _ & _aB _a
o =Pl
BB
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Matrices o, 5%:

o,ab i(o_aa,b _ O_ba,a), &ab 1 —a b —~b a)
Raising and lowering of spinor indices:
Yo = €apt’, U =€Php, o= e’ Pt =y

Contraction of spinor indices:

VX =V Xar VX = PaX”

Symmetrization and antisymmetrization of indices are defined with “weight one”

1 1
7(Xab + Xba)a Xab = 7(Xab - Xba)
[ab]

X(ab) = 5 5

B Derivation of equations (3.9) and (3.10)
Egs. (3.2), (3.3) and the complex conjugates thereof give:
2 Dq, Dy }Au = <1b7z§1 + bsby — ibyby + ib954) Guova
bsby + b7bg + ibrby — lbgb4) Guouad

( 8b1 + b6b2 — lbgb4 + 2b9b4) 1nOvad
( 6b1 + bggg + ibgl;4 — 2b9b4) Hy,0pu06
bg

+
+ (bleW + boFpy — 64 F)p)0 e
+ 3 [(2b6 - b8)b4 + le(b2 - bl)] ;Lypapaa

_l’_

N |

—757(61 + 52 + 353) + (b5 + bg)bg} U“prO'pao'z

_l’_

bs(by + by + 3b3) + 6653} M H 0 06

N = N

[ —

+ by iblegue,upaT + ibQFpoueupaT - b4FpoT€qu0')UTo¢d

—

l\DM—‘[\DM—\

[(b7 — 2b5)b4 + 1b7(b b )]E,quUG o’ adg T c.c.

where
Hyp = E#VMHJ = 0uBup + 0y By + 0By

, e.g.:

(B.9)

(B.10)

(B.11)

Egs. (B.5) and (B.6) have to give the terms on the right hand side of (3.8). The parts
of (B.5) and (B.6) which are symmetric in u, v show that by must not vanish. By redefining

Aot one can thus fix bg to some particular non-zero value. Hence, with no loss of generality

one may use
bg = —1
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Then the parts of the right hand side of (3.8) and of (B.5) which are symmetric in p,v
give (3.9) and
T1+ax9=1 (B.l?))

The parts of the right hand side of (3.8) and of (B.5) and (B.6) which are antisymmetric
in u,v then give

ya=1-—m (B.14)

1 1 1 1
0=(1—m) (2 + Y6 — 2y8) 4+ x4 (m(j — 2378) + §y8(2x1 —1)— ixg(yl —12) (B.15)

where (B.14) arises from the terms containing derivatives of H,,, (B.15) arises from the
terms containing derivatives of By, and (3.9), (B.12) and (B.13) were used (and addition-
ally (B.14) to derive (B.15)).

By (3.8), in addition to (B.12) through (B.15), the real parts of the coefficents in (B.1)
through (B.4) and (B.7) through (B.10) have to vanish where the parts of (B.9) and (B.10)
which are antisymmetric in g, v must be considered together (as these parts both contain
€uwpoGP0%qa). We shall now work out these requirements using (B.12) through (B.14).
We start with (B.9). The parts of (B.9) which are symmetric in pu, v give

y1+y2=0 (B.16)

and thus, together with (B.13):
b1+ by =1 (B.17)

The parts of (B.9) and (B.10) which are antisymmetric in u, v give, using (B.16):
T4 =1 (B.18)

3 3
0=y (x5— 2$7—1> +y5(1—x1)+y7 (21‘1 —1) (B.lg)

Egs. (B.14) and (B.18) give
by =i(1 —b1) (B.20)

Using (B.12), (B.17) and (B.20), (B.1) and (B.2) give
x7 = —2x5 (B.21)

3
0= .%'5(4%’1 — 3) + 1 <y5 — 2y7> +1—x (B.22)

Analogously (B.3) and (B.4) give
xg = —2x¢ (B.23)
0=uz6(4z1 —3)+ w1 (yﬁ — gyg + 2) (B.24)
Using (B.12), (B.17), (B.20) and (B.21), (B.7) gives

3
x5 — x3(1 — dws) + ys (115 - 2y7) =0 (B.25)
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Finally, using (B.17) and (B.23), (B.8) gives

3
xe(drs — 1) +y3 (yﬁ — 2y8) =0 (B.26)

Eq. (B.12) through (B.26) still leave a lot of freedom for the coefficients x; and y;. The
choice y; = 0 reduces this freedom. For this choice (B.18) and (B.19) yield

y1=x4=0 (B.27)

ys(1 — 1) = y7 (1 - Zm) (B.28)

Using y; = 0 in (B.22), one observes that x; = 3/4 would give 0 = 1/4. Hence, for y; = 0,
x1 must not be 3/4:

3
y1=0: x1# 1 (B.29)
Eq. (B.22) through (B.24) now give
1-— I
= B.30
5 3 — 4:L'1 ( )
Tre — X8 = 0 (B?)l)
and, using (B.31), (B.15) gives
3
(1-a@+w0) = (1= 5o ) s (.32)
Using (B.30) in (B.25) gives
3
xg3=x1— 1+ (4b1 — 3)ys (ys - 23/7) (B.33)
One is left with (B.26) which gives, using (B.31):
3
Y3 (yG - 23/8) =0 (B.34)

Hence, in the cases y; = 0 there are two options: y3 = 0, or y3 # 0 and yg = %yg. The
first option gives (3.10). We note that the second option provides the same results for
the coefficients by, by, b5, b7 as in (3.10), and bs = by — 1 + (4b1 — 3)ys(ys — %y7) + iys,
b(; = 61(()1 - 1) and bg = 4i(b1 — 1).

C Derivation of Lagrangians

In this appendix it is explained how one can derive Lagrangians which are invariant, up to
total divergences, under general coordinate transformations and supersymmetry transfor-
mations using BRST methods. The approach uses general and well established concepts
and results, cf. e.g. [11-13], and more specific results on supersymmetric theories [14-16].
We shall not review these concepts and results in detail. However, for readers which are
not familiar with them we shall outline the main line of reasoning.
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We shall first discuss supersymmetric pure “teleparallel” theories whose fields are e, *,
A% X4 and auxiliary fields B® (in place of B® one may use B?, cf. (3.38) and (3.42),
or other auxiliary fields — if any). As in section 4.1 we shall assume that the commu-
tator algebra of the infinitesimal supersymmetry transformations and general coordinate
transformations closes off-shell. Then one can construct a BRST differential s which acts
on the fields and on “ghosts” related to infinitesimal general coordinate transformations
and global supersymmetry transformations, and which squares to zero on all fields and the
ghosts.” The BRST transformations of the fields are:

seua = Cyaueua + (&ucw)eua + (faDa + éd@d)eﬂa (C'l)
s¢M = (C*0y + €D + €Dy )™ (C.2)

where C* are anticommuting ghost fields of general coordinate transformations and £€* and
€% are commuting constant ghosts of global supersymmetry transformations, and

{6} = (A%, 2%, B} (C.3)
The BRST transformations of the ghosts are:
sCH = CY0,C" 4 22601E,  sE% =54 =0 (C.4)

Now, the BRST transformations of the fields are just infinitesimal general coordinate
transformations and supersymmetry transformations with parameters of these transforma-
tions replaced by the respective ghosts (up to the factor z in the definition of the super-
symmetry transformations (4.4)). Hence, a Lagrangian L constructed of the fields and
their derivatives is invariant, up to total divergences, under general coordinate transfor-
mations and supersymmetry transformations if and only if s is a total divergence. Using
differential forms this can be written as

Swq + dws =0 (C.5)

where wy = d*zL is a local 4-form with ghost number 0 and ws is a local 3-form with
ghost number 1, where the ghost number is the degree of homogeneity in the ghosts, and
d denotes the exterior derivative

d=dx"0, (C.6)

The differentials dz* are treated as anticommuting variables which are BRST-invariant
(sdzt = 0). Using [s, 0, ] = 0, this gives

s2={s,dy=d*=0 (C.7)

Applying s to (C.5) and using (C.7) gives dswz = 0. The fact that the cohomology of
d is trivial in the space of local forms in form-degrees 0 < p < 4 (i.e., dw, = 0 implies
wp = dnp—1 for 0 < p < 4 in four spacetime dimensions) implies sws + dws = 0 for some
local 2-form wy with ghost number 2. Repeating the reasoning one concludes swo+dw; = 0,

"Actually s is an “extended” BRST differential for local and global symmetries [17].
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swi 4+ dwy = 0 and swy = 0 for some local 1-form w; with ghost number 3 and some local
O-form wp with ghost number 4 (a constant form with form-degree 0 cannot occur here
because that form would be a polynomial in the supersymmetry ghosts which cannot arise
as it would be independent of the fields). Hence, the forms wy, . ..,wq fulfill the so-called
descent equations. These equations can be written compactly as

Sw=0, §=s+d, w:pr (C.8)

Sums of local forms, such as w, will be called “total forms”. 3 is a differential (5% =
0, as follows from (C.7)) which has “total degree” 1 where the total degree is the sum
of the form degree and the ghost number, i.e. § increases the total degree by one unit.
Hence, any Lagrangian which is invariant, up to total divergences, under general coordinate
transformations and supersymmetry transformations gives rise to a local total form w with
total degree 4 which is §-closed. Furthermore one can assume that w is not §-exact because
w = §n for some local total form n with total degree 3 would imply wy = dns (with 13 the 3-
form in 1), and thus that L is a total divergence. Hence, w is determined by the cohomology
H(3) of § in the space of local total forms of the fields and ghosts at total degree 4.

Now, H(8) can be analysed analogously as in standard supergravity in [15, 16]. Firstly
one introduces appropriate variables that substitute for the fields, ghosts and derivatives
thereof:

Uty = {z*, Oy -+ Oy )k =0,1,...}, (C.9)

V' = {3U"Y = {do", 0y . Oy &+ ..k =0,1,...} (C.10)

£ = (C* + dzM)e, (C.11)

(T} ={Dea, - - .DakTakH)aM”,D(a1 . Dyyd™ k=0,1,...} (C.12)

This yields
5T = (£%Dy + £°Dy + 4D T (C.13)
- . . 1~ -
§EY = 22607 — E0€OT 0% — E269T 1 + 55”507},0“ (C.14)
5EY=569=0 (C.15)

with Top®, Tep® and Tp.* as in section 4.1.

Eq. (C.9) through (C.15) imply that the ¢ and V* drop out of the cohomology H (3)
because they form so-called contractible pairs. It follows that H(S) reduces to the co-
homology of § in the space of total forms w(&, &, €, T) depending only on the 77, £9, £~
and £*. Hence, up to a total divergence, any Lagrangian which is invariant, up to total
divergences, under infinitesimal general coordinate transformations and supersymmetry
transformations as in section 4.1 is the 4-form contained in a total form w(¢, &, €, T) with
total degree 4 which fulfills

5w(E,6,6T)=0 (C.16)
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In order to find solutions w(&, &, €, T) of (C.16) we decompose (C.16) into parts with dif-
ferent degree of homogeneity in the £% (this degree will be called &-degree in the following).
According to (C.13) through (C.15), 5§ decomposes on the T, £%, £ £ according to
§=06_ 40 + 64 into three parts 6_, &y and 0, with &-degrees —1, 0 and +1, respectively:

-~ 0
0_ = 2260 — C.ar
60" 52 (€a7)
o = — (€€ Top" + E°6°T5") 9 (E9DT" + E9DsT) o (C.18)
o0&l oT"
1 - 0 ~ 0
op = 86T — + (§°D,T" C.19
o= gEET S (EDT) (C.19)
The decomposition of (C.16) thus gives
S_wm =0, §_w2 4 5w =0, ... (C.20)
where w* denotes the part of w with &-degree k, and m denotes the lowest é-degree in this
decomposition,
- 4 - 0wk
SEEET) = 3wk & T =kt (C.21)
k=m

By (C.20) w™ is §_-closed. Furthermore, one can assume that w™ is not §_-exact and does
not contain any §_-exact portion 5_n™+! because such a portion can be removed from w
by subtracting 572+! from w (which would alter L at most by a total divergence). Hence,
w™ is determined by the cohomology H(d_) of _. As d_ only involves the ghosts £9,
£, €%, the cohomology H(5_) can be formulated on polynomials f(€,€, €) of these ghosts.

According to [14] one has

I-f(668) =0 & f(§&8 =P8+ P (0,6 +10+0-g(§€8) (C22)
PW,&)+P (0,6 +r0=0_g(£,£,§) & P+P =0,r=0 (C.23)

where

0% = £,60, 9% = 4%, © = £, (C.24)
with €4 = £,6%%* and in (C.23) P 4+ P’ = 0 can occur only in the trivial case that P
and P’ do not depend on the ghosts at all. Eq. (C.22) through (C.24) state that H(§_) is
represented by polynomials P(¥J,£) in the 9% and &%, polynomials P’'(19,€) in the 9 and
€%, and a representative proportional to ©.

As the 9% anticommute, P(@,f) is a most bilinear in the ¥%, and any contribution
to P(19,¢) which is bilinear in the 9% reads 99Q(¢) for some polynomial Q(£) in the
£*. Hence, any polynomial P(1J,£) only contains terms which have at most &-degree 2.
Analogous statements apply to P'(9,€). Furthermore © has total degree 3. This implies
that the part w™ of any nontrivial real §-cocycle w(f,ﬁ,g ,T) with total degree 4 can be
assumed to have g-degree m € {0,1,2} and in the various cases can be written as:

m=2: w?=909nT)+cec (C.25)
m=1: wt=0%%Phaas(T) + c.c. (C.26)
m=0: wl=¢E%€PE hys.5(T)+ cc. (C.27)
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Now one concludes that any s-cocycle w(é JEVE, T) containing a Lagrangian with terms
given in (2.25) has a part w? as in (C.25) with h(T) quadratic in the A*® and/or A%®. To
show this we assign the following mass dimensions to the ghosts and differentials:

[CH] = [da*] = -1, [€7] = [€%] = ~1/2 (C.28)

Egs. (4.10) and (C.28) imply that both s and d have mass dimension 0. As d*zLpese with
LBose as in (2.25) has mass dimension —2, a corresponding 3-cocycle w(E, &, €, T) also has
mass dimension —2. Furthermore, this 5-cocycle must be at least quadratic in the 7". Now,
99, 948 and €2€PEVE0 in (C.25) through (C.27) have mass dimensions —3, —5/2 and
—2, respectively. All the tensors 7" in (C.12) have mass dimensions > 1/2; where only A*®
and \%® have mass dimension 1/2. This implies that any 3-cocycle w(&, €, €, T) containing
a Lagrangian with terms given in (2.25) has an w? as in (C.25) with h(7) quadratic in the
A% and/or A%, Therefore we now shall discuss (C.16) for w with w? as in (C.25), but for
general h(T). The second equation in (C.20) imposes that dow? is _-exact. Using (C.18)

with Th," obtained from (4.8) and (4.11), one gets
So[9OR(T)] = 9VE*[(4by — 3)(0aA) ey + Do) (T) + ... (C.29)

where ellipses denote terms depending on components of both ¢ and £. Using (C.23)
one concludes that dg[99h(T) + c.c.] is _-exact if and only if h(7) fulfills (4.25). The
other equations in (C.20) do not impose any further condition because H(d_) is trivial at
&-degrees 3 and 4. One obtains

w? = 12715, [(2b) — 3)AUE + 2(1 — 2b)) Ao ™€ + E0*D)R(T) + c.c. (C.30)
wt=—iz722 2@2 + %(41;1 —3)xD + %(41;1 —3)%¢x + EW h(T) + c.c. (C.31)

where 1 ]
E= _ﬁﬁabcdgdgcgbfaa Ho = _gfabcdfdfcgb (C32)

The 4-form contained in (C.31) provides (4.24), up to a factor i (which may be absorbed
by redefining h).

The above analysis can be extended to theories with super Yang-Mills multiplets
and/or scalar multiplets. We shall now briefly outline this extension, assuming again that
the commutator algebra of the infinitesimal supersymmetry transformations, general coor-
dinate transformations and Yang-Mills gauge transformations closes off-shell. The BRST
transformation (C.1) of the tetrad remains unchanged, and the BRST transformations of
the other fields are

sA,' = CY0,A," + (0,0")A,} 4 0,C" + fi'CF AT + (£%Dy + 9Dy A,/ (C.33)
s¢pM = (CF19), + C'6; + €*Dy + €9Dg)p™ (C.34)

where the C? are anticommuting ghost fields of Yang-Mills transformations,

{¢M} _ {)\aa75\dajBa’)\ai’ S\di’Di7¢m,nam’Fm’ s57_n’ —drthﬁLL (035)
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and G\ = —f Ik §,0om = —T;™, 0" etc. (again, B® in (C.35) may be replaced by
other auxiliary fields, if any). The BRST transformations of the ghosts C*, £€* and &% are
as in (C.4), and the BRST transformations of the Yang-Mills ghosts are

. 1 . _
sC' = C"9,C" + 3 fir'CRCI — 22601EA, (C.36)
The set {U’} of (C.9) now additionally contains the O ...8MkA#k+l)i, the set {V'}

of (C.10) additionally contains the dy, ... 8%“0%' +... (with (i as in (C.38)), and the set
{T"} of (C.12) now reads

b )
{T"} ={Da, - --Pa,Tur, yarsn" Dar - - - ParFag 1 yansn
Diy ---Dapyd™ 1k =0,1,...} (C.37)

with the ¢™ of (C.35). The undifferentiated Yang-Mills ghosts give rise to additional
variables C defined according to

C'= O+ (C* + dat) A (C.38)
The 3-transformation of C* is
5C" = %fjkiékéj — {0\ — N0 f + %éangabi (C.39)
In place of (C.13) one gets
5T = (£9Dy + C'6; + Dy + E9Ds) T (C.40)

Eqs. (C.14) and (C.15) still hold unchanged. Again the U* and V* drop out of the
cohomology H(5) because they form contractible pairs. Therefore H(3) reduces to the
cohomology of 5 in the space of total forms w(€, &, &,C,T) depending only on the 77, £,
€*, €% and C". The presence of the C* amends the structure of H ($) as compared to the
case without super Yang-Mills multiplets. These amendments can be derived analogously
to the analysis of H(S) in [16]. We shall not discuss these amendments in detail here
because they hardly are relevant to the derivation of Lagrangians. We only note that the
presence of C6;7" in (C.40) imposes that any function h(7) in (C.29) through (C.31)
must be invariant under the §;, i.e.

Vi: 8h(T) =0 (C.41)

One obtains that a Lagrangian which is invariant, up to total divergences, under general
coordinate transformations, global supersymmetry transformations and Yang-Mills gauge
transformations arises from (4.24) for any function h(7) which fulfills (4.25) and (C.41).
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