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Abstract

The H?2-regularity of variational solutions to a two-dimensional transmission problem with
geometric constraint is investigated, in particular when part of the interface becomes part
of the outer boundary of the domain due to the saturation of the geometric constraint. In
such a situation, the domain includes some non-Lipschitz subdomains with cusp points, but
it is shown that this feature does not lead to a regularity breakdown. Moreover, continuous
dependence of the solutions with respect to the domain is established.
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1 Introduction

The H?-regularity of variational solutions to a two-dimensional transmission problem with
geometric constraint is investigated, in particular when part of the interface becomes part
of the outer boundary of the domain due to the geometric constraint, a situation in which
the domain includes some non-Lipschitz subdomains with cusp points. Such a regularity is
required in particular to guarantee that the variational solutions satisfy the strong formula-
tion of the transmission problem. HZ-regularity is, however, not true in general and known
to depend heavily on the geometry and smoothness of the domain and the interfaces. In
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Fig. 1 Geometry of 2 (v) for a state v € S with empty coincidence set
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Fig.2 Geometry of Q (w) for a state w € S with non-empty coincidence set

fact, when interfaces intersect the outer boundary of the domain, regularity of variational
solutions to transmission problems in non-smooth domains is a challenging issue, even for
transversal intersections, see [1-3, 5, 10, 11, 13] and the references therein. Motivated by
the mathematical study of microelectromechanical systems (MEMS), we identify herein a
class of two-dimensional domains possibly featuring cusps for which H2-regularity is true.
We actually derive H2-estimates which hold uniformly with respect to suitable perturbations
of the underlying domain. We point out that such quantitative estimates are not contained in
the above mentioned literature, but they turn out to be instrumental for a thorough study of
MEMS models [9].

To set up the geometric framework, let D := (—L, L) be a finite interval of R, L > 0,
andlet H > 0 and d > 0 be two positive parameters. Given a functionu € C (D, [—H, c0))
with u(£L) = 0, we define the subdomain Q2 («) of D x (—H, c0) by

Q) ={(x.2) eDxR: —H <z <u(x) +d} = Q1) UQu)U (),
where
Q) :={(x.2) e DxR: —H <z < u(x)}
and
Q@) :={(x.2) € D xR : u(x) < z < u(x) +d}
are separated by the interface
D) ={(x.2) e DxR:z=u(x)>—H}.

Owing to the (geometric) constraint u > — H, the lower boundary of €, (u), given by the
graph of the function u, cannot go beyond the lower boundary D x {—H} of 1 («) but may
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coincide partly with it, along the so-called coincidence set
Cu):={xeD :ulkx)=—-H}, (1.1)

see Figs. 1 and 2. Clearly, the geometry of 2 (u), as well as the regularity of its boundary,
heavily depends on whether minp{u} > —H orminp{u} = —H.Indeed, if minp{u} > —H
(i.e. the graph of u is strictly separated from D x {—H} as in Fig. 1), then the coincidence
set C(u) is empty and €21 () is connected. In contrast, if minp{u} = —H so that the graph
of u intersects D x {—H}, then C(u) # ¥ and 2 (u) is disconnected with at least two (and
possibly infinitely many) connected components, see Figs. 2 and 3.

For such a geometry, we study the regularity of variational solutions to the transmission
problem

div(oVyy) =0 in Q(u), (1.2a)
[Vul = [oVYu] -nzey =0 on Z(u), (1.2b)
Vu =hy on 9Q(u), (1.2¢)

where
o = o1lg,w + 02lo,w

for some positive constants o1 # 07, and nx(,) denotes the unit normal vector field to X (u)
(pointing into €2, (u)) given by

i (—dyu. 1)
S = e,
W T ()

In (1.2¢), hy, is a suitable function reflecting the boundary behavior of v, see Section 2 for
details. In addition, [-] denotes the (possible) jump across the interface X (u); that is,

[f1x, u(x)) == flo,w, ux) = flo,w &, ux), xeD,

whenever meaningful for a function f : Q(u) — R.

Let us already mention that there are several features of the specific geometry of €2 (1)
which may hinder the H?2-regularity of the solution v, to (1.2). Indeed, on the one hand, the
interface X (1) always intersects with the boundary 92 (u) of Q2 («) and it follows from [10]
that this sole property prevents the H>-regularity of v, unless o and the angles between X (1)
and d€2(u) at the intersection points satisfy some additional conditions. On the other hand,
Q(u) and 2, (u) are at best Lipschitz domains, while €21 (x) may consist of non-Lipschitz
domains with cusp points.

The particular geometry Q(u) = Q1(u) U Q2(u) U £ (u), in which the boundary value
problem (1.2) is set, is encountered in the investigation of an idealized electrostatically
actuated MEMS as already pointed out and described in detail in [6, 14]. Such a device
consists of an elastic plate of thickness d which is fixed at its boundary {+L} x (0, d) and
suspended above a rigid conducting ground plate located at z = —H. The elastic plate is
made up of a dielectric material and deformed by a Coulomb force induced by holding the
ground plate and the top of the elastic plate at different electrostatic potentials. In this context,
u represents the vertical deflection of the bottom of the elastic plate, so that the elastic plate
is given by Q7(u), while €1(u) denotes the free space between the elastic plate and the
ground plate. An important feature of the model is that the elastic plate cannot penetrate the
ground plate, resulting in the geometric constraint # > —H. Still, a contact between the
elastic plate and the ground plate — corresponding to a non-empty coincidence set C(u) —
is explicitly allowed. The dielectric properties of 2j(u) and €2>(u) are characterized by
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positive constants o7 and o7, respectively. The electrostatic potential v, is then supposed
to satisfy (1.2) and is completely determined by the deflection u. The state of the MEMS
device is thus described by the deflection u, and equilibrium configurations of the device
are obtained as critical points of the total energy which is the sum of the mechanical and
electrostatic energies, the former being a functional of u while the latter is the Dirichlet
integral of y,,. Owing to the nonlocal dependence of ¥, on u, minimizing the total energy
and deriving the associated Euler-Lagrange equation demand quite precise information on
the regularity of the electrostatic potential v, for an arbitrary, but fixed function u and its
continuous dependence thereon. This first step of provisioning the required information is
the main purpose of the present research. In the companion paper [9], we use the results
obtained herein to analyze the minimizing problem leading to the determination of u and
compute the associated Euler-Lagrange equation.

Since the regularity of the variational solution y,, to (1.2) is intimately connected with the
regularity of the boundaries of €2 (u), 21 («), and Q2 (u), let us first mention that 2 (x) and
2> (u) are always Lipschitz domains and that the measures of the angles at their vertices do
not exceed 7, a feature which complies with the H2-regularity of v, away from the interface
3 (u) [4]. This property is shared by €21 (1) when the coincidence set C(u) is empty, see Fig. 1,
so that it is expected that ¥|q, ) belongs to H2(Qi(u)), i = 1,2, in that case. However,
when C(u) is non-empty, the open set 21 («) is no longer connected and the boundary of its
connected components is no longer Lipschitz, but features cusp points. Moreover, there is an
interplay between the transmission conditions (1.2b) and the boundary condition (1.2¢c) when
C(u) # . Whether v |, ) still belongs to H2(Q4(u)), i = 1,2, in this situation is thus an
interesting question, that we answer positively in our first result. For the precise statement,
we introduce the functional setting we shall work with in the sequel. Specifically, we set

S:={ve H*(D)NH}(D) : v>=—HinD and + [0]d,v(£L) < 0}
and
S:={veH*(D)NH{D) : v>—HinD and = [o]d,v(£L) < 0}.

Clearly, the coincidence set C(u) is empty if and only if u € S. In addition, the situation
already alluded to, where C(u) is non-empty and 21 () is a disconnected open set in R2 with
a non-Lipschitz boundary, corresponds to functions # € S\S. Also, we include the constraint
+[o]oxu(£L) < 0 in the definition of S and S to guarantee that the way X (u) and 92 (1)
intersect does not prevent the H2-regularity of ¥, in smooth situations (i.e. u € SN Wgo (D)),
see [10].

Theorem 1.1 Suppose (2.1) below.

(a) Foreachu € S, there is a unique variational solution vV, € h, + HY(Q®)) to (1.2).
Moreover; Y1 = Vula, iy € H2(Q1 ) and Y2 = Yulayw € H2(Qa(w)), and v,
is a strong solution to the transmission problem (1.2). )

(b) Given i > 0, there is c(x) > 0 such that, for every u € S satisfying ||\ull g2(py < &,

1Yull @y + 1Vuill 2@ wy + W2l 2wy < ).

It is worth emphasizing that, for i € {1, 2}, the restriction of v, to €2;(u) belongs to
H2(Q;(u)) forallu € S.In particular, there is no regularity breakdown when the coincidence
set C(u) is non-empty. Moreover, the H2-regularity of ¥, is uniformly valid when u ranges
in a bounded subset of S. A similar observation is made in [7] for a different geometric
setting when one of the two subsets does not depend on the function u. Identifying other
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H2-regularity for a two-dimensional transmission... 1883

non-smooth geometries for which H2-regularity of the variational solution to a transmission
problem depends in a somewhat uniform way on some specific features of the domain is an
interesting issue, which is worth a forthcoming investigation.

Remark 1.2 When the upper part €2, (v) is clamped at its lateral boundaries in the sense that
u € HY(D) :={ve HX (D) N Hi(D) : d,v(xL) =0},
Theorem 1.1 applies whatever the values of o1 and o>.

Theorem 1.1 is an immediate consequence of Proposition 4.9 below. Its proof begins
with quantitative H2-estimates on 1, depending only on [|u/| m2(py for sufficiently smooth
functions in S, the H>-regularity of 1, being guaranteed by [10] in that case. Since the class
of functions for which these estimates are valid is dense in S, we complete the proof with a
compactness argument, the main difficulty to be faced being the dependence of 2 (1) on u.
More precisely, we begin with a variational approach to (1.2) and first show in Section 3 by
classical arguments that, given u € S, the variational solution v, to (1.2) corresponds to the
minimizer on &, + HOl (2 (u)) of the associated Dirichlet energy

1
T[] = E/Q( )0|V0|2d(x,z), 0 € hy + HH (Qu)).

Thanks to this characterization, we use I'-convergence tools to show the H'-stability of
¥, with respect to u in Sect. 3.2. Section 4 is devoted to the study of the H2-regularity
of ¥, which we first establish in Sect. 4.1 for smooth functions u € S N WOZO(D) (thus
having an empty coincidence set), relying on the analysis performed in [10]. It is worth
mentioning that the constraint involving [o ] in the definition of S comes into play here. For
uedsSn WOZO(D), we next derive quantitative H2-estimates on ¥, which only depend on
lull g2(py as stated in Theorem 1.1 (b), see Sect. 4.2. The building block is an identity in the
spirit of [4, Lemma 4.3.1.2] allowing us to interchange derivatives with respect to x and z in
some integrals involving second-order derivatives, its proof being provided in Appendix 1. We
then combine these estimates with the already proved H!-stability of variational solutions
to (1.2) and use a compactness argument to extend the HZ2-regularity of v, to arbitrary
functions u € S in Sect. 4.3. In this step, special care is required to cope with the variation
of the functional spaces with u. In fact, as a side product of the proof of Theorem 1.1, we
obtain qualitative information on the continuous dependence of y,, with respect to u, which
we collect in the next result.

Theorem 1.3 Suppose (2.1) below. Let k > 0, u € S, and consider a sequence (Up)p>1 in S
such that

lunllg2py <k, n=1, nlggo lun —ullgrpy =0. (1.3)

Setting M :=d + max {||ull L), SUPp=1{ltnllLm}}.

Tim | W, = ) = G = 1) | g =0 (1.42)

In addition, ifi € {1, 2} and U; is an open subset of Q2; (u) such that U; is a compact subset
of Qi (u), then

Vi i—Vui in H*(U;). (1.4b)
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Also, for any p € [1, 00),
Jim [V, 2Coun) = VoG |, ey =0,

(1.4¢)
[V, 2Coun +d) = Vi Cou+d)| g2y = 0.

lim
n—o0

Clearly, the quantity M introduced in Theorem 1.3 is finite due to (1.3) and the continuous
embedding of H'(D) in C(D).

Remark 1.4 An interesting issue is the extension of the above results to a three-dimensional
setting, where D is a bounded domain of R? instead of an interval. There are, however, at
least two difficulties to overcome, which are both of geometric nature. On the one hand,
the coincidence set C(u) defined in (1.1) is no longer a countable union of open intervals
when D is a two-dimensional domain and it might have a much more complicated structure.
The former property plays an essential role in the proof of Proposition 4.9 (a) below. On the
other hand, the I"-convergence argument involved in the proof of Proposition 3.3 strongly
makes use of the two-dimensional geometry of €2 (u). In fact, the literature on regularity
of solutions to transmission problems in non-smooth three-dimensional domains when the
interfaces intersect the outer boundary seems to be rather sparse and restricted to specific
geometries. We refer to [1, 3, 5, 11, 13] for results in that direction.

Notation Given v € S, f € L>(Q(v)), and i € {1, 2}, we denote the restriction of f to

Qi (v) by fi; thatis, fi :== fl;w)-
Throughout the paper, ¢ and (cx)k>1 denote positive constants depending only on L, H,
d, o1, and 07. The dependence upon additional parameters will be indicated explicitly.

2 The boundary values

We state the precise assumptions on the function /4, occurring in (1.2¢). Roughly speaking,
we assume that it is the trace on 9Q(v) of a function h, € H'(€2(v)) which is such that
hlg; v) belongs to H2(Q;(v)) fori = 1,2 and satisfies the transmission conditions (1.2b),
as well as suitable boundedness and continuity properties with respect to v.

Specifically, for every v € S, let

hy: D x (—H,00) - R
be such that
hy € HY(Q)),  hyi=hylaw € H*(Q:i(v), i=1,2, (2.1a)
and suppose that &, satisfies the transmission conditions
[hv] = [oVhy] -ng@) =0 on X(v). (2.1b)
For « > 0 given, there is c¢(k) > 0 such that, for all v € S satisfying vl g2py < &,
Wil o, < G, i=1,2. 2.10)
Moreover, given v € Sanda sequence (v,)p>1 in S satisfying

nli)néo lvn — U||H1(D) =0,
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we assume that

nlLH;o v, = hollgt(px(—H,my) =0 (2.1d)
and
Tim [y, (v + d) = by v+ dllegpy =0, 2.1e)
where

M := d + max { Vil Zoo Dy » sup{llv, ||LOC(D)}} < 00.
n>1

Observe that the convergence of (v,),>1, the continuous embedding of H 1 (D)inC (D), and
(2.1d) imply that

lim U|thn|2d(x,z)=/ o|Vhy|?d(x, 7). (2.2)
=% JQ ) Q)

From now on, we impose the conditions (2.1) throughout.
We finish this short section by providing an example of /4, satisfying the imposed condi-
tions (2.1).

Example 2. 1_ Let¢ € CZ(R) be such that {l(=00,1] = 0and ¢|[14d,00) = V for some V > 0.
Given v € S, put

ho(x,2) =C(z—v(x)+1), —H<z, xeD. (2.3)
Then (2.1a)—(2.1e) are satisfied. In addition,

hy(x,—H)=0, hy(x,v(x)+d)=V, xeD.

In the context of a MEMS device alluded to in the introduction, these additional properties
mean that the ground plate and the top of the elastic plate are kept at constant potential. For
instance, ¢(r) := V min{1, (- — 1)2/d?} for r > 1 and ¢ = 0 on (—o0, 1] will do.

3 Variational solution to (1.2)

In this section we investigate the properties of the variational solution v, to (1.2) for v € S
and, in particular, its H 1 -stability.

3.1 Avariational approach to (1.2)

Given v € S we introduce the set of admissible potentials
A() = hy + Hy (Q(v)) .

on which we define the functional

J@)[0] := %/m )alV@lzd(x,z), 0 e A®). 3.1)

The variational solution r, to the transmission problem (1.2) is then the minimizer of the
functional 7 (v) on the set A(v):

@ Springer



1886 Ph. Laurencot, Ch. Walker

Lemma3.1 Foreach v € S there is a unique minimizer ¥, € A®) of J(v) on A(v); that
is,

Tl = min T@I6]. 3.2)
In addition,
/ o|wv|2d(x,z>s/ o|Vhy|*d(x, 2). (3.3)
Q(v) Q(v)

Proof Let v € S and recall that h, € H'(Q(v)) according to (2.1a). Thus, the existence
of a minimizer ¥, of J(v) on A(v) readily follows from the direct method of calculus of
variations due to the lower semicontinuity and coercivity of 7 (v) on A(v), the latter being
ensured by the assumption o > min{o, o2} > 0 and Poincaré’s inequality. The uniqueness
of yr, is guaranteed by the strict convexity of 7 (v). Next, since obviously #, € A(v), the
inequality (3.3) is an immediate consequence of the minimizing property (3.2) of v,. O

For further use, we report the following version of Poincaré’s inequality for functions in
HO1 (2 (v)) with a constant depending mildly on v € S.

Lemma3.2 Letv € Sand 6 € H] (Q(v)). Then
19,y <21H +d+ vl o)l0:0llL@w)) -

Proof Forx € D and z € (—H, v(x) + d),

Z
0(x,2)% = 2/H9<x,y)aze<x,y) dy.

Hence, after integration with respect to (x, z) over Q2 (v),

1913 =/ 6(x, 2 d(x, 2)
Ly (2(v)) QW)

< 2H +d vl [ 100 A2
Q)
<2|H +d+ vlLm 0Ly l10:01l Ly »
from which we deduce the stated inequality. O
3.2 H'-stability of y,

The purpose of this section is to study the continuity properties of the solution v, to (3.2)
with respect to v. More precisely, we aim at establishing the following result.

Proposition 3.3 Consider v € Sanda sequence (Vy)p>1 in S such that

v, — v in HY(D), (34
and set
M :=d + max { lvllLe(p) » supillv, ||LOC(D)}} , (3.5
n>1
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which is finite by (3.4) and the continuous embedding of H'(D) in C(D). Then

| W, = h) = G = )| 1 =g payy) = O

lim
n—oo
and

nli)néo T W)Yy, ] = T W) [Y].

To prove Proposition 3.3, we make use of a ['-convergence approach and argue as in
[7, Section 3.2] with minor changes. We thus omit the proof here and refer to the extended
version of this paper [8] for details.

4 H?-regularity

In the previous section we introduced the variational solution ¥, € H L(Qw)) to (1.2) for
arbitrary v € S and noticed its continuous dependence in H L(Q(v)) with respect to v. We
now aim at improving the H! -regularity of ¥, |q; (v) to H2(Q;(v)) fori = 1, 2. To this end
we first consider the case of smooth functions v € S N W2 (D) with empty coincidence sets
and provide in Sects. 4.1 and 4.2 the corresponding H>-estimates that depend only on the
norm of v in H2(D) (but not on its Wgo(D)-norm). In Sect. 4.3 we extend these estimates to
the general case v € S by means of a compactness argument.

4.1 H?-regularity forv € S N W2 (D)

Assuming that v is smoother with an empty coincidence set, see Fig. 1, the existence of a
strong solution v, to (1.2) is a consequence of the analysis performed in [10].

Proposition4.1 Ifv e SN WOZO(D), then the variational solution \r, to (3.2) satisfies
Yoi = Yol € HA (i), i=1.2,

and the transmission problem

div(cVyy) =0 in Q(), (4.1a)
[[1//1)]] = [[va/v}] Ny ) = 0 on X(v), (4.1b)
Yy =hy on 0Q2(v). (4.1¢)

Moreover, 0y Yy + 0,v0; Y, and —o 0, vy Yy + 09,y both belong to HY(Q)).
Besides [10], the proof of Proposition 4.1 requires the following auxiliary result.
Lemma4.2 Letv € S and consider ¢ € Ly(2(v)) such that
¢i = dlaio € H' (i), i=12,
and [[¢] = 0 on X(v). Then ¢ € HY(Q(v)) and

Il i@y < 1otlai@ @) + 1620lH1 @, 0)) - 4.2)
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Proof We set ex = (1,0) and e; = (0, 1). Given § € C°((v)) and j € {x, z} we note
that

2
¢8j6d(x,z)=/ div(d)&ej)d(x,z)—Z/ 08¢ d(x. 2)
Q) o Jw

Q(v)

2
Z/ [¢]6e; - ny ) dos ) — Z/ 00;¢; d(x,z),
Z(v) i=1 Q;(v)
due to Gaul3’ theorem. Thus, since [¢] = 0 on X (v),

$8;60 d(x, 2)| < (1911l g1 (2,0 + 1020 51 (@0 00) 191l L2 Q0D »

Q)

for j =x,zand 6 € Cé’O(Q (v)). Consequently, ¢ € HI(Q(U)). O

Proof of Proposition 4.1 We check that the transmission problem (4.1) fits into the framework
of [10]. Since v € SN WOZO(D) and v(£L) = 0, the boundaries of (v) and 2, (v) are
Wozo-smooth curvilinear polygons and the interface ¥ (v) meets the boundary 92 (v) of 2 (v)
at the vertices A4+ := (%L, 0). Moreover, at the vertex A4, the measures w+ 1 and w4 > of the
angles between —e, and (1, Fd,v(£L)) and between (1, Fd,v(+L)) and e, respectively,
satisfy w4 1 + w42 = 7, as well as

w+2 > % if o] <O,

w1 < % if [o] >0,
by definition of S. According to the analysis performed in [10], these conditions guarantee
that the variational solution v, to (3.2) provided by Lemma 3.1 satisfies ¥, ; = ¥ylo;w) €
H?(Q;(v)) fori = 1,2 and solves the transmission problem (1.2) in a strong sense.
Next, owing to the just established H2-regularity of v, | and ¥, 2, we may differentiate
with respect to x the transmission condition [y, ](x, v(x)) = 0, x € D, and find that

[0x¥y + 0xv3: Y] =0 on Z(v).

The stated H l-regularity of 9, Yy + 9, vd; Y, then follows from Lemma 4.2 and the bound-
edness of 9, v and va. In the same vein, due to (1.2b), the regularity of v, and the identity

[—00xvdx Yy + 00, Yy]

V14 (0yv)2

the claimed Hl-regularity of —00,v9, Yy + 003, is again a consequence of Lemma 4.2
and the boundedness of 0, v and 8fv. O

= [[le/’v]] ‘Nyp) = 0,

4.2 H*-Estimates on y, forv € S N W2 (D)

The HZ-regularity of 1, being guaranteed by Proposition 41lforv e SN Wgo(D), the
next step is to show that this property extends to any v € S. To this end, we shall now
derive quantitative H>-estimates on v,, paying special attention to their dependence upon

the regularity of v. As in [7], it turns out to be more convenient to study a non-homogeneous
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transmission problem with homogeneous Dirichlet boundary conditions instead of (4.1).
Specifically, forv € SN Wgo(D), we define

X = Xv =Yy —hy € H)(Q()), 4.3)

where ¥, € H'(Q(v)) is the unique solution to (4.1) provided by Proposition 4.1. Since
Yv,i = Yol w) belongs to H%(Q;i(v)) fori = 1,2, we readily infer from (2.1a) and (4.3)
that

Xi = Xoloyw € HX(Qi(v), i=12. (4.4)

We omit in the following the dependence of x on v for ease of notation.
According to (2.1a), (2.1b), and Proposition 4.1, x solves the transmission problem

div(cVy) = —div(c Vh,) in Q(v), (4.5a)
[x]=[oVx] -ngw) =0 on X(v), (4.5b)
x =0 on 3Q2(v), (4.5¢)

and it follows from (2.1a) that it is equivalent to derive H 2_estimates on (Yry.1, Yy 2) oOr

(X1, x2)-
For that purpose, we transform (4.5) to a transmission problem on the rectangle R :=

D x (0,1 + d). More precisely, we introduce the transformation

z+ H

o= (n g

> , (x,z) € Q1(v), (4.6)

mapping 21 (v) onto the rectangle R := D x (0, 1), and the transformation
Tr(x,z) =&, z—v(x)+ 1), (x,z) € Q22(v), “@.7

mapping 2 (v) onto the rectangle R, := D x (1, 1 4+ d). The interface separating R and
R, is

Yo :=D x {1},
so that
R=Dx0,1+d)=RIURUZXp.

It is worth pointing out here that 77 is well-defined due to v € S. Let (x, ) denote the
new variables in R; that is, (x,n) = Ti(x, z) for (x,z) € Ry and (x,n) = Tr(x, z) for
(x,z) € Ra. Then, (4.4) implies

= @lg, + Dolg, € HH(R), @j:=yxiol, ' e HX(Ry), i=12. (48)

For further use, we also introduce

g
N —, (x,n) € Ry,
6(x,n) =13 vx)+H (. m) !
02, (x,n) €R2,

and derive the following fundamental identity for ®, which provides a connection between
some integrals involving products of second-order derivatives of ® and is in the spirit of [4,
Lemma 4.3.1.2], [7, Lemma 3.4], and [10, Lemme 11.2.2].
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1890 Ph. Laurencot, Ch. Walker

Lemma4.3 Givenv e SN Wgo (D), the function ® defined in (4.8) satisfies

2 2
Zf 6970, a,?eb,-d(x,n)zzf & 10,0,y i[> d(x, m)
i=1 YR i=1 /R

Oy v
— ————0,910,0,Pd
o./R] (v+H)2 1 1d(x, n)

1 2u((9xv)> — 1) 5
3, o] cnes

Proof We adapt the proof of [7, Lemma 3.4] and [10, Lemme I1.2.2]. Note that (4.5b), (4.6),
(4.7), and (4.8) imply [®] = 0 on Xy, so that

[0:®] =0 on . (4.9)

Consequently, since (3, Py, d, P2) lies in HY(R)) x HY(Ry) by (4.8), we may argue as in
the proof of Lemma 4.2 and deduce from (4.9) that

F:=0,® e H'(R).
Moreover, by (4.8),

Fx,00=F(x,1+d)=0, xeD. (4.10)
Similarly, setting
Y
G :=— 78 D 0, P,
TR

we derive from (4.8) that G; := G|, € H'(R;) fori = 1,2, while (4.5b), (4.6), (4.7), and
(4.8) imply that, for x € D,
o1
V14 (Bcv(x))?
02
= ————— [0, v x2(x, V(X)) + 0; x2(x, V(X)) ] = Ga(x, 1)

V1 @v(x)?

that is, [G] = 0 on X¢, and we argue as in the proof of Lemma 4.2 to conclude that

GeH'(R).

Gix,1) = [—8xv(0) 8y x1 (x, v(x)) + 3 x1 (x, v(x))]

In addition, by (4.8),

G(£L,n) = —o(£L,n) < ) (£L)ox®(£L,n) + 6 (£L, n)d, ®(EL, n)

_ U
1+ (8,v)2

o,
= —o(£L, 1) (ﬁ) (£L)3, (%L, )

forn € (0, 1 + d). Hence,

G(£L,n) + o (£L, n)( )(iL)F(iL,n)=O, ne© 1+d). 411

L
1+ (3yv)2
Owing to (4.10), (4.11), and the H'-regularity of F and G, we are in a position to apply
Lemma A.1 (see Appendix 1) with

(V,W)=(F,G) and 7%= (a‘i")(ﬂ)
s = . an T =0 1+(axv)2 3
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H2-regularity for a two-dimensional transmission... 1891

to obtain the identity

/axFa,,Gd(x,n)=/ 0 Fo,Gd(x,n). (4.12)
R R

Using the definitions of F and G, the identity (4.12) reads

2
24 [ 0xv
Z/Aaxcbl( g i + 60 <I>>d(x,;7)
2 2 2
o Oy V 2q azv[1 — (0xv)7] ‘
;/ 8 0 (Dl< Ol+(axv)28x¢l o []+(axv)2]2 8X(Dl> d(x, 77)

+ § / 0.0y ®; (0260, D; + 60,0, P;) dCx, ).
; Ri
i=1 !
Noticing that the first terms on both sides of the above identity are the same and that

1 2
0, D; 0,0, D; = Ean((axcbi) )

implies that

2

020[(0:v)?) — 1]
;/ ; Gwaxd)iaxand)[ d(x, n)

L[ a7u[@0x0)* — 1]
- E/DW [[o(axcb)"‘]] (x, 1)dx,

the assertion follows, recalling that 9,6 = 0 in R». m]

Remark 4.4 1If 0,v(+L) = 0, then (4.11) reduces to G(£L,n) = 0 forn € (0,1 4+ d)
and the crucial identity (4.12) used in the proof of Lemma 4.3 directly follows from [4,
Lemma 4.3.1.2]. For the general case v € S, we require the extension given in Lemma A.1.

We now translate the outcome of Lemma 4.3 in terms of the solution x to (4.5).

Lemma4.5 Letve SN WOZO(D). The solution x = yr, — hy to (4.5) satisfies
2 2
Y[ ewxexawn=Y [ owalde
i=1 Qi (v) i=1 Qi (v)
o
_ jzf 32v(x) (3 x2(x, v(x) +d))2dx
D

! dFv(x)
- E/DW [[U|VX|2]] (x, v(x)) dx

Proof Let us first recall the regularity of ® stated in (4.8) which validates the subsequent
computations. Using the transformations 77 and T3 introduced in (4.6) and (4.7), respectively,
we obtain

Zf o 03 92 5 d(x, 2)

Qi (v)
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1892 Ph. Laurencot, Ch. Walker

o] 0y \2 92v 0y U
- 220 (2( )— x )8<I>—2788<I>
lev—i—H[ 141 v+ H v+ H/ " ! nv—{—Hxn !

0xv \2
2 X 2 2
+n (—HH) 8n®1]8n¢1d(x,n)

+/ 020302 — 20,00,8,®2 — 0200, B2 + (0:0)2022 | 0262 d(x, )
Ra

2
=Z/ G20; 02d; d(x, )
— IR;
i=1
B 2 92 BN
+/ o [n(2< xY ) _ &P )8,,d>1 20,0,
rRRV+H v+ H v+ H + H

v \2
2 X 2 2
+7 (m> a,,q:l]ancpld(x,n)

+/ 62[ — 20,00, 9, Py — D709, P + (axu)Qa,fcbz] Dy d(x, ).
Ra
We use Lemma 4.3 to express the first integral on the right-hand side and get
2
}:/ o 97 xi 023 d(x, 2)
i=1 Qi (v)

—/‘mm%@ﬁamm+/‘ﬂmm%ﬁanm
R1 Ra

9 By
/ L [— 5y ®10,0, 1 — 20— 0,8, 0,920
R v+ H

L V+H v+ H
0V \2 2 Oy V
2 X 2 X 2
220 2( )8<I>8<1>
n(v+H)|"1|+nv+H n P10, P

82v 2
- TH Oy @10, Py | d(x, )

+ / 02[ — 20,00,, 202D — 0200, D202y + (axv)zyagcpzyz] dcx, n)
Ra

L[ adu((@v)? -1
Z/L)M [[U(f’xq’)z]] (x, Ddx. (4.13)

We then compute separately the integrals over R;, i = 1, 2, and begin with the contribution
of R|. We complete the square to get

1-—/ S
1+ RIU—FH xOn¥1

OxV \2 2 Oy U
2 X 2 X
220 2(
+n<v+H)|”1|+nv+H

2

v
_ X
nv—l—H

_ Oy v v \2, 5
_/nlier [|aac1>1| +(- T )|a o +7 (7+H) |02,

0xv
27] v+ H 33@18 q)l

2 2
) 8,]<1>13n‘131

ancblagcbl] d(x, )
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H2-regularity for a two-dimensional transmission... 1893

(axv )28q332<1>
7 v+ H/)
]:(‘(’T})

o1 0xv \2 2
+/R, v+H|:_<v+H) |on 1]

33” 2
- Wmanq)lan‘bl d(x, n)

axar;q)l Oxv Oy V
= H - 8,01 —n—" 920, | d(x,
/RIUI(U+ )|:v+H wrER P T T O 1] (x,m)

xOn

+/ 01000 | —— 3,180, @1 — — Y (3,01) | d(x. )
Rllx (v+H)2n1xnl (U+H)3nl i

—/ ———1nd 0 d(x, n)
o = ®,92d xX,1n).
R 1(U—i—H)Z =1

Thanks to the identities

1 v s 1 3P \?
0,10, — ————(3,®1)" = - ,
w+ 2! " +H)3(” 1) 2X<(U+H

1
0, ®10201 = =0, (3,®1)° .
Z 2

and the property d,®1(£L,n) = 0 for n € (0, 1) stemming from (4.8), we may perform
integration by parts in the last two integrals on the right-hand side of the previous identity
and obtain

axanq)l Oxv Oy U :Iz
I = o(v+ H — 0, ® 78 [} d(x,
1 /721 1( )[u+H Wt m T (x,m)

o] Bgv
p W+ H )2
Transforming the above identity back to €21 (v) yields

(3,®1(x, 1)) dx
2
I =/ 01’8 3zX1| d(x, z) — —/ d v(x)( Z)(1()5,1)(x))) dx . (4.14)
) 2
Next, arguing in a similar way,
2 2
I ::@/ [|axa,7q>zy — 20,00, 9, D202D) — 0203, D292D; + (3,v)7 |02, ]d(x,n)
Ra

2 2
:@/ [|8x8,7d>2| — 20,00, 3, D29, D2 + (3,)* |0, s ]d(x,r])
R2

02 2
— = | 82vd, (3,92)" d(x, n)
2 Jr,

o2

2
:@/R [axan%—axvag%] d(x, n) — 7/1)8§v(x) (3, ®2(x, 1 +d))” dx
2

+9/ 02v(x) (8, ®2(x, 1)) dx
2 Jp
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Transforming this formula back to €, (v) yields

12=<72/ |axazxz|2d(x,z)—%f P20(x) (o2 Cr. v(x) + ) dx
Qs (v) D

(4.15)
+ % / 83v(x) (Bzxz(x, v(x)))2 dx.
D

Finally,

03[ (.v)* — 1]
/DW o @:9] D dx

92v[(8xv)? — 1
B /D M [[G(axx + 3xv3zx)2]] (x, 1) dx,

and we deduce from (4.13), (4.14), (4.15), and the above identity that

Z/ 033)(,- 812)(,' d(x, )

Qi (v)

= Z/Q( |a azXl’ d(x Z)_ *\/‘ d U()C)( ZXZ(X, v(x)+d))2dx
i=1 i

1
_E/Da?v(x) [[G(Bzxz)z]] (x, v(x)) dx
2 [1 4 (8xv)?]?

It remains to simplify the last two integrals on the right-hand side of (4.16). To this end, we
first recall that the regularity of x allows us to differentiate with respect to x the transmission
condition [x] = 0 on X (v) to deduce that

[0 x + dxvd.x] =0 on T(v), 4.17)

2 2
+l/ drol @) — 1] [[a(axx+axvazx)2]] (x, v(x)) dx . (4.16)
D

while the second transmission condition in (4.5b) reads
[o(0xvdcx —0:x)] =0 on Z(v). (4.18)
In particular, (4.17) and (4.18) imply that, on X (v),

[U(axvaxx - azX)(axX + axvazX)]] = (axX] + 3xv3zX1)[[U(3xv3xX - 81)(”]

+ 02(8xv0x x2 — 0 x2) [ (32 x + 003 x)]
=0.

Therefore,
J = [(00)? = 1] [[o(axx +3xvazx)2]] [1+ (3:v)] [[ (9:x) ]]
= [@)? = 1] [0 (@x + 0xv3.2)*] = 11 + @1 [0 (0.2)7]
— 20,00 (0,00, x — 02x) (9.x + d,v0:x)]
= [ol@w? =1 =200 (0:2)°]

+ [[U[28xv((8xv)2 — 1) = 23,v)° + 2axv]axxazx]]
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H2-regularity for a two-dimensional transmission... 1895

+ [o (@) (0:0)? = 1) +20:0)% = [1 + @] (0.2)°]
= —[1+ @] [o(0:x)* + 0 (3x)’]
= —[1+ @] [o1vx?].

Hence,

tosirap oo s’ - [ -

Consequently, (4.16) and (4.19) entail

1

2 2
Z/ o 33 Xi afx,»d(x,o:Z/ 01050 xi1* d(x. )
Q;(v) PERAY

i=1 (v)

_ %/ 52020(x) (2 x2(x, v(x) + d))? dx
D

1 32v(x)
7 e G L

as claimed. ]

In order to estimate the boundary and the transmission terms in Lemma 4.5, we first report
the following trace estimates.

Lemma 4.6 Given k > 0 and « € (0, 1/2], there is c(a, k) > 0 such that, for any v € S
satisfying |vll g2 py < k and 6 € H'(2(v)),

1-2a)/2 20+1)/2
10C, 0)ll ey + 10, v+ D)l < e, ©) 10115 e 1015l

Proof Let6 € H! (R22(v)). Using the transformation 7> defined in (4.7) which maps €25 (v)
onto the rectangle R> = D x (1, 1 +d), we note that ¢ := 6 o Tz_1 belongs to H'(R,) with

Dl L (Ra) = 101l Lo (v)) (4.20)
and
2 2 2
IVOIlL,ry = I19x6 + 050020111, 0, wy) + 102017, )) »

so that the continuous embedding of H 2(D) in Wolo(D) and the assumed bound on v readily
imply that

P11 Ry < cCNON a1 () - (4.21)
By complex interpolation,
[L2(R2). H' (R)las1/2 = HTVA(Ry)
from which we deduce that

1-2a)/2 2a+1)/2
16l gee112m) < @ IBI s mny ND Nt
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1896 Ph. Laurencot, Ch. Walker

Since o > 0, the trace maps H*+1/2(R,) continuously on H*(D x {1}), and we thus infer
from (4.20) and (4.21) that

10C, Vlaep)y = ¢, Dllgp) < c@)@ll ga+i/zry)

1-2a)/2 2a+1)/2
< @Il o2

(1-2a)/2 ”0”(2a+1)/2
L (22(v)) HY Q) *

The estimate for [|6(-, v + d)|| go(p) is proved in a similar way. ]

<cla, ol

Based on Lemma 4.6 we are in a position to estimate the boundary and transmission terms
in the identity provided by Lemma 4.5.

Lemma4.7 Let¢ € (3/4,1) and k > 0. There is c(¢, k) > 0 such that, ifv e SN WOQO(D)
satisfies ||v|| y2(py < &, then the solution x = xy to (4.5) satisfies

Z f 820(x) (8- x2 (v, v(x) + ) dx
2 Jp (4.22)
< (610 1917 ety 1022251 0, o)
and
1 32
‘f/ L)z [[U|Vx|2]] (x, v(x))dx
2 Jp 1+ (0xv(x)) (4.23)

2(1— 2
= (@) 1V ety 1922501 0 -

Proof To prove (4.22), let us first note that H® ~1/2(D) embeds continuously into L4(D).
We use the Cauchy-Schwarz inequality and Lemma 4.6 with « = ¢ — 1/2 and deduce

02
2

/ 02v(x) (0. x2(x, v(x) + d))” dx
D

02
< S 1070l 19: 300, v + D)

< () 192 02C, v+ Dlige-12 )
2(1— 2
= (@, 1) 1012175 oty 102501 s o) -

As for (4.23) we obtain analogously

52
2 [ s [t @) + ot vwn) ] as

02 102 2
< Ellaxvlle(D)HVXz(-, Iz, p)

2(1— 2
= @) IV ety 192213 o) (4.24)

and

52
% /D % [(3XX1(x, v(@))” + (.0 (x, v(x)))2] d

(S ) 2
< 7||3xv||L2(D)||VX1('a Wz, ) -

(4.25)

At this point, we use (4.17) and (4.18) to show that

o] +02(8xv)2 [[O’ﬂaxv

01(1 I (3xv)2) X2 + 01(1 n (3,(1))2) d;x2 on X(v),

Oxx1 =
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[o]dxv o1 + 02(xv)?

m w2 WBZ)Q on X(v).

01 =

Consequently,

max{o1, 02}
[0x x1] < EE— (19x X2l +19;x2])  on X(v),

max{o, 02}
[0z x1] < 071 (I9x x2| + 19z x21) on X(v),

so that

IVxiC, V) < cllVx2 G, )Ly -

Owing to (4.25) and the above inequality, we may then argue as in the proof of (4.24) to
conclude that

82
3 /D % [(Bux1x.000)” + (2o v, v(@) ] ax

2(1—- 2
= (@) 1Vt 19220351 0

as claimed in (4.23). O

We now gather the previous findings to deduce the following crucial H>-estimate on the
solution v, to (4.1) for v € SN W2 (D), which only depends on the H?(D)-norm of v (but
not on its WOZO(D)-norm).

Proposition4.8 Letk > Oandv € SN Wgo(D) be such that ||v| g2py < k. There is a
constant co(k) > 0 such that the solution {r, to (4.1) satisfies

Ix @y + Xl m2@ ) + 12l 2 @) = colk) (4.26a)
and
IVl @y T Wi llm2@ o) T W2l g2, 0)) = colk), (4.26b)
recalling that x = Y, — hy and x; = xlQ;v), I = 1, 2.

Proof Letv € SN WgO(D) with [lv]l 2(py < k. Since o is constant on £} (v) and on €22 (v),
it readily follows from (4.5a) that

2 2
Z/ a|Axi|2d<x,z)=Zf o Ahy > d(x, 2).
i=1 Qi(v) i=1 Q;(v)
Since
1Axil? = 102 xi 1 + 1025 > + 202020, i=1,2,
we infer from Lemma 4.5 and the above two formulas that

2
Yo ot + 20001 + 1027} dex, 2)
i=1 Q; (v)

2 2
= Z/ o|Ahv,i|2d(x,z)+22/ o (19x0:xi1% = 37 xi9; xi) d(x, 2)
i=1 Qi (v) i=1 Qi (v)
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|

= Jaiw

32v(x) 5
+/071 )2 [[O'|VX| H(x,v(x)) dx.

Using Lemma 4.7 with ¢ = 7/8, along with the identity

o|Ahy)*d(x, 2) +02/ 02u(x) (3. x2(x, v(x) + d))” dx
D

2
Z/ o {102 + 210,80 + 022} d(x. 2)
= Jow

= otV X1l @, + 221V X231 00 »

we further obtain

IV X121 @y + 21V X221 000
2
1/4 7/4
< Z/Q o|Ahyi*d(x, 2) + c() ||VX2||L/2(92(U)) ”VX2”H/1(QZ(U)) :
i (v)
i=1

Hence, thanks to Young’s inequality,

o1V “%—Il(m(v)) + 02||VX2||2HI(QZ(U))

2
(o)
= Z/Q ( )OlAhv’i|2d(x’ 2RNPY IV X2 @) + CCNV 2T 000
i=1 i (v

Recalling that
1 1
Vol < — o|Vx[2d(x, z <—/ o |Vhy|*d(x, z
[ X2||L2(g22(v)) = 0 Jaw [VxI7d(x, z) = 72 Jow [Vhy|”d(x, 2)
max{oy, 02}
= T”Vhﬂ&z(g(v))

by (4.5) and that min{oy, 02} > 0, we conclude that

2 2
“leHH'(Q](v)) + ”VXZHH](Qz(U)) 4.27)
<ck) <||Ahv,l ”%2(Q|(v)) + ||Ahv,2||%2(92(u)) + ”Vh””%Z(Q(”))) ’

Owing to the continuous embedding of H?(D) in C(D), combining (4.27) and Lemma 3.2
leads us to the estimate

X e @y + 11Xl a2 @) + 12l a2 @, 0))
< c@)(IVhllLy@wy + 1A 11T, 0y + 1822117 0 0)) -

The bound (4.26a) then readily follows from the assumptions (2.1a) and (2.1c). Finally,
(4.26a), together with (2.1a) and (2.1c), yields (4.26b). ]

4.3 H-regularity and H?-estimates on y, forv € S

Finally, we extend Propositions 4.1 and 4.8 by showing the H 2_regularity of 1, and the
corresponding H2-estimates for an arbitrary v € &; that is, we drop the additional Wgo—
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H2-regularity for a two-dimensional transmission... 1899

Qo (w)

Fig.3 Geometry of Q (w) for a state w € S with non-empty and disconnected coincidence set

regularity of v assumed in the previous sections and also allow for a non-empty coincidence
set.

Proposition 4.9 Letk > 0 and v € S be such that ol g2 py <«
(a) The unique minimizer yr, € A() of J(v) on A(v) provided by Lemma 3.1 satisfies
Yoi = Yolaw € H(Qi(), i=1,2,

and is a strong solution to the transmission problem (4.1). Moreover, there is c1(k) > 0
such that

1Yol @y + 1Yl m2@ ) T 1Vl g2 @) < c1). (4.28)
(b) Consider a sequence (vy)p>1 in S satisfying
lvallgzpy <, n=1, and ”ler;o lvn — vllg1py = 0. (4.29)

Ifi € {1, 2} and U; is an open subset of i (v) such that U; is a compact subset of 2; (v),
then

Yo, i—Vui in H*Uj),
recalling that Yy, i = Y, |Q: (v)-

The proof involves three steps: we first establish Proposition 4.9 (b) under the additional
assumption

Slill) {||an,1||H2(Ql(v,,)) + ||1/fv,,,2||H2(g22(v,,))} < 00.

n

Building upon this result, we take advantage of the density of S N Wgo(D) in S and of the
estimates derived in Proposition 4.8 to verify Proposition 4.9 (a) by a compactness argument.
Combining the previous steps leads us finally to a complete proof of Proposition 4.9 (b). We
thus start with the proof of Proposition 4.9 (b) when the solutions (v, ),>1 to (4.1) associated
with the sequence (v,),>1 satisfies the above additional bound. We state this result as a
separate lemma for definiteness.

Lemma4.10 Let k > 0 and v € S be such that vl g2(py < «k and consider a sequence
(Vn)p>1 in S satisfying (4.29). Assume further that, for each n > 1, (Y, 1, Yu,.2) belongs
to HX(Q1(vy)) x HX(Q22(vy)) and that there is > 0 such that

Vv, 152 ) + Vv 2l = n=1. (4.30)
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Then Y, ; € H2(Q; (), i = 1,2. Inaddition, ifi € {1,2}and U; is an open subset of Q2; (v)
such that U; is a compact subset of Q2; (v), then
Vo=V in H*Up)

and
1V, 1l a2, @y + 1w 2l g2 o)) < - (4.31)

The proof is very close to that of [7, Proposition 3.13 & Corollary 3.14], so that we omit
the details here and refer to the extended version of this paper [8] instead.

Proof of Proposition 4.9 (a) Letv € S be such that || v]| w2(py < . Wemay choose a sequence
(Un)n>1in S N W2 (D) satisfying
v — v in HX(D), sup llvull g2(py < 2. (4.32)
n>1
Owing to (4.32) and the regularity property v, € SN Wgo(D), n > 1, Proposition 3.3
guarantees that (¥, 1, ¥y, 2) belongs to H?(Q21(v,)) x H*(Q22(v,)) and (Y, )1 satis-

fies (4.30) with & = co(2«x). We then infer from Lemma 4.10 that (1, ¥ ,2) belongs to
H?(Q1(v)) x H*(2(v)) and satisfies

Vo1l 2@, ) T 1Vv2ll m2@,w) < c0k).

Combining the above bound with (2.1d) and Lemma 4.10 gives (4.28). Checking that v, is
a strong solution to (4.1) is then done as in [7, Corollary 3.14], see also the extended version
of this paper [8] for a complete proof. O

Proof of Proposition 4.9 (b) Proposition 4.9 (b) is now a straightforward consequence of
Proposition 4.9 (a) and Lemma 4.10. O

Proof of Theorem 1.1 The proof of Theorem 1.1 readily follows from Proposition 4.9 (a). O

We supplement the H2-weak continuity of v, with respect to v reported in Proposition 4.9
with the continuity of the traces of Vi, » on the upper and lower boundaries of €25 (v).

Proposition_4.11 Letk > Q0andv € S be such that lvl| g2 (D) < k and consider a sequence
(V=1 in S satisfying (4.29). Then, for p € [1, 00),

Vi, 2(, 00) = V(- v) in L,(D,R?), (4.33)
Vi, 2(, 00 +d) = V(v +d) in L,(D,R?), (4.34)

and
IVr,2 (s U)”LP(D,RZ) + VY20, v+ d)”L,,(D,RZ) <c(p k). (4.35)

Proof Recall first from (4.28) that

1Y, 2l 2 0,)) < €1(K) S n>1. (4.36)

As in the proof of Lemma 4.6 we map €2, (v) onto the rectangle R, = D x (1,1 4+ d) and
define, for (x,n) € Rpandn > 1,

¢n(xa 71) = wvn,z(xv n + v,,(x) - 1) s ¢(xv 77) = wv,z(x7 n + U(.X) - 1) -
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Let ¢ € (1, 2). Since

Vén (e m) = (009, + davndevh, v, ) (6 0+ 0 () = 1),

02 (e, 1) = (02, + 20008 0c ¥, + (0200202, + 030040, ) (v, 1+ va(0) = 1),
O, 1) = (D020, + 002V, ) (6, 0+ 0 () = 1),

Opn (x, 1) = 029, (X, 1 + v (x) — 1),

it follows from (4.29), (4.36), the continuous embedding of H 2(D) in CY(D), and that of
HY(R») in L2/C~9(R,) that

b € W2R2) with [gullyary < €@.0),  n=1. (4.37)

Now, given p € [1, 00), we choose ¢ € (1, min{2, p}) satisfying 1 < 2/g < 1+ 1/p
ands € (2/g — 1/p, 1). Since

$po—¢ in W7 (Ry)

by (2.1d), (4.37), and Proposition 4.9, the continuity of the trace as a mapping from qu (R»)

to qu_l/q (D x {1}) and the compactness of the embedding of qu_l/q (D) in L (D) imply
that

Vo, 1) = Vo (-, 1) in Wg‘l/q(D) (4.38)
and
Vo (. Dz, ) = c(p.«). (4.39)
That is,
0%, 20 vp) = 0yPn (-, 1) = 9P (-, 1) = d Yy 2(,v) in Ly(D)
and, recalling (4.29) and the continuous embedding of H>(D) in C!(D),

ax%n,z(-, Un) - ax(z’n('» 1) - axvilaﬂ¢n('7 1)
= 0P, 1) = 0xvye (-, 1) = 0y 2(,v) in Lp(D).

Furthermore, (4.38) and (4.39), along with the bound |[v||52(py < « and the continuous
embedding of H2(D) in C1(D), entail that

VY2 WL,y < c(p, k),

which proves (4.33) and the first bound in (4.35). Clearly, (4.34) and the second bound in
(4.35) are shown in the same way. O

Proof of Theorem 1.3 The proof of Theorem 1.3 is now a consequence of Proposition 3.3 for
(1.4a), Proposition 4.9 (b) for (1.4b), and Proposition 4.11 for (1.4c). ]
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Appendix A. The Identity (4.12)

This appendix is devoted to the proof of the identity (4.12), which can be seen as a variant
of [4, Lemma 4.3.1.2] with piecewise constant linear constraints on the boundaries instead
of constant ones.

LemmaA.1 LerR = D x (0,1 + d) and consider (V, W) € H (R, R?) satisfying

Vx,00=Vkx,1+d)=0, xeD=(-L,L), (A.la)
W(EL, ) + 15DV (£L, ) =0, 1€ O 1+d), (A.1b)
where TF are piecewise constant functions of the form

=110 + 5 101+ (A2)

with (rf, 7, 12+, 7,) € R*, featuring possibly a jump discontinuity at n = 1. Then
/ o Vo,Wd(x,n) = / Vo, Wd(x,n).
R R

When rli = 'L'zi, Lemma A.1 is a straightforward consequence of [4, Lemma 4.3.1.2]. The
novelty here is the possibility of handling the jump discontinuity in (A.1b) when rllL * rzi
in (A.2).

The proof follows the lines of that of [4, Lemma 4.3.1.2]. For s > 1, we introduce the
space

G'(R) :={(V,W) e H (R,R?) : (V, W) satisfies (A.1)}
and first report the density of G2(R)in G (R).
LemmaA.2 G2(R) is dense in G1(R).

As in the proof of [4, Lemma 4.3.1.3], the core of the proof of Lemma A.2 is to establish
the density of the space Z2(dR) of traces of functions in GZ(R) in the space Z!(dR) of
traces of functions in G'(R), after identifying these two trace spaces. Since the proof is
almost identical to that of [4, Lemma 4.3.1.3], we omit it here, but refer to the extended
version of this paper [8].

Proofof Lemma A.1 Due to Lemma A.2, it suffices to prove the identity in Lemma A.1 when
(V, W) belongs to G>(R). This additional regularity allows us to use integration by parts to
interchange the derivatives and guarantees the continuity of both V and W on R. Indeed,
HZ(R) embeds continuously in C* (R) for all @ € (0, 1) by [12, Chapter 2, Theorem 3.8]
and we deduce that

(V,W) e C(R,R?). (A.3)
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Next, after integrating by parts,

J(V, W) ::/ (0 VW — 9,V W) d(x,n)
R

I+d x=L
=/ [va,wice ] dn—/ Va0, W d(x. )
0 L R

x=—

n=1+d
_/ (VoW m] +/ Vayd,W d(x. ) .
D n=0 R

Since V(x,0) = V(x,1+d) = 0 for x € D by (A.la) and the second and fourth terms
cancel each other out, we obtain

14+d 14+d

Now, according to (A.1b) and the regularity of V and W,
W W(EL, n) = —170,V(£L, ), neO1),
anW(j:L,r]):—rzianV(:I:L,n), ne(,14+4d)),
so that, since [n — V(£L, n)] € C([0, 1 4+ d]) by (A.3),

1 1+d
JV, W) = —rﬁfo (Va,V)(L,n) dn—r;/l (Va,V)(L,n) dn

1 1+d
+1, / (Vo,V)(=L,n)dn+1, / (Vo,V)(=L,n) dn
0 1

LV, D2 = V(L0072 V(L 1+d)?—V(L,1)?
=7 -0
2 2
_V(-L, D)2 =V(=L,0)> _V(-L,14+d)?*—V(—L,1)?
+ 17 ) + 17 3

ffr ) T 2 fzJr 2, O 2
=7V(L,0) —7V(—L,0) —7V(L,1+d) +7V(—L,1+d)

(A.4)
+ _ o+ - -
_ MV(L, 1)2 + uv(_[d’ 1)2.
2 2
On the one hand, it follows from (A.1) and the continuity (A.3) of V that
V(L,0)= lim V(x,0)=0,
x—>+L (A 5)
V(L,14+d)= lim V(x,14+d)=0. ’
x—>+L
On the other hand, using (A.1b) along with the continuity (A.3) gives
tEV(£L, 1) = lim e (n)V(£L, ) = — lim W(£L, 1)
n/1 n/'1
=—W(£L,1) = — lim W(£L, n) = lim t=(n)V(£L, n)
N\ UMY
=t V(£L, 1).
Consequently,
(tff =) V(£L, 1) = 0. (A.6)
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Combining (A.4), (A.5), and (A.6) leads us to J(V, W) = 0 and we have proved that
J(V.W)y=0, (V.W)ed*R). (A7)

In other words, the identity stated in Lemma A.1 is valid for (V, W) € G2 (R). O
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