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Abstract
The H2-regularity of variational solutions to a two-dimensional transmission problem with
geometric constraint is investigated, in particular when part of the interface becomes part
of the outer boundary of the domain due to the saturation of the geometric constraint. In
such a situation, the domain includes some non-Lipschitz subdomains with cusp points, but
it is shown that this feature does not lead to a regularity breakdown. Moreover, continuous
dependence of the solutions with respect to the domain is established.
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1 Introduction

The H2-regularity of variational solutions to a two-dimensional transmission problem with
geometric constraint is investigated, in particular when part of the interface becomes part
of the outer boundary of the domain due to the geometric constraint, a situation in which
the domain includes some non-Lipschitz subdomains with cusp points. Such a regularity is
required in particular to guarantee that the variational solutions satisfy the strong formula-
tion of the transmission problem. H2-regularity is, however, not true in general and known
to depend heavily on the geometry and smoothness of the domain and the interfaces. In
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Fig. 1 Geometry of �(v) for a state v ∈ S with empty coincidence set
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Fig. 2 Geometry of �(w) for a state w ∈ S̄ with non-empty coincidence set

fact, when interfaces intersect the outer boundary of the domain, regularity of variational
solutions to transmission problems in non-smooth domains is a challenging issue, even for
transversal intersections, see [1–3, 5, 10, 11, 13] and the references therein. Motivated by
the mathematical study of microelectromechanical systems (MEMS), we identify herein a
class of two-dimensional domains possibly featuring cusps for which H2-regularity is true.
We actually derive H2-estimates which hold uniformly with respect to suitable perturbations
of the underlying domain. We point out that such quantitative estimates are not contained in
the above mentioned literature, but they turn out to be instrumental for a thorough study of
MEMS models [9].

To set up the geometric framework, let D := (−L, L) be a finite interval of R, L > 0,
and let H > 0 and d > 0 be two positive parameters. Given a function u ∈ C(D̄, [−H ,∞))

with u(±L) = 0, we define the subdomain �(u) of D × (−H ,∞) by

�(u) := {(x, z) ∈ D × R : −H < z < u(x) + d} = �1(u) ∪ �2(u) ∪ �(u) ,

where

�1(u) := {(x, z) ∈ D × R : −H < z < u(x)}
and

�2(u) := {(x, z) ∈ D × R : u(x) < z < u(x) + d}
are separated by the interface

�(u) := {(x, z) ∈ D × R : z = u(x) > −H} .

Owing to the (geometric) constraint u ≥ −H , the lower boundary of �2(u), given by the
graph of the function u, cannot go beyond the lower boundary D × {−H} of �1(u) but may
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H2-regularity for a two-dimensional transmission... 1881

coincide partly with it, along the so-called coincidence set

C(u) := {x ∈ D : u(x) = −H} , (1.1)

see Figs. 1 and 2. Clearly, the geometry of �(u), as well as the regularity of its boundary,
heavily depends on whether minD{u} > −H or minD{u} = −H . Indeed, if minD{u} > −H
(i.e. the graph of u is strictly separated from D × {−H} as in Fig. 1), then the coincidence
set C(u) is empty and �1(u) is connected. In contrast, if minD{u} = −H so that the graph
of u intersects D × {−H}, then C(u) �= ∅ and �1(u) is disconnected with at least two (and
possibly infinitely many) connected components, see Figs. 2 and 3.

For such a geometry, we study the regularity of variational solutions to the transmission
problem

div(σ∇ψu) = 0 in �(u) , (1.2a)

�ψu� = �σ∇ψu� · n�(u) = 0 on �(u) , (1.2b)

ψu = hu on ∂�(u) , (1.2c)

where

σ := σ11�1(u) + σ21�2(u)

for some positive constants σ1 �= σ2, and n�(u) denotes the unit normal vector field to �(u)

(pointing into �2(u)) given by

n�(u) := (−∂xu, 1)
√
1 + (∂xu)2

.

In (1.2c), hu is a suitable function reflecting the boundary behavior of ψu , see Section 2 for
details. In addition, �·� denotes the (possible) jump across the interface �(u); that is,

� f �(x, u(x)) := f |�1(u)(x, u(x)) − f |�2(u)(x, u(x)) , x ∈ D ,

whenever meaningful for a function f : �(u) → R.
Let us already mention that there are several features of the specific geometry of �(u)

which may hinder the H2-regularity of the solution ψu to (1.2). Indeed, on the one hand, the
interface �(u) always intersects with the boundary ∂�(u) of �(u) and it follows from [10]
that this sole property prevents the H2-regularity ofψu , unlessσ and the angles between�(u)

and ∂�(u) at the intersection points satisfy some additional conditions. On the other hand,
�(u) and �2(u) are at best Lipschitz domains, while �1(u) may consist of non-Lipschitz
domains with cusp points.

The particular geometry �(u) = �1(u) ∪ �2(u) ∪ �(u), in which the boundary value
problem (1.2) is set, is encountered in the investigation of an idealized electrostatically
actuated MEMS as already pointed out and described in detail in [6, 14]. Such a device
consists of an elastic plate of thickness d which is fixed at its boundary {±L} × (0, d) and
suspended above a rigid conducting ground plate located at z = −H . The elastic plate is
made up of a dielectric material and deformed by a Coulomb force induced by holding the
ground plate and the top of the elastic plate at different electrostatic potentials. In this context,
u represents the vertical deflection of the bottom of the elastic plate, so that the elastic plate
is given by �2(u), while �1(u) denotes the free space between the elastic plate and the
ground plate. An important feature of the model is that the elastic plate cannot penetrate the
ground plate, resulting in the geometric constraint u ≥ −H . Still, a contact between the
elastic plate and the ground plate – corresponding to a non-empty coincidence set C(u) –
is explicitly allowed. The dielectric properties of �1(u) and �2(u) are characterized by
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1882 Ph. Laurençot, Ch. Walker

positive constants σ1 and σ2, respectively. The electrostatic potential ψu is then supposed
to satisfy (1.2) and is completely determined by the deflection u. The state of the MEMS
device is thus described by the deflection u, and equilibrium configurations of the device
are obtained as critical points of the total energy which is the sum of the mechanical and
electrostatic energies, the former being a functional of u while the latter is the Dirichlet
integral of ψu . Owing to the nonlocal dependence of ψu on u, minimizing the total energy
and deriving the associated Euler-Lagrange equation demand quite precise information on
the regularity of the electrostatic potential ψu for an arbitrary, but fixed function u and its
continuous dependence thereon. This first step of provisioning the required information is
the main purpose of the present research. In the companion paper [9], we use the results
obtained herein to analyze the minimizing problem leading to the determination of u and
compute the associated Euler-Lagrange equation.

Since the regularity of the variational solutionψu to (1.2) is intimately connected with the
regularity of the boundaries of �(u), �1(u), and �2(u), let us first mention that �(u) and
�2(u) are always Lipschitz domains and that the measures of the angles at their vertices do
not exceed π , a feature which complies with the H2-regularity ofψu away from the interface
�(u) [4]. This property is shared by�1(u)when the coincidence set C(u) is empty, see Fig. 1,
so that it is expected that ψ |�i (u) belongs to H2(�i (u)), i = 1, 2, in that case. However,
when C(u) is non-empty, the open set �1(u) is no longer connected and the boundary of its
connected components is no longer Lipschitz, but features cusp points. Moreover, there is an
interplay between the transmission conditions (1.2b) and the boundary condition (1.2c) when
C(u) �= ∅. Whether ψ |�i (u) still belongs to H2(�i (u)), i = 1, 2, in this situation is thus an
interesting question, that we answer positively in our first result. For the precise statement,
we introduce the functional setting we shall work with in the sequel. Specifically, we set

S̄ := {v ∈ H2(D) ∩ H1
0 (D) : v ≥ −H in D and ± �σ �∂xv(±L) ≤ 0}

and

S := {v ∈ H2(D) ∩ H1
0 (D) : v > −H in D and ± �σ �∂xv(±L) ≤ 0} .

Clearly, the coincidence set C(u) is empty if and only if u ∈ S. In addition, the situation
already alluded to, where C(u) is non-empty and�1(u) is a disconnected open set inR2 with
a non-Lipschitz boundary, corresponds to functions u ∈ S̄\S. Also, we include the constraint
±�σ �∂xu(±L) ≤ 0 in the definition of S and S̄ to guarantee that the way �(u) and ∂�(u)

intersect does not prevent the H2-regularity ofψu in smooth situations (i.e. u ∈ S∩W 2∞(D)),
see [10].

Theorem 1.1 Suppose (2.1) below.

(a) For each u ∈ S̄, there is a unique variational solution ψu ∈ hu + H1
0 (�(u)) to (1.2).

Moreover, ψu,1 := ψu |�1(u) ∈ H2(�1(u)) and ψu,2 := ψu |�2(u) ∈ H2(�2(u)), and ψu

is a strong solution to the transmission problem (1.2).
(b) Given κ > 0, there is c(κ) > 0 such that, for every u ∈ S̄ satisfying ‖u‖H2(D) ≤ κ ,

‖ψu‖H1(�(u)) + ‖ψu,1‖H2(�1(u)) + ‖ψu,2‖H2(�2(u)) ≤ c(κ) .

It is worth emphasizing that, for i ∈ {1, 2}, the restriction of ψu to �i (u) belongs to
H2(�i (u)) for all u ∈ S̄. In particular, there is no regularity breakdownwhen the coincidence
set C(u) is non-empty. Moreover, the H2-regularity of ψu is uniformly valid when u ranges
in a bounded subset of S̄. A similar observation is made in [7] for a different geometric
setting when one of the two subsets does not depend on the function u. Identifying other
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H2-regularity for a two-dimensional transmission... 1883

non-smooth geometries for which H2-regularity of the variational solution to a transmission
problem depends in a somewhat uniform way on some specific features of the domain is an
interesting issue, which is worth a forthcoming investigation.

Remark 1.2 When the upper part �2(v) is clamped at its lateral boundaries in the sense that

u ∈ H2
0 (D) := {v ∈ H2(D) ∩ H1

0 (D) : ∂xv(±L) = 0} ,

Theorem 1.1 applies whatever the values of σ1 and σ2.

Theorem 1.1 is an immediate consequence of Proposition 4.9 below. Its proof begins
with quantitative H2-estimates on ψu depending only on ‖u‖H2(D) for sufficiently smooth
functions in S, the H2-regularity of ψu being guaranteed by [10] in that case. Since the class
of functions for which these estimates are valid is dense in S̄, we complete the proof with a
compactness argument, the main difficulty to be faced being the dependence of �(u) on u.
More precisely, we begin with a variational approach to (1.2) and first show in Section 3 by
classical arguments that, given u ∈ S̄, the variational solution ψu to (1.2) corresponds to the
minimizer on hu + H1

0 (�(u)) of the associated Dirichlet energy

J (u)[θ ] := 1

2

∫

�(u)

σ |∇θ |2 d(x, z) , θ ∈ hu + H1
0 (�(u)) .

Thanks to this characterization, we use 
-convergence tools to show the H1-stability of
ψu with respect to u in Sect. 3.2. Section 4 is devoted to the study of the H2-regularity
of ψu which we first establish in Sect. 4.1 for smooth functions u ∈ S ∩ W 2∞(D) (thus
having an empty coincidence set), relying on the analysis performed in [10]. It is worth
mentioning that the constraint involving �σ � in the definition of S comes into play here. For
u ∈ S ∩ W 2∞(D), we next derive quantitative H2-estimates on ψu which only depend on
‖u‖H2(D) as stated in Theorem 1.1 (b), see Sect. 4.2. The building block is an identity in the
spirit of [4, Lemma 4.3.1.2] allowing us to interchange derivatives with respect to x and z in
some integrals involving second-order derivatives, its proof being provided inAppendix 1.We
then combine these estimates with the already proved H1-stability of variational solutions
to (1.2) and use a compactness argument to extend the H2-regularity of ψu to arbitrary
functions u ∈ S̄ in Sect. 4.3. In this step, special care is required to cope with the variation
of the functional spaces with u. In fact, as a side product of the proof of Theorem 1.1, we
obtain qualitative information on the continuous dependence of ψu with respect to u, which
we collect in the next result.

Theorem 1.3 Suppose (2.1) below. Let κ > 0, u ∈ S̄, and consider a sequence (un)n≥1 in S̄
such that

‖un‖H2(D) ≤ κ , n ≥ 1 , lim
n→∞ ‖un − u‖H1(D) = 0 . (1.3)

Setting M := d + max
{‖u‖L∞(D) , supn≥1{‖un‖L∞(D)}

}
,

lim
n→∞

∥∥(ψun − hun ) − (ψu − hu)
∥∥
H1(�M )

= 0 . (1.4a)

In addition, if i ∈ {1, 2} and Ui is an open subset of �i (u) such that Ūi is a compact subset
of �i (u), then

ψun ,i⇀ψu,i in H2(Ui ) . (1.4b)
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Also, for any p ∈ [1,∞),

lim
n→∞

∥∥∇ψun ,2(·, un) − ∇ψu,2(·, u)
∥∥
L p(D,R2)

= 0 ,

lim
n→∞

∥∥∇ψun ,2(·, un + d) − ∇ψu,2(·, u + d)
∥∥
L p(D,R2)

= 0 .
(1.4c)

Clearly, the quantity M introduced in Theorem 1.3 is finite due to (1.3) and the continuous
embedding of H1(D) in C(D̄).

Remark 1.4 An interesting issue is the extension of the above results to a three-dimensional
setting, where D is a bounded domain of R2 instead of an interval. There are, however, at
least two difficulties to overcome, which are both of geometric nature. On the one hand,
the coincidence set C(u) defined in (1.1) is no longer a countable union of open intervals
when D is a two-dimensional domain and it might have a much more complicated structure.
The former property plays an essential role in the proof of Proposition 4.9 (a) below. On the
other hand, the 
-convergence argument involved in the proof of Proposition 3.3 strongly
makes use of the two-dimensional geometry of �(u). In fact, the literature on regularity
of solutions to transmission problems in non-smooth three-dimensional domains when the
interfaces intersect the outer boundary seems to be rather sparse and restricted to specific
geometries. We refer to [1, 3, 5, 11, 13] for results in that direction.

Notation Given v ∈ S̄, f ∈ L2(�(v)), and i ∈ {1, 2}, we denote the restriction of f to
�i (v) by fi ; that is, fi := f |�i (v).

Throughout the paper, c and (ck)k≥1 denote positive constants depending only on L , H ,
d , σ1, and σ2. The dependence upon additional parameters will be indicated explicitly.

2 The boundary values

We state the precise assumptions on the function hv occurring in (1.2c). Roughly speaking,
we assume that it is the trace on ∂�(v) of a function hv ∈ H1(�(v)) which is such that
h|�i (v) belongs to H2(�i (v)) for i = 1, 2 and satisfies the transmission conditions (1.2b),
as well as suitable boundedness and continuity properties with respect to v.

Specifically, for every v ∈ S̄, let

hv : D × (−H ,∞) → R

be such that

hv ∈ H1(�(v)) , hv,i := hv|�i (v) ∈ H2(�i (v)
)
, i = 1, 2 , (2.1a)

and suppose that hv satisfies the transmission conditions

�hv� = �σ∇hv� · n�(v) = 0 on �(v) . (2.1b)

For κ > 0 given, there is c(κ) > 0 such that, for all v ∈ S̄ satisfying ‖v‖H2(D) ≤ κ ,

‖hv,i‖H2(�i (v)) ≤ c(κ) , i = 1, 2 . (2.1c)

Moreover, given v ∈ S̄ and a sequence (vn)n≥1 in S̄ satisfying

lim
n→∞ ‖vn − v‖H1(D) = 0 ,
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we assume that

lim
n→∞ ‖hvn − hv‖H1(D×(−H ,M)) = 0 (2.1d)

and

lim
n→∞ ‖hvn (·, vn + d) − hv(·, v + d)‖C(D̄) = 0 , (2.1e)

where

M := d + max

{

‖v‖L∞(D) , sup
n≥1

{‖vn‖L∞(D)}
}

< ∞ .

Observe that the convergence of (vn)n≥1, the continuous embedding of H1(D) in C(D̄), and
(2.1d) imply that

lim
n→∞

∫

�(vn)

σ |∇hvn |2 d(x, z) =
∫

�(v)

σ |∇hv|2 d(x, z) . (2.2)

From now on, we impose the conditions (2.1) throughout.
We finish this short section by providing an example of hv satisfying the imposed condi-

tions (2.1).

Example 2.1 Let ζ ∈ C2(R) be such that ζ |(−∞,1] ≡ 0 and ζ |[1+d,∞) ≡ V for some V > 0.
Given v ∈ S̄, put

hv(x, z) := ζ(z − v(x) + 1) , −H ≤ z , x ∈ D̄ . (2.3)

Then (2.1a)–(2.1e) are satisfied. In addition,

hv(x,−H) = 0 , hv(x, v(x) + d) = V , x ∈ D .

In the context of a MEMS device alluded to in the introduction, these additional properties
mean that the ground plate and the top of the elastic plate are kept at constant potential. For
instance, ζ(r) := V min{1, (r − 1)2/d2} for r > 1 and ζ ≡ 0 on (−∞, 1] will do.

3 Variational solution to (1.2)

In this section we investigate the properties of the variational solution ψv to (1.2) for v ∈ S̄
and, in particular, its H1-stability.

3.1 A variational approach to (1.2)

Given v ∈ S̄ we introduce the set of admissible potentials

A(v) := hv + H1
0 (�(v)) ,

on which we define the functional

J (v)[θ ] := 1

2

∫

�(v)

σ |∇θ |2 d(x, z) , θ ∈ A(v) . (3.1)

The variational solution ψv to the transmission problem (1.2) is then the minimizer of the
functional J (v) on the set A(v):
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Lemma 3.1 For each v ∈ S̄ there is a unique minimizer ψv ∈ A(v) of J (v) on A(v); that
is,

J (v)[ψv] = min
θ∈A(v)

J (v)[θ ] . (3.2)

In addition,
∫

�(v)

σ |∇ψv|2 d(x, z) ≤
∫

�(v)

σ |∇hv|2 d(x, z) . (3.3)

Proof Let v ∈ S̄ and recall that hv ∈ H1(�(v)) according to (2.1a). Thus, the existence
of a minimizer ψv of J (v) on A(v) readily follows from the direct method of calculus of
variations due to the lower semicontinuity and coercivity of J (v) on A(v), the latter being
ensured by the assumption σ ≥ min{σ1, σ2} > 0 and Poincaré’s inequality. The uniqueness
of ψv is guaranteed by the strict convexity of J (v). Next, since obviously hv ∈ A(v), the
inequality (3.3) is an immediate consequence of the minimizing property (3.2) of ψv . ��

For further use, we report the following version of Poincaré’s inequality for functions in
H1
0 (�(v)) with a constant depending mildly on v ∈ S̄.

Lemma 3.2 Let v ∈ S̄ and θ ∈ H1
0 (�(v)). Then

‖θ‖L2(�(v)) ≤ 2‖H + d + v‖L∞(D)‖∂zθ‖L2(�(v)) .

Proof For x ∈ D and z ∈ (−H , v(x) + d),

θ(x, z)2 = 2
∫ z

−H
θ(x, y)∂zθ(x, y) dy .

Hence, after integration with respect to (x, z) over �(v),

‖θ‖2L2(�(v)) =
∫

�(v)

θ(x, z)2 d(x, z)

≤ 2‖H + d + v‖L∞(D)

∫

�(v)

|θ(x, y)||∂zθ(x, y)| d(x, z)
≤ 2‖H + d + v‖L∞(D)‖θ‖L2(�(v))‖∂zθ‖L2(�(v)) ,

from which we deduce the stated inequality. ��

3.2 H1-stability ofÃv

The purpose of this section is to study the continuity properties of the solution ψv to (3.2)
with respect to v. More precisely, we aim at establishing the following result.

Proposition 3.3 Consider v ∈ S̄ and a sequence (vn)n≥1 in S̄ such that

vn → v in H1
0 (D) , (3.4)

and set

M := d + max

{

‖v‖L∞(D) , sup
n≥1

{‖vn‖L∞(D)}
}

, (3.5)
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which is finite by (3.4) and the continuous embedding of H1(D) in C(D̄). Then

lim
n→∞

∥∥(ψvn − hvn ) − (ψv − hv)
∥∥
H1
0 (D×(−H ,M))

= 0

and

lim
n→∞J (vn)[ψvn ] = J (v)[ψv] .

To prove Proposition 3.3, we make use of a 
-convergence approach and argue as in
[7, Section 3.2] with minor changes. We thus omit the proof here and refer to the extended
version of this paper [8] for details.

4 H2-regularity

In the previous section we introduced the variational solution ψv ∈ H1(�(v)) to (1.2) for
arbitrary v ∈ S̄ and noticed its continuous dependence in H1(�(v)) with respect to v. We
now aim at improving the H1-regularity of ψv|�i (v) to H2(�i (v)) for i = 1, 2. To this end
we first consider the case of smooth functions v ∈ S ∩W 2∞(D) with empty coincidence sets
and provide in Sects. 4.1 and 4.2 the corresponding H2-estimates that depend only on the
norm of v in H2(D) (but not on itsW 2∞(D)-norm). In Sect. 4.3 we extend these estimates to
the general case v ∈ S̄ by means of a compactness argument.

4.1 H2-regularity for v ∈ S ∩ W2∞(D)

Assuming that v is smoother with an empty coincidence set, see Fig. 1, the existence of a
strong solution ψv to (1.2) is a consequence of the analysis performed in [10].

Proposition 4.1 If v ∈ S ∩ W 2∞(D), then the variational solution ψv to (3.2) satisfies

ψv,i := ψv|�i (v) ∈ H2(�i (v)) , i = 1, 2 ,

and the transmission problem

div(σ∇ψv) = 0 in �(v) , (4.1a)

�ψv� = �σ∇ψv� · n�(v) = 0 on �(v) , (4.1b)

ψv = hv on ∂�(v) . (4.1c)

Moreover, ∂xψv + ∂xv∂zψv and −σ∂xv∂xψv + σ∂zψv both belong to H1(�(v)).

Besides [10], the proof of Proposition 4.1 requires the following auxiliary result.

Lemma 4.2 Let v ∈ S̄ and consider φ ∈ L2(�(v)) such that

φi := φ|�i (v) ∈ H1(�i (v)) , i = 1, 2 ,

and �φ� = 0 on �(v). Then φ ∈ H1(�(v)) and

‖φ‖H1(�(v)) ≤ ‖φ1‖H1(�1(v)) + ‖φ2‖H1(�2(v)) . (4.2)
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Proof We set ex = (1, 0) and ez = (0, 1). Given θ ∈ C∞
c

(
�(v)

)
and j ∈ {x, z} we note

that

∫

�(v)

φ∂ jθ d(x, z) =
∫

�(v)

div(φθe j ) d(x, z) −
2∑

i=1

∫

�i (v)

θ∂ jφi d(x, z)

=
∫

�(v)

�φ� θe j · n�(v) dσ�(v) −
2∑

i=1

∫

�i (v)

θ∂ jφi d(x, z) ,

due to Gauß’ theorem. Thus, since �φ� = 0 on �(v),
∣∣∣∣

∫

�(v)

φ∂ jθ d(x, z)

∣∣∣∣ ≤ (‖φ1‖H1(�1(v)) + ‖φ2‖H1(�2(v))

) ‖θ‖L2(�(v)) ,

for j = x, z and θ ∈ C∞
c

(
�(v)

)
. Consequently, φ ∈ H1(�(v)). ��

Proof of Proposition 4.1 We check that the transmission problem (4.1) fits into the framework
of [10]. Since v ∈ S ∩ W 2∞(D) and v(±L) = 0, the boundaries of �1(v) and �2(v) are
W 2∞-smooth curvilinear polygons and the interface�(v)meets the boundary ∂�(v) of�(v)

at the vertices A± := (±L, 0). Moreover, at the vertex A±, themeasuresω±,1 andω±,2 of the
angles between −ez and (1,∓∂xv(±L)) and between (1,∓∂xv(±L)) and ez , respectively,
satisfy ω±,1 + ω±,2 = π , as well as

ω±,2 ≥ π

2
if �σ � < 0 ,

ω±,2 ≤ π

2
if �σ � > 0 ,

by definition of S. According to the analysis performed in [10], these conditions guarantee
that the variational solution ψv to (3.2) provided by Lemma 3.1 satisfies ψv,i = ψv|�i (v) ∈
H2(�i (v)) for i = 1, 2 and solves the transmission problem (1.2) in a strong sense.

Next, owing to the just established H2-regularity of ψv,1 and ψv,2, we may differentiate
with respect to x the transmission condition �ψv�(x, v(x)) = 0, x ∈ D, and find that

�∂xψv + ∂xv∂zψv� = 0 on �(v) .

The stated H1-regularity of ∂xψv + ∂xv∂zψv then follows from Lemma 4.2 and the bound-
edness of ∂xv and ∂2x v. In the same vein, due to (1.2b), the regularity of v, and the identity

�−σ∂xv∂xψv + σ∂zψv�√
1 + (∂xv)2

= �σ∇ψv� · n�(v) = 0 ,

the claimed H1-regularity of −σ∂xv∂xψv + σ∂zψv is again a consequence of Lemma 4.2
and the boundedness of ∂xv and ∂2x v. ��

4.2 H2-Estimates onÃv for v ∈ S ∩ W2∞(D)

The H2-regularity of ψv being guaranteed by Proposition 4.1 for v ∈ S ∩ W 2∞(D), the
next step is to show that this property extends to any v ∈ S̄. To this end, we shall now
derive quantitative H2-estimates on ψv , paying special attention to their dependence upon
the regularity of v. As in [7], it turns out to be more convenient to study a non-homogeneous
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H2-regularity for a two-dimensional transmission... 1889

transmission problem with homogeneous Dirichlet boundary conditions instead of (4.1).
Specifically, for v ∈ S ∩ W 2∞(D), we define

χ = χv := ψv − hv ∈ H1
0 (�(v)) , (4.3)

where ψv ∈ H1(�(v)) is the unique solution to (4.1) provided by Proposition 4.1. Since
ψv,i = ψv|�i (v) belongs to H2(�i (v)) for i = 1, 2, we readily infer from (2.1a) and (4.3)
that

χi := χv|�i (v) ∈ H2(�i (v)) , i = 1, 2 . (4.4)

We omit in the following the dependence of χ on v for ease of notation.
According to (2.1a), (2.1b), and Proposition 4.1, χ solves the transmission problem

div(σ∇χ) = −div(σ∇hv) in �(v) , (4.5a)

�χ� = �σ∇χ� · n�(v) = 0 on �(v) , (4.5b)

χ = 0 on ∂�(v) , (4.5c)

and it follows from (2.1a) that it is equivalent to derive H2-estimates on (ψv,1, ψv,2) or
(χ1, χ2).

For that purpose, we transform (4.5) to a transmission problem on the rectangle R :=
D × (0, 1 + d). More precisely, we introduce the transformation

T1(x, z) :=
(
x,

z + H

v(x) + H

)
, (x, z) ∈ �1(v) , (4.6)

mapping �1(v) onto the rectangle R1 := D × (0, 1), and the transformation

T2(x, z) := (x, z − v(x) + 1) , (x, z) ∈ �2(v) , (4.7)

mapping �2(v) onto the rectangle R2 := D × (1, 1 + d). The interface separating R1 and
R2 is

�0 := D × {1} ,

so that

R = D × (0, 1 + d) = R1 ∪ R2 ∪ �0 .

It is worth pointing out here that T1 is well-defined due to v ∈ S. Let (x, η) denote the
new variables in R; that is, (x, η) = T1(x, z) for (x, z) ∈ R1 and (x, η) = T2(x, z) for
(x, z) ∈ R2. Then, (4.4) implies

� := �11R1 + �21R2 ∈ H1
0 (R) , �i := χi ◦ T−1

i ∈ H2(Ri ) , i = 1, 2 . (4.8)

For further use, we also introduce

σ̂ (x, η) :=
{ σ1

v(x) + H
, (x, η) ∈ R1 ,

σ2 , (x, η) ∈ R2 ,

and derive the following fundamental identity for �, which provides a connection between
some integrals involving products of second-order derivatives of � and is in the spirit of [4,
Lemma 4.3.1.2], [7, Lemma 3.4], and [10, Lemme II.2.2].
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Lemma 4.3 Given v ∈ S ∩ W 2∞(D), the function � defined in (4.8) satisfies

2∑

i=1

∫

Ri

σ̂ ∂2x�i ∂
2
η�i d(x, η) =

2∑

i=1

∫

Ri

σ̂ |∂x∂η�i |2 d(x, η)

− σ1

∫

R1

∂xv

(v + H)2
∂η�1∂x∂η�1 d(x, η)

+ 1

2

∫

D

∂2x v
(
(∂xv)2 − 1

)

(1 + (∂xv)2)2

�
σ(∂x�)2

�
(x, 1) dx .

Proof We adapt the proof of [7, Lemma 3.4] and [10, Lemme II.2.2]. Note that (4.5b), (4.6),
(4.7), and (4.8) imply ��� = 0 on �0, so that

�∂x�� = 0 on �0 . (4.9)

Consequently, since (∂x�1, ∂x�2) lies in H1(R1) × H1(R2) by (4.8), we may argue as in
the proof of Lemma 4.2 and deduce from (4.9) that

F := ∂x� ∈ H1(R) .

Moreover, by (4.8),

F(x, 0) = F(x, 1 + d) = 0 , x ∈ D . (4.10)

Similarly, setting

G := −σ
∂xv

1 + (∂xv)2
∂x� + σ̂ ∂η�,

we derive from (4.8) that Gi := G|Ri ∈ H1(Ri ) for i = 1, 2, while (4.5b), (4.6), (4.7), and
(4.8) imply that, for x ∈ D,

G1(x, 1) = σ1√
1 + (∂xv(x))2

[−∂xv(x)∂xχ1(x, v(x)) + ∂zχ1(x, v(x))
]

= σ2√
1 + (∂xv(x))2

[−∂xv(x)∂xχ2(x, v(x)) + ∂zχ2(x, v(x))
] = G2(x, 1) ;

that is, �G� = 0 on �0, and we argue as in the proof of Lemma 4.2 to conclude that

G ∈ H1(R) .

In addition, by (4.8),

G(±L, η) = −σ(±L, η)

(
∂xv

1 + (∂xv)2

)
(±L)∂x�(±L, η) + σ̂ (±L, η)∂η�(±L, η)

= −σ(±L, η)

(
∂xv

1 + (∂xv)2

)
(±L)∂x�(±L, η)

for η ∈ (0, 1 + d). Hence,

G(±L, η) + σ(±L, η)

(
∂xv

1 + (∂xv)2

)
(±L)F(±L, η) = 0 , η ∈ (0, 1 + d) . (4.11)

Owing to (4.10), (4.11), and the H1-regularity of F and G, we are in a position to apply
Lemma A.1 (see Appendix 1) with

(V ,W ) = (F,G) and τ± = σ

(
∂xv

1 + (∂xv)2

)
(±L) ,
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to obtain the identity
∫

R
∂x F∂ηG d(x, η) =

∫

R
∂ηF∂xG d(x, η) . (4.12)

Using the definitions of F and G, the identity (4.12) reads

2∑

i=1

∫

Ri

∂2x�i

(
−σ

∂xv

1 + (∂xv)2
∂x∂η�i + σ̂ ∂2η�i

)
d(x, η)

=
2∑

i=1

∫

Ri

∂x∂η�i

(
−σ

∂xv

1 + (∂xv)2
∂2x�i − σ

∂2x v[1 − (∂xv)2]
[1 + (∂xv)2]2 ∂x�i

)
d(x, η)

+
2∑

i=1

∫

Ri

∂x∂η�i

(
∂x σ̂ ∂η�i + σ̂ ∂ x∂η�i

)
d(x, η) .

Noticing that the first terms on both sides of the above identity are the same and that

∂x�i∂x∂η�i = 1

2
∂η

(
(∂x�i )

2)

implies that

2∑

i=1

∫

Ri

σ
∂2x v

[
(∂xv)2) − 1

]

[1 + (∂xv)2]2 ∂x�i∂x∂η�i d(x, η)

= 1

2

∫

D

∂2x v
[
(∂xv)2 − 1

]

[1 + (∂xv)2]2
�
σ(∂x�)2

�
(x, 1) dx ,

the assertion follows, recalling that ∂x σ̂ = 0 in R2. ��
Remark 4.4 If ∂xv(±L) = 0, then (4.11) reduces to G(±L, η) = 0 for η ∈ (0, 1 + d)

and the crucial identity (4.12) used in the proof of Lemma 4.3 directly follows from [4,
Lemma 4.3.1.2]. For the general case v ∈ S, we require the extension given in Lemma A.1.

We now translate the outcome of Lemma 4.3 in terms of the solution χ to (4.5).

Lemma 4.5 Let v ∈ S ∩ W 2∞(D). The solution χ = ψv − hv to (4.5) satisfies

2∑

i=1

∫

�i (v)

σ ∂2xχi ∂
2
z χi d(x, z) =

2∑

i=1

∫

�i (v)

σ |∂x∂zχi |2 d(x, z)

− σ2

2

∫

D
∂2x v(x)

(
∂zχ2(x, v(x) + d)

)2 dx

− 1

2

∫

D

∂2x v(x)

1 + (∂xv(x))2

�
σ |∇χ |2

� (
x, v(x)

)
dx .

Proof Let us first recall the regularity of � stated in (4.8) which validates the subsequent
computations. Using the transformations T1 and T2 introduced in (4.6) and (4.7), respectively,
we obtain

2∑

i=1

∫

�i (v)

σ ∂2xχi ∂
2
z χi d(x, z)
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=
∫

R1

σ1

v + H

[
∂2x�1 + η

(
2
( ∂xv

v + H

)2 − ∂2x v

v + H

)
∂η�1 − 2η

∂xv

v + H
∂x∂η�1

+ η2
( ∂xv

v + H

)2
∂2η�1

]
∂2η�1 d(x, η)

+
∫

R2

σ2

[
∂2x�2 − 2∂xv∂x∂η�2 − ∂2x v∂η�2 + (∂xv)2∂2η�2

]
∂2η�2 d(x, η)

=
2∑

i=1

∫

Ri

σ̂ ∂2x�i ∂
2
η�i d(x, η)

+
∫

R1

σ1

v + H

[
η
(
2
( ∂xv

v + H

)2 − ∂2x v

v + H

)
∂η�1 − 2η

∂xv

v + H
∂x∂η�1

+ η2
( ∂xv

v + H

)2
∂2η�1

]
∂2η�1 d(x, η)

+
∫

R2

σ2

[
− 2∂xv∂x∂η�2 − ∂2x v∂η�2 + (∂xv)2∂2η�2

]
∂2η�2 d(x, η) .

We use Lemma 4.3 to express the first integral on the right-hand side and get

2∑

i=1

∫

�i (v)

σ ∂2xχi ∂
2
z χi d(x, z)

=
∫

R1

σ̂ |∂x∂η�1|2 d(x, η) +
∫

R2

σ̂ |∂x∂η�2|2 d(x, η)

+
∫

R1

σ1

v + H

[
− ∂xv

v + H
∂η�1∂x∂η�1 − 2η

∂xv

v + H
∂x∂η�1∂

2
η�1

+ η2
( ∂xv

v + H

)2∣∣∂2η�1
∣∣2 + 2η

( ∂xv

v + H

)2
∂η�1∂

2
η�1

− η
∂2x v

v + H
∂η�1∂

2
η�1

]
d(x, η)

+
∫

R2

σ2

[
− 2∂xv∂x∂η�2∂

2
η�2 − ∂2x v∂η�2∂

2
η�2 + (∂xv)2

∣∣∂2η�2
∣∣2

]
d(x, η)

+ 1

2

∫

D

∂2x v
(
(∂xv)2 − 1

)

(1 + (∂xv)2)2

�
σ(∂x�)2

�
(x, 1) dx . (4.13)

We then compute separately the integrals over Ri , i = 1, 2, and begin with the contribution
of R1. We complete the square to get

I1 :=
∫

R1

σ1

v + H

[
|∂x∂η�1|2 − ∂xv

v + H
∂η�1∂x∂η�1 − 2η

∂xv

v + H
∂x∂η�1∂

2
η�1

+ η2
( ∂xv

v + H

)2∣∣∂2η�1
∣∣2 + 2η

( ∂xv

v + H

)2
∂η�1∂

2
η�1

− η
∂2x v

v + H
∂η�1∂

2
η�1

]
d(x, η)

=
∫

R1

σ1

v + H

[∣∣∂x∂η�1
∣∣2 +

( ∂xv

v + H

)2∣∣∂η�1
∣∣2 + η2

( ∂xv

v + H

)2∣∣∂2η�1
∣∣2
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− 2η
∂xv

v + H
∂x∂η�1∂

2
η�1 + 2η

( ∂xv

v + H

)2
∂η�1∂

2
η�1

− 2
∂xv

v + H
∂η�1∂x∂η�1

]
d(x, η)

+
∫

R1

σ1

v + H

[
−

( ∂xv

v + H

)2∣∣∂η�1
∣∣2 + ∂xv

v + H
∂η�1∂x∂η�1

− η
∂2x v

v + H
∂η�1∂

2
η�1

]
d(x, η)

=
∫

R1

σ1(v + H)

[
∂x∂η�1

v + H
− ∂xv

(v + H)2
∂η�1 − η

∂xv

(v + H)2
∂2η�1

]2
d(x, η)

+
∫

R1

σ1∂xv

[
1

(v + H)2
∂η�1∂x∂η�1 − ∂xv

(v + H)3

(
∂η�1

)2
]
d(x, η)

−
∫

R1

σ1
∂2x v

(v + H)2
η ∂η�1∂

2
η�1 d(x, η) .

Thanks to the identities

1

(v + H)2
∂η�1∂x∂η�1 − ∂xv

(v + H)3

(
∂η�1

)2 = 1

2
∂x

((
∂η�1

v + H

)2
)

,

∂η�1∂
2
η�1 = 1

2
∂η

(
∂η�1

)2
,

and the property ∂η�1(±L, η) = 0 for η ∈ (0, 1) stemming from (4.8), we may perform
integration by parts in the last two integrals on the right-hand side of the previous identity
and obtain

I1 =
∫

R1

σ1(v + H)

[
∂x∂η�1

v + H
− ∂xv

(v + H)2
∂η�1 − η

∂xv

(v + H)2
∂2η�1

]2
d(x, η)

− σ1

2

∫

D

∂2x v

(v + H)2

(
∂η�1(x, 1)

)2 dx .

Transforming the above identity back to �1(v) yields

I1 =
∫

�1(v)

σ1
∣∣∂x∂zχ1

∣∣2 d(x, z) − σ1

2

∫

D
∂2x v(x)

(
∂zχ1(x, v(x))

)2 dx . (4.14)

Next, arguing in a similar way,

I2 := σ2

∫

R2

[∣∣∂x∂η�2
∣∣2 − 2∂xv∂x∂η�2∂

2
η�2 − ∂2x v∂η�2∂

2
η�2 + (∂xv)2

∣∣∂2η�2
∣∣2

]
d(x, η)

= σ2

∫

R2

[∣∣∂x∂η�2
∣∣2 − 2∂xv∂x∂η�2∂

2
η�2 + (∂xv)2

∣∣∂2η�2
∣∣2

]
d(x, η)

− σ2

2

∫

R2

∂2x v∂η

(
∂η�2

)2 d(x, η)

= σ2

∫

R2

[
∂x∂η�2 − ∂xv∂2η�2

]2
d(x, η) − σ2

2

∫

D
∂2x v(x)

(
∂η�2(x, 1 + d)

)2 dx

+ σ2

2

∫

D
∂2x v(x)

(
∂η�2(x, 1)

)2 dx .
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Transforming this formula back to �2(v) yields

I2 = σ2

∫

�2(v)

∣∣∂x∂zχ2
∣∣2 d(x, z) − σ2

2

∫

D
∂2x v(x)

(
∂zχ2(x, v(x) + d)

)2 dx

+ σ2

2

∫

D
∂2x v(x)

(
∂zχ2(x, v(x))

)2 dx .

(4.15)

Finally,
∫

D

∂2x v
[
(∂xv)2 − 1

]

[1 + (∂xv)2]2
�
σ(∂x�)2

�
(x, 1) dx

=
∫

D

∂2x v
[
(∂xv)2 − 1

]

[1 + (∂xv)2]2
�
σ(∂xχ + ∂xv∂zχ)2

�
(x, 1) dx ,

and we deduce from (4.13), (4.14), (4.15), and the above identity that

2∑

i=1

∫

�i (v)

σ ∂2xχi ∂
2
z χi d(x, z)

=
2∑

i=1

∫

�i (v)

σ
∣∣∂x∂zχi

∣∣2 d(x, z) − σ2

2

∫

D
∂2x v(x)

(
∂zχ2(x, v(x) + d)

)2 dx

−1

2

∫

D
∂2x v(x)

�
σ
(
∂zχ2

)2�
(x, v(x)) dx

+1

2

∫

D

∂2x v
[
(∂xv)2 − 1

]

[1 + (∂xv)2]2
�
σ
(
∂xχ + ∂xv∂zχ

)2�
(x, v(x)) dx . (4.16)

It remains to simplify the last two integrals on the right-hand side of (4.16). To this end, we
first recall that the regularity of χ allows us to differentiate with respect to x the transmission
condition �χ� = 0 on �(v) to deduce that

�∂xχ + ∂xv∂zχ� = 0 on �(v) , (4.17)

while the second transmission condition in (4.5b) reads

�σ
(
∂xv∂xχ − ∂zχ

)
� = 0 on �(v) . (4.18)

In particular, (4.17) and (4.18) imply that, on �(v),

�σ
(
∂xv∂xχ − ∂zχ

)(
∂xχ + ∂xv∂zχ

)
� = (

∂xχ1 + ∂xv∂zχ1
)
�σ

(
∂xv∂xχ − ∂zχ

)
�

+ σ2
(
∂xv∂xχ2 − ∂zχ2

)
�
(
∂xχ + ∂xv∂zχ

)
�

= 0 .

Therefore,

J := [
(∂xv)2 − 1

]�
σ
(
∂xχ + ∂xv∂zχ

)2� − [1 + (∂xv)2]2
�
σ
(
∂zχ

)2�

= [
(∂xv)2 − 1

]�
σ
(
∂xχ + ∂xv∂zχ

)2� − [1 + (∂xv)2]2
�
σ
(
∂zχ

)2�

− 2∂xv
�
σ
(
∂xv∂xχ − ∂zχ

)(
∂xχ + ∂xv∂zχ

)�

=
�
σ
[
(∂xv)2 − 1 − 2(∂xv)2

](
∂xχ

)2�

+
�
σ
[
2∂xv

(
(∂xv)2 − 1

) − 2(∂xv)3 + 2∂xv
]
∂xχ∂zχ

�

123



H2-regularity for a two-dimensional transmission... 1895

+
�
σ
[
(∂xv)2

(
(∂xv)2 − 1

) + 2(∂xv)2 − [1 + (∂xv)2]2](∂zχ
)2�

= −[
1 + (∂xv)2

]�
σ
(
∂xχ

)2 + σ
(
∂zχ

)2�

= −[
1 + (∂xv)2

]�
σ |∇χ |2

�
.

Hence,

(∂xv)2 − 1

[1 + (∂xv)2]2
�
σ
(
∂xχ + ∂xv∂zχ

)2� −
�
σ
(
∂zχ

)2� = − 1

1 + (∂xv)2

�
σ |∇χ |2

�
. (4.19)

Consequently, (4.16) and (4.19) entail

2∑

i=1

∫

�i (v)

σ ∂2xχi ∂
2
z χi d(x, z) =

2∑

i=1

∫

�i (v)

σ |∂x∂zχi |2 d(x, z)

− 1

2

∫

D
σ2∂

2
x v(x)

(
∂zχ2(x, v(x) + d)

)2 dx

− 1

2

∫

D

∂2x v(x)

1 + (∂xv(x))2

�
σ |∇χ |2

� (
x, v(x)

)
dx ,

as claimed. ��

In order to estimate the boundary and the transmission terms in Lemma 4.5, we first report
the following trace estimates.

Lemma 4.6 Given κ > 0 and α ∈ (0, 1/2], there is c(α, κ) > 0 such that, for any v ∈ S̄
satisfying ‖v‖H2(D) ≤ κ and θ ∈ H1(�2(v)),

‖θ(·, v)‖Hα(D) + ‖θ(·, v + d)‖Hα(D) ≤ c(α, κ) ‖θ‖(1−2α)/2
L2(�2(v)) ‖θ‖(2α+1)/2

H1(�2(v))
.

Proof Let θ ∈ H1(�2(v)). Using the transformation T2 defined in (4.7) which maps �2(v)

onto the rectangleR2 = D× (1, 1+d), we note that φ := θ ◦T−1
2 belongs to H1(R2) with

‖φ‖L2(R2) = ‖θ‖L2(�2(v)) (4.20)

and

‖∇φ‖2L2(R2)
= ‖∂xθ + ∂xv∂zθ‖2L2(�2(v)) + ‖∂zθ‖2L2(�2(v)) ,

so that the continuous embedding of H2(D) inW 1∞(D) and the assumed bound on v readily
imply that

‖φ‖H1(R2)
≤ c(κ)‖θ‖H1(�2(v)) . (4.21)

By complex interpolation,

[L2(R2), H
1(R2)]α+1/2

.= Hα+1/2(R2) ,

from which we deduce that

‖φ‖Hα+1/2(R2)
≤ c(α)‖φ‖(1−2α)/2

L2(R2)
‖φ‖(2α+1)/2

H1(R2)
.
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Since α > 0, the trace maps Hα+1/2(R2) continuously on Hα(D × {1}), and we thus infer
from (4.20) and (4.21) that

‖θ(·, v)‖Hα(D) = ‖φ(·, 1)‖Hα(D) ≤ c(α)‖φ‖Hα+1/2(R2)

≤ c(α)‖φ‖(1−2α)/2
L2(R2)

‖φ‖(2α+1)/2
H1(R2)

≤ c(α, κ)‖θ‖(1−2α)/2
L2(�2(v))‖θ‖(2α+1)/2

H1(�2(v))
.

The estimate for ‖θ(·, v + d)‖Hα(D) is proved in a similar way. ��
Based on Lemma 4.6 we are in a position to estimate the boundary and transmission terms

in the identity provided by Lemma 4.5.

Lemma 4.7 Let ζ ∈ (3/4, 1) and κ > 0. There is c(ζ, κ) > 0 such that, if v ∈ S ∩ W 2∞(D)

satisfies ‖v‖H2(D) ≤ κ , then the solution χ = χv to (4.5) satisfies
∣∣∣∣
σ2

2

∫

D
∂2x v(x)

(
∂zχ2(x, v(x) + d)

)2 dx
∣∣∣∣

≤ c(ζ, κ) ‖∂zχ2‖2(1−ζ )

L2(�2(v)) ‖∂zχ2‖2ζH1(�2(v))

(4.22)

and
∣∣∣∣
1

2

∫

D

∂2x v(x)

1 + (∂xv(x))2

�
σ |∇χ |2

� (
x, v(x)

)
dx

∣∣∣∣

≤ c(ζ, κ) ‖∇χ2‖2(1−ζ )

L2(�2(v)) ‖∇χ2‖2ζH1(�2(v))
.

(4.23)

Proof To prove (4.22), let us first note that H ζ−1/2(D) embeds continuously into L4(D).
We use the Cauchy-Schwarz inequality and Lemma 4.6 with α = ζ − 1/2 and deduce

∣∣∣∣
σ2

2

∫

D
∂2x v(x)

(
∂zχ2(x, v(x) + d)

)2 dx
∣∣∣∣ ≤ σ2

2
‖∂2x v‖L2(D) ‖∂zχ2(·, v + d)‖2L4(D)

≤ c(κ) ‖∂zχ2(·, v + d)‖2H ζ−1/2(D)

≤ c(ζ, κ) ‖∂zχ2‖2(1−ζ )

L2(�2(v)) ‖∂zχ2‖2ζH1(�2(v))
.

As for (4.23) we obtain analogously
∣∣∣∣
σ2

2

∫

D

∂2x v(x)

1 + (∂xv(x))2

[(
∂xχ2(x, v(x))

)2 + (
∂zχ2(x, v(x))

)2] dx

∣∣∣∣

≤ σ2

2
‖∂2x v‖L2(D)‖∇χ2(·, v)‖2L4(D)

≤ c(ζ, κ) ‖∇χ2‖2(1−ζ )

L2(�2(v)) ‖∇χ2‖2ζH1(�2(v))
(4.24)

and
∣∣∣∣
σ1

2

∫

D

∂2x v(x)

1 + (∂xv(x))2

[(
∂xχ1(x, v(x))

)2 + (
∂zχ1(x, v(x))

)2] dx

∣∣∣∣

≤ σ1

2
‖∂2x v‖L2(D)‖∇χ1(·, v)‖2L4(D) .

(4.25)

At this point, we use (4.17) and (4.18) to show that

∂xχ1 = σ1 + σ2(∂xv)2

σ1
(
1 + (∂xv)2

)∂xχ2 + �σ �∂xv

σ1
(
1 + (∂xv)2

)∂zχ2 on �(v) ,
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∂zχ1 = �σ �∂xv

σ1
(
1 + (∂xv)2

)∂xχ2 + σ1 + σ2(∂xv)2

σ1
(
1 + (∂xv)2

)∂zχ2 on �(v) .

Consequently,

|∂xχ1| ≤ max{σ1, σ2}
σ1

(|∂xχ2| + |∂zχ2|) on �(v) ,

|∂zχ1| ≤ max{σ1, σ2}
σ1

(|∂xχ2| + |∂zχ2|) on �(v) ,

so that

‖∇χ1(·, v)‖L4(D) ≤ c‖∇χ2(·, v)‖L4(D) .

Owing to (4.25) and the above inequality, we may then argue as in the proof of (4.24) to
conclude that

∣∣∣∣
σ1

2

∫

D

∂2x v(x)

1 + (∂xv(x))2

[(
∂xχ1(x, v(x))

)2 + (
∂zχ1(x, v(x))

)2] dx

∣∣∣∣

≤ c(ζ, κ) ‖∇χ2‖2(1−ζ )

L2(�2(v)) ‖∇χ2‖2ζH1(�2(v))
,

as claimed in (4.23). ��
We now gather the previous findings to deduce the following crucial H2-estimate on the

solution ψv to (4.1) for v ∈ S ∩ W 2∞(D), which only depends on the H2(D)-norm of v (but
not on its W 2∞(D)-norm).

Proposition 4.8 Let κ > 0 and v ∈ S ∩ W 2∞(D) be such that ‖v‖H2(D) ≤ κ . There is a
constant c0(κ) > 0 such that the solution ψv to (4.1) satisfies

‖χ‖H1(�(v)) + ‖χ1‖H2(�1(v)) + ‖χ2‖H2(�2(v)) ≤ c0(κ) (4.26a)

and

‖ψv‖H1(�(v)) + ‖ψv,1‖H2(�1(v)) + ‖ψv,2‖H2(�2(v)) ≤ c0(κ) , (4.26b)

recalling that χ = ψv − hv and χi = χ |�i (v), i = 1, 2.

Proof Let v ∈ S ∩W 2∞(D) with ‖v‖H2(D) ≤ κ . Since σ is constant on �1(v) and on �2(v),
it readily follows from (4.5a) that

2∑

i=1

∫

�i (v)

σ |�χi |2 d(x, z) =
2∑

i=1

∫

�i (v)

σ |�hv,i |2 d(x, z) .

Since

|�χi |2 = |∂2xχi |2 + |∂2z χi |2 + 2∂2xχi∂
2
z χi , i = 1, 2 ,

we infer from Lemma 4.5 and the above two formulas that

2∑

i=1

∫

�i (v)

σ
{|∂2xχi |2 + 2|∂x∂zχi |2 + |∂2z χi |2

}
d(x, z)

=
2∑

i=1

∫

�i (v)

σ |�hv,i |2 d(x, z) + 2
2∑

i=1

∫

�i (v)

σ
(|∂x∂zχi |2 − ∂2xχi∂

2
z χi

)
d(x, z)
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≤
2∑

i=1

∫

�i (v)

σ |�hv,i |2 d(x, z) + σ2

∫

D
∂2x v(x)

(
∂zχ2(x, v(x) + d)

)2 dx

+
∫

D

∂2x v(x)

1 + (∂xv(x))2

�
σ |∇χ |2

� (
x, v(x)

)
dx .

Using Lemma 4.7 with ζ = 7/8, along with the identity

2∑

i=1

∫

�i (v)

σ
{|∂2xχi |2 + 2|∂x∂zχi |2 + |∂2z χi |2

}
d(x, z)

= σ1‖∇χ1‖2H1(�1(v))
+ σ2‖∇χ2‖2H1(�2(v))

,

we further obtain

σ1‖∇χ1‖2H1(�1(v))
+ σ2‖∇χ2‖2H1(�2(v))

≤
2∑

i=1

∫

�i (v)

σ |�hv,i |2 d(x, z) + c(κ) ‖∇χ2‖1/4L2(�2(v)) ‖∇χ2‖7/4H1(�2(v))
.

Hence, thanks to Young’s inequality,

σ1‖∇χ1‖2H1(�1(v))
+ σ2‖∇χ2‖2H1(�2(v))

≤
2∑

i=1

∫

�i (v)

σ |�hv,i |2 d(x, z) + σ2

2
‖∇χ2‖2H1(�2(v))

+ c(κ)‖∇χ2‖2L2(�2(v)) .

Recalling that

‖∇χ2‖2L2(�2(v)) ≤ 1

σ2

∫

�(v)

σ |∇χ |2 d(x, z) ≤ 1

σ2

∫

�(v)

σ |∇hv|2 d(x, z)

≤ max{σ1, σ2}
σ2

‖∇hv‖2L2(�(v))

by (4.5) and that min{σ1, σ2} > 0, we conclude that

‖∇χ1‖2H1(�1(v))
+ ‖∇χ2‖2H1(�2(v))

≤ c(κ)
(
‖�hv,1‖2L2(�1(v)) + ‖�hv,2‖2L2(�2(v)) + ‖∇hv‖2L2(�(v))

)
.
(4.27)

Owing to the continuous embedding of H2(D) in C(D̄), combining (4.27) and Lemma 3.2
leads us to the estimate

‖χ‖H1(�(v)) + ‖χ1‖H2(�1(v)) + ‖χ2‖H2(�2(v))

≤ c(κ)
(‖∇hv‖L2(�(v)) + ‖�hv,1‖2L2(�1(v)) + ‖�hv,2‖2L2(�2(v))

)
.

The bound (4.26a) then readily follows from the assumptions (2.1a) and (2.1c). Finally,
(4.26a), together with (2.1a) and (2.1c), yields (4.26b). ��

4.3 H2-regularity and H2-estimates onÃv for v ∈ S̄

Finally, we extend Propositions 4.1 and 4.8 by showing the H2-regularity of ψv and the
corresponding H2-estimates for an arbitrary v ∈ S̄; that is, we drop the additional W 2∞-
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w

Ω1(w)

Ω2(w)

D

Σ(w)

z

−H

0
d

−L LC(w)

Fig. 3 Geometry of �(w) for a state w ∈ S̄ with non-empty and disconnected coincidence set

regularity of v assumed in the previous sections and also allow for a non-empty coincidence
set.

Proposition 4.9 Let κ > 0 and v ∈ S̄ be such that ‖v‖H2(D) ≤ κ .

(a) The unique minimizer ψv ∈ A(v) of J (v) on A(v) provided by Lemma 3.1 satisfies

ψv,i = ψv|�i (v) ∈ H2(�i (v)) , i = 1, 2 ,

and is a strong solution to the transmission problem (4.1). Moreover, there is c1(κ) > 0
such that

‖ψv‖H1(�(v)) + ‖ψv,1‖H2(�1(v)) + ‖ψv,2‖H2(�2(v)) ≤ c1(κ) . (4.28)

(b) Consider a sequence (vn)n≥1 in S̄ satisfying

‖vn‖H2(D) ≤ κ , n ≥ 1 , and lim
n→∞ ‖vn − v‖H1(D) = 0. (4.29)

If i ∈ {1, 2} and Ui is an open subset of �i (v) such that Ūi is a compact subset of �i (v),
then

ψvn ,i⇀ψv,i in H2(Ui ) ,

recalling that ψvn ,i = ψvn |�i (vn).

The proof involves three steps: we first establish Proposition 4.9 (b) under the additional
assumption

sup
n≥1

{‖ψvn ,1‖H2(�1(vn))
+ ‖ψvn ,2‖H2(�2(vn))

}
< ∞ .

Building upon this result, we take advantage of the density of S ∩ W 2∞(D) in S̄ and of the
estimates derived in Proposition 4.8 to verify Proposition 4.9 (a) by a compactness argument.
Combining the previous steps leads us finally to a complete proof of Proposition 4.9 (b). We
thus start with the proof of Proposition 4.9 (b) when the solutions (ψvn )n≥1 to (4.1) associated
with the sequence (vn)n≥1 satisfies the above additional bound. We state this result as a
separate lemma for definiteness.

Lemma 4.10 Let κ > 0 and v ∈ S̄ be such that ‖v‖H2(D) ≤ κ and consider a sequence
(vn)n≥1 in S̄ satisfying (4.29). Assume further that, for each n ≥ 1, (ψvn ,1, ψvn ,2) belongs
to H2(�1(vn)) × H2(�2(vn)) and that there is μ > 0 such that

‖ψvn ,1‖H2(�1(vn))
+ ‖ψvn ,2‖H2(�2(vn))

≤ μ , n ≥ 1 . (4.30)
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Thenψv,i ∈ H2(�i (v)), i = 1, 2. In addition, if i ∈ {1, 2} and Ui is an open subset of�i (v)

such that Ūi is a compact subset of �i (v), then

ψvn ,i⇀ψv,i in H2(Ui )

and

‖ψv,1‖H2(�1(v)) + ‖ψv,2‖H2(�2(v)) ≤ μ . (4.31)

The proof is very close to that of [7, Proposition 3.13 & Corollary 3.14], so that we omit
the details here and refer to the extended version of this paper [8] instead.

Proof of Proposition 4.9 (a) Let v ∈ S̄ be such that ‖v‖H2(D) ≤ κ . Wemay choose a sequence
(vn)n≥1 in S ∩ W 2∞(D) satisfying

vn → v in H2(D) , sup
n≥1

‖vn‖H2(D) ≤ 2κ . (4.32)

Owing to (4.32) and the regularity property vn ∈ S ∩ W 2∞(D), n ≥ 1, Proposition 3.3
guarantees that (ψvn ,1, ψvn ,2) belongs to H2(�1(vn)) × H2(�2(vn)) and (ψvn )n≥1 satis-
fies (4.30) with μ = c0(2κ). We then infer from Lemma 4.10 that (ψv,1, ψv,2) belongs to
H2(�1(v)) × H2(�2(v)) and satisfies

‖ψv,1‖H2(�1(v)) + ‖ψv,2‖H2(�2(v)) ≤ c0(2κ) .

Combining the above bound with (2.1d) and Lemma 4.10 gives (4.28). Checking that ψv is
a strong solution to (4.1) is then done as in [7, Corollary 3.14], see also the extended version
of this paper [8] for a complete proof. ��
Proof of Proposition 4.9 (b) Proposition 4.9 (b) is now a straightforward consequence of
Proposition 4.9 (a) and Lemma 4.10. ��
Proof of Theorem 1.1 The proof of Theorem 1.1 readily follows from Proposition 4.9 (a). ��

We supplement the H2-weak continuity ofψv with respect to v reported in Proposition 4.9
with the continuity of the traces of ∇ψv,2 on the upper and lower boundaries of �2(v).

Proposition 4.11 Let κ > 0 and v ∈ S̄ be such that ‖v‖H2(D) ≤ κ and consider a sequence
(vn)n≥1 in S̄ satisfying (4.29). Then, for p ∈ [1,∞),

∇ψvn ,2(·, vn) → ∇ψv,2(·, v) in L p(D,R2) , (4.33)

∇ψvn ,2(·, vn + d) → ∇ψv,2(·, v + d) in L p(D,R2) , (4.34)

and

‖∇ψv,2(·, v)‖L p(D,R2) + ‖∇ψv,2(·, v + d)‖L p(D,R2) ≤ c(p, κ) . (4.35)

Proof Recall first from (4.28) that

‖ψvn ,2‖H2(�2(vn))
≤ c1(κ) , n ≥ 1 . (4.36)

As in the proof of Lemma 4.6 we map �2(v) onto the rectangle R2 = D × (1, 1 + d) and
define, for (x, η) ∈ R2 and n ≥ 1,

φn(x, η) := ψvn ,2(x, η + vn(x) − 1) , φ(x, η) := ψv,2(x, η + v(x) − 1) .
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Let q ∈ (1, 2). Since

∇φn(x, η) =
(
∂xψvn + ∂xvn∂zψvn , ∂zψvn

)
(x, η + vn(x) − 1) ,

∂2xφn(x, η) =
(
∂2xψvn +2∂xvn∂x∂zψvn +(∂xvn)

2∂2z ψvn +∂2x vn∂zψvn

)
(x, η + vn(x) − 1) ,

∂x∂ηφn(x, η) =
(
∂x∂zψvn + ∂xvn∂

2
z ψvn

)
(x, η + vn(x) − 1) ,

∂2ηφn(x, η) = ∂2z ψvn (x, η + vn(x) − 1) ,

it follows from (4.29), (4.36), the continuous embedding of H2(D) in C1(D̄), and that of
H1(R2) in L2q/(2−q)(R2) that

φn ∈ W 2
q (R2) with ‖φn‖W 2

q (R2)
≤ c(q, κ) , n ≥ 1 . (4.37)

Now, given p ∈ [1,∞), we choose q ∈ (1,min{2, p}) satisfying 1 < 2/q < 1 + 1/p
and s ∈ (2/q − 1/p, 1). Since

φn⇀φ in W 2
q (R2)

by (2.1d), (4.37), and Proposition 4.9, the continuity of the trace as a mapping fromW 1
q (R2)

to W 1−1/q
q (D × {1}) and the compactness of the embedding of W 1−1/q

q (D) in L p(D) imply
that

∇φn(·, 1) → ∇φ(·, 1) in Ws−1/q
q (D) (4.38)

and

‖∇φ(·, 1)‖L p(D) ≤ c(p, κ) . (4.39)

That is,

∂zψvn ,2(·, vn) = ∂ηφn(·, 1) → ∂ηφ(·, 1) = ∂zψv,2(·, v) in L p(D)

and, recalling (4.29) and the continuous embedding of H2(D) in C1(D̄),

∂xψvn ,2(·, vn) = ∂xφn(·, 1) − ∂xvn∂ηφn(·, 1)
→ ∂xφ(·, 1) − ∂xv∂ηφ(·, 1) = ∂xψv,2(·, v) in L p(D) .

Furthermore, (4.38) and (4.39), along with the bound ‖v‖H2(D) ≤ κ and the continuous
embedding of H2(D) in C1(D̄), entail that

‖∇ψv,2(·, v)‖L p(D) ≤ c(p, κ) ,

which proves (4.33) and the first bound in (4.35). Clearly, (4.34) and the second bound in
(4.35) are shown in the same way. ��

Proof of Theorem 1.3 The proof of Theorem 1.3 is now a consequence of Proposition 3.3 for
(1.4a), Proposition 4.9 (b) for (1.4b), and Proposition 4.11 for (1.4c). ��
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Appendix A. The Identity (4.12)

This appendix is devoted to the proof of the identity (4.12), which can be seen as a variant
of [4, Lemma 4.3.1.2] with piecewise constant linear constraints on the boundaries instead
of constant ones.

Lemma A.1 Let R = D × (0, 1 + d) and consider (V ,W ) ∈ H1(R,R2) satisfying

V (x, 0) = V (x, 1 + d) = 0 , x ∈ D = (−L, L) , (A.1a)

W (±L, η) + τ±(η)V (±L, η) = 0 , η ∈ (0, 1 + d) , (A.1b)

where τ± are piecewise constant functions of the form

τ± = τ±
1 1(0,1) + τ±

2 1(1,1+d) (A.2)

with (τ+
1 , τ−

1 , τ+
2 , τ−

2 ) ∈ R
4, featuring possibly a jump discontinuity at η = 1. Then

∫

R
∂x V ∂ηW d(x, η) =

∫

R
∂ηV ∂xW d(x, η) .

When τ±
1 = τ±

2 , LemmaA.1 is a straightforward consequence of [4, Lemma 4.3.1.2]. The
novelty here is the possibility of handling the jump discontinuity in (A.1b) when τ±

1 �= τ±
2

in (A.2).
The proof follows the lines of that of [4, Lemma 4.3.1.2]. For s ≥ 1, we introduce the

space

Gs(R) := {(V ,W ) ∈ Hs(R,R2) : (V ,W ) satisfies (A.1)}
and first report the density of G2(R) in G1(R).

Lemma A.2 G2(R) is dense in G1(R).

As in the proof of [4, Lemma 4.3.1.3], the core of the proof of Lemma A.2 is to establish
the density of the space Z2(∂R) of traces of functions in G2(R) in the space Z1(∂R) of
traces of functions in G1(R), after identifying these two trace spaces. Since the proof is
almost identical to that of [4, Lemma 4.3.1.3], we omit it here, but refer to the extended
version of this paper [8].

Proof of Lemma A.1 Due to Lemma A.2, it suffices to prove the identity in Lemma A.1 when
(V ,W ) belongs to G2(R). This additional regularity allows us to use integration by parts to
interchange the derivatives and guarantees the continuity of both V and W on R̄. Indeed,
H2(R) embeds continuously in Cα(R̄) for all α ∈ (0, 1) by [12, Chapter 2, Theorem 3.8]
and we deduce that

(V ,W ) ∈ C(R̄,R2) . (A.3)
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Next, after integrating by parts,

J (V ,W ) :=
∫

R

(
∂x V ∂ηW − ∂ηV ∂xW

)
d(x, η)

=
∫ 1+d

0

[
(V ∂ηW )(x, η)

]x=L

x=−L
dη −

∫

R
V ∂x∂ηW d(x, η)

−
∫

D

[
(V ∂xW )(x, η)

]η=1+d

η=0
+

∫

R
V ∂x∂ηW d(x, η) .

Since V (x, 0) = V (x, 1 + d) = 0 for x ∈ D by (A.1a) and the second and fourth terms
cancel each other out, we obtain

J (V ,W ) =
∫ 1+d

0
V (L, η)∂ηW (L, η) dη −

∫ 1+d

0
V (−L, η)∂ηW (−L, η) dη .

Now, according to (A.1b) and the regularity of V and W ,

∂ηW (±L, η) = −τ±
1 ∂ηV (±L, η) , η ∈ (0, 1) ,

∂ηW (±L, η) = −τ±
2 ∂ηV (±L, η) , η ∈ (1, 1 + d) ,

so that, since [η �→ V (±L, η)] ∈ C([0, 1 + d]) by (A.3),

J (V ,W ) = −τ+
1

∫ 1

0
(V ∂ηV )(L, η) dη − τ+

2

∫ 1+d

1
(V ∂ηV )(L, η) dη

+ τ−
1

∫ 1

0
(V ∂ηV )(−L, η) dη + τ−

2

∫ 1+d

1
(V ∂ηV )(−L, η) dη

= −τ+
1
V (L, 1)2 − V (L, 0)2

2
− τ+

2
V (L, 1 + d)2 − V (L, 1)2

2

+ τ−
1
V (−L, 1)2 − V (−L, 0)2

2
+ τ−

2
V (−L, 1 + d)2 − V (−L, 1)2

2

= τ+
1

2
V (L, 0)2 − τ−

1

2
V (−L, 0)2 − τ+

2

2
V (L, 1 + d)2 + τ−

2

2
V (−L, 1 + d)2

(A.4)

− τ+
1 − τ+

2

2
V (L, 1)2 + τ−

1 − τ−
2

2
V (−L, 1)2 .

On the one hand, it follows from (A.1) and the continuity (A.3) of V that

V (±L, 0) = lim
x→±L

V (x, 0) = 0 ,

V (±L, 1 + d) = lim
x→±L

V (x, 1 + d) = 0 .
(A.5)

On the other hand, using (A.1b) along with the continuity (A.3) gives

τ±
1 V (±L, 1) = lim

η↗1
τ±(η)V (±L, η) = − lim

η↗1
W (±L, η)

= −W (±L, 1) = − lim
η↘1

W (±L, η) = lim
η↘1

τ±(η)V (±L, η)

= τ±
2 V (±L, 1) .

Consequently,
(
τ±
1 − τ±

2

)
V (±L, 1) = 0 . (A.6)
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Combining (A.4), (A.5), and (A.6) leads us to J (V ,W ) = 0 and we have proved that

J (V ,W ) = 0 , (V ,W ) ∈ G2(R) . (A.7)

In other words, the identity stated in Lemma A.1 is valid for (V ,W ) ∈ G2(R). ��
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