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Abstract. We investigate both experimentally and theoretically disorder-
induced damping of Bloch oscillations of Bose–Einstein condensates in optical
lattices. The spatially inhomogeneous force responsible for the damping is
realized by a combination of a disordered optical and a magnetic gradient
potential. We show that the inhomogeneity of this force results in a broadening
of the quasimomentum spectrum, which in turn causes damping of the centre-
of-mass oscillation. We quantitatively compare the obtained damping rates to
the simulations using the Gross–Pitaevskii equation. Our results are relevant for
high precision experiments on very small forces, which require the observation
of a large number of oscillation cycles.
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1. Introduction

The ability to realize ultracold quantum gases in periodic and disordered potentials has enabled
detailed studies of fascinating effects originating in solid state physics. Ongoing investigations
of single particle phenomena such as Anderson localization as well as many particle effects
like the Bose–Glass phase and the Mott insulator [1]–[6] show the variety of possibilities these
ensembles offer. Especially the non-intuitive dynamics of quantum gases in periodic potentials
is of interest for theoretical and experimental investigations, since quantum gases have enabled
the first direct observation of Bloch oscillations [7] in tilted periodic potentials [8]–[10]. In
these systems, the periodicity leads to an oscillatory motion instead of a linear acceleration
of the particles subjected to an external force.

In solid state systems scattering at imperfections of the crystal structure leads to damping of
Bloch oscillations on timescales much shorter than the oscillation period itself. Therefore Bloch
oscillations of electrons are only observable in semiconductor superlattices [11], where the large
spatial period leads to high oscillation frequencies, which are faster than the damping. Optical
lattices on the other hand constitute perfect optical crystals and allow for the observation of
long-lived Bloch oscillations [12]–[15]. The experimental control of lattice parameters such as
lattice depth and spacing, the possibility to detect the atomic cloud with absorption imaging and
the very small momentum spread of Bose–Einstein condensates (BECs) have enabled detailed
studies of this quantum effect.

A comparison of these systems gives rise to the question: How will the controlled addition
of disorder to an optical lattice affect the dynamics of particles in such a periodic potential?
Disorder can be realized with additional optical potentials [2, 5], [16]–[21], [36], impurity atoms
[22, 23] or the roughness of the trapping potential close to the surface of atom chips [24]. The
simultaneous application of a homogeneous force and the optical disorder potential constitutes
a spatially inhomogeneous acceleration. This inhomogeneity can have important consequences
for the application of Bloch oscillations as a sensitive tool for high precision measurements
of small forces [12]–[14] [25, 26], since it leads to a dephasing of the quasimomentum and
thus to a damping of the centre-of-mass oscillation [27]. Therefore a detailed quantitative
understanding of the effect of the disorder and the underlying mechanism is indispensable for
future applications.

We investigate the effect of a small disordered potential on Bloch oscillations of BECs in a
one-dimensional (1D) optical lattice potential. Our results indeed show that the inhomogeneity
leads to significant damping of the centre-of-mass motion. The damping rate increases with
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disorder depth and is quantitatively compared to numerical simulations using the Gross–
Pitaevskii equation (GPE). Furthermore, we show that the disorder-induced broadening of the
quasimomentum distribution, which is the underlying mechanism for the damping of Bloch
oscillations, reduces the fraction of atoms in the BEC.

2. Bloch oscillations in periodic potentials

The acceleration of particles in periodic potentials leads to an oscillatory motion instead of a
linear increase in velocity. Since this is a pure single particle effect, it is possible to describe the
underlying physics in a 1D model, while a quantitative analysis of the effects of disorder and
interactions requires a 3D description, as reported in a previous work [27]. We briefly discuss
the main features necessary for the understanding of Bloch oscillations while a comprehensive
review can be found in [28].

The periodicity of the potential implies that the eigenfunctions obey the same translational
symmetry as the potential

φ(z+ d) = eiqdφ(z), (1)

where the phase differenceq from site-to-site is called quasimomentum andd is the lattice
constant. Since the eigenfunctions are periodic, it is possible to restrict the description of
the dynamics to the first Brillouin zone

[
−

π

d , π

d

]
. According to the acceleration theorem

q(t) = q0(0) + F
h̄ t an additional potential gradient will cause the quasimomentum to evolve

linearly in time, because the energy offset from site-to-site leads to a linear increase of the phase
difference from site-to-site during the time evolution. In combination with the periodicity of
the band structure this causes an oscillatory motion, since the group velocity is proportional
to the derivative of the band structure. The oscillation periodT = 2π h̄/F d depends on the
applied forceF and the lattice constant. The resulting amplitudezBO = 1/2|F | is given by
the width of the first band1 and the force. Since this amplitude is only a few micrometres for
typical experimental parameters, the Bloch oscillations are conveniently analysed in momentum
space via time-of-flight (TOF) absorption imaging.

While the oscillation can be described in a simple 1D model, the complex dynamics in
a disordered potential gradient and the role of interactions have to be analysed with a full 3D
model. All numerical simulations presented in this work are obtained using the 3D GPE[

−
h̄2

2m
∇

2 + VL(z) + VMF(r) + Vgrad(z) + g |9(r)|2
]

9(r) = µ9(r). (2)

The cylindrically symmetric magnetic trapping potential isVMF(r) =
1
2 mω2

ρ ρ2 + 1
2 mω2

zz2 with
trapping frequenciesωρ andωz. The optical potential isVL(z) = s Er cos2(k z), wheres is the
lattice depth in units of the recoil energyEr = h̄2k2/2m andk = 2π/λ is the wavevector of the
optical lattice. The additional homogeneous gradient potential is given byVgrad(z) = F z.

Due to interactions between the atoms, Bloch oscillations of BECs suffer, in contrast to the
case of fermions [12], from dynamical instabilities [29, 30]. In the outer half of the Brillouin
zone the nonlinear coupling leads to an exponential growth of small perturbations. Independent
of inhomogeneities in the potential they are responsible for a damping of the Bloch oscillations.
Therefore, it is necessary to reduce the dynamical instability in order to investigate the effect of
the disorder on the Bloch oscillations. This can be accomplished with a combination of a high
potential gradient [31] and a reduction of the nonlinear interactions. In a recent work, long-lived
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Bloch oscillations of BECs were realized [13, 15] by decreasing the s-wave scattering length
with a Feshbach resonance, essentially turning off the atomic interaction. In the experiments
reported here the interactions were reduced by decreasing the density of the BEC, to enable the
observations of disorder-induced damping of Bloch oscillations.

3. Experimental realization

The experiments were performed with87Rb BECs in theF = 2, mF = 2 state. A detailed
description of our apparatus is given in [32]. Nearly pure BECs of up toN = 3× 105 atoms
are produced, however all experiments described here were carried out withN = 5× 104 atoms
to reduce the interaction energy, and to ensure that no significant thermal background is present.
After production of the BEC the magnetic offset field was adiabatically increased to 91 G
within 440 ms, thus lowering the radial trapping frequency toω⊥ = 2π · 29 Hz. This reduces the
interaction energy by a factor of 6.25, which in combination with low atom numbers sufficiently
inhibits the dynamical instability, such that up to four undamped Bloch oscillation periods
can be observed. The following procedure was used to observe the Bloch oscillations. After
decreasing the radial trapping frequency the intensity of the optical lattice was adiabatically
increased to its final value within 60 ms. Subsequently, the atoms were subjected to either a
homogeneous potential gradient or a spatially inhomogeneous one for a variable time. Finally
all potentials were turned off at the same time and the atomic cloud was detected after a TOF of
30 ms by absorption imaging.

The 1D optical lattice is provided by a standing light field at a wavelength of 825 nm, which
is superimposed on the axial direction of the magnetic trap with a waist ofω0 = 140µm at the
position of the atoms. The investigations were performed at a lattice depth of 2Er, since low
lattice depths lead to a large width of the energy band and therefore to a high maximal group
velocity. This results in an oscillation amplitude of the centre-of-mass motion of 80µm after a
TOF of 30 ms, which can be easily detected, while the Bloch oscillations are not affected by the
Landau–Zener tunnelling [33].

The homogeneous potential gradient is provided by magnetic coils in anti-Helmholtz
configuration, which produce gradients of up to 3.7 G cm−1. This corresponds to an acceleration
of 2.4 m s−2.

The inhomogeneity is realized by a disordered optical dipole potential, generated by
imaging a randomly structured chrome substrate radially onto the BEC, as described in a
previous publication [2]. The correlation length of the disorder is 8µm and its depth was
varied between 0 and 135× 10−3 Er, where the depth is defined as twice the standard deviation
analogue to [17].

Figure1 shows absorption images of BECs undergoing Bloch oscillations after 30 ms TOF
for a lattice depth of 2Er without disorder. One clearly recognizes the oscillation as a motion
of the central peak and the periodic appearance of a second peak replacing the main one during
an oscillation cycle. Figure2 shows the centre-of-mass oscillation as well as a theoretical
prediction based on a band structure calculation without free parameters. The position of the
BEC zBO was calculated by numerically summing the weighted axial positionszBO =

∑
z

N(z)
Ntotal

z.
The measured Bloch period was 4.5 ms and the oscillation amplitude was 73µm which is in
good agreement with the theoretical calculations of 4.66 ms and 80µm for an acceleration of
2.4 m s−2 and a lattice depth of 2Er.
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Figure 1. Absorption images after a TOF of 30 ms, for varying Bloch oscillation
times. The lattice depth was 2Er and the acceleration 2.4 m s−2.

4. Damped Bloch oscillations

The theory of disorder-induced damping of Bloch oscillations was investigated in detail in a
previous publication [27] and we only briefly review the important features for the interpretation
of the experimental results.

For the analysis of Bloch oscillations in an inhomogeneous potential gradient the GPE
(equation (2)) has to be modified by expanding the acceleration term to

Vgrad= F z+ Vdis(z), (3)

whereVdis(z) denotes the additional optical potential which constitutes the disorder.
Figure 3 shows the centre-of-mass position obtained from numerical simulations of

damped Bloch oscillations for a typical disordered potential used in the experiment. One clearly
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Figure 2. Centre-of-mass position of BECs after a TOF of 30 ms, as a function
of the Bloch oscillation time. The parameters are identical to figure1.

Figure 3. Centre-of-mass oscillation position of a BEC for a lattice depth of
2 Er, an acceleration of 2.4 m s−2 and disorder depths of 0Er (black, solid line),
70× 10−3 Er (red, dotted line) and 130× 10−3 Er (blue, dashed line), obtained
from a numerical solution of the GPE.
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recognizes that the damping of the oscillations strongly depends on the disorder depth. The
damping can be understood qualitatively in terms of the evolution of the phase difference from
site-to-site. For an undisturbed homogeneous potential gradient it develops in time according to

1φ(t) =
δE

h̄
t, (4)

where δE is the energy offset and1φ the time-dependent phase difference between
neighbouring sites.

The disorder gives rise to a spatially varying energy difference from site-to-siteδE(z).
Therefore, the phase evolution and the quasimomentum vary across the lattice. This broadening
of the quasimomentum spectrum causes the damping of the Bloch oscillations, since eachq
corresponds to one group velocity.

Figure 4 shows the experimental observation of disorder-induced damping of Bloch
oscillations for various disorder depths. Note that the lattice depth and the acceleration are
identical to the undamped oscillation in figure2. The graph clearly shows the distinct reduction
of the oscillation amplitude for increased disorder. The solid lines are a fit to the data, with the
damping coefficient and the periodicity as free parameters. We generate the fit function for the
damped Bloch oscillationzDBO(t) by multiplying the time evolution of the undamped oscillation
zBO(t), obtained from the band structure calculation, with a Gaussian envelope

zDBO(t) = A0 e−t2/σ 2
zBO(t). (5)

The shape of the envelope is a consequence of the broadening of the quasimomentum
distribution in time. The width of this distribution determines the oscillation amplitude, which
is reduced compared to the single particle picture, because separate parts of the ensemble
simultaneously undergo different phases of the oscillation. Based on the assumption that the
width of this distribution increases linearly in time, a Gaussian envelope of the damping
amplitude is expected [34, 35].

To quantitatively compare the experimental data to the numerical solutions of the GPE,
we show the resulting damping coefficients as a function of the disorder depth in figure5. The
parameters of the simulations correspond to the experimental ones for a typical realization of
the disordered potential. Since the damping rate strongly depends on the depth of the disorder
potential, the horizontal error bars represent an experimental uncertainty in this depth of 25%.
This was estimated by evaluating the depth of the used disorder potential at different positions,
while small deviations between the exact shape of the disorder potential in the experiment
and in the numerical simulation were not accounted for. The shaded area corresponds to
an uncertainty in the atom number of 30%, accounted for in the simulations. Within this
uncertainty, we observe good agreement between experimental and theoretical values of the
damping coefficients.

To show that the broadening of the quasimomentum spectrum is the underlying mechanism
of the damping, we analyse the experimental data with a second approach. Since the dephasing
of the quasimomenta increases the number of atoms with varying momenta, the number of
atoms in the BEC peaks is reduced [31]. This picture is confirmed by figure6, which shows
numerical results for the time evolution of the momentum spectrum in the presence of a
disordered potential gradient. The disorder-induced dephasing leads to an increased blurring
of the sharp momentum distribution, as the quasimomenta undergo a non-uniform evolution.
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Figure 4. Centre-of-mass position of BECs performing damped Bloch
oscillations. The disorder depths were 35, 105 and 135× 10−3 Er, from top
down. A fit to the data (solid red line) and the Gaussian envelope (dashed
black line) due to the damping are also shown. Note that the recorded
oscillation time is reduced for increased disorder depth since the broadening
of the quasimomentum spectrum causes a strong reduction of the contrast (see
figure 8). This significantly reduces the signal-to-noise ratio of the absorption
images.
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Figure 5. Damping coefficient 1/σ of the centre-of-mass oscillation in the
disordered lattice potential. The damping coefficients were obtained by applying
the same fit procedure to the experimental data of figure4 and the results
of the numerical simulations. The red dots represent the experimental data and
the black dots the simulations. Similar to the experimental case, the number of
Bloch oscillation periods used in the fits to the simulations were reduced for
increasing disorder depth. The shaded area corresponds to atom numbers used in
the simulations ranging from 3.5× 104 to 6.5× 104.

This behaviour is consistent with the absorption images shown in figure7. In the
undisturbed case, sharp BEC peaks are visible whereas the disordered case exhibits a clearly
discernible background and a broadening of the peaks due to the dephased quasimomenta.

To analyse this effect quantitatively, we estimate the number of atoms in the BECNBEC

at different times of the Bloch oscillation by fitting Thomas–Fermi profiles to the characteristic
peaks of the BEC. The fraction of atoms in the BEC is calculated by comparing the number of
atoms in these peaks with the total atom numberNfrac = NBEC/Ntotal.

Figure8 shows this fraction as a function of the Bloch oscillation time for various depths of
the disorder potential. The lines are fits to the data with an exponential decay. A clear reduction
in the occupation of the BEC peaks during the evolution of the Bloch oscillation is visible. In all
cases the dephasing of the quasimomenta precedes the onset of the damping shown in figure4.
This is in agreement with a Gaussian shape of the damping envelope given in equation (5) and
confirms that the dephasing of the quasimomenta is the underlying mechanism for the damping
of the centre-of-mass motion. Hence, only a significant broadening of the quasimomentum leads
to a relevant damping.

Note that even at a disorder depth of 0Er a reduction and therefore a dephasing is observed
due to the interparticle interactions, while the centre-of-mass oscillation in figure4 is still
unaffected.
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Figure 6. Grey scale plot of the evolution of the momentum distribution during
a Bloch oscillation for a disorder depth of 105× 10−3Er. The lattice depth and
the acceleration were identical to the case of figure3.
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Figure 7. Absorption images of BECs for an oscillation time of 0.5 Bloch
periods at an acceleration of 2.4 m s−2 and a lattice depth of 2Er after a TOF of
30 ms. The left column shows the case without added disorder, whereas the right
column corresponds to a disorder depth of 105× 10−3 Er. The top row shows the
absorption images, the middle row corresponds to the associated axial density
profiles and the bottom row contains the momentum spectrum obtained from our
simulation.
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Figure 8. Fraction of atoms in the BEC after a TOF of 30 ms as a function of the
Bloch oscillation time. Shown are four depths of the disorder potential of 0Er

(black circles), 35× 10−3Er (red squares) 70× 10−3 Er (blue dots) and 135×
10−3 Er (green triangles). The curves correspond to a fit with an exponential
decay. Residual imaging effects (see figure7) result in an overestimate of the
total number of atoms. ThereforeNfrac is 0.5 even for pure BEC without any
discernible thermal fraction.

The decay timesτ from figure8 are shown in figure9 as a function of the disorder depth.
The decreasing fraction of atoms in the BEC peaks again confirms that stronger disorder leads to
faster dephasing of the momentum distribution and that this broadening of the quasimomentum
is the underlying mechanism for the damping of the Bloch oscillations.

5. Conclusion

We have presented the first experimental investigation on disorder-induced damping of Bloch
oscillations of BECs. The application of an additional disorder potential during the oscillation
leads to a strong damping of the centre-of-mass motion and to a significant reduction of
the fraction of atoms in the BEC. The observed damping rates are in good agreement with
predictions based on numerical solutions of the full GPE and show that the underlying physical
mechanism for the damping is the broadening of the quasimomentum spectrum due to the
spatially varying phase evolution of the condensate.

We show that even a very small disorder results in fast dephasing of the quasimomentum
and therefore damping of the Bloch oscillation. Since the disorder presented here is equivalent
to a spatially inhomogeneous force, the results are of special interest for the application of
Bloch oscillations for high precision spectroscopy of very small forces. To reach high precision
in such experiments it is essential to follow a large number of Bloch oscillations. This number
may be reduced if the observed force is spatially inhomogeneous on length scales comparable
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Figure 9. The decay timesτ of figure8 are shown as a function of the disorder
depth. Strong reduction is observed even for moderate disorder depths.

to the extent of the condensate. The good agreement between theory and experiment shows the
applicability of our method to analyse the effects of spatially varying forces, and allows for
estimates of the effect of small inhomogeneities for future experiments.
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