
Vol.:(0123456789)1 3

Engineering with Computers
https://doi.org/10.1007/s00366-022-01661-2

ORIGINAL ARTICLE

Domain adaptation based transfer learning approach for solving PDEs
on complex geometries

Ayan Chakraborty1 · Cosmin Anitescu2 · Xiaoying Zhuang1,3 · Timon Rabczuk2

Received: 28 August 2021 / Accepted: 5 April 2022
© The Author(s) 2022

Abstract
In machine learning, if the training data is independently and identically distributed as the test data then a trained model can
make an accurate predictions for new samples of data. Conventional machine learning has a strong dependence on massive
amounts of training data which are domain specific to understand their latent patterns. In contrast, Domain adaptation and
Transfer learning methods are sub-fields within machine learning that are concerned with solving the inescapable problem of
insufficient training data by relaxing the domain dependence hypothesis. In this contribution, this issue has been addressed
and by making a novel combination of both the methods we develop a computationally efficient and practical algorithm to
solve boundary value problems based on nonlinear partial differential equations. We adopt a meshfree analysis framework to
integrate the prevailing geometric modelling techniques based on NURBS and present an enhanced deep collocation approach
that also plays an important role in the accuracy of solutions. We start with a brief introduction on how these methods expand
upon this framework. We observe an excellent agreement between these methods and have shown that how fine-tuning a
pre-trained network to a specialized domain may lead to an outstanding performance compare to the existing ones. As proof
of concept, we illustrate the performance of our proposed model on several benchmark problems.

Keywords  Transfer learning · Domain adaptation · NURBS geometry · Navier–Stokes equations

List of symbols
� ≥ 0	� Learning rate
S̄	� A bounded set S that also contains its boundary
ΓCL	� Learning curve of the CL model
ΓTL	� Learning curve of the TL model
Cp(ℝn)	� Space of all continuously differentiable func-

tions at least up to p times
𝜁 > 0	� Momentum
Nbnd ∈ ℕ	� Total boundary training points
Nint ∈ ℕ	� Total interior training points
Tol > 0	� Tolerance

1  Introduction

Over the last few decades, Deep Neural Networks (DNNs)
have perhaps witnessed the highest boom in large scale prob-
lems in various disciplines of science and engineering [1–5].
NNs have been around since the 1940s [6] and have been
used in systematic applications. However, the recent suc-
cess in deep learning is due to the combination of improved
hardware resources such as GPUs and advanced theories
starting with un-supervised pre-training and deep belief
nets that have undergone rapid development from time to
time in last few decades. Conventional machine learning
(CL) is designed to function optimally under such assump-
tions that the training data and test data should belong to
the same domain. It has been shown to be a versatile tool
in capturing the complex pattern of different physical phe-
nomena by using the acquired knowledge from a given set
of input values. Despite its excellent performance in vari-
ous domains, however, one major bottleneck lies in data
acquisition which can be quite expensive, particularly in
the course of analyzing complex engineering systems. In
addition, there are many scenarios in the real world applica-
tions where collecting sufficient amounts of training data

 *	 Timon Rabczuk
	 timon.rabczuk@uni-weimar.de

1	 Chair of Computational Science and Simulation Technology,
Institute of Photonics, Faculty of Mathematics and Physics,
Leibniz University, 30163 Hannover, Germany

2	 Institute of Structural Mechanics, Bauhaus University,
99423 Weimar, Germany

3	 Department of Geotechnical Engineering, College of Civil
Engineering, Tongji University, Shanghai, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-022-01661-2&domain=pdf

	 Engineering with Computers

1 3

manually and annotating from a specific domain may turn
out to be intensive or laborious because of various reasons,
such as the scarcity of data. Nevertheless, there may exist
an abundance of similar data but with different distribution
characteristics. Also intuitively, it is not always feasible to
learn everything from scratch.

Transfer learning (TL) [7–10] is an inspiring method-
ology that utilizes the stored knowledge obtained from a
source task and applies it to a new target task. The stark
difference that isolates conventional learning from transfer
learning is that in this approach one can leverage knowl-
edge from pre-trained models for training newer models and
also even for tackling the challenges of having limited data.
Real world is messy and everytime we may not necessarily
apply our model to a carefully constructed data set instead
it may encounter different scenarios. Therefore, the goal is
to achieve some transferable representations between source
domain and target domain and build a concrete model up to
an acceptable performance which in turn should be able to
make proper predictions. The insight behind TL is that the
model must be able to learn first how to behave in a task
effectively and then generalize its gained knowledge as much
as required to transfer and then apply it in a new domain.

The main aim of this paper is to facilitate TL through
domain adaptation techniques, by extracting the common
aspects between the source and target domains. If the input
feature space between the source and target domains are
same then this is referred to as homogeneous transfer learn-
ing and remains our focus throughout this paper. Some inter-
esting transfer learning topics are reinforcement transfer
learning [11], online transfer learning [12], lifelong transfer
learning [13] and multi-task learning [14]. Domain adap-
tation [15, 16] is a widespread technique associated with
TL seeking similar goals in machine learning paradigm and
as it pertains here, the procedure is to adapt one or more
source domains for the means of transferring “knowledge”
to improve the performance of a target learner. This pro-
cess attempts to alter a source domain in an attempt to bring
the distribution of the target closer to the source. Our main
objective is to learn and investigate such transformations
that can map both source and target domains into a common
feature space.

In this work, we explore a domain adaptation based trans-
fer learning approach to approximate the solutions to par-
tial differential equations (PDEs) in complex geometries. As
mentioned earlier, our proposed method incorporates skills
learned previously from source tasks to speed up learning
on a new target task, while retaining the effectiveness of
NNs. A fundamental requirement in this process is building
a model that gives an excellent performance on the source
tasks. The underlying models are layered architectures that

learn different features at different layers. This is a more
involved technique, where the initial layers are trained to
capture more generic features and the high level final lay-
ers are tailored for the specific task at hand. In addition,
we need to retrain (i.e., fine-tune) selectively some (or all)
of the previous layers during the process. Past research
[17–19] shows that the internal representations of DNNs
learned from source data sets can be effectively used to solve
a variety of tasks and one just needs to fine-tune the entire
model with the target data set to reduce the domain shift
errors. Interested readers are referred to [18, 20, 21] for a
more detailed explanations on fine-tuning and how to get
the work done more effectively. We note that the idea in this
work is in some ways similar to that of model defeaturing
used in finite element workflows, where a complex model
is simplified to make it more tractable for obtaining a rough
solution. However, in transfer learning, we directly use the
simplified solution to more quickly perform analysis on the
actual model.

We mention that in computational studies, several other
techniques have also been used. For example, [22, 23] pre-
sent a strong form-based meshfree point collocation method
for mechanical contact between two bodies. In [24], a par-
ticle difference method for weak discontinuities in elliptic
problems is presented. Moreover, in [25], a machine learning
framework is developed to obtain a posteriori error estimates
for multiple goal functionals employing the dual-weighted
residual approach.

Our contributions in this work are as follows:

•	 We prove a theorem regarding the convergence of neural
networks for a more general class of PDEs.

•	 By implementing domain adaptation techniques into
transfer learning, on one hand we avoid expanding the
huge resources required to train a data-hungry model, on
the other hand we have developed a sophisticated algo-
rithm that can carefully handle the singularities in the
domain and achieve similar accuracy to the state-of-the-
art adaptive refinement algorithms.

•	 We investigate the ability of optimizers with respect to
their performance and successfully demonstrates how the
modifications of few hyperparameters (for example learn-
ing rate) have a strong influence over the model architec-
ture, which up to now, has not gained much attention.

The paper is structured as follows: In Sect. 2 a detailed
description of the model problem, convergence theorem,
discussion about the core architecture with implementation
details and training algorithm is presented. Next in Sect. 3
we briefly reviews NURBS geometry and its importance
to construct complex shapes and objects. In Sect. 4 several
numerical tests showcasing the performance of the proposed

Engineering with Computers	

1 3

algorithm are provided. Finally, in Sect. 5, we draw the con-
clusions and present remarks on future extensions.

2 � Neural network (NN) approximation
for PDEs

2.1 � Problem statement and methodology

The idea to approximate PDEs using NNs was first proposed
by Dissanayake et al [26]. In this paper we will also provide
a strong theoretical formulation regarding the approximation
power of NN for some specific family of PDEs. Consider
the family,

where L and B is a differential and boundary operator (quasi-
linear or non-linear), respectively, domain of interest Ω ⊂ ℝ

n
is bounded , boundary �Ω is at least Lipschitz continuous
unless mentioned otherwise and � is its subset on which the
boundary conditions (BCs) are imposed. We intend to train
the DNN approximate solution U� ∶= U(x,�) We proceed
by approximating u and L using Deep Neural Networks
(DNNs) U� = U(�, �) . Any prior knowledge on the exact
analytical solution u is redundant. As previously mentioned,
our approach adopts the deep collocation method, which
assumes a certain discretization of the domain Ω and the
boundary � into a collection of points �Ω and �� , respec-
tively. The goal is to learn the parameters of NNs. These
along with parameters of the operator L are learned by mini-
mizing the error function under mean squared error (MSE)
norm. For xi ∈ �Ω and �i ∈ �� , we define:

The points are uniformly sampled from the domain and the
given boundary. Basically this equation is a Monte Carlo
approximation of

where U(Ω) and U(�) represent the uniform distribution over
the domain and given boundary. This error function meas-
ures how accurately our model approximates the original

(1)
L[u(x)] = h(x) x ∈ Ω

B[u(x)] = 𝜓(x) x ∈ 𝛾 ⊆ 𝜕Ω

}

(2)

E[�] ∶=
1

Nint

Nint∑
i=1

|(L [U�] − h)(xi)|2

+
1

Nbnd

Nbnd∑
i=1

|B[u] − �(�i)|2

= ||(L [U�] − h)(x)||2
�Ω

+ ||B[u] − �(s)||2
��

Err[�] ∶= �
x∼U(Ω)

[
((L [U�] − h)(x))2

]

+ �
s∼U(�)

[
(B[u] − �(�))2

]

solution and satisfies the boundary value problem (BVP)
with respect to the defined norm. Our main objective is to
construct such a neural network function U� by fine tuning
the entire model so that E is as close to 0 as possible.

2.2 � Model architecture: transfer Learning setup

DNN is comprised of multiple hidden layers and single
input–output layers, where each layer is consisting of numer-
ous neurons. For example if we have N neurons in the input
layer, and M neurons in the output layer then the neural net-
work is simply a mapping: ℝN

↦ ℝ
M . The neurons in each

layer are connected by weights-bias parameters and they are
used to compute a weighted sum of the input neurons from
the preceding layers to which they are connected. For exam-
ple two adjacent layers are coupled as follows :

where y
�
 is the output of layer � , W

�
 are affine mappings

and �
�
 is a fixed element wise activation function. The con-

nection strength between neurons are solely dependent upon
the weights and bias terms associated with these. The entire
signal is now summed and used as an input for the layers
activation function. The role of activation function is to
introduce non linearity into the network. This is a crucial
component for modeling nonlinear responses. The structure
of the network can be complex. Once the network is fixed,
the training is initiated and the task is to update the param-
eters appropriately. The network is trained using back-prop-
agation which ultimately becomes the optimization problem
of finding the parameters that minimize the loss function or
the output errors. Gradually, as the parameters are adjusted,
the network evolves and predicts the output with minimal
errors. In short, this is the “learning pattern” of NN. In
transfer learning, the goal is to store and access this previ-
ously gained knowledge from source data to reuse for second
workflow. One needs to add a few high-level new layers see
Fig. 1 on top of pre-trained fully connected layers in order to
utilize the off-the-shelf representations from preceding deep
layers. The core idea of transfer learning is inherent in the
fact that neural networks are made up of layers which can
be seen as interchangeable building blocks. Basically, in this
approach we use well-trained, well-constructed models that
have gained sufficient knowledge over the training process
through larger or more generic data sets and apply them
to boost the performance on smaller or more specific data
sets. Fine-tuning begins, i.e, retraining of the entire model
with a suitable learning rate and gradually the new layers
learn to turn the old features into predictions on a target data
set. In practice, differential learning rate a.k.a discrimina-
tive fine-tuning can be an effective strategy to customize the
model. In this process, one may start with a fixed learning

y
�
(x) ∶= �

�
(W

�
y
�−1(x) + �

�
) ; � = 1, 2, 3…

	 Engineering with Computers

1 3

rate � ∈ [0.001, 0.1] to instantiate the base or inception
model with pre-trained weights and once the model starts
to converge on source data, in the second workflow one
needs to drop � preferably by a factor of � ∈ (2, 20) to avoid
larger weight updates while embedding fine-tuning to the
pretrained layers. In general, this is the guiding principle to
update the parameters progressively from top-to-bottom to
encourage the target model parameters to stay close to the
parameters of pre-trained model. Freezing (when, � = 0 ) has
not been investigated in detail in the present work. For a rela-
tively tiny neural network model this setting can be deemed
robust. However, if the network is too large, for example
ResNet, it is recommended to partition the entire network
into small groups of layers and set different learning rates to
each group during the training, otherwise the whole process
would be very slow and memory intensive. Some excellent
literature on this topic can be found in [27, 28].

2.2.1 � Definitions

In their seminal paper [7] authors give an elegant mathe-
matical definition of transfer learning. They introduce the
notion of domain, task and marginal probabilities to present
a framework for understanding transfer learning.

Definition 2.1  A domain consists of two components, a fea-
ture space X and a marginal probability distribution P(X) ,
where X = {x1,… , xk} ∈ X  . It is denoted as D = {X,P(X)}.

Definition 2.2  Given a domain D define a task T = {Y,P(Y)}
which consists of a label space Y and an objective predic-
tive function f(X,Y) that can be learned from training data
{(xi, yi)} ⊂ X × Y .

Definition 2.3  Let DS,DT be the source domain space and
target domain space as well TS, TT be the source learning

task and targeted learning task, respectively, then Transfer
Learning aims to improve the target predictive function fT
in DT using its prior knowledge, i.e, from DS, TS , where
DS ≠ DT and TS ≠ TT

2.3 � Implementation

The success of a neural network completely depends on
its architecture. There is no exact formula for selecting an
optimal architecture, and different problems demand dif-
ferent architectures. For example, activation functions are
one of the core components and are used as gates to filter
between “useful” and “not so useful” from the plethora of
information. There exist numerous works in the literature
[25, 29, 30] and the references therein, where authors have
conducted comparative experiments to obtain the best pos-
sible results from an activation function. One thing to note
is that the final layer should always be the linear function of
its preceding layers. Apart from that, optimizers also have
a significant influence for fast and easy convergence of the
network. The optimizer shapes and molds the model into its
most accurate possible form by updating the parameters. In
our experiments, we have explored different optimizers, con-
figuring the key hyper-parameters (momentum, learning rate
etc.) to improve much as possible the accuracy of the model.

We now provide the implementation details of the algo-
rithm and have highlighted some typical steps that one
would have to follow for a Python based Tensorflow [31],
an open source well documented and currently one of the
most popular, fastest growing deep learning library. The idea
is to demonstrate the general procedure. The full source code
is available on Github.

Using the Xavier Initialization technique [32] the param-
eters are initialized in the following manner:

Fig. 1   Model architecture

Engineering with Computers	

1 3

def initialize_NN(self,layers):
weights = []
biases = []
num_layers = len(layers)
for l in range(0, num_layers - 1):

W = self.xavier_init(size=[layers[l], layers[l + 1]])
b = tf.Variable(tf.zeros([1, layers[l + 1]]))
weights.append(W)
biases.append(b)

return weights, biases

def xavier_init(self, size):
in_dim = size[0]
out_dim = size[1]
xavier_stddev = np.sqrt(2.0 / (in_dim + out_dim))
return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=

↪→ xavier_stddev))

u(�) is defined as follows:

u(x) is defined as follows :

def net_u(self,x,y):

X = tf.concat([x,y],1)

u = self.neural_net(X,self.weights,self.biases)

 The neural network is defined using an activation
function:

The neural network is defined using an activation function :

def neural_net(self,X,weights,biases):

num_layers = len(weights) + 1

H = 2.0*(X - self.lb)/(self.ub - self.lb) - 1.0
for l in range(0,num_layers-2):

W = weights[l]
b = biases[l]
H = tf.activation(tf.add(tf.matmul(H, W), b))

W = weights[-1]
b = biases[-1]
Y = tf.add(tf.matmul(H, W), b)
return Y

 Define the base model and network learning:

	 Engineering with Computers

1 3

Define the base model and network learning :

layers = [.,.,.,.] # say 4 layers
num_train_its = ... # number of training iterations
train_op = tf.optimizers(learning_rate1)
pred_model= PDE_model(layers, train_op, batch-size, num_epoch)
pred_model.network_learn(data1, num_train_its)

 Transfer learning model and fine-tuning:

Transfer learning model and fine-tuning :

layers = [.,.,.,.,.,.] # additional high level layers on top of preceding
↪→ layers

num_train_its = ...
train_op = tf.optimizers(learning_rate2)
pred_model= PDE_model(layers, train_op, batch-size, num_epoch)

for layer in pred_model.layers[:k]:
layer.trainable = False

for layer in pred_model.layers[k:]:
layer.trainable = True

pred_model.network_learn(data2, num_train_its)

2.4 � Convergence result

Motivated by the results in [33, 34] we are also going to
provide an existence theorem ensuring a feed forward multi-
layer network U capable to approximate the solution of (1)
along with optimizing (2). For the convenience sake we have
assumed the existence of classical solution and consider,

and B[⋅] as a linear combinations of �m
x

 , where |m| ≤ 2 .
Therefore, (1) can re written as,

(3)

L[u] = ∇ ⋅ {�(x, u(x),∇u(x))} + �(x, u(x),∇u(x))

�̂r ≡
�

�uxr

r = 1, 2,… , n

�s ≡
�

�xs
s = 1, 2,… , n

�r,s ≡
�2

�xr�xs
r, s = 1, 2,… , n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

n∑
r,s=1

�̂s�r(x, u(x),∇u(x)) �r,su

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
X(x,u,∇u)

+

n∑
r=1

[
�

�u
�r(x, u(x),∇u(x)) �ru + �r�r(x, u(x),∇u(x))

]
+ �(x, u(x),∇u(x))

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Y(x,u,∇u)

= h(x)

In simplified form,

For any activation function � (preferably “non-linear” and
mandatorily “bounded”) consider the set of NNs with a sin-
gle hidden layer and � neurons,

and the class of all functions implemented in such network
for � ∈ ℕ

Definition 2.4  A function f ∶ ℝ
i ×ℝ

j
↦ ℝ is said to be H ̈o

lder Continuous if there exists a � ∈ (0, 1] and Mf > 0 such
that,

X(x) + Y(x) = h(x)

�
𝓁

n
(�) ∶= {z ∶ ℝ

n
↦ ℝ ∶ z(x) =

𝓁∑
i=1

�i�(� ⋅ x + �i)}

�n(�) ∶=

∞⋃
�=1

�
�

n
(�)

Engineering with Computers	

1 3

holds over ℝi ×ℝ
j . Here � is called a Hölder exponent.

Theorem 2.1  Let, � ∈ Cp(ℝn) be a non constant bounded
function then, �n(�) is an uniformly-2 dense on compact
sets of Cp(ℝn).

Proof  See [33] 	� ◻

Theorem 2.2  Let us assume that (3) has a unique classical
solution over Ω̄ and both the non linear terms �s�r(x, u,∇u) ,
Y(x, u,∇u) are H ̈older continuous in (u,∇u) uniformly
w.r.t x . Then for every 𝜖 > 0 there exists a neural network
f� ∈ �d(�) such that,

where � is a Hölder exponent.

Proof  We have from Theorem 2.1 an existence of an
f�(= f) ∈ �n(�) that is uniformly-2 dense on compacts of
C2(ℝn) . In other words it yields that for every 𝜖 > 0 there is
a f ∈ �n(�) such that,

Therefore, with the assumptions of Hölder continuity we
obtain,

where “ ⪯ ” implies that the inequality is independent of any
important constants. Again considering the expression,

|f (xi, xj) − f (yi, yj)| ≤ Mf

(||xi − yi||� + ||xj − yj||�
)

E[f�] ≤ C(u,∇
x
u) �2�

(4)
∑
|m|≤2

sup
x∈Ω̄

|𝜕(m)
x

u(x) − 𝜕(m)
x

f (x;�)| < 𝜖

(5)

||Y(x, f ,∇
x
f) − Y(x, u,∇

x
u)||2

�Ω

=
1

Nint

Nint∑
i=1

|||Y(xi, f (xi),∇xi
f) − Y(xi, u(xi),∇xi

u)
|||
2

≤
L

Nint

Nint∑
i=1

[|f (xi;�) − u(xi)|2� + |∇
xi
f (xi;�) − ∇

xi
u(xi)|2�

]

⪯ �2�

Applying Hölders Inequality with exponents p, q we have,

which finally obtain using (4) and simplifying. Now follow-
ing (4)–(6), consequently the loss function can be simplified
into,

||X(xi, u(xi),∇xi
u)X(xi, f (xi),∇xi

f)||2
�Ω

=
1

Nint

Nint∑
i=1

||||
n∑

r,s=1

(
�

�uxs

�r(xi, u(xi),∇u(xi)) �r,su

−
�

�fxs

�r(xi, f (xi),∇f (xi)) �r,sf

)||||
2

≤
1

Nint

Nint∑
i=1

||||
n∑

r,s=1

(
�

�uxs

�r(x, u(x),∇u(x))

−
�

�fxs

�r(x, f (x),∇f (x))

)
�r,su

||||
2

x=xi

+
1

Nint

Nint∑
i=1

||||
n∑

r,s=1

�

�fxs

�r(x, f (x),∇f (x)) (�r,su − �r,sf)
||||
2

x=xi

(6)

⪯
1

Nint

n∑
r,s=1

[(Nint∑
i=1

|�r,su(xi)|2p
)1∕p

⋅

(
Nint∑
i=1

|||||
�

�uxs

�r(x, u(x),∇u(x)) −
�

�fxs

�r(x, f (x),∇f (x))
|||||

2q

x=xi

)1∕q

+

(
Nint∑
i=1

|||||
�

�fxs

�r(xi, f (xi),∇f (xi))
|||||

2p
)1∕p

⋅

(
Nint∑
i=1

||�r,su − �r,sf
||2qx=xi

)1∕q]

⪯
1

Nint

n∑
r,s=1

[Nint∑
i=1

(|�r,su(xi)|2p
)1∕p

⋅

(
Nint∑
i=1

(|f (x;�) − u(x)|� + |∇
x
f (x;�) − ∇

x
u(x)|�)2q

x=xi

)1∕q

+

(
Nint∑
i=1

|||||
�

�fxs

�r(xi, f (xi),∇f (xi))
|||||

2p
)1∕p

⋅

(
Nint∑
i=1

||�r,su − �r,sf
||2qx=xi

)1∕q]

⪯ �2�

	 Engineering with Computers

1 3

The last step is validated with an appropriate constant C that
can be dependent upon the actual solution. 	� ◻

Remark 1  Since Ω̄ is a compact subset in ℝn , therefore,
above theorem trivially holds for locally Hölder continuous
function.

2.5 � Algorithm

A significant improvement over the performance of the base
model, i.e, a positive transfer is an indication of a successful

E[f�] = ||L[f�] − h||2
�Ω

+ ||B[f�] − � ||2
��

= ||L[f�] − L[u] ||2
�Ω

+ ||B[f�] − B[u] ||2
��

≤ ||X(x, u,∇
x
u) − X(x, f� ,∇x

f�)||2�Ω
+ ||Y(x, f� ,∇x

f�) − Y(x, u,∇
x
u)||2

�Ω

+ ||B[f�] − B[u] ||2
��

⪯ �2�

≤ C �2�

algorithm. The choice of pretraining and target tasks is inter-
twined closely and, therefore, for the sake of best target
performance, it is beneficial to opt for similar pretraining
tasks. The whole algorithm is tailored for an accurate and
efficient approximation to obtain ΓTL < ΓCL . The general
practice is to set a termination criteria by enforcing a Tol at
the pretraining phase. Thus if the condition is not satisfied
then this can serve as an error indicator which is employed
to guide the parameters in the neural network architecture.
The parameters get updated accordingly and this process
continues iteratively. To the end summarizing all steps, we
obtain the basic scheme shown in Fig. 2 and detailed in
Algorithm 1.

Fig. 2   Transfer learning applied
to domain geometry adaptation Simplified geometry

(source data)
Training

(low capacity network)

Knowledge transfer
(pre-trained layers)

Actual geometry
(target data)

Training
(with added layers)

Solution
(output)

Engineering with Computers	

1 3

Algorithm 1: Error estimation through transfer learning
Input: Training data sets, number of layers, α, ζ.

1 Initialize : Provide number of iteration steps, epochs and the model.

2 Initialize the neural network
3 Initialize the weights of the network using Xavier initialization technique
4 Calculate the loss function E [θ] for the current mini-batch points

5 Pretraining : Train the model on source task
6 Minimize the loss up to Tol

7 Final Estimation :
8 Modify internal architecture
9 Jointly train newly added layers and layers of the base model

10 Evaluate model by observing the performance of ΓTL

11 if ΓTL < ΓCL then
12 STOP

13 else
14 tune the parameters, adjust Tol & repeat steps until the criteria is satisfied

3 � NURBS‑based geometrical modelling

In various applications of describing objects (2- or 3-D),
NURBS (Non Uniform Rational B-Splines) approximation
have become a standard mathematical tool to create and rep-
resent complex shapes regardless of whether freeform or an
analytical surface. In general, they are widely used in the
area of CAD geometry and because of their elegant algorith-
mic properties (smoothness, possibility of local modifica-
tions etc.) NURBS ideally offer designers the possibility to
easily manipulate control points, weights, vertices, control
curvature while generating a complicated geometry. In addi-
tion, they also provide a reasonably compact and intuitive
representation for the construction. A thorough explanation
is beyond the scope of this article, readers are referred to
[35–40] for more in depth descriptions and applications.

NURBS are an extension of B-Splines to piecewise
rational functions, which adds the ability to exactly represent
some simple shapes, such as circles, ellipsoids, etc. In other
words, NURBS are defined as a ratio of two polynomial
B-Spline functions. Non uniform is the concept that some
portion of a defined object can be elongated or shortened
relative to other portion of overall shape. The geometric
modeling typically consists of two meshes: a physical mesh

and a control mesh. While the physical mesh is a represen-
tation of the original geometry, the control mesh forms a
scaffold of the geometry. NURBS shapes are defined by the
degrees, weights, knot vector and set of control points which
are the inputs to be provided by the user. These determine
a mapping between the parameter space, which is the unit
segment for curves, unit square for surfaces and unit cube
for volumes, and the physical space. A knot vector is an
increasing set of coordinates in the parametric space gener-
ally denoted by Ξ = {�k}

n+p+1

k=1
 , where �k is the kth knot, n is

the number of basis functions and p is the polynomial order.
Depending on the degree of basis functions and the number
of control points a knot can be repeated several times and it
is even possible to insert a new knot without changing the
curve geometry and parameterization, see Fig. 3, which is
known as h-refinement. Knot refinement offers a wide range
of tools to design and analyse the shape information. A uni-
variate rational basis function is defined as :

Here, {Nk,p(�)}
n
k=1

 is the set of basis functions of the B-Spline
curves, {wk ∶ wk > 0}n

1
 is the set of NURBS weight. Choos-

ing appropriate weights permits the definition of varieties

Rk,p(�) ∶=
wkNk,p(�)∑n

k=1
wiNk,p(�)

; k ∈ [1, p + 1]

	 Engineering with Computers

1 3

of curves and in particular if all the weights are equal its
reduces to the B-Spline basis. These basis functions are mul-
tiplied with a set of weights and control points and summed
up to generate a NURBS geometry. The implementation

is done using NURBS-Python (geomdl) library. Follow-
ing snippet of code is an illustration how to generate a 2D
NURBS curve and visualizing it using NURBS-Python [40].

from geomdl import NURBS

class Annulus(NURBS):
"""
Class for defining an annular ring
Input: radint,radext - interior and exterior radius of the ring
"""
def __init__(self, radint, radext):

geomData = dict()

Users set degrees
geomData[’degree_u’] = x_1
geomData[’degree_v’] = x_2

Users set control points
geomData[’ctrlpts_size_u’] = y_1
geomData[’ctrlpts_size_v’] = y_2

geomData[’ctrlpts’] = [...,...,...,.....]

geomData[’weights’] = [...,...,...,.....]

Users set knot vectors
geomData[’knotvector_u’] = [a_1,a_2,..,....]
geomData[’knotvector_v’] = [b_1,b_2,..,....]
super().__init__(geomData)

Plot the curve
Annulus.PlotSurf()

4 � Numerical examples

In this section, based on several well known benchmark
problems, we are presenting our experimental results for
empirical validation. Each problem requires their own modi-
fied architecture depending on the operator and domain. The
implementation details about the network architecture, such
as number of layers, neurons on each layer, activation func-
tion etc, have been provided with each example. In some
cases, the exact solution does exist and we have also validate

the results showcasing the improvement in the performance
achieved. In all cases, we have used a uniform distribution of
the collocation points; however, the influence of the arrange-
ment and spacing of collocation points reflects the algorithm
performance which was discussed in detail in our earlier
work [25]. Training neural networks consumes a lot of time
and computational resources as well. Therefore, it is desir-
able to terminate the number of iterations once a certain
level of accuracy has been reached. Two main factors reduce
the number of iterations required for convergence. The first

Engineering with Computers	

1 3

is to train the network using sufficient amount of data on a
simpler, regular domain which saves a lot of computation
time. The second is setting the number of hidden layers to
be reasonably small, while still retaining sufficient accuracy.
Besides, by leveraging pre-trained model architecture and

parameters transfer learning allows to use the learned high
level representation of a given data structure and apply it to
fewer new training data set. For all the problems, we have
used a combination of SGD and Broyden–Fletcher–Gold-
farb–Shanno (BFGS) algorithm to train the parameters �

Fig. 3   (From top to bottom) Original geometry to be modeled. Modeling the geometry using linear splines. Modeling via NURBS, where the
control points are marked by red

Fig. 4   Distribution of boundary and interior collocation points over training sets and test points over testing set

	 Engineering with Computers

1 3

Fig. 5   Comparison of solutions and both pointwise and relative errors. Learning curves and training time. Comparison between different learn-
ing rates

Fig. 6   Distribution of boundary (red) and interior (blue) and (green) collocation points over the training set

Engineering with Computers	

1 3

following Xavier initialization technique. The training points
are uniformly spaced over the entire domain Ω . The experi-
ments have been carried out using the TensorFlow [31]
framework on Google Colab GPU.

4.1 � Example‑I : 2D Poisson equation ( p = 2 , ı = 0)

Consider,

Define,

and the problem,

A�,p(u) ≡ div((�2 + |∇u|2) p−2

2 ∇u)

Ω ∶= {(x, y) ∈ ℝ
2 ∶ x2 + y2 > 1∕4 & |x|, |y| < 1}

To obtain the exact solution we take, for example

and plug it into the problem to compute f. In the numerical
model we consider the following domains : a square plate of
edge length 2 and a similar length plate with a circular hole
of half-unit radius at its center. We generate N uniformly
distributed collocation points inside the domain and M uni-
formly distributed points on the boundary. Once the NNs
have been trained, we can then evaluate on any number of
points. Initially, the model is trained on a square plate which

−A�,p(u) = f (x, y) in Ω

u = 0 on �Ω

U(x, y) ∶=

{(
x2 + y2 −

1

4

)
(1 − x2)(1 − y2) if (x, y) ∈ Ω

0 otherwise

Fig. 7   Transfer learning solu-
tions for y > 0 and y ≤ 0 .
Comparisons of learning curves
and training period

Fig. 8   Demo comparisons on a Hemisphere

	 Engineering with Computers

1 3

effectively serve as an inception model. The training process
on a square plate (i.e., the source task) is less expensive rela-
tive to the training process on a plate with hole (i.e., the tar-
get task). To relate these two tasks more closely and improve
the learning, the source domain has been subdivided into
two different data sets. The data set represented by blue dots
is trained to minimize the loss function evaluated over Ω ,
while the data set represented by green dots is trained to
match the boundary conditions. Once the learning process is
invoked and the loss reaches a certain tolerance, we stop the
process. The stopping criteria is again based on trial-error
so that the algorithm never fails to converge. Now we uti-
lize this previously constructed model architecture and most
of the learned parameters, and then using standard training
methods to learn the remaining, non-reused parameters of
the new model corresponding to the plate with hole.

In the source task, we have used 3 hidden layers of 40 neu-
rons each and the entire domain is discretized with N ≈ 5600
interior, M ≈ 1800 boundary training points as shown in
Fig 4. On the target task, we have considered 2 more hid-
den layers on top of preceding trained layers, comprising of
35 neurons in each hidden layer, and the domain contains
N = 2000 interior, M = 500 boundary training points. In
both cases, the swish activation function has been used and
SGD optimizer with � ∈ (0.0001, 0.1] and � ∈ (0.3, 1] . In
the source task, a relatively larger learning rate was used
and once the layers have been trained to converge we then
retrain the whole model end-to-end with layer specific learn-
ing rate. In particular, we set a moderate learning rate for
the pretrained layers to avoid the time-cost. For the sake of
experiment, we consider three different training schedules
viz. “Lower learning rate”, “Larger learning rate” and “Dif-
ferential learning rate”. We emphasize that all the sched-
ules require the same amount of training iterations. From
our findings, we conclude that larger learning rate puts the
model under a higher risk of exploding gradients and failure
to converge, while a lower learning rate consumes exces-
sive amounts of time. Therefore, following standard practice,
we attempt to predict the regime of learning rates, where
the optimal performance can be achieved. In this phase we
choose �1 = 0.001 , �2 = 0.008 and �3 = (0.0076, 0.08) and

continue to use the same set of hyperparameters across tasks.
The evolution plots are depicted in Fig 5. We find that for a
fixed computational budget the best performance is always
achieved in differential learning rate. Nevertheless there
is a trade-off and one needs to go over trial-error process
depending on the model. The error plots from a conventional
learning and transfer learning are also depicted in Fig. 5. In
addition, performance comparisons between a model trained
from scratch (i.e., CL model) and a pretrained model (i.e.,
TL model) are demonstrated by learning curves. Since the
exact solution is known, we also compare relative errors,
which are defined as:

where Npred is the number of testing points and
Uerr(x, y) = U(x, y) − U�(x, y) . Together this is a clear cut
evidence how transfer learning boosts the computation per-
formance with smaller data set, possessing the benefits of
less training time for a NN model and resulting in a lower
generalization error in comparison to conventional learning,
where the model needs to train from scratch on a larger data
set to reach a desired level of accuracy.

4.1.1 � Example‑II: 3D Poisson equation

In the second example, we consider the Poisson problem
with discontinuous right hand side on a three dimensional
irregular domain defined by,

The governing equations are as follows:

where

L2 ∶=

�∑Npred

i=1
U2
err
(xi, yi)�∑Npred

i=1
U2(xi, yi)

Ω ∶=
{
(x, y, z) ∈ ℝ

3 ∶
1

4
< x2 + y2 + z2 < 1 &, z ≥ 0

}

−A�,p(u) = f (x, y, z) in Ω

u = 0 on �Ω

Fig. 9   Distribution of boundary and interior collocation points over training sets and test points over testing set

Engineering with Computers	

1 3

Fig. 10   Comparison of solutions and pointwise errors. Learning curves, relative errors and training duration

Fig. 11   Training set and evaluation set

	 Engineering with Computers

1 3

The exact solution U is not known in this case; therefore,
loss function is used as a measurement of how successful
our model is at predicting the ground truth. In the source
task, we have chosen a unit hemispherical domain filled
with N = 64000 interior and M = 15000 boundary train-
ing points, see Fig. 6. The neural network model contains 4
hidden layers, each with 80 neurons and a combination of
“swish-tanh” is chosen as the activation function. On the
other hand, for the target task, we consider a hemispherical
shell filled with N ≈ 22000 interior and M = 8000 bound-
ary training points and the network model is constructed
with 2 more hidden layers of equal width of 50 neurons and
“swish” activation function is applied. In addition, a fine
tuned SGD optimizer followed by BFGS has been used for
both the training process. The transfer learning solution in
this case is shown in Fig. 7. As before, the interesting parts
are the training time and loss values which are analyzed in
the figures. As it can be seen in case of conventional learn-
ing, because of excessive training points on the same domain
and complexity in the network model, the procedure is com-
putationally expensive. In addition, the model ends up with
worse loss values in comparison to transfer learning.

f (x, y, z) =

� √
x2+y2+z2

6
if y ≤ 0

x + y −
√
z if y > 0

4.2 � SGD vs Adam

More recently, researchers are focusing on SGD with
momentum instead of vanilla SGD. With the goal of train-
ing faster and more accurate neural nets, our empirical
results demonstrates that SGD + � converges much better
than Adam. Despite its widespread popularity, under specific
circumstances Adam sometimes fails to converge to an opti-
mal solution. Exploratory studies [41–43] in this direction
highlight the possible inabilities of adaptive optimization
technique, such as Adam compared to SGD. We conducted
an experiment with Adam and SGD. On the same problem
setup, we train our model on the data set obtained from the
hemispherical domain. We follow the same learning rate
scheme. Figure 8 illustrates the efficacy of the respective
optimizers. Evidently, this experiment suggests that SGD
achieves a better accuracy compared to Adam, not only in
faster decaying the loss values but also with respect to the
training time and number of epochs necessary to attain that
performance.

4.3 � Example‑III : p = 1.5 ,ı = 0.1

In this example we consider p Laplacian problem with
homogeneous Dirichlet condition and right hand side f is
chosen to match the exact solution. However, the problem
in this case has low regularity. This example is somewhat

Fig. 12   (Left to right) Exact solution (U) , TL solution (U∼�) and pointwise error differences (U − U∼�)

Fig. 13   (Left to right) Exact solution (V) , TL solution (V∼�) and pointwise error differences (V − V∼�)

Engineering with Computers	

1 3

motivated by an example in [44]. The degenerate nature of
the p type problems makes the study of their regularity prop-
erties difficult, and in general, even with smooth problem
data, high regularity for the solution u is not guaranteed. It
has been shown in [45] that under some additional assump-
tions on the problem data, one can obtain a desired level of
regularity which is sufficient to ensure an optimal conver-
gence of the loss function. In this case, our domain is an
annular ring,

For the manufactured solution, we consider:

Following previous techniques, the source task here is
to train the model on a unit disc filled with N = 6400 inte-
rior points and M ≈ 2000 boundary points, see Fig 9. We
found for this model the hyperparameters : 3 hidden layers
each with 50 neurons and “swish” activation were effec-
tive. Swish is bounded below but unbounded above and
non-monotonic in nature; however, the evaluation cost per
iteration is higher. Therefore, whenever possible, it should
be combined with tanh or ReLU layers. This is what we also

Ω ∶=
{
(x, y) ∈ ℝ

2 ∶
1

2
< x2 + y2 < 1

}

U(x, y) ∶=

{ 1

2�
sin[2�(x2 + y2)] if (x, y) ∈ Ω

0 otherwise

follow in our targeted task. Furthermore, here the data set
contains N ≈ 2500 interior points and M = 900 boundary
points, we have 2 more hidden layers of equal width of 30
neurons, and as mentioned earlier SGD followed by BFGS
is applied in both the training process. Finally, the compari-
son with respect to the exact solution and also loss function
evaluation determines how well our algorithm models the
data set. By taking a look at the figures, Fig. 10, constructed
by our algorithm, one can conclude that even in the case for
less regularized PDE and also involving a complex domain,
the transfer learning approximation reaches an error closer to
≈ 10−7 while leading to a significant speedup in comparison
to conventional learning.

4.4 � Example‑IV : Navier–Stokes equations

In the final example, we turn our attention to an impor-
tant class of partial differential equation that describes
the dynamics of an incompressible Newtonian fluid flow.
Because of the regularity issues, here we have studied only
the stationary version of the problem in two dimensional
bounded domains. The domains are described in Fig. 11.
To explore the effectiveness of task-to-task learning, in this
particular example we have conducted the experiment of
implementing the pretrained model directly without any
target task specific modification. In general, for a better tar-
get performance, it is always beneficial to choose a similar
pretraining task. Therefore, in our experiment, we consider
the square plate as source domain consisting of uniformly
distributed N ≈ 6700 interior and M = 1050 boundary col-
location points for training the source task model. We then
use this pretrained model for initialization and evaluate its
performance on a geometrically different target task model,
i.e., plate with multiple holes.

The problem is motivated by an example in [46].

�Δ� = � ⋅ ∇� + ∇p + � in Ω,

∇ ⋅ � = 0 in Ω,

� = � on �Ω.

Fig. 14   (Left to right) Exact solution (P) , TL solution (P∼�) and pointwise error differences (P − P∼�)

Fig. 15   Relative errors on test domain

	 Engineering with Computers

1 3

Here, � = 0.01 is the kinemetic viscosity coefficient,
�(x, y) = [v1(x, y) v2(x, y)] & p(x, y) are the Eulerian veloc-
ity and pressure fields. We choose the boundary conditions
and � so that the exact solution is given by,

As mentioned earlier, our goal here is to train the model on
a simpler regular domain, e.g., square plate and then we are
generalizing the gained knowledge by applying this model
on the targeted domain, e.g., plate with multiple holes of
different dimensions. We avoid the training process on such
domain which is quite challenging. Nevertheless, transfer
learning allows to deal with these scenarios by leveraging
the pre-built model from source task. The basic architecture
consists of 3-hidden layer neural network containing 60 neu-
rons in each layer. We have trained one neural network with
3 outputs but, it can also be done individually to approximate
� and p. This seems to be much harder, because training dif-
ferent architectures and attaining optimal hyperparameters
is itself a daunting task and it also requires a lot of compu-
tational time. Besides, the former task is more suited for
grasping the underlying equations. The weights are initial-
ized using a Xavier initialization, while the biases are gen-
erated using a normal distribution with mean 0 and stand-
ard deviation 1. They are trained using an SGD optimizer
with the fine tuned learning rate and momentum followed
by BFGS. The first two hidden layers are connected with
“swish” activation and the final layer is with “tanh” activa-
tion. The resulting prediction error is validated against the
test data. Figures 12, 13, 14 provide a comparison between
the exact solution and the transfer learning outcome. It can
be observed that the predicted outputs and exact solutions
are quite close on the testing sets, which evidently supports
the success of the pretrained model over the targeted task.
Therefore, from these empirical findings, we conclude that
even without learning every task specific features, TL imple-
mentations are still adaptable enough to achieve reasonable
accuracy with only a pretrained model. Thus by learning
quite generic feature of the target domain, the model is capa-
ble of capturing the intricate non linear behavior of N–S
equation in that domain. Moreover, as an addendum, we
have achieved such performances with zero training dura-
tion on target model. To quantify the accuracy of this novel
approach we also compute the relative error as:

v1(x, y) = 1 + e
x

2 sin 2�y

v2(x, y) =
1

4�
e

x

2 cos 2�y

p(x, y) = 1 − e
2x+2y

�

Lu
2
∶=

�∑Npred

i=1
U2
err
(xi, yi)�∑Npred

i=1
U2(xi, yi)

where Npred is the no. of testing points and
Uerr(x, y) = U(x, y) − U∼�(x, y) . Similarly, Lv

2
 and Lp

2
 are also

defined. To the end an experimental assessment of perfor-
mance is demonstrated in Fig. 15.

5 � Conclusions

In this paper, we proposed a novel approach to predict the
solutions of complex BVPs while capturing the features
of interest in the input domain using the mechanisms and
strategies of transfer learning from the perspectives of data
and model. We have shown how the proposed framework is
superior in various aspects to existing protocols. Our find-
ings enable the efficient use of optimizers and analyse how to
control the learning rate and momentum coefficients in order
to achieve near-identical model performance on the test set
with the same number of training iterations but significantly
fewer parameter updates. Furthermore, the implementation
of NURBS based modeling possesses profound computa-
tional benefits of designing the shape of domain, since the
time taken to analyze is greatly reduced and consequently
our results have high accuracy even in the case of more
sophisticated shapes of the boundary. Towards this end,
experiments have been conducted to evaluate the perfor-
mance of the proposed model to handle the mainstream area
in domain adaptation algorithm. The comparisons of differ-
ent models clearly reflect that selection of transfer learning
model is an important research topic when solving com-
plex problems for practical applications. Several techniques
remain open to explore and a wider range of new approaches
are still require, to solve the knowledge transfer problems in
more complex scenarios for example how to tackle negative
transfer learning [47, 48], catastrophic forgetting [49, 50]
etc, would be our future direction to study extensively. It is
also left to mention that, as one of the popular and promising
subject in machine learning algorithm optimization method
remains a major bottleneck and deserves further system-
atic analysis. Recent research [51–53] shows that this gap
can be eliminated by careful use of classical momentum or
Nesterov accelerated gradient based techniques. Some other
commonly employed technique includes time based decay
learning rate and adaptive learning rate. Studying this area is
also a subject in our future work. Finally, this method could
be applied to other problems, where domain adaptation is
important, such as classifying whole-slide images in medi-
cal applications.

Acknowledgements  AC acknowledge the support of the ERC Starting
Grant no: 802205.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Engineering with Computers	

1 3

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm
for deep belief nets. Neural Comput 18(7):1527–1554

	 2.	 Nair V, Hinton GE (2010) Rectified linear units improve restricted
boltzmann machines. In: Icml

	 3.	 Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdi-
nov RR, Improving neural networks by preventing co-adaptation
of feature detectors. arXiv preprint arXiv:​1207.​0580

	 4.	 Goodfellow I, Warde-Farley D, Mirza M, Courville A, Bengio Y
(2013) Maxout networks. In: International conference on machine
learning, PMLR, pp 1319–1327

	 5.	 Agostinelli F, Hoffman M, Sadowski P, Baldi P, Learning activa-
tion functions to improve deep neural networks. arXiv preprint
arXiv:​1412.​6830

	 6.	 McCulloch WS, Pitts W (1943) A logical calculus of the ideas
immanent in nervous activity. Bull Math Biophys 5(4):115–133

	 7.	 Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans
Knowl Data Eng 22(10):1345–1359

	 8.	 Weiss KR, Khoshgoftaar TM (2016) An investigation of transfer
learning and traditional machine learning algorithms. In: 2016
IEEE 28th international conference on tools with artificial intel-
ligence (ICTAI), IEEE, pp 283–290

	 9.	 Goswami S, Anitescu C, Chakraborty S, Rabczuk T (2020) Trans-
fer learning enhanced physics informed neural network for phase-
field modeling of fracture. Theoret Appl Fract Mech 106:102447

	10.	 Chakraborty S (2021) Transfer learning based multi-fidelity phys-
ics informed deep neural network. J Comput Phys 426:109942

	11.	 Taylor ME, Stone P, Transfer learning for reinforcement learning
domains: a survey. J Mach Learn Res 10(7)

	12.	 Ge L, Gao J, Zhang A (2013) Oms-tl: a framework of online mul-
tiple source transfer learning. In: Proceedings of the 22nd ACM
international conference on information & knowledge manage-
ment, pp 2423–2428

	13.	 Ammar HB, Eaton E, Luna JM, Ruvolo P (2015) Autonomous
cross-domain knowledge transfer in lifelong policy gradient rein-
forcement learning. In: Twenty-fourth international joint confer-
ence on artificial intelligence

	14.	 Zhang Y, Yang Q (2018) An overview of multi-task learning. Natl
Sci Rev 5(1):30–43

	15.	 Shoeleh F, Yadollahi MM, Asadpour M (2020) Domain adapta-
tion-based transfer learning using adversarial networks. Knowl
Eng Rev 35:e7

	16.	 Kouw WM, Loog M, An introduction to domain adaptation and
transfer learning. arXiv preprint arXiv:​1812.​11806

	17.	 Magill M, Qureshi F, de Haan H (2018) Neural networks trained
to solve differential equations learn general representations. In:
Advances in neural information processing systems, pp 4071–4081

	18.	 Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transfer-
able are features in deep neural networks? In: Advances in neural
information processing systems, pp 3320–3328

	19.	 Lu J, Behbood V, Hao P, Zuo H, Xue S, Zhang G (2015) Transfer
learning using computational intelligence: a survey. Knowl-Based
Syst 80:14–23

	20.	 Zhuang Z, Tan M, Zhuang B, Liu J, Guo Y, Wu Q, Huang J, Zhu J,
Discrimination-aware channel pruning for deep neural networks.
arXiv preprint arXiv:​1810.​11809

	21.	 Yim J, Joo D, Bae J, Kim J (2017) A gift from knowledge distilla-
tion: Fast optimization, network minimization and transfer learn-
ing. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 4133–4141

	22.	 Schaefferkoetter P, Michopoulos JG, Song JH (2021) Strong-form
meshfree collocation method for non-equilibrium solidification of
multi-component alloy. Eng Comput:1–15

	23.	 Beel A, Song J-H (2021) Strong-form meshfree colloca-
tion method for multibody thermomechanical contact. Eng
Comput:1–20

	24.	 Yoon Y-C, Song J-H (2021) Interface immersed particle differ-
ence method for weak discontinuity in elliptic boundary value
problems. Comput Methods Appl Mech Eng 375:113650

	25.	 Chakraborty A, Wick T, Zhuang X, Rabczuk T (2021) Multigoal-
oriented dual-weighted-residual error estimation using deep neu-
ral networks. arXiv e-prints arXiv​–2112

	26.	 Dissanayake M, Phan-Thien N (1994) Neural-network-based
approximations for solving partial differential equations. Com-
mun Numer Methods Eng 10(3):195–201

	27.	 Howard J, Gugger S (2020) Fastai: a layered api for deep learning.
Information 11(2):108

	28.	 Howard J, Ruder S, Universal language model fine-tuning for text
classification. arXiv preprint arXiv:​1801.​06146

	29.	 Saha S, Nagaraj N, Mathur A, Yedida R, Sneha H (2020) Evolu-
tion of novel activation functions in neural network training for
astronomy data: habitability classification of exoplanets. Eur Phys
J Spec Top 229(16):2629–2738

	30.	 Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo
H, Hamdia K, Zhuang X, Rabczuk T (2020) An energy approach
to the solution of partial differential equations in computational
mechanics via machine learning: concepts, implementation and
applications. Comput Methods Appl Mech Eng 362:112790

	31.	 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M,
Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: a system
for large-scale machine learning. In: 12th {USENIX} symposium
on operating systems design and implementation ( {OSDI} 16), pp
265–283

	32.	 Glorot X, Bengio Y (2010) Understanding the difficulty of training
deep feedforward neural networks. In: Proceedings of the thir-
teenth international conference on artificial intelligence and sta-
tistics, JMLR Workshop and Conference Proceedings, pp 249–256

	33.	 Hornik K (1991) Approximation capabilities of multilayer feed-
forward networks. Neural Netw 4(2):251–257

	34.	 Sirignano J, Spiliopoulos K (2018) Dgm: a deep learning algo-
rithm for solving partial differential equations. J Comput Phys
375:1339–1364

	35.	 Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis:
cad, finite elements, nurbs, exact geometry and mesh refinement.
Comput Methods Appl Mech Eng 194(39–41):4135–4195

	36.	 Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis:
toward integration of CAD and FEA. Wiley, New York

	37.	 Piegl L, Tiller W (1996) The NURBS book. Springer, Berlin
	38.	 Nguyen VP, Anitescu C, Bordas SP, Rabczuk T (2015) Isogeomet-

ric analysis: an overview and computer implementation aspects.
Math Comput Simul 117:89–116

	39.	 Dimas E, Briassoulis D (1999) 3d geometric modelling based on
nurbs: a review. Adv Eng Softw 30(9–11):741–751

	40.	 Bingol OR, Krishnamurthy A (2019) Nurbs-python: an open-
source object-oriented nurbs modeling framework in python.
SoftwareX 9:85–94

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1412.6830
http://arxiv.org/abs/1812.11806
http://arxiv.org/abs/1810.11809
http://arxiv.org/abs/arXiv--2112
http://arxiv.org/abs/1801.06146

	 Engineering with Computers

1 3

	41.	 Wilson AC, Roelofs R, Stern M, Srebro N, Recht B, The marginal
value of adaptive gradient methods in machine learning. arXiv
preprint arXiv:​1705.​08292

	42.	 Keskar NS, Socher R, Improving generalization performance by
switching from adam to sgd. arXiv preprint arXiv:​1712.​07628

	43.	 Reddi SJ, Kale S, Kumar S, On the convergence of adam and
beyond. arXiv preprint arXiv:​1904.​09237

	44.	 Toulopoulos I, Wick T (2017) Numerical methods for power-law
diffusion problems. SIAM J Sci Comput 39(3):A681–A710

	45.	 Liu W, Barrett JW (1993) A remark on the regularity of the solu-
tions of the p-laplacian and its application to their finite element
approximation. J Math Anal Appl 178(2):470–487

	46.	 Galdi G (2011) An introduction to the mathematical theory of the
Navier-Stokes equations: steady-state problems. Springer, Berlin

	47.	 Zhang W, Deng L, Wu D, Overcoming negative transfer: a survey.
arXiv preprint arXiv:​2009.​00909

	48.	 Wang Z, Dai Z, Póczos B, Carbonell J (2019) Characterizing
and avoiding negative transfer. In: Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition, pp
11293–11302

	49.	 Chen X, Wang S, Fu B, Long M, Wang J, Catastrophic forgetting
meets negative transfer: batch spectral shrinkage for safe transfer
learning

	50.	 Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins
G, Rusu AA, Milan K, Quan J, Ramalho T, Grabska-Barwinska
A et al (2017) Overcoming catastrophic forgetting in neural net-
works. Proc Natl Acad Sci 114(13):3521–3526

	51.	 Sutskever I, Martens J, Dahl G, Hinton G (2013) On the impor-
tance of initialization and momentum in deep learning. In: Inter-
national conference on machine learning, PMLR, pp 1139–1147

	52.	 Zhou K, Jin Y, Ding Q, Cheng J (2020) Amortized Nesterov’s
momentum: a robust momentum and its application to deep
learning. In: Conference on uncertainty in artificial intelligence,
PMLR, pp 211–220

	53.	 Liu C, Belkin M (2019) Accelerating sgd with momentum for
over-parameterized learning. In: International conference on
learning representations

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1705.08292
http://arxiv.org/abs/1712.07628
http://arxiv.org/abs/1904.09237
http://arxiv.org/abs/2009.00909

	Domain adaptation based transfer learning approach for solving PDEs on complex geometries
	Abstract
	1 Introduction
	2 Neural network (NN) approximation for PDEs
	2.1 Problem statement and methodology
	2.2 Model architecture: transfer Learning setup
	2.2.1 Definitions

	2.3 Implementation
	2.4 Convergence result
	2.5 Algorithm

	3 NURBS-based geometrical modelling
	4 Numerical examples
	4.1 Example-I : 2D Poisson equation ( )
	4.1.1 Example-II: 3D Poisson equation

	4.2 SGD vs Adam
	4.3 Example-III :
	4.4 Example-IV : Navier–Stokes equations

	5 Conclusions
	Acknowledgements
	References

