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Abstract
Here we study transformation of waveshapes of photons under the action of the
linear logic circuits and other related architectures involving only linear optical
networks and measurements. We show that the gates are working well not only
in the case when all photons are separable and located in the same mode, but
in some more general cases. For instance, the photonic waveshapes are allowed
to be slightly different in different channels; in this case, Zeno effect prevents
the photons from decoherence after the measurement, and the gate thus remains
neutral to the small waveshape perturbations.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The quantum logic based on ‘flying qubits’, that is, photons which propagate through an
extended pathway with gates being represented by input–output transformations of such pho-
tons taking place ‘with the speed of light’, provides one of the possible ways to build quantum
circuits. Such flying-qubits gates and circuits are potentially capable of making universal quan-
tum computers [1–5]. They have been proven to be useful in various optical experiments,
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including several proof-of-principle setups [6–16]. The most successful all optical architec-
tures up to now use linear logical elements and measurements and are based on the fact that
the interferometric setups followed by measurements may probabilistically introduce entangle-
ment between photons. Such architectures include so called linear optical computing (LOC)
[2], based on a probabilistic teleportation, one-way circuits [3] including measurement of spe-
cially created entangled states, and their combinations [11]. In the following we will use the
term ‘LOC’ to denote all such approaches. More generally, interferometric setups of various
kind, supplied with measurements, play an important or even deciding role in other quantum-
information tasks, such as bosonic sampling [13, 14, 17–19], quantum metrology [20, 21], and
others.

Optical qubits can be encoded in various degrees of freedom of photons, such as polariza-
tion, spatially distinct channels [11] (‘which-path encoding’), photon number [11], frequency
bins [22–24], temporal waveshape [25] or orbital angular momentum [26–28]. Although every
realistic photon has a certain waveshape, in many of above mentioned encodings this temporal
waveshape is unused, that is, constituting a kind of ‘ballast’ degrees of freedom. Nevertheless,
these ballast degrees of freedom often play an important role in the overall dynamics, even if
they are supposed to be ‘unused’ [29, 30]. Unless the photons in different spatial channels are
fully indistinguishable, an interferometric setup introduce entanglement between them, which,
after one of the photons is measured, destroys the coherence of the remaining photons [31, 32].
In particular, for interferometric schemes, for the full visibility of interference fringes the sym-
metry of the spectral function [32] is needed. For experiments involving both interferometric
parts and measurement, more restrictive conditions are required. For instance, for single pho-
tons created from photon pairs, the absence of spectral/temporal entanglement is necessary to
keep the resulting single photon fully coherent [31–34], that is, the photon pair must be in a
state with the Schmidt rank equal to one.

The conditions mentioned above were obtained by considering relatively simple setups
[31–34], each of them however representing important parts of LOC gates, as well as whole
gates [32]. The direct analysis of the above mentioned questions in larger LOC constellations
was up to now not undertaken, to the best of our knowledge. Nevertheless, already consid-
ered setups give clear and simple understanding of the sufficient conditions on the photonic
wavepacket to be efficient for quantum computations: the perfect operation of LOC gates is in
every case guaranteed if the photons in different channels are independent and indistinguish-
able, i.e. are located in exactly the same temporal mode. In such case, no which-path informa-
tion can be extracted from the photons, which guarantees efficient quantum interference and
absence of incoherence by the measurements.

In this article we extend this condition. We derive, using the formalism of temporal modes
[25], a general expression for the action of the linear gates and whole circuits taken into account
their waveshapes. We consider more specifically the case when the waveshapes of photons are
slightly varying in different channels, which can take place, for instance, if the propagation
conditions such as dispersion in different channels are slightly different. We show that in this
case Zeno effect prevents the system from decoherence. The circuit remains thus ‘neutral’ to
the perturbations: although they remain in the system and are not allowed to exit through the
measured ancillary channels, they also do not influence the computation process. Furthermore,
few other classes of ‘allowed’ states are discussed here.

2. The general setting

A typical part of an LOC circuit can be presented as the following (see figure 1): a net-
work of linear optical elements U, acting on photons in channels C1, . . . , Cm, followed by
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Figure 1. The LOC circuits include a network of linear elements U acting on the chan-
nels C1, . . . , Cm, followed by the measurements (Mes.) of some channels. Without loss
of generality we may assume the measurement acting on only one of the channels (in
our case the last, mth one). The classical information (Clas.) resulted from the measure-
ment might be used in the following gates (feed-forward). Optionally, we may affect the
waveshapes in one or more channels (here, channel C2) by the operator D modifying the
temporal waveshape of the photon.

measurements in one or several channels. The result of the measurements can be optionally
used in the other parts of the network. We are interested in evolution of temporal shapes of the
photons in the system. Therefore, we define channels carrying quantum information to include
all degrees of freedom except temporal modes, and the photon in each channel can be in one of
the temporal modes or in a superposition of such. In particular, photons in different polariza-
tions or transverse modes we consider to be in different channels. The corresponding partial
wavefunction for n photons at the entrance of U can be thus defined as:

|Ψ〉(n) =
∑
W

∫
fW1...Wn(ω1, . . . ,ωn)a†

ω1,W1
a†
ω2,W2

. . . a†
ωn,Wn

|0〉C1,C2,...,Cm
dω1 . . . dωn, (1)

defines the quantum amplitude of n photons having particular frequencies ω1,ω2, . . . ,ωn and
located in channels W1, W2, . . . , Wn, Wl ∈ {C1, . . . , Cm}, l = (1, . . . , n). Summation is made
over W , the sequences of n ‘channel names’ denoting the location of every photon, with pos-
sible repetitions, meaning more than one photon in a particular channel. Thus, W is formally
a set of all ‘words’ of length n with the ‘letters’ from the alphabet {C1, . . . , Cm}, having the
property that Wl > W′

l if l > l′ (by this we assume the natural ordering among the channels
C1 < C2 < · · · < Cm). The latter condition is needed in order to define f uniquely; otherwise
we will have some f labeled differently but describing the same physical situation. Finally,
|0〉C1,C2,...,Cm

denotes vacuum in all channels and a†
ωl,Wl

is the photon birth operator with the
frequency ωl in the channel Wl.

We find useful to rewrite equation (1) in the temporal domain using a set of some discrete
orthogonal modes in time gi(t) = 1√

2π

∫
gi(ω)eiωtdω, i = 1, . . . ,∞, where gi(ω) are the Fourier

representations of these modes, which are also orthogonal. One can use also continuous set of
modes, in this case all corresponding summations must be replaced by integrals. We define the
corresponding single-photon states as [25]:

|gi〉X =
∑
ω

gi(ω)a†
ω|0〉X . (2)

In this way, equation (1) is rewritten as:

|Ψ〉(n) =
∑
W ,I

f W1,...,Wn
i1,...,in

∏∣∣gil

〉
Wl

, (3)
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where the function f W1,...,Wn
i1,...,in describes the quantum amplitude of n photons to be in the channels

W1, . . . , Wn and temporal modes i1, . . . , in are defined as:

f W1,...,Wn
i1,...,in =

∫
g∗

i1
(ω1)g∗

i2
(ω2) . . . g∗

in(ωn) fW1,...,Wn(ω1, . . . ,ωn)dω1 . . . dωn. (4)

The summation over temporal modes I in equation (3) is organized similarly to summation
over channels in equation (1). Namely, I is a set of all words i1i2 . . . in with il, l = (1, . . . ,∞)
being the mode index (see equation (2)). Nevertheless, the order of il can be arbitrary, that is,
in contrast to indices labeling channels, we do not assume the ordering of the mode indices.
Finally, the general wavefunction at the entrance of U is a sum of all partial ones:

|Ψ〉 =
∑

n

|Ψ〉(n). (5)

As the next step, we describe the action of U. We represent U as a kind of a scattering
matrix, almost fully neglecting the internal structure of the underlying network, except few
simplifying assumptions. First, we assume that the network U does not contain losses, that is,
the number of photons at the entrance and at the exit are the same. As a second assumption, we
assume that every of the linear elements in U are frequency-independent.That is, every element
keeps the waveshapes intact. The action of U under these circumstances is distributing every
photon between the channels C1 . . .Cm without changing its temporal shape. Furthermore,
since linear gates are probabilistic, if the measurements after U gives incorrect result, the gate
is unsuccessful and all the photons in C1 . . .Cm are disregarded. Under these assumptions, the
action of U is described by an operator U, which is a sum of particular contributions for every
number of photons n:

U = C
∑

n

U(n)Pn, (6)

where Pn is a projector to the subspace with exactly n photons, C is a projector to a subspace
containing amplitudes leading to a successful gate operation after preforming measurements.
Such a projector is introduced because in the case of negative outcome all the photons partici-
pating in this particular operation are disregarded and have typically to be destroyed. By intro-
ducing such postselection into equation (6) we make the operator U non-Hermitian (although
U(n) remains Hermitian). Besides, we assume implicitly ideal erorrless measurements. Every
U(n) in equation (6) is an operator describing redistribution of the photons between channels.

In general, the matrix U(n) acts on the photonic amplitudes f W1,...,Wn
i1,...,in and thus has elements

U
i′1W ′

1,...,i′nW ′
n

i1W1,...,inWn
, every of them converting the multi-index i1W1, . . . , inWn to i′1W′

1, . . . , i′nW′
n (here

we drop the subscript (n), since it follows from the number of indices). Nevertheless, taking into
account that U(n) keeps the waveshapes intact and only redistributes the photons between chan-

nels, it should contain only indices of spatial channels, that is, can be enumerated as U
W ′

1,...,W ′
n

W1,...,Wn
.

The matrix CU(n) has the same form, but, because of the projector operation C, some elements

are equal to zero. We will thus denote the matrix defined by CU(n) as U
W ′

1,...,W ′
n

W1,...,Wn
. That is, the

action of every single element in the decomposition equation (6) is written as:

CU(n)Pn |Ψ〉 = CU(n)|Ψ〉(n) =
∑

W′,W ,I
U

W ′
1,...,W ′

n
W1,...,Wn

f W1,...,Wn
i1,...,in

n∏
l=1

∣∣gil

〉
W ′

l
, (7)
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where the summation rules are the same as in equation (1). Finally, the subsequent mea-
surement of one of the channels results in the density matrix (in non-normalized form)

ρ(out) = trMU |Ψ〉 , (8)

where M is the set of channels where photons were measured. At this point it is worth to note
that the form of equation (8) does not depend on our ability to actually measure the temporal
waveshape. It is important only that the temporal waveshapes corresponding to different |gi〉
are orthogonal and thus are potentially distinguishable—because of this, equation (8) contains
incoherent sum of all modes in M even if we do not actually measure the waveshapes.

Before we approach the general setting in figure 1, we find it constructive to consider first
a more specific case of NS (nonlinear sign gate) first defined in [2], which is the most simple
and basic element for LOC.

3. NS gate

NS gate in LOC has a probabilistic nature and exists in several variants. One of them is shown
schematically in figure 2. In this variant, two ancilla channels, are used in one of them a single
photon is located and the other is in the vacuum state. The unknown state |Ψ〉 = a |0〉+ b |1〉+
c |2〉 is transformed to |Ψ〉 = a |0〉+ b |1〉 − c |2〉 if one of two measuring devices registers one
photon and the other measures the vacuum. The joint state of the main and ancilla qubits at the
entrance, taking into account that the channel C is in the vacuum state, are described by

|ΨA, 1B, 0C〉 = a|Ψ〉(1) + b|Ψ〉(2) + c|Ψ〉(3) (9)

where |Ψ〉(n) corresponds to the partial amplitudes with n photons in all channels (that is,
n − 1 photons in the working channel A). The partial states |Ψ〉(n) are rewritten, according
to equation (3), as:

|Ψ〉(1) =
∑

i

fi|gi〉B, (10)

|Ψ〉(2) =
∑

i, j

fi j|gi〉A|g j〉B, (11)

|Ψ〉(3) =
∑
i, j,l

fi jl|gi〉A|g j〉A|gl〉B, (12)

where the amplitudes f are defined in equation (4), and here short-noted as the following: f B
i

we denoted as fi, f AB
i j as fij and f AAB

i jl as fijl. This is because in all of these cases we have only one
possibility for the channel indices in f, and thus no summation over channel indices is needed.
This is due to the ordering condition, as it is described after equation (1).

The action of U is given by the operator U, decomposed into partial operators acting on the
states with particular photon number n as defined in equation (6). We consider only the case of
success of the NS gate as specified in figure 2 (otherwise all the photons belonging to the gate
are disregarded). The first part in the decomposition equation (6), CU(1)P1, is quite trivial:

CU(1)P1 |Ψ〉 = CU(1)|Ψ〉(1) =
∑

i

fi|gi〉B. (13)

5
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Figure 2. Measurement-induced gate with an interferometric part U consisting of linear
optical elements coupling three channels A, B and C followed by the measurements of
the ancilla photon. The gate is successful if measurement reveals 0 photons in C and one
photon in B. If operated with different waveshapes, it leads in general to the mixing of
waveshapes and, after measurement, to a spectral/temporal decoherence.

The action of CU(2)P2, according to the previous section, can be represented as a matrix

U
W ′

1,W ′
2

W1,W2
, with Wi, W′

i being one of A or B (because the gate success assumes zero photons in
C, see figure 2). Because of the ordering condition on the channels, the lower index pair can
be only W1W2 = AB, so that the summation over lower indices is reduced to a single term.
Therefore, we denote UIJ

AB as UIJ, I, J = {A, B}. The element UAB corresponds to scattering to
the same spatial channel, UBA to exchange the channel. Taking this into account and rearranging
the indices we obtain the two-photon version of equation (7):

CU(2)P2 |Ψ〉 = CU(2)|Ψ〉(2) =
∑

j

|Ψ j〉A|g j〉B, (14)

|Ψ j〉A =
∑

i

(
UAB fi j + UBA f ji

)
|gi〉A. (15)

Note that in contrast to the vectors which appeared before, |Ψ j〉A is not necessarily normalized
to 1.

For the three-photon case, that is, for the matrix defining the action of CU(3)P3, we have, in

the same way as for the two-photon one, only one allowed combination in U
W ′

1W ′
2W ′

3
W1W2W3

for lower
indices, namely W1W2W3 = AAB. Short-noting UIJL

AAB as UIJL, we have:

CU(3)P3 |Ψ〉 = CU(3)|Ψ〉(3) =
∑

j

|Ψ j〉AA|g j〉B, (16)

|Ψl〉AA =
∑

i j

(
UAAB fi jl + UABA fil j + UBAA fli j

)
|gi〉A|g j〉A. (17)

The successful measurement of the channels B and C (delivering zero photons in C and one
photon in B) gives, according to equations (8), (9), (13), (17) (in non-normalized form):

ρ(out) =
∑

j

|φ j〉〈φ j|, (18)

|φ j〉 = a|0〉A + b|Ψ j〉A + c|Ψ j〉AA. (19)

That is, the resulting density matrix is a sum of incoherent components corresponding to
different j; within every wavefunction |φ j〉 there is interference possible. Having the expression
for the output density matrix equations (15), (17), (19) one can reexamine the mode dynamics

6
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more closely for some basic situations. The simplest case is when both channels contain exactly
the same mode |gk〉 (for some definite k) in both A and B:

|Ψ〉(in)
k = a|gk〉B + b|gk〉A|gk〉B + c|gk〉A|gk〉A|gk〉B, (20)

that is, the amplitudes f in equations (10) and (12) are given by:

fi = aδik, fi j = bδikδ jk, fi jl = cδikδ jkδlk, (21)

where δik is the Kronecker delta. In this case we have the final state equation (18) being a pure
one; that is, only one of |φ j〉, with j = k, is nonzero:

|φk〉 = a|0〉A + b(UAB + UBA)|gk〉A + c(UAAB + UABA + UBAA)|gk〉A|gk〉A. (22)

In this case, we have fully indistinguishable photons, and the full quantum interference can
take place. The same result takes place if the independent modes in A and B are in the form:

fi = a, fi j = bgig j, fi jl = cgig jgl (23)

for some coefficients gi, gj, gk. In this case, by redefinition of the mode given by
| f 〉 =

∑
gi |gi〉, we reduce the situation to equations (20) and (21). The conditions (21) and

(23) are well known in setups related to interferometry and measurements [31–33]: they all
represent the case of a state with Schmidt rank equal to one, that is, indistinguishable photons
in all channels.

We remark that in order to work as an NS gate for the cases considered above, the condition

UB = UAB + UBA = −(UAAB + UABA + UBAA), (24)

is to be fulfilled, which follows from the definition of the NS gate. This was the major discovery
in [2] that purely linear networks may satisfy this condition. Since |UB| < 1, the gate has only
a probabilistic nature.

Another important nontrivial example we consider here is the one of a separable state with
the mode |gk〉 in A and |gk′ 〉 in B, with k 	= k′. That is, now the photons enter A and B in different
modes. In this case f is defined as:

fi = aδik′ , fi j = bδikδ jk′ , fi jl = cδikδ jkδlk′ , (25)

and the only nonzero amplitudes in equation (19) are

|φk〉 = aUB|0〉A + bUBA|gk′ 〉A + c(UABA + UBAA)|gk〉A|gk′ 〉A, (26)

which is responsible for the exchange of the modes between channels (that is, the mode k′

appearing in channel A instead of B), and

|φk′ 〉 = aUB|0〉A + bUAB|gk〉A + cUAAB|gk〉A|gk〉A, (27)

in which case the modes remain in the same channels as at the entrance.
According to equation (18), the resulting density matrix is an incoherent sum of these two

waveshapes. For instance, if a = 0 and c = 0, equation (18) is written as:

ρ(out) = |bUAB|2|gk〉A A〈gk|+ |bUBA|2|gk′ 〉A A〈gk′ | . (28)

That is, presence of two orthogonal waveshapes in the amplitude turns the result into an inco-
herent mixture of two amplitudes and thus, in general, destroys the action of the gate (this

7
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situation is illustrated in figure 2). Besides, taking into account equation (24), since neither
of |UIJ|, |UIJL| are equal to zero, even within every single coherent component of ρ(out) in
equations (18) and (19) the correct action of the gate can not be guarantied. For instance, since
UB 	= UAB 	= −UAAB (which happens because of equation (24)), equation (27) does not give
the correct gate action.

4. Strictly invariant wavefunctions

The wavefunctions of the type defined in equation (22) or equation (23), that is, consisting of
the same wavefunction in one channels, will retain their form not only for the NS gate but also
for the whole circuit. In this case equation (5) can be written as:

|Ψ〉 → |Ψ〉(in)
k =

∑
n

Ψ(n)
k , (29)

where |Ψ〉(n)
k =

∑
ja j

∏
W j

|gk〉C1...Cn
, aj are some coefficients, the product is made over the all

combinations of channels W j were at least one photon is present, and |gk〉 is a wavefunction
with fixed k. The waveshape after the whole circuit will be of the same type, i.e., it will be
again a pure wavefunction of the type, given by equation (29), only with different coefficients.

It is interesting that this condition can be easily extended by considering more general
‘diagonal’ state

ρ(in) =
∑

j

|Ψ〉(in) (in)
j j 〈Ψ| , (30)

containing an incoherent sum of the terms |Ψ〉(in)
j defined by equation (29). In contrast to

equation (29), equation (30) is not a pure state anymore, nevertheless keeping perfectly the
quantum interference in every of its components also after measurement. Because of this, the
state given by equation (30) retains its form after the gate. In fact, since the index j must not
necessarily be discrete, we can, somewhat less formally, consider the modes in the form of
delta functions localized in certain position in time, assuming thus gτ (ω) = e−iωτ , which leads
to wavefunctions |gτ 〉 formally localized at t = τ , with τ being an index continuously label-
ing the modes (note that such localization of wavefunctions does not automatically mean the
electromagnetic field is ‘localized’ at t = τ ). The corresponding continuous mode is

ρ(in) =

∫
|Ψ〉(in) (in)

τ τ 〈Ψ| dτ , (31)

where |Ψ〉(in)
τ is defined analogously to equation (20). Continuous states in ω-space defined in

an analogous way as

ρ(in) =

∫
|Ψ〉(in) (in)

ω ω 〈Ψ| dω, (32)

also can be constructed. Such frequency-based ‘diagonal’ states are somewhat similar to
the ones considered in [35], only, in contrast to [35], the phase between different frequency
components is here not defined.

5. Small perturbation of the pulse shapes

We may consider the situation when all the channels contain photons in identical independent
states, however the waveshape in one or several channels are slightly disturbed. This situa-
tion schematically shown in figure 1, where the waveshape in an exemplary channel C2 is
disturbed by an operator D. Such disturbance can be caused, for instance, by an action of dis-
persion slightly different from the dispersion in other channels. As the first step, we consider
only one disturbed channel. We denote the undisturbed mode |gm〉 whereas the mode in the

8
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disturbed channel will be |gm〉+ ε |gd〉, where ε � 1, and, without breaking the generality,
we may assume 〈gm|gd〉 = 0. Both |gm〉 and |gd〉 have some decomposition in terms of |gi〉
defined before, nevertheless, because of their orthogonality, we may consider these two modes
as a new set of basic modes. As in the previous sections, we suppose an ideal linear network
U, which does not introduce new modes and only ‘redistributes’ the existing ones. In fact, this
is not too strict condition: if some of the linear elements are imperfect in the above sense, we
can always take this into account by ‘backtracking’ the disturbance introduced by this element
to the entrance of U and thus to transfer this imperfection into |gd〉.

We start our consideration from the NS gate, where we assume the perturbation in the chan-
nel B. The initial state will be thus the sum of the one with the same mode equation (21) and
the one with the two separate modes equation (25):

fi = aδim + εδid, (33)

fi j = bδimδ jm + εδimδ jd, (34)

fi jl = cδimδ jmδlm + εδimδ jmδld, (35)

where i, j, l = {m, d}. The resulting state is given in the lowest orders of ε by equation (18) as
(in unnormalized form):

ρ(out) = |φm〉〈φm|+ ε2|φd〉〈φd| (36)

with |φd〉 , |φm〉 defined by equations (26) and (27) with k = m, k′ = d, which gives us
(assuming the condition (24) being valid):

|φm〉 = UB |φ〉+ ε
(
UBA|gd〉A + (UABA + UBAA)|gm〉A|gd〉A

)
, (37)

corresponding to the case when the photon measured in the channel B was in the state |gm〉,
with |φ〉 defined as:

|φ〉 = a|0〉A + b|gm〉A − c|gm〉A|gm〉A, (38)

and

|φd〉 = UB|0〉A + UAB|gm〉A + UAAB|gm〉A|gm〉A, (39)

corresponding to the case when the measured photon was in the mode |gd〉. In equation (37),
the first term ∼ |φ〉 defines the amplitude corresponding to the correct action of the gate, with
both photons in the mode |gm〉, whereas the term ∼ ε corresponds to one of the photons in the
state |gd〉, that is, the ‘wrong’ photon entering the channel A.

Equation (36) is a mixed state consisting of two incoherent terms. Nevertheless, if assume
ε to be small enough and neglect the terms of the second order in ε, the result is a pure state
|φm〉 given by equation (37). This latter state contains the successful action of the NS gate |φ〉
but also an amplitude with a single photon in the ‘bad’ mode ∼ ε |gd〉. As one can see from
equation (37), despite the fact that this bad photon is in the signal channel (A), it has not been
processed correctly. We note also that if the gate action was successful, the energy located in
this ‘wrong’ photon (in the mode |φd〉) remains unchanged, that is, the same as it was before
the gate. This can be easily seen from the fact that the part |φm〉〈φm| of the density matrix
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corresponds to the measurement outcome with the bad photon localized fully in the channel A
and thus not removed by the measurement (in the channel B).

The consideration above remains valid also if two or more photons are disturbed: if the
disturbance is small enough, to the first order of ε it can be represented as the sum of the
perturbations of the type considered above, and the general behavior observed by us remains
the same.

Thus, we conclude that in the first order in ε, the gate remains ‘neutral’ to the action of the
small disturbance of a single photon. That is, the photon in the wrong mode remains in the
system, but also does not influence the action of the gate in respect to the photons located in
the correct mode. The decoherence, which appears in our case because, potentially, one can
distinguish between the ‘good’ and ‘bad’ modes in the measurement device, has the order of
ε2.

In the consideration above, the disturbance is set initially in the auxiliary channel B. The part
of this disturbance enters the channel A and, according to said above, remains there, whereas
the part remaining in B ‘canceled’ because measurement makes it incoherent with the rest of
the amplitude. It is easy to see that basically the same effect takes place if the disturbance is
initially in the channel A. In this case, the part of the amplitude remaining in channel A has
the amplitude of the order of ε whereas the part appearing in B has the order of ε2 after the
measurement. Both of these cases can be considered as a manifestation of Zeno effect, that
is, protection of the mode from being changed by continuous measurements [36–39]. In our
particular case, the action of Zeno effect prevents the disturbance from being scattered into the
measured channel B.

This consideration, which we made for the NS gate up to now, is possible to extend to more
general networks U in figure 1. For this, it is again enough to consider the disturbance localized
in a single photon in one of the channels. That is, initial wavefunction is

|Ψ〉(in) = |Ψm〉(in) + ε|Ψd〉(in), (40)

where |Ψm〉(in) contains only the photons in the mode |gm〉, and only one of the photons in
|Ψd〉(in) is in the mode |gd〉. The action of U, according to equations (6) and (7), modifies
|Ψ〉(in) to (before measurements)

|Ψ〉(out) = |Ψd〉+ ε
∑
i∈G

|φi〉(m)|gd〉i, (41)

where
|Ψd〉 = U|Ψm〉(in) + ε

∑
i∈G′

|φi〉(d). (42)

Here G is the set of channels which are measured after U whereas G′ is the set of channels
which are not measured after U. Equations (41) and (42) describe rescattering of the photon
belonging to the ‘wrong’ mode |gd〉 into the channels belonging to G (the part of the amplitude
proportional to ε in equation (41)) or into the channels belonging toG′ (the part of the amplitude
proportional to ε in equation (42)). In equation (41), |φi〉(m) denotes the state of all photons
except the one in the channel i, and in equation (42) |φi〉(d) denotes the state of photons, one
of them (in the channel i) is in the mode |gd〉. The exact form of |φi〉(m) and |φi〉(d) are not
important. The remaining term U|Ψm〉(in) in equation (42) contains the amplitude, free from
the ‘wrong’ photon, which is processed without mistakes. The density matrix which results
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from equation (41) after the measurements of channels in G is written as:

ρ(out) = |Ψd〉〈Ψd|+ ε2
∑

i

|φi〉(m)(m)〈φi| . (43)

Similarly to equation (36), the first part includes the undisturbed action of U and the distortions
which are added coherently, whereas the second part describes decoherence, which is again of
the order of ε2. Exactly in the same way as for the NS gate, the small disturbance can be applied
to many photons at once, resulting, in the first orders of ε, the sum of the independent actions
described above. Furthermore, the gate U can be repeated many times. Zeno effect protects the
disturbances to enter the modes which are measured, so they remain in the circuit.

6. Discussions and conclusion

As a conclusion, we investigated the influence of the waveshapes of photons on the LOC cir-
cuit performance. A general LOC setup consists of a number of ancilla photons mixed with the
signal ones in an interferometric-type network, with the ancilla channels being subsequently
measured and photons in them destroyed. The interferometric part of the setup mixes the wave-
shapes of the ‘main’ and auxiliary photons, after which the measurement decoherences them.
Thus, if one of the photons is in the ‘wrong’ mode, this leads to appearance of ‘which-way’
information in the system and thus to decoherence of the resulting wavefunction. Because
of this, photons located in indistinguishable modes seem to be the best (and well known)
choose.

Here we have demonstrated few another, less obvious, options. First, we have shown that
a small perturbation, at least in the first order, does not break the action of circuit. Moreover,
due to Zeno effect, decoherence, which should arise after every measurement, is suppressed.
Such action of Zeno effect is present even if we do not measure the waveshapes explicitly.
This is in contrast to the ‘convenient’ Zeno effect, where the stabilized state is projected to the
explicitly measured eigenfunction. Because of this Zeno action, the disturbed photons can not
escape through ancilla channels and remain in the system. Besides, more general states of the
‘diagonal’ type such as given by equations (30)–(32) also remain intact during propagation
through the gate. Such states consist of completely incoherent sum of states, every of them
containing all the photons in the same mode.

In the previous consideration, for clarity, we assumed every spatial mode being considered
as a separate ‘working channel’, which can consist many temporal modes, containing possi-
ble disturbances. Nevertheless, it is easy to see that the above consideration, with only minor
modifications, can be also applied for the case when disturbances can enter not only temporal
waveshapes, but also spatial modes. It remains valid also for the recent proposals, where tem-
poral or frequency-based modes are used for LOC. In this case, we must consider the channels
as temporal (or frequency) modes, with the perturbations being localized in the spatial modes
or in those temporal of frequency modes which do not represent qubits, that is, all ‘ballast’
modes.
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